m25p80.c 31.0 KB
Newer Older
1
/*
2
 * MTD SPI driver for ST M25Pxx (and similar) serial flash chips
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
 *
 * Author: Mike Lavender, mike@steroidmicros.com
 *
 * Copyright (c) 2005, Intec Automation Inc.
 *
 * Some parts are based on lart.c by Abraham Van Der Merwe
 *
 * Cleaned up and generalized based on mtd_dataflash.c
 *
 * This code is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 */

#include <linux/init.h>
19 20
#include <linux/err.h>
#include <linux/errno.h>
21 22 23
#include <linux/module.h>
#include <linux/device.h>
#include <linux/interrupt.h>
D
David Brownell 已提交
24
#include <linux/mutex.h>
25
#include <linux/math64.h>
26
#include <linux/slab.h>
27
#include <linux/sched.h>
28
#include <linux/mod_devicetable.h>
D
David Brownell 已提交
29

30
#include <linux/mtd/cfi.h>
31 32
#include <linux/mtd/mtd.h>
#include <linux/mtd/partitions.h>
33
#include <linux/of_platform.h>
D
David Brownell 已提交
34

35 36 37 38
#include <linux/spi/spi.h>
#include <linux/spi/flash.h>

/* Flash opcodes. */
39 40
#define	OPCODE_WREN		0x06	/* Write enable */
#define	OPCODE_RDSR		0x05	/* Read status register */
41
#define	OPCODE_WRSR		0x01	/* Write status register 1 byte */
42
#define	OPCODE_NORM_READ	0x03	/* Read data bytes (low frequency) */
43 44
#define	OPCODE_FAST_READ	0x0b	/* Read data bytes (high frequency) */
#define	OPCODE_PP		0x02	/* Page program (up to 256 bytes) */
45
#define	OPCODE_BE_4K		0x20	/* Erase 4KiB block */
46
#define	OPCODE_BE_32K		0x52	/* Erase 32KiB block */
47
#define	OPCODE_CHIP_ERASE	0xc7	/* Erase whole flash chip */
48
#define	OPCODE_SE		0xd8	/* Sector erase (usually 64KiB) */
49 50
#define	OPCODE_RDID		0x9f	/* Read JEDEC ID */

51 52 53 54 55
/* Used for SST flashes only. */
#define	OPCODE_BP		0x02	/* Byte program */
#define	OPCODE_WRDI		0x04	/* Write disable */
#define	OPCODE_AAI_WP		0xad	/* Auto address increment word program */

56 57 58 59
/* Used for Macronix flashes only. */
#define	OPCODE_EN4B		0xb7	/* Enter 4-byte mode */
#define	OPCODE_EX4B		0xe9	/* Exit 4-byte mode */

60 61 62
/* Used for Spansion flashes only. */
#define	OPCODE_BRWR		0x17	/* Bank register write */

63 64 65
/* Status Register bits. */
#define	SR_WIP			1	/* Write in progress */
#define	SR_WEL			2	/* Write enable latch */
66
/* meaning of other SR_* bits may differ between vendors */
67 68 69 70 71 72
#define	SR_BP0			4	/* Block protect 0 */
#define	SR_BP1			8	/* Block protect 1 */
#define	SR_BP2			0x10	/* Block protect 2 */
#define	SR_SRWD			0x80	/* SR write protect */

/* Define max times to check status register before we give up. */
73
#define	MAX_READY_WAIT_JIFFIES	(40 * HZ)	/* M25P16 specs 40s max chip erase */
74
#define	MAX_CMD_SIZE		5
75

76 77
#define JEDEC_MFR(_jedec_id)	((_jedec_id) >> 16)

78 79 80 81
/****************************************************************************/

struct m25p {
	struct spi_device	*spi;
D
David Brownell 已提交
82
	struct mutex		lock;
83
	struct mtd_info		mtd;
84 85
	u16			page_size;
	u16			addr_width;
86
	u8			erase_opcode;
87
	u8			*command;
88
	bool			fast_read;
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
};

static inline struct m25p *mtd_to_m25p(struct mtd_info *mtd)
{
	return container_of(mtd, struct m25p, mtd);
}

/****************************************************************************/

/*
 * Internal helper functions
 */

/*
 * Read the status register, returning its value in the location
 * Return the status register value.
 * Returns negative if error occurred.
 */
static int read_sr(struct m25p *flash)
{
	ssize_t retval;
	u8 code = OPCODE_RDSR;
	u8 val;

	retval = spi_write_then_read(flash->spi, &code, 1, &val, 1);

	if (retval < 0) {
		dev_err(&flash->spi->dev, "error %d reading SR\n",
				(int) retval);
		return retval;
	}

	return val;
}

124 125 126 127 128 129 130 131 132 133 134
/*
 * Write status register 1 byte
 * Returns negative if error occurred.
 */
static int write_sr(struct m25p *flash, u8 val)
{
	flash->command[0] = OPCODE_WRSR;
	flash->command[1] = val;

	return spi_write(flash->spi, flash->command, 2);
}
135 136 137 138 139 140 141 142 143

/*
 * Set write enable latch with Write Enable command.
 * Returns negative if error occurred.
 */
static inline int write_enable(struct m25p *flash)
{
	u8	code = OPCODE_WREN;

144
	return spi_write_then_read(flash->spi, &code, 1, NULL, 0);
145 146
}

147 148 149 150 151 152 153 154 155
/*
 * Send write disble instruction to the chip.
 */
static inline int write_disable(struct m25p *flash)
{
	u8	code = OPCODE_WRDI;

	return spi_write_then_read(flash->spi, &code, 1, NULL, 0);
}
156

157 158 159
/*
 * Enable/disable 4-byte addressing mode.
 */
160
static inline int set_4byte(struct m25p *flash, u32 jedec_id, int enable)
161
{
162 163
	switch (JEDEC_MFR(jedec_id)) {
	case CFI_MFR_MACRONIX:
164
	case 0xEF /* winbond */:
165 166 167 168 169 170 171 172
		flash->command[0] = enable ? OPCODE_EN4B : OPCODE_EX4B;
		return spi_write(flash->spi, flash->command, 1);
	default:
		/* Spansion style */
		flash->command[0] = OPCODE_BRWR;
		flash->command[1] = enable << 7;
		return spi_write(flash->spi, flash->command, 2);
	}
173 174
}

175 176 177 178 179 180
/*
 * Service routine to read status register until ready, or timeout occurs.
 * Returns non-zero if error.
 */
static int wait_till_ready(struct m25p *flash)
{
P
Peter Horton 已提交
181
	unsigned long deadline;
182 183
	int sr;

P
Peter Horton 已提交
184 185 186
	deadline = jiffies + MAX_READY_WAIT_JIFFIES;

	do {
187 188 189 190 191
		if ((sr = read_sr(flash)) < 0)
			break;
		else if (!(sr & SR_WIP))
			return 0;

P
Peter Horton 已提交
192 193 194
		cond_resched();

	} while (!time_after_eq(jiffies, deadline));
195 196 197 198

	return 1;
}

C
Chen Gong 已提交
199 200 201 202 203
/*
 * Erase the whole flash memory
 *
 * Returns 0 if successful, non-zero otherwise.
 */
204
static int erase_chip(struct m25p *flash)
C
Chen Gong 已提交
205
{
206 207
	pr_debug("%s: %s %lldKiB\n", dev_name(&flash->spi->dev), __func__,
			(long long)(flash->mtd.size >> 10));
C
Chen Gong 已提交
208 209 210 211 212 213 214 215 216

	/* Wait until finished previous write command. */
	if (wait_till_ready(flash))
		return 1;

	/* Send write enable, then erase commands. */
	write_enable(flash);

	/* Set up command buffer. */
217
	flash->command[0] = OPCODE_CHIP_ERASE;
C
Chen Gong 已提交
218 219 220 221 222

	spi_write(flash->spi, flash->command, 1);

	return 0;
}
223

224 225 226 227 228 229
static void m25p_addr2cmd(struct m25p *flash, unsigned int addr, u8 *cmd)
{
	/* opcode is in cmd[0] */
	cmd[1] = addr >> (flash->addr_width * 8 -  8);
	cmd[2] = addr >> (flash->addr_width * 8 - 16);
	cmd[3] = addr >> (flash->addr_width * 8 - 24);
230
	cmd[4] = addr >> (flash->addr_width * 8 - 32);
231 232 233 234 235 236 237
}

static int m25p_cmdsz(struct m25p *flash)
{
	return 1 + flash->addr_width;
}

238 239 240 241 242 243 244 245
/*
 * Erase one sector of flash memory at offset ``offset'' which is any
 * address within the sector which should be erased.
 *
 * Returns 0 if successful, non-zero otherwise.
 */
static int erase_sector(struct m25p *flash, u32 offset)
{
246 247
	pr_debug("%s: %s %dKiB at 0x%08x\n", dev_name(&flash->spi->dev),
			__func__, flash->mtd.erasesize / 1024, offset);
248 249 250 251 252 253 254 255 256

	/* Wait until finished previous write command. */
	if (wait_till_ready(flash))
		return 1;

	/* Send write enable, then erase commands. */
	write_enable(flash);

	/* Set up command buffer. */
257
	flash->command[0] = flash->erase_opcode;
258
	m25p_addr2cmd(flash, offset, flash->command);
259

260
	spi_write(flash->spi, flash->command, m25p_cmdsz(flash));
261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278

	return 0;
}

/****************************************************************************/

/*
 * MTD implementation
 */

/*
 * Erase an address range on the flash chip.  The address range may extend
 * one or more erase sectors.  Return an error is there is a problem erasing.
 */
static int m25p80_erase(struct mtd_info *mtd, struct erase_info *instr)
{
	struct m25p *flash = mtd_to_m25p(mtd);
	u32 addr,len;
279
	uint32_t rem;
280

281 282 283
	pr_debug("%s: %s at 0x%llx, len %lld\n", dev_name(&flash->spi->dev),
			__func__, (long long)instr->addr,
			(long long)instr->len);
284

285 286
	div_u64_rem(instr->len, mtd->erasesize, &rem);
	if (rem)
287 288 289 290 291
		return -EINVAL;

	addr = instr->addr;
	len = instr->len;

D
David Brownell 已提交
292
	mutex_lock(&flash->lock);
293

294
	/* whole-chip erase? */
295 296 297 298 299 300
	if (len == flash->mtd.size) {
		if (erase_chip(flash)) {
			instr->state = MTD_ERASE_FAILED;
			mutex_unlock(&flash->lock);
			return -EIO;
		}
301 302 303 304 305 306 307

	/* REVISIT in some cases we could speed up erasing large regions
	 * by using OPCODE_SE instead of OPCODE_BE_4K.  We may have set up
	 * to use "small sector erase", but that's not always optimal.
	 */

	/* "sector"-at-a-time erase */
C
Chen Gong 已提交
308 309 310 311 312 313 314 315 316 317
	} else {
		while (len) {
			if (erase_sector(flash, addr)) {
				instr->state = MTD_ERASE_FAILED;
				mutex_unlock(&flash->lock);
				return -EIO;
			}

			addr += mtd->erasesize;
			len -= mtd->erasesize;
318 319 320
		}
	}

D
David Brownell 已提交
321
	mutex_unlock(&flash->lock);
322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338

	instr->state = MTD_ERASE_DONE;
	mtd_erase_callback(instr);

	return 0;
}

/*
 * Read an address range from the flash chip.  The address range
 * may be any size provided it is within the physical boundaries.
 */
static int m25p80_read(struct mtd_info *mtd, loff_t from, size_t len,
	size_t *retlen, u_char *buf)
{
	struct m25p *flash = mtd_to_m25p(mtd);
	struct spi_transfer t[2];
	struct spi_message m;
339
	uint8_t opcode;
340

341 342
	pr_debug("%s: %s from 0x%08x, len %zd\n", dev_name(&flash->spi->dev),
			__func__, (u32)from, len);
343

344 345 346
	spi_message_init(&m);
	memset(t, 0, (sizeof t));

347 348 349 350
	/* NOTE:
	 * OPCODE_FAST_READ (if available) is faster.
	 * Should add 1 byte DUMMY_BYTE.
	 */
351
	t[0].tx_buf = flash->command;
352
	t[0].len = m25p_cmdsz(flash) + (flash->fast_read ? 1 : 0);
353 354 355 356 357 358
	spi_message_add_tail(&t[0], &m);

	t[1].rx_buf = buf;
	t[1].len = len;
	spi_message_add_tail(&t[1], &m);

D
David Brownell 已提交
359
	mutex_lock(&flash->lock);
360 361 362 363

	/* Wait till previous write/erase is done. */
	if (wait_till_ready(flash)) {
		/* REVISIT status return?? */
D
David Brownell 已提交
364
		mutex_unlock(&flash->lock);
365 366 367
		return 1;
	}

368 369 370 371
	/* FIXME switch to OPCODE_FAST_READ.  It's required for higher
	 * clocks; and at this writing, every chip this driver handles
	 * supports that opcode.
	 */
372 373

	/* Set up the write data buffer. */
374 375
	opcode = flash->fast_read ? OPCODE_FAST_READ : OPCODE_NORM_READ;
	flash->command[0] = opcode;
376
	m25p_addr2cmd(flash, from, flash->command);
377 378 379

	spi_sync(flash->spi, &m);

380 381
	*retlen = m.actual_length - m25p_cmdsz(flash) -
			(flash->fast_read ? 1 : 0);
382

D
David Brownell 已提交
383
	mutex_unlock(&flash->lock);
384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400

	return 0;
}

/*
 * Write an address range to the flash chip.  Data must be written in
 * FLASH_PAGESIZE chunks.  The address range may be any size provided
 * it is within the physical boundaries.
 */
static int m25p80_write(struct mtd_info *mtd, loff_t to, size_t len,
	size_t *retlen, const u_char *buf)
{
	struct m25p *flash = mtd_to_m25p(mtd);
	u32 page_offset, page_size;
	struct spi_transfer t[2];
	struct spi_message m;

401 402
	pr_debug("%s: %s to 0x%08x, len %zd\n", dev_name(&flash->spi->dev),
			__func__, (u32)to, len);
403

404 405 406 407
	spi_message_init(&m);
	memset(t, 0, (sizeof t));

	t[0].tx_buf = flash->command;
408
	t[0].len = m25p_cmdsz(flash);
409 410 411 412 413
	spi_message_add_tail(&t[0], &m);

	t[1].tx_buf = buf;
	spi_message_add_tail(&t[1], &m);

D
David Brownell 已提交
414
	mutex_lock(&flash->lock);
415 416

	/* Wait until finished previous write command. */
C
Chen Gong 已提交
417 418
	if (wait_till_ready(flash)) {
		mutex_unlock(&flash->lock);
419
		return 1;
C
Chen Gong 已提交
420
	}
421 422 423 424 425

	write_enable(flash);

	/* Set up the opcode in the write buffer. */
	flash->command[0] = OPCODE_PP;
426
	m25p_addr2cmd(flash, to, flash->command);
427

428
	page_offset = to & (flash->page_size - 1);
429 430

	/* do all the bytes fit onto one page? */
431
	if (page_offset + len <= flash->page_size) {
432 433 434 435
		t[1].len = len;

		spi_sync(flash->spi, &m);

436
		*retlen = m.actual_length - m25p_cmdsz(flash);
437 438 439 440
	} else {
		u32 i;

		/* the size of data remaining on the first page */
441
		page_size = flash->page_size - page_offset;
442 443 444 445

		t[1].len = page_size;
		spi_sync(flash->spi, &m);

446
		*retlen = m.actual_length - m25p_cmdsz(flash);
447

448
		/* write everything in flash->page_size chunks */
449 450
		for (i = page_size; i < len; i += page_size) {
			page_size = len - i;
451 452
			if (page_size > flash->page_size)
				page_size = flash->page_size;
453 454

			/* write the next page to flash */
455
			m25p_addr2cmd(flash, to + i, flash->command);
456 457 458 459 460 461 462 463 464 465

			t[1].tx_buf = buf + i;
			t[1].len = page_size;

			wait_till_ready(flash);

			write_enable(flash);

			spi_sync(flash->spi, &m);

D
Dan Carpenter 已提交
466
			*retlen += m.actual_length - m25p_cmdsz(flash);
D
David Brownell 已提交
467 468
		}
	}
469

D
David Brownell 已提交
470
	mutex_unlock(&flash->lock);
471 472 473 474

	return 0;
}

475 476 477 478 479 480 481 482 483
static int sst_write(struct mtd_info *mtd, loff_t to, size_t len,
		size_t *retlen, const u_char *buf)
{
	struct m25p *flash = mtd_to_m25p(mtd);
	struct spi_transfer t[2];
	struct spi_message m;
	size_t actual;
	int cmd_sz, ret;

484 485
	pr_debug("%s: %s to 0x%08x, len %zd\n", dev_name(&flash->spi->dev),
			__func__, (u32)to, len);
486

487 488 489 490
	spi_message_init(&m);
	memset(t, 0, (sizeof t));

	t[0].tx_buf = flash->command;
491
	t[0].len = m25p_cmdsz(flash);
492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509
	spi_message_add_tail(&t[0], &m);

	t[1].tx_buf = buf;
	spi_message_add_tail(&t[1], &m);

	mutex_lock(&flash->lock);

	/* Wait until finished previous write command. */
	ret = wait_till_ready(flash);
	if (ret)
		goto time_out;

	write_enable(flash);

	actual = to % 2;
	/* Start write from odd address. */
	if (actual) {
		flash->command[0] = OPCODE_BP;
510
		m25p_addr2cmd(flash, to, flash->command);
511 512 513 514 515 516 517

		/* write one byte. */
		t[1].len = 1;
		spi_sync(flash->spi, &m);
		ret = wait_till_ready(flash);
		if (ret)
			goto time_out;
518
		*retlen += m.actual_length - m25p_cmdsz(flash);
519 520 521 522
	}
	to += actual;

	flash->command[0] = OPCODE_AAI_WP;
523
	m25p_addr2cmd(flash, to, flash->command);
524 525

	/* Write out most of the data here. */
526
	cmd_sz = m25p_cmdsz(flash);
527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549
	for (; actual < len - 1; actual += 2) {
		t[0].len = cmd_sz;
		/* write two bytes. */
		t[1].len = 2;
		t[1].tx_buf = buf + actual;

		spi_sync(flash->spi, &m);
		ret = wait_till_ready(flash);
		if (ret)
			goto time_out;
		*retlen += m.actual_length - cmd_sz;
		cmd_sz = 1;
		to += 2;
	}
	write_disable(flash);
	ret = wait_till_ready(flash);
	if (ret)
		goto time_out;

	/* Write out trailing byte if it exists. */
	if (actual != len) {
		write_enable(flash);
		flash->command[0] = OPCODE_BP;
550 551
		m25p_addr2cmd(flash, to, flash->command);
		t[0].len = m25p_cmdsz(flash);
552 553 554 555 556 557 558
		t[1].len = 1;
		t[1].tx_buf = buf + actual;

		spi_sync(flash->spi, &m);
		ret = wait_till_ready(flash);
		if (ret)
			goto time_out;
559
		*retlen += m.actual_length - m25p_cmdsz(flash);
560 561 562 563 564 565 566
		write_disable(flash);
	}

time_out:
	mutex_unlock(&flash->lock);
	return ret;
}
567

568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657
static int m25p80_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
{
	struct m25p *flash = mtd_to_m25p(mtd);
	uint32_t offset = ofs;
	uint8_t status_old, status_new;
	int res = 0;

	mutex_lock(&flash->lock);
	/* Wait until finished previous command */
	if (wait_till_ready(flash)) {
		res = 1;
		goto err;
	}

	status_old = read_sr(flash);

	if (offset < flash->mtd.size-(flash->mtd.size/2))
		status_new = status_old | SR_BP2 | SR_BP1 | SR_BP0;
	else if (offset < flash->mtd.size-(flash->mtd.size/4))
		status_new = (status_old & ~SR_BP0) | SR_BP2 | SR_BP1;
	else if (offset < flash->mtd.size-(flash->mtd.size/8))
		status_new = (status_old & ~SR_BP1) | SR_BP2 | SR_BP0;
	else if (offset < flash->mtd.size-(flash->mtd.size/16))
		status_new = (status_old & ~(SR_BP0|SR_BP1)) | SR_BP2;
	else if (offset < flash->mtd.size-(flash->mtd.size/32))
		status_new = (status_old & ~SR_BP2) | SR_BP1 | SR_BP0;
	else if (offset < flash->mtd.size-(flash->mtd.size/64))
		status_new = (status_old & ~(SR_BP2|SR_BP0)) | SR_BP1;
	else
		status_new = (status_old & ~(SR_BP2|SR_BP1)) | SR_BP0;

	/* Only modify protection if it will not unlock other areas */
	if ((status_new&(SR_BP2|SR_BP1|SR_BP0)) >
					(status_old&(SR_BP2|SR_BP1|SR_BP0))) {
		write_enable(flash);
		if (write_sr(flash, status_new) < 0) {
			res = 1;
			goto err;
		}
	}

err:	mutex_unlock(&flash->lock);
	return res;
}

static int m25p80_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
{
	struct m25p *flash = mtd_to_m25p(mtd);
	uint32_t offset = ofs;
	uint8_t status_old, status_new;
	int res = 0;

	mutex_lock(&flash->lock);
	/* Wait until finished previous command */
	if (wait_till_ready(flash)) {
		res = 1;
		goto err;
	}

	status_old = read_sr(flash);

	if (offset+len > flash->mtd.size-(flash->mtd.size/64))
		status_new = status_old & ~(SR_BP2|SR_BP1|SR_BP0);
	else if (offset+len > flash->mtd.size-(flash->mtd.size/32))
		status_new = (status_old & ~(SR_BP2|SR_BP1)) | SR_BP0;
	else if (offset+len > flash->mtd.size-(flash->mtd.size/16))
		status_new = (status_old & ~(SR_BP2|SR_BP0)) | SR_BP1;
	else if (offset+len > flash->mtd.size-(flash->mtd.size/8))
		status_new = (status_old & ~SR_BP2) | SR_BP1 | SR_BP0;
	else if (offset+len > flash->mtd.size-(flash->mtd.size/4))
		status_new = (status_old & ~(SR_BP0|SR_BP1)) | SR_BP2;
	else if (offset+len > flash->mtd.size-(flash->mtd.size/2))
		status_new = (status_old & ~SR_BP1) | SR_BP2 | SR_BP0;
	else
		status_new = (status_old & ~SR_BP0) | SR_BP2 | SR_BP1;

	/* Only modify protection if it will not lock other areas */
	if ((status_new&(SR_BP2|SR_BP1|SR_BP0)) <
					(status_old&(SR_BP2|SR_BP1|SR_BP0))) {
		write_enable(flash);
		if (write_sr(flash, status_new) < 0) {
			res = 1;
			goto err;
		}
	}

err:	mutex_unlock(&flash->lock);
	return res;
}

658 659 660 661 662 663 664
/****************************************************************************/

/*
 * SPI device driver setup and teardown
 */

struct flash_info {
665 666 667 668 669
	/* JEDEC id zero means "no ID" (most older chips); otherwise it has
	 * a high byte of zero plus three data bytes: the manufacturer id,
	 * then a two byte device id.
	 */
	u32		jedec_id;
670
	u16             ext_id;
671 672 673 674

	/* The size listed here is what works with OPCODE_SE, which isn't
	 * necessarily called a "sector" by the vendor.
	 */
675
	unsigned	sector_size;
676 677
	u16		n_sectors;

678 679 680
	u16		page_size;
	u16		addr_width;

681 682
	u16		flags;
#define	SECT_4K		0x01		/* OPCODE_BE_4K works uniformly */
683
#define	M25P_NO_ERASE	0x02		/* No erase command needed */
684 685
};

686 687 688 689 690 691
#define INFO(_jedec_id, _ext_id, _sector_size, _n_sectors, _flags)	\
	((kernel_ulong_t)&(struct flash_info) {				\
		.jedec_id = (_jedec_id),				\
		.ext_id = (_ext_id),					\
		.sector_size = (_sector_size),				\
		.n_sectors = (_n_sectors),				\
692
		.page_size = 256,					\
693 694
		.flags = (_flags),					\
	})
695

696 697 698 699 700 701 702 703
#define CAT25_INFO(_sector_size, _n_sectors, _page_size, _addr_width)	\
	((kernel_ulong_t)&(struct flash_info) {				\
		.sector_size = (_sector_size),				\
		.n_sectors = (_n_sectors),				\
		.page_size = (_page_size),				\
		.addr_width = (_addr_width),				\
		.flags = M25P_NO_ERASE,					\
	})
704 705 706 707 708

/* NOTE: double check command sets and memory organization when you add
 * more flash chips.  This current list focusses on newer chips, which
 * have been converging on command sets which including JEDEC ID.
 */
709
static const struct spi_device_id m25p_ids[] = {
710
	/* Atmel -- some are (confusingly) marketed as "DataFlash" */
711 712
	{ "at25fs010",  INFO(0x1f6601, 0, 32 * 1024,   4, SECT_4K) },
	{ "at25fs040",  INFO(0x1f6604, 0, 64 * 1024,   8, SECT_4K) },
713

714
	{ "at25df041a", INFO(0x1f4401, 0, 64 * 1024,   8, SECT_4K) },
715
	{ "at25df321a", INFO(0x1f4701, 0, 64 * 1024,  64, SECT_4K) },
716
	{ "at25df641",  INFO(0x1f4800, 0, 64 * 1024, 128, SECT_4K) },
717

718 719 720
	{ "at26f004",   INFO(0x1f0400, 0, 64 * 1024,  8, SECT_4K) },
	{ "at26df081a", INFO(0x1f4501, 0, 64 * 1024, 16, SECT_4K) },
	{ "at26df161a", INFO(0x1f4601, 0, 64 * 1024, 32, SECT_4K) },
721
	{ "at26df321",  INFO(0x1f4700, 0, 64 * 1024, 64, SECT_4K) },
722

723 724
	{ "at45db081d", INFO(0x1f2500, 0, 64 * 1024, 16, SECT_4K) },

725 726
	/* EON -- en25xxx */
	{ "en25f32", INFO(0x1c3116, 0, 64 * 1024,  64, SECT_4K) },
727
	{ "en25p32", INFO(0x1c2016, 0, 64 * 1024,  64, 0) },
728
	{ "en25q32b", INFO(0x1c3016, 0, 64 * 1024,  64, 0) },
729
	{ "en25p64", INFO(0x1c2017, 0, 64 * 1024, 128, 0) },
730
	{ "en25q64", INFO(0x1c3017, 0, 64 * 1024, 128, SECT_4K) },
731

732 733 734
	/* Everspin */
	{ "mr25h256", CAT25_INFO(  32 * 1024, 1, 256, 2) },

735 736 737 738
	/* GigaDevice */
	{ "gd25q32", INFO(0xc84016, 0, 64 * 1024,  64, SECT_4K) },
	{ "gd25q64", INFO(0xc84017, 0, 64 * 1024, 128, SECT_4K) },

739 740 741 742
	/* Intel/Numonyx -- xxxs33b */
	{ "160s33b",  INFO(0x898911, 0, 64 * 1024,  32, 0) },
	{ "320s33b",  INFO(0x898912, 0, 64 * 1024,  64, 0) },
	{ "640s33b",  INFO(0x898913, 0, 64 * 1024, 128, 0) },
743
	{ "n25q064",  INFO(0x20ba17, 0, 64 * 1024, 128, 0) },
744

745
	/* Macronix */
J
John Crispin 已提交
746
	{ "mx25l2005a",  INFO(0xc22012, 0, 64 * 1024,   4, SECT_4K) },
747
	{ "mx25l4005a",  INFO(0xc22013, 0, 64 * 1024,   8, SECT_4K) },
748
	{ "mx25l8005",   INFO(0xc22014, 0, 64 * 1024,  16, 0) },
749
	{ "mx25l1606e",  INFO(0xc22015, 0, 64 * 1024,  32, SECT_4K) },
750 751 752 753
	{ "mx25l3205d",  INFO(0xc22016, 0, 64 * 1024,  64, 0) },
	{ "mx25l6405d",  INFO(0xc22017, 0, 64 * 1024, 128, 0) },
	{ "mx25l12805d", INFO(0xc22018, 0, 64 * 1024, 256, 0) },
	{ "mx25l12855e", INFO(0xc22618, 0, 64 * 1024, 256, 0) },
754
	{ "mx25l25635e", INFO(0xc22019, 0, 64 * 1024, 512, 0) },
755
	{ "mx25l25655e", INFO(0xc22619, 0, 64 * 1024, 512, 0) },
756

757
	/* Micron */
758 759
	{ "n25q128a11",  INFO(0x20bb18, 0, 64 * 1024, 256, 0) },
	{ "n25q128a13",  INFO(0x20ba18, 0, 64 * 1024, 256, 0) },
760 761
	{ "n25q256a", INFO(0x20ba19, 0, 64 * 1024, 512, SECT_4K) },

762 763 764
	/* Spansion -- single (large) sector size only, at least
	 * for the chips listed here (without boot sectors).
	 */
765 766
	{ "s25sl032p",  INFO(0x010215, 0x4d00,  64 * 1024,  64, 0) },
	{ "s25sl064p",  INFO(0x010216, 0x4d00,  64 * 1024, 128, 0) },
767 768
	{ "s25fl256s0", INFO(0x010219, 0x4d00, 256 * 1024, 128, 0) },
	{ "s25fl256s1", INFO(0x010219, 0x4d01,  64 * 1024, 512, 0) },
769 770
	{ "s25fl512s",  INFO(0x010220, 0x4d00, 256 * 1024, 256, 0) },
	{ "s70fl01gs",  INFO(0x010221, 0x4d00, 256 * 1024, 256, 0) },
771 772 773 774
	{ "s25sl12800", INFO(0x012018, 0x0300, 256 * 1024,  64, 0) },
	{ "s25sl12801", INFO(0x012018, 0x0301,  64 * 1024, 256, 0) },
	{ "s25fl129p0", INFO(0x012018, 0x4d00, 256 * 1024,  64, 0) },
	{ "s25fl129p1", INFO(0x012018, 0x4d01,  64 * 1024, 256, 0) },
775 776 777 778 779
	{ "s25sl004a",  INFO(0x010212,      0,  64 * 1024,   8, 0) },
	{ "s25sl008a",  INFO(0x010213,      0,  64 * 1024,  16, 0) },
	{ "s25sl016a",  INFO(0x010214,      0,  64 * 1024,  32, 0) },
	{ "s25sl032a",  INFO(0x010215,      0,  64 * 1024,  64, 0) },
	{ "s25sl064a",  INFO(0x010216,      0,  64 * 1024, 128, 0) },
780 781
	{ "s25fl016k",  INFO(0xef4015,      0,  64 * 1024,  32, SECT_4K) },
	{ "s25fl064k",  INFO(0xef4017,      0,  64 * 1024, 128, SECT_4K) },
782 783

	/* SST -- large erase sizes are "overlays", "sectors" are 4K */
784 785 786 787 788 789 790 791
	{ "sst25vf040b", INFO(0xbf258d, 0, 64 * 1024,  8, SECT_4K) },
	{ "sst25vf080b", INFO(0xbf258e, 0, 64 * 1024, 16, SECT_4K) },
	{ "sst25vf016b", INFO(0xbf2541, 0, 64 * 1024, 32, SECT_4K) },
	{ "sst25vf032b", INFO(0xbf254a, 0, 64 * 1024, 64, SECT_4K) },
	{ "sst25wf512",  INFO(0xbf2501, 0, 64 * 1024,  1, SECT_4K) },
	{ "sst25wf010",  INFO(0xbf2502, 0, 64 * 1024,  2, SECT_4K) },
	{ "sst25wf020",  INFO(0xbf2503, 0, 64 * 1024,  4, SECT_4K) },
	{ "sst25wf040",  INFO(0xbf2504, 0, 64 * 1024,  8, SECT_4K) },
792 793

	/* ST Microelectronics -- newer production may have feature updates */
794 795 796 797 798 799 800 801 802
	{ "m25p05",  INFO(0x202010,  0,  32 * 1024,   2, 0) },
	{ "m25p10",  INFO(0x202011,  0,  32 * 1024,   4, 0) },
	{ "m25p20",  INFO(0x202012,  0,  64 * 1024,   4, 0) },
	{ "m25p40",  INFO(0x202013,  0,  64 * 1024,   8, 0) },
	{ "m25p80",  INFO(0x202014,  0,  64 * 1024,  16, 0) },
	{ "m25p16",  INFO(0x202015,  0,  64 * 1024,  32, 0) },
	{ "m25p32",  INFO(0x202016,  0,  64 * 1024,  64, 0) },
	{ "m25p64",  INFO(0x202017,  0,  64 * 1024, 128, 0) },
	{ "m25p128", INFO(0x202018,  0, 256 * 1024,  64, 0) },
803
	{ "n25q032", INFO(0x20ba16,  0,  64 * 1024,  64, 0) },
804

805 806 807 808 809 810 811 812 813 814
	{ "m25p05-nonjedec",  INFO(0, 0,  32 * 1024,   2, 0) },
	{ "m25p10-nonjedec",  INFO(0, 0,  32 * 1024,   4, 0) },
	{ "m25p20-nonjedec",  INFO(0, 0,  64 * 1024,   4, 0) },
	{ "m25p40-nonjedec",  INFO(0, 0,  64 * 1024,   8, 0) },
	{ "m25p80-nonjedec",  INFO(0, 0,  64 * 1024,  16, 0) },
	{ "m25p16-nonjedec",  INFO(0, 0,  64 * 1024,  32, 0) },
	{ "m25p32-nonjedec",  INFO(0, 0,  64 * 1024,  64, 0) },
	{ "m25p64-nonjedec",  INFO(0, 0,  64 * 1024, 128, 0) },
	{ "m25p128-nonjedec", INFO(0, 0, 256 * 1024,  64, 0) },

815 816 817 818
	{ "m45pe10", INFO(0x204011,  0, 64 * 1024,    2, 0) },
	{ "m45pe80", INFO(0x204014,  0, 64 * 1024,   16, 0) },
	{ "m45pe16", INFO(0x204015,  0, 64 * 1024,   32, 0) },

819
	{ "m25pe20", INFO(0x208012,  0, 64 * 1024,  4,       0) },
820 821
	{ "m25pe80", INFO(0x208014,  0, 64 * 1024, 16,       0) },
	{ "m25pe16", INFO(0x208015,  0, 64 * 1024, 32, SECT_4K) },
822

823 824 825 826
	{ "m25px32",    INFO(0x207116,  0, 64 * 1024, 64, SECT_4K) },
	{ "m25px32-s0", INFO(0x207316,  0, 64 * 1024, 64, SECT_4K) },
	{ "m25px32-s1", INFO(0x206316,  0, 64 * 1024, 64, SECT_4K) },
	{ "m25px64",    INFO(0x207117,  0, 64 * 1024, 128, 0) },
827

828
	/* Winbond -- w25x "blocks" are 64K, "sectors" are 4KiB */
829 830 831 832 833 834
	{ "w25x10", INFO(0xef3011, 0, 64 * 1024,  2,  SECT_4K) },
	{ "w25x20", INFO(0xef3012, 0, 64 * 1024,  4,  SECT_4K) },
	{ "w25x40", INFO(0xef3013, 0, 64 * 1024,  8,  SECT_4K) },
	{ "w25x80", INFO(0xef3014, 0, 64 * 1024,  16, SECT_4K) },
	{ "w25x16", INFO(0xef3015, 0, 64 * 1024,  32, SECT_4K) },
	{ "w25x32", INFO(0xef3016, 0, 64 * 1024,  64, SECT_4K) },
835
	{ "w25q32", INFO(0xef4016, 0, 64 * 1024,  64, SECT_4K) },
836
	{ "w25q32dw", INFO(0xef6016, 0, 64 * 1024,  64, SECT_4K) },
837
	{ "w25x64", INFO(0xef3017, 0, 64 * 1024, 128, SECT_4K) },
838
	{ "w25q64", INFO(0xef4017, 0, 64 * 1024, 128, SECT_4K) },
839
	{ "w25q80", INFO(0xef5014, 0, 64 * 1024,  16, SECT_4K) },
840
	{ "w25q80bl", INFO(0xef4014, 0, 64 * 1024,  16, SECT_4K) },
841
	{ "w25q256", INFO(0xef4019, 0, 64 * 1024, 512, SECT_4K) },
842 843 844 845 846 847 848

	/* Catalyst / On Semiconductor -- non-JEDEC */
	{ "cat25c11", CAT25_INFO(  16, 8, 16, 1) },
	{ "cat25c03", CAT25_INFO(  32, 8, 16, 2) },
	{ "cat25c09", CAT25_INFO( 128, 8, 32, 2) },
	{ "cat25c17", CAT25_INFO( 256, 8, 32, 2) },
	{ "cat25128", CAT25_INFO(2048, 8, 64, 2) },
849
	{ },
850
};
851
MODULE_DEVICE_TABLE(spi, m25p_ids);
852

B
Bill Pemberton 已提交
853
static const struct spi_device_id *jedec_probe(struct spi_device *spi)
854 855 856
{
	int			tmp;
	u8			code = OPCODE_RDID;
857
	u8			id[5];
858
	u32			jedec;
859
	u16                     ext_jedec;
860 861 862 863 864 865
	struct flash_info	*info;

	/* JEDEC also defines an optional "extended device information"
	 * string for after vendor-specific data, after the three bytes
	 * we use here.  Supporting some chips might require using it.
	 */
866
	tmp = spi_write_then_read(spi, &code, 1, id, 5);
867
	if (tmp < 0) {
868
		pr_debug("%s: error %d reading JEDEC ID\n",
869
				dev_name(&spi->dev), tmp);
870
		return ERR_PTR(tmp);
871 872 873 874 875 876 877
	}
	jedec = id[0];
	jedec = jedec << 8;
	jedec |= id[1];
	jedec = jedec << 8;
	jedec |= id[2];

878 879
	ext_jedec = id[3] << 8 | id[4];

880 881
	for (tmp = 0; tmp < ARRAY_SIZE(m25p_ids) - 1; tmp++) {
		info = (void *)m25p_ids[tmp].driver_data;
882
		if (info->jedec_id == jedec) {
883
			if (info->ext_id != 0 && info->ext_id != ext_jedec)
884
				continue;
885
			return &m25p_ids[tmp];
886
		}
887
	}
888
	dev_err(&spi->dev, "unrecognized JEDEC id %06x\n", jedec);
889
	return ERR_PTR(-ENODEV);
890 891 892
}


893 894 895 896 897
/*
 * board specific setup should have ensured the SPI clock used here
 * matches what the READ command supports, at least until this driver
 * understands FAST_READ (for clocks over 25 MHz).
 */
B
Bill Pemberton 已提交
898
static int m25p_probe(struct spi_device *spi)
899
{
900
	const struct spi_device_id	*id = spi_get_device_id(spi);
901 902 903 904
	struct flash_platform_data	*data;
	struct m25p			*flash;
	struct flash_info		*info;
	unsigned			i;
905
	struct mtd_part_parser_data	ppdata;
906
	struct device_node __maybe_unused *np = spi->dev.of_node;
907

908
#ifdef CONFIG_MTD_OF_PARTS
909
	if (!of_device_is_available(np))
910 911 912
		return -ENODEV;
#endif

913
	/* Platform data helps sort out which chip type we have, as
914 915 916
	 * well as how this board partitions it.  If we don't have
	 * a chip ID, try the JEDEC id commands; they'll work for most
	 * newer chips, even if we don't recognize the particular chip.
917 918
	 */
	data = spi->dev.platform_data;
919
	if (data && data->type) {
920
		const struct spi_device_id *plat_id;
921

922
		for (i = 0; i < ARRAY_SIZE(m25p_ids) - 1; i++) {
923 924
			plat_id = &m25p_ids[i];
			if (strcmp(data->type, plat_id->name))
925 926
				continue;
			break;
927 928
		}

929
		if (i < ARRAY_SIZE(m25p_ids) - 1)
930 931 932
			id = plat_id;
		else
			dev_warn(&spi->dev, "unrecognized id %s\n", data->type);
933
	}
934

935 936 937 938 939 940
	info = (void *)id->driver_data;

	if (info->jedec_id) {
		const struct spi_device_id *jid;

		jid = jedec_probe(spi);
941 942
		if (IS_ERR(jid)) {
			return PTR_ERR(jid);
943 944 945 946 947 948 949 950 951 952 953 954 955 956
		} else if (jid != id) {
			/*
			 * JEDEC knows better, so overwrite platform ID. We
			 * can't trust partitions any longer, but we'll let
			 * mtd apply them anyway, since some partitions may be
			 * marked read-only, and we don't want to lose that
			 * information, even if it's not 100% accurate.
			 */
			dev_warn(&spi->dev, "found %s, expected %s\n",
				 jid->name, id->name);
			id = jid;
			info = (void *)jid->driver_data;
		}
	}
957

958
	flash = kzalloc(sizeof *flash, GFP_KERNEL);
959 960
	if (!flash)
		return -ENOMEM;
961 962
	flash->command = kmalloc(MAX_CMD_SIZE + (flash->fast_read ? 1 : 0),
					GFP_KERNEL);
963 964 965 966
	if (!flash->command) {
		kfree(flash);
		return -ENOMEM;
	}
967 968

	flash->spi = spi;
D
David Brownell 已提交
969
	mutex_init(&flash->lock);
970 971
	dev_set_drvdata(&spi->dev, flash);

972
	/*
973
	 * Atmel, SST and Intel/Numonyx serial flash tend to power
974
	 * up with the software protection bits set
975 976
	 */

977 978 979
	if (JEDEC_MFR(info->jedec_id) == CFI_MFR_ATMEL ||
	    JEDEC_MFR(info->jedec_id) == CFI_MFR_INTEL ||
	    JEDEC_MFR(info->jedec_id) == CFI_MFR_SST) {
980 981 982 983
		write_enable(flash);
		write_sr(flash, 0);
	}

984
	if (data && data->name)
985 986
		flash->mtd.name = data->name;
	else
987
		flash->mtd.name = dev_name(&spi->dev);
988 989

	flash->mtd.type = MTD_NORFLASH;
990
	flash->mtd.writesize = 1;
991 992
	flash->mtd.flags = MTD_CAP_NORFLASH;
	flash->mtd.size = info->sector_size * info->n_sectors;
993 994
	flash->mtd._erase = m25p80_erase;
	flash->mtd._read = m25p80_read;
995

996 997 998 999 1000 1001
	/* flash protection support for STmicro chips */
	if (JEDEC_MFR(info->jedec_id) == CFI_MFR_ST) {
		flash->mtd._lock = m25p80_lock;
		flash->mtd._unlock = m25p80_unlock;
	}

1002
	/* sst flash chips use AAI word program */
1003
	if (JEDEC_MFR(info->jedec_id) == CFI_MFR_SST)
1004
		flash->mtd._write = sst_write;
1005
	else
1006
		flash->mtd._write = m25p80_write;
1007

1008 1009 1010 1011 1012 1013 1014 1015 1016
	/* prefer "small sector" erase if possible */
	if (info->flags & SECT_4K) {
		flash->erase_opcode = OPCODE_BE_4K;
		flash->mtd.erasesize = 4096;
	} else {
		flash->erase_opcode = OPCODE_SE;
		flash->mtd.erasesize = info->sector_size;
	}

1017 1018 1019
	if (info->flags & M25P_NO_ERASE)
		flash->mtd.flags |= MTD_NO_ERASE;

1020
	ppdata.of_node = spi->dev.of_node;
1021
	flash->mtd.dev.parent = &spi->dev;
1022
	flash->page_size = info->page_size;
B
Brian Norris 已提交
1023
	flash->mtd.writebufsize = flash->page_size;
1024

1025 1026 1027 1028 1029 1030 1031 1032 1033 1034
	flash->fast_read = false;
#ifdef CONFIG_OF
	if (np && of_property_read_bool(np, "m25p,fast-read"))
		flash->fast_read = true;
#endif

#ifdef CONFIG_M25PXX_USE_FAST_READ
	flash->fast_read = true;
#endif

1035 1036 1037 1038 1039 1040
	if (info->addr_width)
		flash->addr_width = info->addr_width;
	else {
		/* enable 4-byte addressing if the device exceeds 16MiB */
		if (flash->mtd.size > 0x1000000) {
			flash->addr_width = 4;
1041
			set_4byte(flash, info->jedec_id, 1);
1042 1043 1044
		} else
			flash->addr_width = 3;
	}
1045

1046
	dev_info(&spi->dev, "%s (%lld Kbytes)\n", id->name,
1047
			(long long)flash->mtd.size >> 10);
1048

1049
	pr_debug("mtd .name = %s, .size = 0x%llx (%lldMiB) "
1050
			".erasesize = 0x%.8x (%uKiB) .numeraseregions = %d\n",
1051
		flash->mtd.name,
1052
		(long long)flash->mtd.size, (long long)(flash->mtd.size >> 20),
1053 1054 1055 1056 1057
		flash->mtd.erasesize, flash->mtd.erasesize / 1024,
		flash->mtd.numeraseregions);

	if (flash->mtd.numeraseregions)
		for (i = 0; i < flash->mtd.numeraseregions; i++)
1058
			pr_debug("mtd.eraseregions[%d] = { .offset = 0x%llx, "
1059
				".erasesize = 0x%.8x (%uKiB), "
1060
				".numblocks = %d }\n",
1061
				i, (long long)flash->mtd.eraseregions[i].offset,
1062 1063 1064 1065 1066 1067 1068 1069
				flash->mtd.eraseregions[i].erasesize,
				flash->mtd.eraseregions[i].erasesize / 1024,
				flash->mtd.eraseregions[i].numblocks);


	/* partitions should match sector boundaries; and it may be good to
	 * use readonly partitions for writeprotected sectors (BP2..BP0).
	 */
1070 1071 1072
	return mtd_device_parse_register(&flash->mtd, NULL, &ppdata,
			data ? data->parts : NULL,
			data ? data->nr_parts : 0);
1073 1074 1075
}


B
Bill Pemberton 已提交
1076
static int m25p_remove(struct spi_device *spi)
1077 1078 1079 1080 1081
{
	struct m25p	*flash = dev_get_drvdata(&spi->dev);
	int		status;

	/* Clean up MTD stuff. */
1082
	status = mtd_device_unregister(&flash->mtd);
1083 1084
	if (status == 0) {
		kfree(flash->command);
1085
		kfree(flash);
1086
	}
1087 1088 1089 1090 1091 1092 1093 1094 1095
	return 0;
}


static struct spi_driver m25p80_driver = {
	.driver = {
		.name	= "m25p80",
		.owner	= THIS_MODULE,
	},
1096
	.id_table	= m25p_ids,
1097
	.probe	= m25p_probe,
B
Bill Pemberton 已提交
1098
	.remove	= m25p_remove,
1099 1100 1101 1102 1103

	/* REVISIT: many of these chips have deep power-down modes, which
	 * should clearly be entered on suspend() to minimize power use.
	 * And also when they're otherwise idle...
	 */
1104 1105
};

1106
module_spi_driver(m25p80_driver);
1107 1108 1109 1110

MODULE_LICENSE("GPL");
MODULE_AUTHOR("Mike Lavender");
MODULE_DESCRIPTION("MTD SPI driver for ST M25Pxx flash chips");