m25p80.c 32.6 KB
Newer Older
1
/*
2
 * MTD SPI driver for ST M25Pxx (and similar) serial flash chips
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
 *
 * Author: Mike Lavender, mike@steroidmicros.com
 *
 * Copyright (c) 2005, Intec Automation Inc.
 *
 * Some parts are based on lart.c by Abraham Van Der Merwe
 *
 * Cleaned up and generalized based on mtd_dataflash.c
 *
 * This code is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 */

#include <linux/init.h>
19 20
#include <linux/err.h>
#include <linux/errno.h>
21 22 23
#include <linux/module.h>
#include <linux/device.h>
#include <linux/interrupt.h>
D
David Brownell 已提交
24
#include <linux/mutex.h>
25
#include <linux/math64.h>
26
#include <linux/slab.h>
27
#include <linux/sched.h>
28
#include <linux/mod_devicetable.h>
D
David Brownell 已提交
29

30
#include <linux/mtd/cfi.h>
31 32
#include <linux/mtd/mtd.h>
#include <linux/mtd/partitions.h>
33
#include <linux/of_platform.h>
D
David Brownell 已提交
34

35 36 37 38
#include <linux/spi/spi.h>
#include <linux/spi/flash.h>

/* Flash opcodes. */
39 40
#define	OPCODE_WREN		0x06	/* Write enable */
#define	OPCODE_RDSR		0x05	/* Read status register */
41
#define	OPCODE_WRSR		0x01	/* Write status register 1 byte */
42
#define	OPCODE_NORM_READ	0x03	/* Read data bytes (low frequency) */
43 44
#define	OPCODE_FAST_READ	0x0b	/* Read data bytes (high frequency) */
#define	OPCODE_PP		0x02	/* Page program (up to 256 bytes) */
45
#define	OPCODE_BE_4K		0x20	/* Erase 4KiB block */
46
#define	OPCODE_BE_32K		0x52	/* Erase 32KiB block */
47
#define	OPCODE_CHIP_ERASE	0xc7	/* Erase whole flash chip */
48
#define	OPCODE_SE		0xd8	/* Sector erase (usually 64KiB) */
49 50
#define	OPCODE_RDID		0x9f	/* Read JEDEC ID */

51 52 53 54 55 56
/* 4-byte address opcodes - used on Spansion and some Macronix flashes. */
#define	OPCODE_NORM_READ_4B	0x13	/* Read data bytes (low frequency) */
#define	OPCODE_FAST_READ_4B	0x0c	/* Read data bytes (high frequency) */
#define	OPCODE_PP_4B		0x12	/* Page program (up to 256 bytes) */
#define	OPCODE_SE_4B		0xdc	/* Sector erase (usually 64KiB) */

57 58 59 60 61
/* Used for SST flashes only. */
#define	OPCODE_BP		0x02	/* Byte program */
#define	OPCODE_WRDI		0x04	/* Write disable */
#define	OPCODE_AAI_WP		0xad	/* Auto address increment word program */

62
/* Used for Macronix and Winbond flashes. */
63 64 65
#define	OPCODE_EN4B		0xb7	/* Enter 4-byte mode */
#define	OPCODE_EX4B		0xe9	/* Exit 4-byte mode */

66 67 68
/* Used for Spansion flashes only. */
#define	OPCODE_BRWR		0x17	/* Bank register write */

69 70 71
/* Status Register bits. */
#define	SR_WIP			1	/* Write in progress */
#define	SR_WEL			2	/* Write enable latch */
72
/* meaning of other SR_* bits may differ between vendors */
73 74 75 76 77 78
#define	SR_BP0			4	/* Block protect 0 */
#define	SR_BP1			8	/* Block protect 1 */
#define	SR_BP2			0x10	/* Block protect 2 */
#define	SR_SRWD			0x80	/* SR write protect */

/* Define max times to check status register before we give up. */
79
#define	MAX_READY_WAIT_JIFFIES	(40 * HZ)	/* M25P16 specs 40s max chip erase */
80
#define	MAX_CMD_SIZE		5
81

82 83
#define JEDEC_MFR(_jedec_id)	((_jedec_id) >> 16)

84 85 86 87
/****************************************************************************/

struct m25p {
	struct spi_device	*spi;
D
David Brownell 已提交
88
	struct mutex		lock;
89
	struct mtd_info		mtd;
90 91
	u16			page_size;
	u16			addr_width;
92
	u8			erase_opcode;
93 94
	u8			read_opcode;
	u8			program_opcode;
95
	u8			*command;
96
	bool			fast_read;
97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
};

static inline struct m25p *mtd_to_m25p(struct mtd_info *mtd)
{
	return container_of(mtd, struct m25p, mtd);
}

/****************************************************************************/

/*
 * Internal helper functions
 */

/*
 * Read the status register, returning its value in the location
 * Return the status register value.
 * Returns negative if error occurred.
 */
static int read_sr(struct m25p *flash)
{
	ssize_t retval;
	u8 code = OPCODE_RDSR;
	u8 val;

	retval = spi_write_then_read(flash->spi, &code, 1, &val, 1);

	if (retval < 0) {
		dev_err(&flash->spi->dev, "error %d reading SR\n",
				(int) retval);
		return retval;
	}

	return val;
}

132 133 134 135 136 137 138 139 140 141 142
/*
 * Write status register 1 byte
 * Returns negative if error occurred.
 */
static int write_sr(struct m25p *flash, u8 val)
{
	flash->command[0] = OPCODE_WRSR;
	flash->command[1] = val;

	return spi_write(flash->spi, flash->command, 2);
}
143 144 145 146 147 148 149 150 151

/*
 * Set write enable latch with Write Enable command.
 * Returns negative if error occurred.
 */
static inline int write_enable(struct m25p *flash)
{
	u8	code = OPCODE_WREN;

152
	return spi_write_then_read(flash->spi, &code, 1, NULL, 0);
153 154
}

155 156 157 158 159 160 161 162 163
/*
 * Send write disble instruction to the chip.
 */
static inline int write_disable(struct m25p *flash)
{
	u8	code = OPCODE_WRDI;

	return spi_write_then_read(flash->spi, &code, 1, NULL, 0);
}
164

165 166 167
/*
 * Enable/disable 4-byte addressing mode.
 */
168
static inline int set_4byte(struct m25p *flash, u32 jedec_id, int enable)
169
{
170 171
	switch (JEDEC_MFR(jedec_id)) {
	case CFI_MFR_MACRONIX:
172
	case CFI_MFR_ST: /* Micron, actually */
173
	case 0xEF /* winbond */:
174 175 176 177 178 179 180 181
		flash->command[0] = enable ? OPCODE_EN4B : OPCODE_EX4B;
		return spi_write(flash->spi, flash->command, 1);
	default:
		/* Spansion style */
		flash->command[0] = OPCODE_BRWR;
		flash->command[1] = enable << 7;
		return spi_write(flash->spi, flash->command, 2);
	}
182 183
}

184 185 186 187 188 189
/*
 * Service routine to read status register until ready, or timeout occurs.
 * Returns non-zero if error.
 */
static int wait_till_ready(struct m25p *flash)
{
P
Peter Horton 已提交
190
	unsigned long deadline;
191 192
	int sr;

P
Peter Horton 已提交
193 194 195
	deadline = jiffies + MAX_READY_WAIT_JIFFIES;

	do {
196 197 198 199 200
		if ((sr = read_sr(flash)) < 0)
			break;
		else if (!(sr & SR_WIP))
			return 0;

P
Peter Horton 已提交
201 202 203
		cond_resched();

	} while (!time_after_eq(jiffies, deadline));
204 205 206 207

	return 1;
}

C
Chen Gong 已提交
208 209 210 211 212
/*
 * Erase the whole flash memory
 *
 * Returns 0 if successful, non-zero otherwise.
 */
213
static int erase_chip(struct m25p *flash)
C
Chen Gong 已提交
214
{
215 216
	pr_debug("%s: %s %lldKiB\n", dev_name(&flash->spi->dev), __func__,
			(long long)(flash->mtd.size >> 10));
C
Chen Gong 已提交
217 218 219 220 221 222 223 224 225

	/* Wait until finished previous write command. */
	if (wait_till_ready(flash))
		return 1;

	/* Send write enable, then erase commands. */
	write_enable(flash);

	/* Set up command buffer. */
226
	flash->command[0] = OPCODE_CHIP_ERASE;
C
Chen Gong 已提交
227 228 229 230 231

	spi_write(flash->spi, flash->command, 1);

	return 0;
}
232

233 234 235 236 237 238
static void m25p_addr2cmd(struct m25p *flash, unsigned int addr, u8 *cmd)
{
	/* opcode is in cmd[0] */
	cmd[1] = addr >> (flash->addr_width * 8 -  8);
	cmd[2] = addr >> (flash->addr_width * 8 - 16);
	cmd[3] = addr >> (flash->addr_width * 8 - 24);
239
	cmd[4] = addr >> (flash->addr_width * 8 - 32);
240 241 242 243 244 245 246
}

static int m25p_cmdsz(struct m25p *flash)
{
	return 1 + flash->addr_width;
}

247 248 249 250 251 252 253 254
/*
 * Erase one sector of flash memory at offset ``offset'' which is any
 * address within the sector which should be erased.
 *
 * Returns 0 if successful, non-zero otherwise.
 */
static int erase_sector(struct m25p *flash, u32 offset)
{
255 256
	pr_debug("%s: %s %dKiB at 0x%08x\n", dev_name(&flash->spi->dev),
			__func__, flash->mtd.erasesize / 1024, offset);
257 258 259 260 261 262 263 264 265

	/* Wait until finished previous write command. */
	if (wait_till_ready(flash))
		return 1;

	/* Send write enable, then erase commands. */
	write_enable(flash);

	/* Set up command buffer. */
266
	flash->command[0] = flash->erase_opcode;
267
	m25p_addr2cmd(flash, offset, flash->command);
268

269
	spi_write(flash->spi, flash->command, m25p_cmdsz(flash));
270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287

	return 0;
}

/****************************************************************************/

/*
 * MTD implementation
 */

/*
 * Erase an address range on the flash chip.  The address range may extend
 * one or more erase sectors.  Return an error is there is a problem erasing.
 */
static int m25p80_erase(struct mtd_info *mtd, struct erase_info *instr)
{
	struct m25p *flash = mtd_to_m25p(mtd);
	u32 addr,len;
288
	uint32_t rem;
289

290 291 292
	pr_debug("%s: %s at 0x%llx, len %lld\n", dev_name(&flash->spi->dev),
			__func__, (long long)instr->addr,
			(long long)instr->len);
293

294 295
	div_u64_rem(instr->len, mtd->erasesize, &rem);
	if (rem)
296 297 298 299 300
		return -EINVAL;

	addr = instr->addr;
	len = instr->len;

D
David Brownell 已提交
301
	mutex_lock(&flash->lock);
302

303
	/* whole-chip erase? */
304 305 306 307 308 309
	if (len == flash->mtd.size) {
		if (erase_chip(flash)) {
			instr->state = MTD_ERASE_FAILED;
			mutex_unlock(&flash->lock);
			return -EIO;
		}
310 311 312 313 314 315 316

	/* REVISIT in some cases we could speed up erasing large regions
	 * by using OPCODE_SE instead of OPCODE_BE_4K.  We may have set up
	 * to use "small sector erase", but that's not always optimal.
	 */

	/* "sector"-at-a-time erase */
C
Chen Gong 已提交
317 318 319 320 321 322 323 324 325 326
	} else {
		while (len) {
			if (erase_sector(flash, addr)) {
				instr->state = MTD_ERASE_FAILED;
				mutex_unlock(&flash->lock);
				return -EIO;
			}

			addr += mtd->erasesize;
			len -= mtd->erasesize;
327 328 329
		}
	}

D
David Brownell 已提交
330
	mutex_unlock(&flash->lock);
331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347

	instr->state = MTD_ERASE_DONE;
	mtd_erase_callback(instr);

	return 0;
}

/*
 * Read an address range from the flash chip.  The address range
 * may be any size provided it is within the physical boundaries.
 */
static int m25p80_read(struct mtd_info *mtd, loff_t from, size_t len,
	size_t *retlen, u_char *buf)
{
	struct m25p *flash = mtd_to_m25p(mtd);
	struct spi_transfer t[2];
	struct spi_message m;
348
	uint8_t opcode;
349

350 351
	pr_debug("%s: %s from 0x%08x, len %zd\n", dev_name(&flash->spi->dev),
			__func__, (u32)from, len);
352

353 354 355
	spi_message_init(&m);
	memset(t, 0, (sizeof t));

356 357 358 359
	/* NOTE:
	 * OPCODE_FAST_READ (if available) is faster.
	 * Should add 1 byte DUMMY_BYTE.
	 */
360
	t[0].tx_buf = flash->command;
361
	t[0].len = m25p_cmdsz(flash) + (flash->fast_read ? 1 : 0);
362 363 364 365 366 367
	spi_message_add_tail(&t[0], &m);

	t[1].rx_buf = buf;
	t[1].len = len;
	spi_message_add_tail(&t[1], &m);

D
David Brownell 已提交
368
	mutex_lock(&flash->lock);
369 370 371 372

	/* Wait till previous write/erase is done. */
	if (wait_till_ready(flash)) {
		/* REVISIT status return?? */
D
David Brownell 已提交
373
		mutex_unlock(&flash->lock);
374 375 376
		return 1;
	}

377 378 379 380
	/* FIXME switch to OPCODE_FAST_READ.  It's required for higher
	 * clocks; and at this writing, every chip this driver handles
	 * supports that opcode.
	 */
381 382

	/* Set up the write data buffer. */
383
	opcode = flash->read_opcode;
384
	flash->command[0] = opcode;
385
	m25p_addr2cmd(flash, from, flash->command);
386 387 388

	spi_sync(flash->spi, &m);

389 390
	*retlen = m.actual_length - m25p_cmdsz(flash) -
			(flash->fast_read ? 1 : 0);
391

D
David Brownell 已提交
392
	mutex_unlock(&flash->lock);
393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409

	return 0;
}

/*
 * Write an address range to the flash chip.  Data must be written in
 * FLASH_PAGESIZE chunks.  The address range may be any size provided
 * it is within the physical boundaries.
 */
static int m25p80_write(struct mtd_info *mtd, loff_t to, size_t len,
	size_t *retlen, const u_char *buf)
{
	struct m25p *flash = mtd_to_m25p(mtd);
	u32 page_offset, page_size;
	struct spi_transfer t[2];
	struct spi_message m;

410 411
	pr_debug("%s: %s to 0x%08x, len %zd\n", dev_name(&flash->spi->dev),
			__func__, (u32)to, len);
412

413 414 415 416
	spi_message_init(&m);
	memset(t, 0, (sizeof t));

	t[0].tx_buf = flash->command;
417
	t[0].len = m25p_cmdsz(flash);
418 419 420 421 422
	spi_message_add_tail(&t[0], &m);

	t[1].tx_buf = buf;
	spi_message_add_tail(&t[1], &m);

D
David Brownell 已提交
423
	mutex_lock(&flash->lock);
424 425

	/* Wait until finished previous write command. */
C
Chen Gong 已提交
426 427
	if (wait_till_ready(flash)) {
		mutex_unlock(&flash->lock);
428
		return 1;
C
Chen Gong 已提交
429
	}
430 431 432 433

	write_enable(flash);

	/* Set up the opcode in the write buffer. */
434
	flash->command[0] = flash->program_opcode;
435
	m25p_addr2cmd(flash, to, flash->command);
436

437
	page_offset = to & (flash->page_size - 1);
438 439

	/* do all the bytes fit onto one page? */
440
	if (page_offset + len <= flash->page_size) {
441 442 443 444
		t[1].len = len;

		spi_sync(flash->spi, &m);

445
		*retlen = m.actual_length - m25p_cmdsz(flash);
446 447 448 449
	} else {
		u32 i;

		/* the size of data remaining on the first page */
450
		page_size = flash->page_size - page_offset;
451 452 453 454

		t[1].len = page_size;
		spi_sync(flash->spi, &m);

455
		*retlen = m.actual_length - m25p_cmdsz(flash);
456

457
		/* write everything in flash->page_size chunks */
458 459
		for (i = page_size; i < len; i += page_size) {
			page_size = len - i;
460 461
			if (page_size > flash->page_size)
				page_size = flash->page_size;
462 463

			/* write the next page to flash */
464
			m25p_addr2cmd(flash, to + i, flash->command);
465 466 467 468 469 470 471 472 473 474

			t[1].tx_buf = buf + i;
			t[1].len = page_size;

			wait_till_ready(flash);

			write_enable(flash);

			spi_sync(flash->spi, &m);

D
Dan Carpenter 已提交
475
			*retlen += m.actual_length - m25p_cmdsz(flash);
D
David Brownell 已提交
476 477
		}
	}
478

D
David Brownell 已提交
479
	mutex_unlock(&flash->lock);
480 481 482 483

	return 0;
}

484 485 486 487 488 489 490 491 492
static int sst_write(struct mtd_info *mtd, loff_t to, size_t len,
		size_t *retlen, const u_char *buf)
{
	struct m25p *flash = mtd_to_m25p(mtd);
	struct spi_transfer t[2];
	struct spi_message m;
	size_t actual;
	int cmd_sz, ret;

493 494
	pr_debug("%s: %s to 0x%08x, len %zd\n", dev_name(&flash->spi->dev),
			__func__, (u32)to, len);
495

496 497 498 499
	spi_message_init(&m);
	memset(t, 0, (sizeof t));

	t[0].tx_buf = flash->command;
500
	t[0].len = m25p_cmdsz(flash);
501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518
	spi_message_add_tail(&t[0], &m);

	t[1].tx_buf = buf;
	spi_message_add_tail(&t[1], &m);

	mutex_lock(&flash->lock);

	/* Wait until finished previous write command. */
	ret = wait_till_ready(flash);
	if (ret)
		goto time_out;

	write_enable(flash);

	actual = to % 2;
	/* Start write from odd address. */
	if (actual) {
		flash->command[0] = OPCODE_BP;
519
		m25p_addr2cmd(flash, to, flash->command);
520 521 522 523 524 525 526

		/* write one byte. */
		t[1].len = 1;
		spi_sync(flash->spi, &m);
		ret = wait_till_ready(flash);
		if (ret)
			goto time_out;
527
		*retlen += m.actual_length - m25p_cmdsz(flash);
528 529 530 531
	}
	to += actual;

	flash->command[0] = OPCODE_AAI_WP;
532
	m25p_addr2cmd(flash, to, flash->command);
533 534

	/* Write out most of the data here. */
535
	cmd_sz = m25p_cmdsz(flash);
536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558
	for (; actual < len - 1; actual += 2) {
		t[0].len = cmd_sz;
		/* write two bytes. */
		t[1].len = 2;
		t[1].tx_buf = buf + actual;

		spi_sync(flash->spi, &m);
		ret = wait_till_ready(flash);
		if (ret)
			goto time_out;
		*retlen += m.actual_length - cmd_sz;
		cmd_sz = 1;
		to += 2;
	}
	write_disable(flash);
	ret = wait_till_ready(flash);
	if (ret)
		goto time_out;

	/* Write out trailing byte if it exists. */
	if (actual != len) {
		write_enable(flash);
		flash->command[0] = OPCODE_BP;
559 560
		m25p_addr2cmd(flash, to, flash->command);
		t[0].len = m25p_cmdsz(flash);
561 562 563 564 565 566 567
		t[1].len = 1;
		t[1].tx_buf = buf + actual;

		spi_sync(flash->spi, &m);
		ret = wait_till_ready(flash);
		if (ret)
			goto time_out;
568
		*retlen += m.actual_length - m25p_cmdsz(flash);
569 570 571 572 573 574 575
		write_disable(flash);
	}

time_out:
	mutex_unlock(&flash->lock);
	return ret;
}
576

577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666
static int m25p80_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
{
	struct m25p *flash = mtd_to_m25p(mtd);
	uint32_t offset = ofs;
	uint8_t status_old, status_new;
	int res = 0;

	mutex_lock(&flash->lock);
	/* Wait until finished previous command */
	if (wait_till_ready(flash)) {
		res = 1;
		goto err;
	}

	status_old = read_sr(flash);

	if (offset < flash->mtd.size-(flash->mtd.size/2))
		status_new = status_old | SR_BP2 | SR_BP1 | SR_BP0;
	else if (offset < flash->mtd.size-(flash->mtd.size/4))
		status_new = (status_old & ~SR_BP0) | SR_BP2 | SR_BP1;
	else if (offset < flash->mtd.size-(flash->mtd.size/8))
		status_new = (status_old & ~SR_BP1) | SR_BP2 | SR_BP0;
	else if (offset < flash->mtd.size-(flash->mtd.size/16))
		status_new = (status_old & ~(SR_BP0|SR_BP1)) | SR_BP2;
	else if (offset < flash->mtd.size-(flash->mtd.size/32))
		status_new = (status_old & ~SR_BP2) | SR_BP1 | SR_BP0;
	else if (offset < flash->mtd.size-(flash->mtd.size/64))
		status_new = (status_old & ~(SR_BP2|SR_BP0)) | SR_BP1;
	else
		status_new = (status_old & ~(SR_BP2|SR_BP1)) | SR_BP0;

	/* Only modify protection if it will not unlock other areas */
	if ((status_new&(SR_BP2|SR_BP1|SR_BP0)) >
					(status_old&(SR_BP2|SR_BP1|SR_BP0))) {
		write_enable(flash);
		if (write_sr(flash, status_new) < 0) {
			res = 1;
			goto err;
		}
	}

err:	mutex_unlock(&flash->lock);
	return res;
}

static int m25p80_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
{
	struct m25p *flash = mtd_to_m25p(mtd);
	uint32_t offset = ofs;
	uint8_t status_old, status_new;
	int res = 0;

	mutex_lock(&flash->lock);
	/* Wait until finished previous command */
	if (wait_till_ready(flash)) {
		res = 1;
		goto err;
	}

	status_old = read_sr(flash);

	if (offset+len > flash->mtd.size-(flash->mtd.size/64))
		status_new = status_old & ~(SR_BP2|SR_BP1|SR_BP0);
	else if (offset+len > flash->mtd.size-(flash->mtd.size/32))
		status_new = (status_old & ~(SR_BP2|SR_BP1)) | SR_BP0;
	else if (offset+len > flash->mtd.size-(flash->mtd.size/16))
		status_new = (status_old & ~(SR_BP2|SR_BP0)) | SR_BP1;
	else if (offset+len > flash->mtd.size-(flash->mtd.size/8))
		status_new = (status_old & ~SR_BP2) | SR_BP1 | SR_BP0;
	else if (offset+len > flash->mtd.size-(flash->mtd.size/4))
		status_new = (status_old & ~(SR_BP0|SR_BP1)) | SR_BP2;
	else if (offset+len > flash->mtd.size-(flash->mtd.size/2))
		status_new = (status_old & ~SR_BP1) | SR_BP2 | SR_BP0;
	else
		status_new = (status_old & ~SR_BP0) | SR_BP2 | SR_BP1;

	/* Only modify protection if it will not lock other areas */
	if ((status_new&(SR_BP2|SR_BP1|SR_BP0)) <
					(status_old&(SR_BP2|SR_BP1|SR_BP0))) {
		write_enable(flash);
		if (write_sr(flash, status_new) < 0) {
			res = 1;
			goto err;
		}
	}

err:	mutex_unlock(&flash->lock);
	return res;
}

667 668 669 670 671 672 673
/****************************************************************************/

/*
 * SPI device driver setup and teardown
 */

struct flash_info {
674 675 676 677 678
	/* JEDEC id zero means "no ID" (most older chips); otherwise it has
	 * a high byte of zero plus three data bytes: the manufacturer id,
	 * then a two byte device id.
	 */
	u32		jedec_id;
679
	u16             ext_id;
680 681 682 683

	/* The size listed here is what works with OPCODE_SE, which isn't
	 * necessarily called a "sector" by the vendor.
	 */
684
	unsigned	sector_size;
685 686
	u16		n_sectors;

687 688 689
	u16		page_size;
	u16		addr_width;

690 691
	u16		flags;
#define	SECT_4K		0x01		/* OPCODE_BE_4K works uniformly */
692
#define	M25P_NO_ERASE	0x02		/* No erase command needed */
693
#define	SST_WRITE	0x04		/* use SST byte programming */
694
#define	M25P_NO_FR	0x08		/* Can't do fastread */
695 696
};

697 698 699 700 701 702
#define INFO(_jedec_id, _ext_id, _sector_size, _n_sectors, _flags)	\
	((kernel_ulong_t)&(struct flash_info) {				\
		.jedec_id = (_jedec_id),				\
		.ext_id = (_ext_id),					\
		.sector_size = (_sector_size),				\
		.n_sectors = (_n_sectors),				\
703
		.page_size = 256,					\
704 705
		.flags = (_flags),					\
	})
706

707
#define CAT25_INFO(_sector_size, _n_sectors, _page_size, _addr_width, _flags)	\
708 709 710 711 712
	((kernel_ulong_t)&(struct flash_info) {				\
		.sector_size = (_sector_size),				\
		.n_sectors = (_n_sectors),				\
		.page_size = (_page_size),				\
		.addr_width = (_addr_width),				\
713
		.flags = (_flags),					\
714
	})
715 716 717 718 719

/* NOTE: double check command sets and memory organization when you add
 * more flash chips.  This current list focusses on newer chips, which
 * have been converging on command sets which including JEDEC ID.
 */
720
static const struct spi_device_id m25p_ids[] = {
721
	/* Atmel -- some are (confusingly) marketed as "DataFlash" */
722 723
	{ "at25fs010",  INFO(0x1f6601, 0, 32 * 1024,   4, SECT_4K) },
	{ "at25fs040",  INFO(0x1f6604, 0, 64 * 1024,   8, SECT_4K) },
724

725
	{ "at25df041a", INFO(0x1f4401, 0, 64 * 1024,   8, SECT_4K) },
726
	{ "at25df321a", INFO(0x1f4701, 0, 64 * 1024,  64, SECT_4K) },
727
	{ "at25df641",  INFO(0x1f4800, 0, 64 * 1024, 128, SECT_4K) },
728

729 730 731
	{ "at26f004",   INFO(0x1f0400, 0, 64 * 1024,  8, SECT_4K) },
	{ "at26df081a", INFO(0x1f4501, 0, 64 * 1024, 16, SECT_4K) },
	{ "at26df161a", INFO(0x1f4601, 0, 64 * 1024, 32, SECT_4K) },
732
	{ "at26df321",  INFO(0x1f4700, 0, 64 * 1024, 64, SECT_4K) },
733

734 735
	{ "at45db081d", INFO(0x1f2500, 0, 64 * 1024, 16, SECT_4K) },

736 737
	/* EON -- en25xxx */
	{ "en25f32", INFO(0x1c3116, 0, 64 * 1024,  64, SECT_4K) },
738
	{ "en25p32", INFO(0x1c2016, 0, 64 * 1024,  64, 0) },
739
	{ "en25q32b", INFO(0x1c3016, 0, 64 * 1024,  64, 0) },
740
	{ "en25p64", INFO(0x1c2017, 0, 64 * 1024, 128, 0) },
741
	{ "en25q64", INFO(0x1c3017, 0, 64 * 1024, 128, SECT_4K) },
742
	{ "en25qh256", INFO(0x1c7019, 0, 64 * 1024, 512, 0) },
743

744
	/* Everspin */
745
	{ "mr25h256", CAT25_INFO(  32 * 1024, 1, 256, 2, M25P_NO_ERASE | M25P_NO_FR) },
746

747 748 749 750
	/* GigaDevice */
	{ "gd25q32", INFO(0xc84016, 0, 64 * 1024,  64, SECT_4K) },
	{ "gd25q64", INFO(0xc84017, 0, 64 * 1024, 128, SECT_4K) },

751 752 753 754 755
	/* Intel/Numonyx -- xxxs33b */
	{ "160s33b",  INFO(0x898911, 0, 64 * 1024,  32, 0) },
	{ "320s33b",  INFO(0x898912, 0, 64 * 1024,  64, 0) },
	{ "640s33b",  INFO(0x898913, 0, 64 * 1024, 128, 0) },

756
	/* Macronix */
J
John Crispin 已提交
757
	{ "mx25l2005a",  INFO(0xc22012, 0, 64 * 1024,   4, SECT_4K) },
758
	{ "mx25l4005a",  INFO(0xc22013, 0, 64 * 1024,   8, SECT_4K) },
759
	{ "mx25l8005",   INFO(0xc22014, 0, 64 * 1024,  16, 0) },
760
	{ "mx25l1606e",  INFO(0xc22015, 0, 64 * 1024,  32, SECT_4K) },
761 762 763 764
	{ "mx25l3205d",  INFO(0xc22016, 0, 64 * 1024,  64, 0) },
	{ "mx25l6405d",  INFO(0xc22017, 0, 64 * 1024, 128, 0) },
	{ "mx25l12805d", INFO(0xc22018, 0, 64 * 1024, 256, 0) },
	{ "mx25l12855e", INFO(0xc22618, 0, 64 * 1024, 256, 0) },
765
	{ "mx25l25635e", INFO(0xc22019, 0, 64 * 1024, 512, 0) },
766
	{ "mx25l25655e", INFO(0xc22619, 0, 64 * 1024, 512, 0) },
767
	{ "mx66l51235l", INFO(0xc2201a, 0, 64 * 1024, 1024, 0) },
768

769
	/* Micron */
770
	{ "n25q064",  INFO(0x20ba17, 0, 64 * 1024, 128, 0) },
771 772
	{ "n25q128a11",  INFO(0x20bb18, 0, 64 * 1024, 256, 0) },
	{ "n25q128a13",  INFO(0x20ba18, 0, 64 * 1024, 256, 0) },
773 774
	{ "n25q256a", INFO(0x20ba19, 0, 64 * 1024, 512, SECT_4K) },

775 776 777
	/* Spansion -- single (large) sector size only, at least
	 * for the chips listed here (without boot sectors).
	 */
778 779
	{ "s25sl032p",  INFO(0x010215, 0x4d00,  64 * 1024,  64, 0) },
	{ "s25sl064p",  INFO(0x010216, 0x4d00,  64 * 1024, 128, 0) },
780 781
	{ "s25fl256s0", INFO(0x010219, 0x4d00, 256 * 1024, 128, 0) },
	{ "s25fl256s1", INFO(0x010219, 0x4d01,  64 * 1024, 512, 0) },
782 783
	{ "s25fl512s",  INFO(0x010220, 0x4d00, 256 * 1024, 256, 0) },
	{ "s70fl01gs",  INFO(0x010221, 0x4d00, 256 * 1024, 256, 0) },
784 785 786 787
	{ "s25sl12800", INFO(0x012018, 0x0300, 256 * 1024,  64, 0) },
	{ "s25sl12801", INFO(0x012018, 0x0301,  64 * 1024, 256, 0) },
	{ "s25fl129p0", INFO(0x012018, 0x4d00, 256 * 1024,  64, 0) },
	{ "s25fl129p1", INFO(0x012018, 0x4d01,  64 * 1024, 256, 0) },
788 789 790 791 792
	{ "s25sl004a",  INFO(0x010212,      0,  64 * 1024,   8, 0) },
	{ "s25sl008a",  INFO(0x010213,      0,  64 * 1024,  16, 0) },
	{ "s25sl016a",  INFO(0x010214,      0,  64 * 1024,  32, 0) },
	{ "s25sl032a",  INFO(0x010215,      0,  64 * 1024,  64, 0) },
	{ "s25sl064a",  INFO(0x010216,      0,  64 * 1024, 128, 0) },
793 794
	{ "s25fl016k",  INFO(0xef4015,      0,  64 * 1024,  32, SECT_4K) },
	{ "s25fl064k",  INFO(0xef4017,      0,  64 * 1024, 128, SECT_4K) },
795 796

	/* SST -- large erase sizes are "overlays", "sectors" are 4K */
797 798 799 800
	{ "sst25vf040b", INFO(0xbf258d, 0, 64 * 1024,  8, SECT_4K | SST_WRITE) },
	{ "sst25vf080b", INFO(0xbf258e, 0, 64 * 1024, 16, SECT_4K | SST_WRITE) },
	{ "sst25vf016b", INFO(0xbf2541, 0, 64 * 1024, 32, SECT_4K | SST_WRITE) },
	{ "sst25vf032b", INFO(0xbf254a, 0, 64 * 1024, 64, SECT_4K | SST_WRITE) },
801
	{ "sst25vf064c", INFO(0xbf254b, 0, 64 * 1024, 128, SECT_4K) },
802 803 804 805
	{ "sst25wf512",  INFO(0xbf2501, 0, 64 * 1024,  1, SECT_4K | SST_WRITE) },
	{ "sst25wf010",  INFO(0xbf2502, 0, 64 * 1024,  2, SECT_4K | SST_WRITE) },
	{ "sst25wf020",  INFO(0xbf2503, 0, 64 * 1024,  4, SECT_4K | SST_WRITE) },
	{ "sst25wf040",  INFO(0xbf2504, 0, 64 * 1024,  8, SECT_4K | SST_WRITE) },
806 807

	/* ST Microelectronics -- newer production may have feature updates */
808 809 810 811 812 813 814 815 816
	{ "m25p05",  INFO(0x202010,  0,  32 * 1024,   2, 0) },
	{ "m25p10",  INFO(0x202011,  0,  32 * 1024,   4, 0) },
	{ "m25p20",  INFO(0x202012,  0,  64 * 1024,   4, 0) },
	{ "m25p40",  INFO(0x202013,  0,  64 * 1024,   8, 0) },
	{ "m25p80",  INFO(0x202014,  0,  64 * 1024,  16, 0) },
	{ "m25p16",  INFO(0x202015,  0,  64 * 1024,  32, 0) },
	{ "m25p32",  INFO(0x202016,  0,  64 * 1024,  64, 0) },
	{ "m25p64",  INFO(0x202017,  0,  64 * 1024, 128, 0) },
	{ "m25p128", INFO(0x202018,  0, 256 * 1024,  64, 0) },
817
	{ "n25q032", INFO(0x20ba16,  0,  64 * 1024,  64, 0) },
818

819 820 821 822 823 824 825 826 827 828
	{ "m25p05-nonjedec",  INFO(0, 0,  32 * 1024,   2, 0) },
	{ "m25p10-nonjedec",  INFO(0, 0,  32 * 1024,   4, 0) },
	{ "m25p20-nonjedec",  INFO(0, 0,  64 * 1024,   4, 0) },
	{ "m25p40-nonjedec",  INFO(0, 0,  64 * 1024,   8, 0) },
	{ "m25p80-nonjedec",  INFO(0, 0,  64 * 1024,  16, 0) },
	{ "m25p16-nonjedec",  INFO(0, 0,  64 * 1024,  32, 0) },
	{ "m25p32-nonjedec",  INFO(0, 0,  64 * 1024,  64, 0) },
	{ "m25p64-nonjedec",  INFO(0, 0,  64 * 1024, 128, 0) },
	{ "m25p128-nonjedec", INFO(0, 0, 256 * 1024,  64, 0) },

829 830 831 832
	{ "m45pe10", INFO(0x204011,  0, 64 * 1024,    2, 0) },
	{ "m45pe80", INFO(0x204014,  0, 64 * 1024,   16, 0) },
	{ "m45pe16", INFO(0x204015,  0, 64 * 1024,   32, 0) },

833
	{ "m25pe20", INFO(0x208012,  0, 64 * 1024,  4,       0) },
834 835
	{ "m25pe80", INFO(0x208014,  0, 64 * 1024, 16,       0) },
	{ "m25pe16", INFO(0x208015,  0, 64 * 1024, 32, SECT_4K) },
836

837 838 839 840
	{ "m25px32",    INFO(0x207116,  0, 64 * 1024, 64, SECT_4K) },
	{ "m25px32-s0", INFO(0x207316,  0, 64 * 1024, 64, SECT_4K) },
	{ "m25px32-s1", INFO(0x206316,  0, 64 * 1024, 64, SECT_4K) },
	{ "m25px64",    INFO(0x207117,  0, 64 * 1024, 128, 0) },
841

842
	/* Winbond -- w25x "blocks" are 64K, "sectors" are 4KiB */
843 844 845 846 847 848
	{ "w25x10", INFO(0xef3011, 0, 64 * 1024,  2,  SECT_4K) },
	{ "w25x20", INFO(0xef3012, 0, 64 * 1024,  4,  SECT_4K) },
	{ "w25x40", INFO(0xef3013, 0, 64 * 1024,  8,  SECT_4K) },
	{ "w25x80", INFO(0xef3014, 0, 64 * 1024,  16, SECT_4K) },
	{ "w25x16", INFO(0xef3015, 0, 64 * 1024,  32, SECT_4K) },
	{ "w25x32", INFO(0xef3016, 0, 64 * 1024,  64, SECT_4K) },
849
	{ "w25q32", INFO(0xef4016, 0, 64 * 1024,  64, SECT_4K) },
850
	{ "w25q32dw", INFO(0xef6016, 0, 64 * 1024,  64, SECT_4K) },
851
	{ "w25x64", INFO(0xef3017, 0, 64 * 1024, 128, SECT_4K) },
852
	{ "w25q64", INFO(0xef4017, 0, 64 * 1024, 128, SECT_4K) },
853
	{ "w25q128", INFO(0xef4018, 0, 64 * 1024, 256, SECT_4K) },
854
	{ "w25q80", INFO(0xef5014, 0, 64 * 1024,  16, SECT_4K) },
855
	{ "w25q80bl", INFO(0xef4014, 0, 64 * 1024,  16, SECT_4K) },
856
	{ "w25q128", INFO(0xef4018, 0, 64 * 1024, 256, SECT_4K) },
857
	{ "w25q256", INFO(0xef4019, 0, 64 * 1024, 512, SECT_4K) },
858 859

	/* Catalyst / On Semiconductor -- non-JEDEC */
860 861 862 863 864
	{ "cat25c11", CAT25_INFO(  16, 8, 16, 1, M25P_NO_ERASE | M25P_NO_FR) },
	{ "cat25c03", CAT25_INFO(  32, 8, 16, 2, M25P_NO_ERASE | M25P_NO_FR) },
	{ "cat25c09", CAT25_INFO( 128, 8, 32, 2, M25P_NO_ERASE | M25P_NO_FR) },
	{ "cat25c17", CAT25_INFO( 256, 8, 32, 2, M25P_NO_ERASE | M25P_NO_FR) },
	{ "cat25128", CAT25_INFO(2048, 8, 64, 2, M25P_NO_ERASE | M25P_NO_FR) },
865
	{ },
866
};
867
MODULE_DEVICE_TABLE(spi, m25p_ids);
868

B
Bill Pemberton 已提交
869
static const struct spi_device_id *jedec_probe(struct spi_device *spi)
870 871 872
{
	int			tmp;
	u8			code = OPCODE_RDID;
873
	u8			id[5];
874
	u32			jedec;
875
	u16                     ext_jedec;
876 877 878 879 880 881
	struct flash_info	*info;

	/* JEDEC also defines an optional "extended device information"
	 * string for after vendor-specific data, after the three bytes
	 * we use here.  Supporting some chips might require using it.
	 */
882
	tmp = spi_write_then_read(spi, &code, 1, id, 5);
883
	if (tmp < 0) {
884
		pr_debug("%s: error %d reading JEDEC ID\n",
885
				dev_name(&spi->dev), tmp);
886
		return ERR_PTR(tmp);
887 888 889 890 891 892 893
	}
	jedec = id[0];
	jedec = jedec << 8;
	jedec |= id[1];
	jedec = jedec << 8;
	jedec |= id[2];

894 895
	ext_jedec = id[3] << 8 | id[4];

896 897
	for (tmp = 0; tmp < ARRAY_SIZE(m25p_ids) - 1; tmp++) {
		info = (void *)m25p_ids[tmp].driver_data;
898
		if (info->jedec_id == jedec) {
899
			if (info->ext_id != 0 && info->ext_id != ext_jedec)
900
				continue;
901
			return &m25p_ids[tmp];
902
		}
903
	}
904
	dev_err(&spi->dev, "unrecognized JEDEC id %06x\n", jedec);
905
	return ERR_PTR(-ENODEV);
906 907 908
}


909 910 911 912 913
/*
 * board specific setup should have ensured the SPI clock used here
 * matches what the READ command supports, at least until this driver
 * understands FAST_READ (for clocks over 25 MHz).
 */
B
Bill Pemberton 已提交
914
static int m25p_probe(struct spi_device *spi)
915
{
916
	const struct spi_device_id	*id = spi_get_device_id(spi);
917 918 919 920
	struct flash_platform_data	*data;
	struct m25p			*flash;
	struct flash_info		*info;
	unsigned			i;
921
	struct mtd_part_parser_data	ppdata;
922
	struct device_node __maybe_unused *np = spi->dev.of_node;
923

924
#ifdef CONFIG_MTD_OF_PARTS
925
	if (!of_device_is_available(np))
926 927 928
		return -ENODEV;
#endif

929
	/* Platform data helps sort out which chip type we have, as
930 931 932
	 * well as how this board partitions it.  If we don't have
	 * a chip ID, try the JEDEC id commands; they'll work for most
	 * newer chips, even if we don't recognize the particular chip.
933
	 */
934
	data = dev_get_platdata(&spi->dev);
935
	if (data && data->type) {
936
		const struct spi_device_id *plat_id;
937

938
		for (i = 0; i < ARRAY_SIZE(m25p_ids) - 1; i++) {
939 940
			plat_id = &m25p_ids[i];
			if (strcmp(data->type, plat_id->name))
941 942
				continue;
			break;
943 944
		}

945
		if (i < ARRAY_SIZE(m25p_ids) - 1)
946 947 948
			id = plat_id;
		else
			dev_warn(&spi->dev, "unrecognized id %s\n", data->type);
949
	}
950

951 952 953 954 955 956
	info = (void *)id->driver_data;

	if (info->jedec_id) {
		const struct spi_device_id *jid;

		jid = jedec_probe(spi);
957 958
		if (IS_ERR(jid)) {
			return PTR_ERR(jid);
959 960 961 962 963 964 965 966 967 968 969 970 971 972
		} else if (jid != id) {
			/*
			 * JEDEC knows better, so overwrite platform ID. We
			 * can't trust partitions any longer, but we'll let
			 * mtd apply them anyway, since some partitions may be
			 * marked read-only, and we don't want to lose that
			 * information, even if it's not 100% accurate.
			 */
			dev_warn(&spi->dev, "found %s, expected %s\n",
				 jid->name, id->name);
			id = jid;
			info = (void *)jid->driver_data;
		}
	}
973

974
	flash = kzalloc(sizeof *flash, GFP_KERNEL);
975 976
	if (!flash)
		return -ENOMEM;
977 978
	flash->command = kmalloc(MAX_CMD_SIZE + (flash->fast_read ? 1 : 0),
					GFP_KERNEL);
979 980 981 982
	if (!flash->command) {
		kfree(flash);
		return -ENOMEM;
	}
983 984

	flash->spi = spi;
D
David Brownell 已提交
985
	mutex_init(&flash->lock);
986
	spi_set_drvdata(spi, flash);
987

988
	/*
989
	 * Atmel, SST and Intel/Numonyx serial flash tend to power
990
	 * up with the software protection bits set
991 992
	 */

993 994 995
	if (JEDEC_MFR(info->jedec_id) == CFI_MFR_ATMEL ||
	    JEDEC_MFR(info->jedec_id) == CFI_MFR_INTEL ||
	    JEDEC_MFR(info->jedec_id) == CFI_MFR_SST) {
996 997 998 999
		write_enable(flash);
		write_sr(flash, 0);
	}

1000
	if (data && data->name)
1001 1002
		flash->mtd.name = data->name;
	else
1003
		flash->mtd.name = dev_name(&spi->dev);
1004 1005

	flash->mtd.type = MTD_NORFLASH;
1006
	flash->mtd.writesize = 1;
1007 1008
	flash->mtd.flags = MTD_CAP_NORFLASH;
	flash->mtd.size = info->sector_size * info->n_sectors;
1009 1010
	flash->mtd._erase = m25p80_erase;
	flash->mtd._read = m25p80_read;
1011

1012 1013 1014 1015 1016 1017
	/* flash protection support for STmicro chips */
	if (JEDEC_MFR(info->jedec_id) == CFI_MFR_ST) {
		flash->mtd._lock = m25p80_lock;
		flash->mtd._unlock = m25p80_unlock;
	}

1018
	/* sst flash chips use AAI word program */
1019
	if (info->flags & SST_WRITE)
1020
		flash->mtd._write = sst_write;
1021
	else
1022
		flash->mtd._write = m25p80_write;
1023

1024 1025 1026 1027 1028 1029 1030 1031 1032
	/* prefer "small sector" erase if possible */
	if (info->flags & SECT_4K) {
		flash->erase_opcode = OPCODE_BE_4K;
		flash->mtd.erasesize = 4096;
	} else {
		flash->erase_opcode = OPCODE_SE;
		flash->mtd.erasesize = info->sector_size;
	}

1033 1034 1035
	if (info->flags & M25P_NO_ERASE)
		flash->mtd.flags |= MTD_NO_ERASE;

1036
	ppdata.of_node = spi->dev.of_node;
1037
	flash->mtd.dev.parent = &spi->dev;
1038
	flash->page_size = info->page_size;
B
Brian Norris 已提交
1039
	flash->mtd.writebufsize = flash->page_size;
1040

1041 1042 1043 1044 1045 1046 1047
	flash->fast_read = false;
	if (np && of_property_read_bool(np, "m25p,fast-read"))
		flash->fast_read = true;

#ifdef CONFIG_M25PXX_USE_FAST_READ
	flash->fast_read = true;
#endif
1048 1049
	if (info->flags & M25P_NO_FR)
		flash->fast_read = false;
1050

1051 1052 1053 1054 1055 1056 1057 1058
	/* Default commands */
	if (flash->fast_read)
		flash->read_opcode = OPCODE_FAST_READ;
	else
		flash->read_opcode = OPCODE_NORM_READ;

	flash->program_opcode = OPCODE_PP;

1059 1060
	if (info->addr_width)
		flash->addr_width = info->addr_width;
1061
	else if (flash->mtd.size > 0x1000000) {
1062
		/* enable 4-byte addressing if the device exceeds 16MiB */
1063 1064 1065 1066 1067 1068 1069 1070 1071 1072
		flash->addr_width = 4;
		if (JEDEC_MFR(info->jedec_id) == CFI_MFR_AMD) {
			/* Dedicated 4-byte command set */
			flash->read_opcode = flash->fast_read ?
				OPCODE_FAST_READ_4B :
				OPCODE_NORM_READ_4B;
			flash->program_opcode = OPCODE_PP_4B;
			/* No small sector erase for 4-byte command set */
			flash->erase_opcode = OPCODE_SE_4B;
			flash->mtd.erasesize = info->sector_size;
1073
		} else
1074 1075 1076
			set_4byte(flash, info->jedec_id, 1);
	} else {
		flash->addr_width = 3;
1077
	}
1078

1079
	dev_info(&spi->dev, "%s (%lld Kbytes)\n", id->name,
1080
			(long long)flash->mtd.size >> 10);
1081

1082
	pr_debug("mtd .name = %s, .size = 0x%llx (%lldMiB) "
1083
			".erasesize = 0x%.8x (%uKiB) .numeraseregions = %d\n",
1084
		flash->mtd.name,
1085
		(long long)flash->mtd.size, (long long)(flash->mtd.size >> 20),
1086 1087 1088 1089 1090
		flash->mtd.erasesize, flash->mtd.erasesize / 1024,
		flash->mtd.numeraseregions);

	if (flash->mtd.numeraseregions)
		for (i = 0; i < flash->mtd.numeraseregions; i++)
1091
			pr_debug("mtd.eraseregions[%d] = { .offset = 0x%llx, "
1092
				".erasesize = 0x%.8x (%uKiB), "
1093
				".numblocks = %d }\n",
1094
				i, (long long)flash->mtd.eraseregions[i].offset,
1095 1096 1097 1098 1099 1100 1101 1102
				flash->mtd.eraseregions[i].erasesize,
				flash->mtd.eraseregions[i].erasesize / 1024,
				flash->mtd.eraseregions[i].numblocks);


	/* partitions should match sector boundaries; and it may be good to
	 * use readonly partitions for writeprotected sectors (BP2..BP0).
	 */
1103 1104 1105
	return mtd_device_parse_register(&flash->mtd, NULL, &ppdata,
			data ? data->parts : NULL,
			data ? data->nr_parts : 0);
1106 1107 1108
}


B
Bill Pemberton 已提交
1109
static int m25p_remove(struct spi_device *spi)
1110
{
1111
	struct m25p	*flash = spi_get_drvdata(spi);
1112 1113 1114
	int		status;

	/* Clean up MTD stuff. */
1115
	status = mtd_device_unregister(&flash->mtd);
1116 1117
	if (status == 0) {
		kfree(flash->command);
1118
		kfree(flash);
1119
	}
1120 1121 1122 1123 1124 1125 1126 1127 1128
	return 0;
}


static struct spi_driver m25p80_driver = {
	.driver = {
		.name	= "m25p80",
		.owner	= THIS_MODULE,
	},
1129
	.id_table	= m25p_ids,
1130
	.probe	= m25p_probe,
B
Bill Pemberton 已提交
1131
	.remove	= m25p_remove,
1132 1133 1134 1135 1136

	/* REVISIT: many of these chips have deep power-down modes, which
	 * should clearly be entered on suspend() to minimize power use.
	 * And also when they're otherwise idle...
	 */
1137 1138
};

1139
module_spi_driver(m25p80_driver);
1140 1141 1142 1143

MODULE_LICENSE("GPL");
MODULE_AUTHOR("Mike Lavender");
MODULE_DESCRIPTION("MTD SPI driver for ST M25Pxx flash chips");