powerpc.c 55.9 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
2 3 4 5 6 7 8 9 10 11 12 13
/*
 *
 * Copyright IBM Corp. 2007
 *
 * Authors: Hollis Blanchard <hollisb@us.ibm.com>
 *          Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com>
 */

#include <linux/errno.h>
#include <linux/err.h>
#include <linux/kvm_host.h>
#include <linux/vmalloc.h>
A
Alexander Graf 已提交
14
#include <linux/hrtimer.h>
15
#include <linux/sched/signal.h>
16
#include <linux/fs.h>
17
#include <linux/slab.h>
S
Scott Wood 已提交
18
#include <linux/file.h>
19
#include <linux/module.h>
20 21
#include <linux/irqbypass.h>
#include <linux/kvm_irqfd.h>
22
#include <asm/cputable.h>
23
#include <linux/uaccess.h>
24
#include <asm/kvm_ppc.h>
25
#include <asm/cputhreads.h>
26
#include <asm/irqflags.h>
27
#include <asm/iommu.h>
28
#include <asm/switch_to.h>
29
#include <asm/xive.h>
30 31 32 33
#ifdef CONFIG_PPC_PSERIES
#include <asm/hvcall.h>
#include <asm/plpar_wrappers.h>
#endif
34

35
#include "timing.h"
36
#include "irq.h"
P
Paul Mackerras 已提交
37
#include "../mm/mmu_decl.h"
38

39 40 41
#define CREATE_TRACE_POINTS
#include "trace.h"

42 43 44 45 46
struct kvmppc_ops *kvmppc_hv_ops;
EXPORT_SYMBOL_GPL(kvmppc_hv_ops);
struct kvmppc_ops *kvmppc_pr_ops;
EXPORT_SYMBOL_GPL(kvmppc_pr_ops);

47

48 49
int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
{
R
Radim Krčmář 已提交
50
	return !!(v->arch.pending_exceptions) || kvm_request_pending(v);
51 52
}

53 54 55 56 57
bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
{
	return kvm_arch_vcpu_runnable(vcpu);
}

58 59 60 61 62
bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
{
	return false;
}

63 64 65 66 67
int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
{
	return 1;
}

68 69 70 71
/*
 * Common checks before entering the guest world.  Call with interrupts
 * disabled.
 *
72 73 74 75
 * returns:
 *
 * == 1 if we're ready to go into guest state
 * <= 0 if we need to go back to the host with return value
76 77 78
 */
int kvmppc_prepare_to_enter(struct kvm_vcpu *vcpu)
{
S
Scott Wood 已提交
79 80 81 82
	int r;

	WARN_ON(irqs_disabled());
	hard_irq_disable();
83 84 85 86 87

	while (true) {
		if (need_resched()) {
			local_irq_enable();
			cond_resched();
S
Scott Wood 已提交
88
			hard_irq_disable();
89 90 91 92
			continue;
		}

		if (signal_pending(current)) {
93 94 95
			kvmppc_account_exit(vcpu, SIGNAL_EXITS);
			vcpu->run->exit_reason = KVM_EXIT_INTR;
			r = -EINTR;
96 97 98
			break;
		}

99 100 101 102 103 104 105
		vcpu->mode = IN_GUEST_MODE;

		/*
		 * Reading vcpu->requests must happen after setting vcpu->mode,
		 * so we don't miss a request because the requester sees
		 * OUTSIDE_GUEST_MODE and assumes we'll be checking requests
		 * before next entering the guest (and thus doesn't IPI).
106 107 108
		 * This also orders the write to mode from any reads
		 * to the page tables done while the VCPU is running.
		 * Please see the comment in kvm_flush_remote_tlbs.
109
		 */
110
		smp_mb();
111

R
Radim Krčmář 已提交
112
		if (kvm_request_pending(vcpu)) {
113 114 115
			/* Make sure we process requests preemptable */
			local_irq_enable();
			trace_kvm_check_requests(vcpu);
116
			r = kvmppc_core_check_requests(vcpu);
S
Scott Wood 已提交
117
			hard_irq_disable();
118 119 120
			if (r > 0)
				continue;
			break;
121 122 123 124 125 126 127 128
		}

		if (kvmppc_core_prepare_to_enter(vcpu)) {
			/* interrupts got enabled in between, so we
			   are back at square 1 */
			continue;
		}

129
		guest_enter_irqoff();
S
Scott Wood 已提交
130
		return 1;
131 132
	}

S
Scott Wood 已提交
133 134
	/* return to host */
	local_irq_enable();
135 136
	return r;
}
137
EXPORT_SYMBOL_GPL(kvmppc_prepare_to_enter);
138

139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
#if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_KVM_BOOK3S_PR_POSSIBLE)
static void kvmppc_swab_shared(struct kvm_vcpu *vcpu)
{
	struct kvm_vcpu_arch_shared *shared = vcpu->arch.shared;
	int i;

	shared->sprg0 = swab64(shared->sprg0);
	shared->sprg1 = swab64(shared->sprg1);
	shared->sprg2 = swab64(shared->sprg2);
	shared->sprg3 = swab64(shared->sprg3);
	shared->srr0 = swab64(shared->srr0);
	shared->srr1 = swab64(shared->srr1);
	shared->dar = swab64(shared->dar);
	shared->msr = swab64(shared->msr);
	shared->dsisr = swab32(shared->dsisr);
	shared->int_pending = swab32(shared->int_pending);
	for (i = 0; i < ARRAY_SIZE(shared->sr); i++)
		shared->sr[i] = swab32(shared->sr[i]);
}
#endif

160 161 162 163 164 165 166 167 168 169
int kvmppc_kvm_pv(struct kvm_vcpu *vcpu)
{
	int nr = kvmppc_get_gpr(vcpu, 11);
	int r;
	unsigned long __maybe_unused param1 = kvmppc_get_gpr(vcpu, 3);
	unsigned long __maybe_unused param2 = kvmppc_get_gpr(vcpu, 4);
	unsigned long __maybe_unused param3 = kvmppc_get_gpr(vcpu, 5);
	unsigned long __maybe_unused param4 = kvmppc_get_gpr(vcpu, 6);
	unsigned long r2 = 0;

170
	if (!(kvmppc_get_msr(vcpu) & MSR_SF)) {
171 172 173 174 175 176 177 178
		/* 32 bit mode */
		param1 &= 0xffffffff;
		param2 &= 0xffffffff;
		param3 &= 0xffffffff;
		param4 &= 0xffffffff;
	}

	switch (nr) {
179
	case KVM_HCALL_TOKEN(KVM_HC_PPC_MAP_MAGIC_PAGE):
180
	{
181 182 183 184 185 186 187 188 189 190
#if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_KVM_BOOK3S_PR_POSSIBLE)
		/* Book3S can be little endian, find it out here */
		int shared_big_endian = true;
		if (vcpu->arch.intr_msr & MSR_LE)
			shared_big_endian = false;
		if (shared_big_endian != vcpu->arch.shared_big_endian)
			kvmppc_swab_shared(vcpu);
		vcpu->arch.shared_big_endian = shared_big_endian;
#endif

191 192 193 194 195 196 197 198 199 200 201 202
		if (!(param2 & MAGIC_PAGE_FLAG_NOT_MAPPED_NX)) {
			/*
			 * Older versions of the Linux magic page code had
			 * a bug where they would map their trampoline code
			 * NX. If that's the case, remove !PR NX capability.
			 */
			vcpu->arch.disable_kernel_nx = true;
			kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
		}

		vcpu->arch.magic_page_pa = param1 & ~0xfffULL;
		vcpu->arch.magic_page_ea = param2 & ~0xfffULL;
203

204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222
#ifdef CONFIG_PPC_64K_PAGES
		/*
		 * Make sure our 4k magic page is in the same window of a 64k
		 * page within the guest and within the host's page.
		 */
		if ((vcpu->arch.magic_page_pa & 0xf000) !=
		    ((ulong)vcpu->arch.shared & 0xf000)) {
			void *old_shared = vcpu->arch.shared;
			ulong shared = (ulong)vcpu->arch.shared;
			void *new_shared;

			shared &= PAGE_MASK;
			shared |= vcpu->arch.magic_page_pa & 0xf000;
			new_shared = (void*)shared;
			memcpy(new_shared, old_shared, 0x1000);
			vcpu->arch.shared = new_shared;
		}
#endif

223
		r2 = KVM_MAGIC_FEAT_SR | KVM_MAGIC_FEAT_MAS0_TO_SPRG7;
224

225
		r = EV_SUCCESS;
226 227
		break;
	}
228 229
	case KVM_HCALL_TOKEN(KVM_HC_FEATURES):
		r = EV_SUCCESS;
230
#if defined(CONFIG_PPC_BOOK3S) || defined(CONFIG_KVM_E500V2)
231 232
		r2 |= (1 << KVM_FEATURE_MAGIC_PAGE);
#endif
233 234 235

		/* Second return value is in r4 */
		break;
236 237 238
	case EV_HCALL_TOKEN(EV_IDLE):
		r = EV_SUCCESS;
		kvm_vcpu_block(vcpu);
239
		kvm_clear_request(KVM_REQ_UNHALT, vcpu);
240
		break;
241
	default:
242
		r = EV_UNIMPLEMENTED;
243 244 245
		break;
	}

246 247
	kvmppc_set_gpr(vcpu, 4, r2);

248 249
	return r;
}
250
EXPORT_SYMBOL_GPL(kvmppc_kvm_pv);
251

252 253 254 255 256 257 258 259 260 261 262 263 264
int kvmppc_sanity_check(struct kvm_vcpu *vcpu)
{
	int r = false;

	/* We have to know what CPU to virtualize */
	if (!vcpu->arch.pvr)
		goto out;

	/* PAPR only works with book3s_64 */
	if ((vcpu->arch.cpu_type != KVM_CPU_3S_64) && vcpu->arch.papr_enabled)
		goto out;

	/* HV KVM can only do PAPR mode for now */
265
	if (!vcpu->arch.papr_enabled && is_kvmppc_hv_enabled(vcpu->kvm))
266 267
		goto out;

268 269 270 271 272
#ifdef CONFIG_KVM_BOOKE_HV
	if (!cpu_has_feature(CPU_FTR_EMB_HV))
		goto out;
#endif

273 274 275 276 277 278
	r = true;

out:
	vcpu->arch.sane = r;
	return r ? 0 : -EINVAL;
}
279
EXPORT_SYMBOL_GPL(kvmppc_sanity_check);
280

281 282 283 284 285
int kvmppc_emulate_mmio(struct kvm_run *run, struct kvm_vcpu *vcpu)
{
	enum emulation_result er;
	int r;

286
	er = kvmppc_emulate_loadstore(vcpu);
287 288 289 290 291 292
	switch (er) {
	case EMULATE_DONE:
		/* Future optimization: only reload non-volatiles if they were
		 * actually modified. */
		r = RESUME_GUEST_NV;
		break;
293 294 295
	case EMULATE_AGAIN:
		r = RESUME_GUEST;
		break;
296 297 298 299 300 301 302 303 304
	case EMULATE_DO_MMIO:
		run->exit_reason = KVM_EXIT_MMIO;
		/* We must reload nonvolatiles because "update" load/store
		 * instructions modify register state. */
		/* Future optimization: only reload non-volatiles if they were
		 * actually modified. */
		r = RESUME_HOST_NV;
		break;
	case EMULATE_FAIL:
305 306 307
	{
		u32 last_inst;

308
		kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst);
309
		/* XXX Deliver Program interrupt to guest. */
310
		pr_emerg("%s: emulation failed (%08x)\n", __func__, last_inst);
311 312
		r = RESUME_HOST;
		break;
313
	}
314
	default:
315 316
		WARN_ON(1);
		r = RESUME_GUEST;
317 318 319 320
	}

	return r;
}
321
EXPORT_SYMBOL_GPL(kvmppc_emulate_mmio);
322

323 324 325
int kvmppc_st(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr,
	      bool data)
{
326
	ulong mp_pa = vcpu->arch.magic_page_pa & KVM_PAM & PAGE_MASK;
327
	struct kvmppc_pte pte;
328
	int r = -EINVAL;
329 330 331

	vcpu->stat.st++;

332 333 334 335 336 337 338
	if (vcpu->kvm->arch.kvm_ops && vcpu->kvm->arch.kvm_ops->store_to_eaddr)
		r = vcpu->kvm->arch.kvm_ops->store_to_eaddr(vcpu, eaddr, ptr,
							    size);

	if ((!r) || (r == -EAGAIN))
		return r;

339 340 341 342 343 344 345 346 347 348
	r = kvmppc_xlate(vcpu, *eaddr, data ? XLATE_DATA : XLATE_INST,
			 XLATE_WRITE, &pte);
	if (r < 0)
		return r;

	*eaddr = pte.raddr;

	if (!pte.may_write)
		return -EPERM;

349 350 351 352 353 354 355 356 357 358
	/* Magic page override */
	if (kvmppc_supports_magic_page(vcpu) && mp_pa &&
	    ((pte.raddr & KVM_PAM & PAGE_MASK) == mp_pa) &&
	    !(kvmppc_get_msr(vcpu) & MSR_PR)) {
		void *magic = vcpu->arch.shared;
		magic += pte.eaddr & 0xfff;
		memcpy(magic, ptr, size);
		return EMULATE_DONE;
	}

359 360 361 362 363 364 365 366 367 368
	if (kvm_write_guest(vcpu->kvm, pte.raddr, ptr, size))
		return EMULATE_DO_MMIO;

	return EMULATE_DONE;
}
EXPORT_SYMBOL_GPL(kvmppc_st);

int kvmppc_ld(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr,
		      bool data)
{
369
	ulong mp_pa = vcpu->arch.magic_page_pa & KVM_PAM & PAGE_MASK;
370
	struct kvmppc_pte pte;
371
	int rc = -EINVAL;
372 373 374

	vcpu->stat.ld++;

375 376 377 378 379 380 381
	if (vcpu->kvm->arch.kvm_ops && vcpu->kvm->arch.kvm_ops->load_from_eaddr)
		rc = vcpu->kvm->arch.kvm_ops->load_from_eaddr(vcpu, eaddr, ptr,
							      size);

	if ((!rc) || (rc == -EAGAIN))
		return rc;

382 383 384 385 386 387 388 389 390 391 392 393 394
	rc = kvmppc_xlate(vcpu, *eaddr, data ? XLATE_DATA : XLATE_INST,
			  XLATE_READ, &pte);
	if (rc)
		return rc;

	*eaddr = pte.raddr;

	if (!pte.may_read)
		return -EPERM;

	if (!data && !pte.may_execute)
		return -ENOEXEC;

395 396 397 398 399 400 401 402 403 404
	/* Magic page override */
	if (kvmppc_supports_magic_page(vcpu) && mp_pa &&
	    ((pte.raddr & KVM_PAM & PAGE_MASK) == mp_pa) &&
	    !(kvmppc_get_msr(vcpu) & MSR_PR)) {
		void *magic = vcpu->arch.shared;
		magic += pte.eaddr & 0xfff;
		memcpy(ptr, magic, size);
		return EMULATE_DONE;
	}

405 406
	if (kvm_read_guest(vcpu->kvm, pte.raddr, ptr, size))
		return EMULATE_DO_MMIO;
407 408 409 410 411

	return EMULATE_DONE;
}
EXPORT_SYMBOL_GPL(kvmppc_ld);

412
int kvm_arch_hardware_enable(void)
413
{
414
	return 0;
415 416 417 418 419 420 421
}

int kvm_arch_hardware_setup(void)
{
	return 0;
}

422
int kvm_arch_check_processor_compat(void)
423
{
424
	return kvmppc_core_check_processor_compat();
425 426
}

427
int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
428
{
429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454
	struct kvmppc_ops *kvm_ops = NULL;
	/*
	 * if we have both HV and PR enabled, default is HV
	 */
	if (type == 0) {
		if (kvmppc_hv_ops)
			kvm_ops = kvmppc_hv_ops;
		else
			kvm_ops = kvmppc_pr_ops;
		if (!kvm_ops)
			goto err_out;
	} else	if (type == KVM_VM_PPC_HV) {
		if (!kvmppc_hv_ops)
			goto err_out;
		kvm_ops = kvmppc_hv_ops;
	} else if (type == KVM_VM_PPC_PR) {
		if (!kvmppc_pr_ops)
			goto err_out;
		kvm_ops = kvmppc_pr_ops;
	} else
		goto err_out;

	if (kvm_ops->owner && !try_module_get(kvm_ops->owner))
		return -ENOENT;

	kvm->arch.kvm_ops = kvm_ops;
455
	return kvmppc_core_init_vm(kvm);
456 457
err_out:
	return -EINVAL;
458 459
}

460
void kvm_arch_destroy_vm(struct kvm *kvm)
461 462
{
	unsigned int i;
463
	struct kvm_vcpu *vcpu;
464

465 466 467 468 469 470 471 472 473 474
#ifdef CONFIG_KVM_XICS
	/*
	 * We call kick_all_cpus_sync() to ensure that all
	 * CPUs have executed any pending IPIs before we
	 * continue and free VCPUs structures below.
	 */
	if (is_kvmppc_hv_enabled(kvm))
		kick_all_cpus_sync();
#endif

475 476 477 478 479 480 481 482
	kvm_for_each_vcpu(i, vcpu, kvm)
		kvm_arch_vcpu_free(vcpu);

	mutex_lock(&kvm->lock);
	for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
		kvm->vcpus[i] = NULL;

	atomic_set(&kvm->online_vcpus, 0);
483 484 485

	kvmppc_core_destroy_vm(kvm);

486
	mutex_unlock(&kvm->lock);
487 488 489

	/* drop the module reference */
	module_put(kvm->arch.kvm_ops->owner);
490 491
}

492
int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
493 494
{
	int r;
495
	/* Assume we're using HV mode when the HV module is loaded */
496
	int hv_enabled = kvmppc_hv_ops ? 1 : 0;
497

498 499 500 501 502 503 504 505
	if (kvm) {
		/*
		 * Hooray - we know which VM type we're running on. Depend on
		 * that rather than the guess above.
		 */
		hv_enabled = is_kvmppc_hv_enabled(kvm);
	}

506
	switch (ext) {
S
Scott Wood 已提交
507 508
#ifdef CONFIG_BOOKE
	case KVM_CAP_PPC_BOOKE_SREGS:
509
	case KVM_CAP_PPC_BOOKE_WATCHDOG:
510
	case KVM_CAP_PPC_EPR:
S
Scott Wood 已提交
511
#else
512
	case KVM_CAP_PPC_SEGSTATE:
513
	case KVM_CAP_PPC_HIOR:
514
	case KVM_CAP_PPC_PAPR:
S
Scott Wood 已提交
515
#endif
516
	case KVM_CAP_PPC_UNSET_IRQ:
517
	case KVM_CAP_PPC_IRQ_LEVEL:
518
	case KVM_CAP_ENABLE_CAP:
519
	case KVM_CAP_ONE_REG:
A
Alexander Graf 已提交
520
	case KVM_CAP_IOEVENTFD:
521
	case KVM_CAP_DEVICE_CTRL:
522
	case KVM_CAP_IMMEDIATE_EXIT:
523 524 525
		r = 1;
		break;
	case KVM_CAP_PPC_PAIRED_SINGLES:
526
	case KVM_CAP_PPC_OSI:
527
	case KVM_CAP_PPC_GET_PVINFO:
528
#if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
S
Scott Wood 已提交
529
	case KVM_CAP_SW_TLB:
S
Scott Wood 已提交
530
#endif
531
		/* We support this only for PR */
532
		r = !hv_enabled;
533
		break;
534 535 536 537 538 539
#ifdef CONFIG_KVM_MPIC
	case KVM_CAP_IRQ_MPIC:
		r = 1;
		break;
#endif

540
#ifdef CONFIG_PPC_BOOK3S_64
541
	case KVM_CAP_SPAPR_TCE:
542
	case KVM_CAP_SPAPR_TCE_64:
543 544
		r = 1;
		break;
545
	case KVM_CAP_SPAPR_TCE_VFIO:
546 547
		r = !!cpu_has_feature(CPU_FTR_HVMODE);
		break;
548
	case KVM_CAP_PPC_RTAS:
549
	case KVM_CAP_PPC_FIXUP_HCALL:
550
	case KVM_CAP_PPC_ENABLE_HCALL:
551 552 553
#ifdef CONFIG_KVM_XICS
	case KVM_CAP_IRQ_XICS:
#endif
554
	case KVM_CAP_PPC_GET_CPU_CHAR:
555 556
		r = 1;
		break;
557 558 559
#ifdef CONFIG_KVM_XIVE
	case KVM_CAP_PPC_IRQ_XIVE:
		/*
560 561 562
		 * We need XIVE to be enabled on the platform (implies
		 * a POWER9 processor) and the PowerNV platform, as
		 * nested is not yet supported.
563
		 */
564 565
		r = xive_enabled() && !!cpu_has_feature(CPU_FTR_HVMODE) &&
			kvmppc_xive_native_supported();
566 567
		break;
#endif
568 569 570 571

	case KVM_CAP_PPC_ALLOC_HTAB:
		r = hv_enabled;
		break;
572
#endif /* CONFIG_PPC_BOOK3S_64 */
573
#ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
574
	case KVM_CAP_PPC_SMT:
575
		r = 0;
576 577 578 579 580 581
		if (kvm) {
			if (kvm->arch.emul_smt_mode > 1)
				r = kvm->arch.emul_smt_mode;
			else
				r = kvm->arch.smt_mode;
		} else if (hv_enabled) {
582 583 584 585 586
			if (cpu_has_feature(CPU_FTR_ARCH_300))
				r = 1;
			else
				r = threads_per_subcore;
		}
587
		break;
588 589 590 591 592 593 594 595 596 597
	case KVM_CAP_PPC_SMT_POSSIBLE:
		r = 1;
		if (hv_enabled) {
			if (!cpu_has_feature(CPU_FTR_ARCH_300))
				r = ((threads_per_subcore << 1) - 1);
			else
				/* P9 can emulate dbells, so allow any mode */
				r = 8 | 4 | 2 | 1;
		}
		break;
598
	case KVM_CAP_PPC_RMA:
599
		r = 0;
600
		break;
601 602 603
	case KVM_CAP_PPC_HWRNG:
		r = kvmppc_hwrng_present();
		break;
604
	case KVM_CAP_PPC_MMU_RADIX:
605
		r = !!(hv_enabled && radix_enabled());
606 607
		break;
	case KVM_CAP_PPC_MMU_HASH_V3:
608 609
		r = !!(hv_enabled && cpu_has_feature(CPU_FTR_ARCH_300) &&
		       cpu_has_feature(CPU_FTR_HVMODE));
610
		break;
611 612 613 614
	case KVM_CAP_PPC_NESTED_HV:
		r = !!(hv_enabled && kvmppc_hv_ops->enable_nested &&
		       !kvmppc_hv_ops->enable_nested(NULL));
		break;
615
#endif
616
	case KVM_CAP_SYNC_MMU:
617
#ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
618
		r = hv_enabled;
619 620 621 622
#elif defined(KVM_ARCH_WANT_MMU_NOTIFIER)
		r = 1;
#else
		r = 0;
623
#endif
624 625
		break;
#ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
626
	case KVM_CAP_PPC_HTAB_FD:
627
		r = hv_enabled;
628
		break;
629
#endif
630 631 632 633 634 635 636
	case KVM_CAP_NR_VCPUS:
		/*
		 * Recommending a number of CPUs is somewhat arbitrary; we
		 * return the number of present CPUs for -HV (since a host
		 * will have secondary threads "offline"), and for other KVM
		 * implementations just count online CPUs.
		 */
637
		if (hv_enabled)
638 639 640
			r = num_present_cpus();
		else
			r = num_online_cpus();
641 642 643 644
		break;
	case KVM_CAP_MAX_VCPUS:
		r = KVM_MAX_VCPUS;
		break;
645 646 647
	case KVM_CAP_MAX_VCPU_ID:
		r = KVM_MAX_VCPU_ID;
		break;
648 649 650 651
#ifdef CONFIG_PPC_BOOK3S_64
	case KVM_CAP_PPC_GET_SMMU_INFO:
		r = 1;
		break;
652 653 654
	case KVM_CAP_SPAPR_MULTITCE:
		r = 1;
		break;
655
	case KVM_CAP_SPAPR_RESIZE_HPT:
656
		r = !!hv_enabled;
657
		break;
658 659 660 661 662
#endif
#ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
	case KVM_CAP_PPC_FWNMI:
		r = hv_enabled;
		break;
663
#endif
664
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
665
	case KVM_CAP_PPC_HTM:
666 667
		r = !!(cur_cpu_spec->cpu_user_features2 & PPC_FEATURE2_HTM) ||
		     (hv_enabled && cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST));
668
		break;
669
#endif
670 671 672 673 674 675 676 677 678 679 680 681 682 683
	default:
		r = 0;
		break;
	}
	return r;

}

long kvm_arch_dev_ioctl(struct file *filp,
                        unsigned int ioctl, unsigned long arg)
{
	return -EINVAL;
}

684
void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
685 686
			   struct kvm_memory_slot *dont)
{
687
	kvmppc_core_free_memslot(kvm, free, dont);
688 689
}

690 691
int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
			    unsigned long npages)
692
{
693
	return kvmppc_core_create_memslot(kvm, slot, npages);
694 695
}

696
int kvm_arch_prepare_memory_region(struct kvm *kvm,
697
				   struct kvm_memory_slot *memslot,
698
				   const struct kvm_userspace_memory_region *mem,
699
				   enum kvm_mr_change change)
700
{
701
	return kvmppc_core_prepare_memory_region(kvm, memslot, mem);
702 703
}

704
void kvm_arch_commit_memory_region(struct kvm *kvm,
705
				   const struct kvm_userspace_memory_region *mem,
706
				   const struct kvm_memory_slot *old,
707
				   const struct kvm_memory_slot *new,
708
				   enum kvm_mr_change change)
709
{
710
	kvmppc_core_commit_memory_region(kvm, mem, old, new, change);
711 712
}

713 714
void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
				   struct kvm_memory_slot *slot)
715
{
716
	kvmppc_core_flush_memslot(kvm, slot);
717 718
}

719 720
struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
{
721 722
	struct kvm_vcpu *vcpu;
	vcpu = kvmppc_core_vcpu_create(kvm, id);
723 724
	if (!IS_ERR(vcpu)) {
		vcpu->arch.wqp = &vcpu->wq;
725
		kvmppc_create_vcpu_debugfs(vcpu, id);
726
	}
727
	return vcpu;
728 729
}

730
void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
731 732 733
{
}

734 735
void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
{
736 737 738
	/* Make sure we're not using the vcpu anymore */
	hrtimer_cancel(&vcpu->arch.dec_timer);

739
	kvmppc_remove_vcpu_debugfs(vcpu);
S
Scott Wood 已提交
740 741 742 743 744

	switch (vcpu->arch.irq_type) {
	case KVMPPC_IRQ_MPIC:
		kvmppc_mpic_disconnect_vcpu(vcpu->arch.mpic, vcpu);
		break;
745
	case KVMPPC_IRQ_XICS:
746
		if (xics_on_xive())
747 748 749
			kvmppc_xive_cleanup_vcpu(vcpu);
		else
			kvmppc_xics_free_icp(vcpu);
750
		break;
751 752 753
	case KVMPPC_IRQ_XIVE:
		kvmppc_xive_native_cleanup_vcpu(vcpu);
		break;
S
Scott Wood 已提交
754 755
	}

756
	kvmppc_core_vcpu_free(vcpu);
757 758 759 760 761 762 763 764 765
}

void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
{
	kvm_arch_vcpu_free(vcpu);
}

int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
{
766
	return kvmppc_core_pending_dec(vcpu);
767 768
}

T
Thomas Huth 已提交
769
static enum hrtimer_restart kvmppc_decrementer_wakeup(struct hrtimer *timer)
A
Alexander Graf 已提交
770 771 772 773
{
	struct kvm_vcpu *vcpu;

	vcpu = container_of(timer, struct kvm_vcpu, arch.dec_timer);
774
	kvmppc_decrementer_func(vcpu);
A
Alexander Graf 已提交
775 776 777 778

	return HRTIMER_NORESTART;
}

779 780
int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
{
781 782
	int ret;

A
Alexander Graf 已提交
783 784
	hrtimer_init(&vcpu->arch.dec_timer, CLOCK_REALTIME, HRTIMER_MODE_ABS);
	vcpu->arch.dec_timer.function = kvmppc_decrementer_wakeup;
785
	vcpu->arch.dec_expires = get_tb();
786

787 788 789
#ifdef CONFIG_KVM_EXIT_TIMING
	mutex_init(&vcpu->arch.exit_timing_lock);
#endif
790 791
	ret = kvmppc_subarch_vcpu_init(vcpu);
	return ret;
792 793 794 795
}

void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
{
796
	kvmppc_mmu_destroy(vcpu);
797
	kvmppc_subarch_vcpu_uninit(vcpu);
798 799 800 801
}

void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
{
802 803 804 805 806 807 808 809 810 811
#ifdef CONFIG_BOOKE
	/*
	 * vrsave (formerly usprg0) isn't used by Linux, but may
	 * be used by the guest.
	 *
	 * On non-booke this is associated with Altivec and
	 * is handled by code in book3s.c.
	 */
	mtspr(SPRN_VRSAVE, vcpu->arch.vrsave);
#endif
812
	kvmppc_core_vcpu_load(vcpu, cpu);
813 814 815 816
}

void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
{
817
	kvmppc_core_vcpu_put(vcpu);
818 819 820
#ifdef CONFIG_BOOKE
	vcpu->arch.vrsave = mfspr(SPRN_VRSAVE);
#endif
821 822
}

823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858
/*
 * irq_bypass_add_producer and irq_bypass_del_producer are only
 * useful if the architecture supports PCI passthrough.
 * irq_bypass_stop and irq_bypass_start are not needed and so
 * kvm_ops are not defined for them.
 */
bool kvm_arch_has_irq_bypass(void)
{
	return ((kvmppc_hv_ops && kvmppc_hv_ops->irq_bypass_add_producer) ||
		(kvmppc_pr_ops && kvmppc_pr_ops->irq_bypass_add_producer));
}

int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
				     struct irq_bypass_producer *prod)
{
	struct kvm_kernel_irqfd *irqfd =
		container_of(cons, struct kvm_kernel_irqfd, consumer);
	struct kvm *kvm = irqfd->kvm;

	if (kvm->arch.kvm_ops->irq_bypass_add_producer)
		return kvm->arch.kvm_ops->irq_bypass_add_producer(cons, prod);

	return 0;
}

void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
				      struct irq_bypass_producer *prod)
{
	struct kvm_kernel_irqfd *irqfd =
		container_of(cons, struct kvm_kernel_irqfd, consumer);
	struct kvm *kvm = irqfd->kvm;

	if (kvm->arch.kvm_ops->irq_bypass_del_producer)
		kvm->arch.kvm_ops->irq_bypass_del_producer(cons, prod);
}

859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900
#ifdef CONFIG_VSX
static inline int kvmppc_get_vsr_dword_offset(int index)
{
	int offset;

	if ((index != 0) && (index != 1))
		return -1;

#ifdef __BIG_ENDIAN
	offset =  index;
#else
	offset = 1 - index;
#endif

	return offset;
}

static inline int kvmppc_get_vsr_word_offset(int index)
{
	int offset;

	if ((index > 3) || (index < 0))
		return -1;

#ifdef __BIG_ENDIAN
	offset = index;
#else
	offset = 3 - index;
#endif
	return offset;
}

static inline void kvmppc_set_vsr_dword(struct kvm_vcpu *vcpu,
	u64 gpr)
{
	union kvmppc_one_reg val;
	int offset = kvmppc_get_vsr_dword_offset(vcpu->arch.mmio_vsx_offset);
	int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;

	if (offset == -1)
		return;

901 902
	if (index >= 32) {
		val.vval = VCPU_VSX_VR(vcpu, index - 32);
903
		val.vsxval[offset] = gpr;
904
		VCPU_VSX_VR(vcpu, index - 32) = val.vval;
905 906 907 908 909 910 911 912 913 914 915
	} else {
		VCPU_VSX_FPR(vcpu, index, offset) = gpr;
	}
}

static inline void kvmppc_set_vsr_dword_dump(struct kvm_vcpu *vcpu,
	u64 gpr)
{
	union kvmppc_one_reg val;
	int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;

916 917
	if (index >= 32) {
		val.vval = VCPU_VSX_VR(vcpu, index - 32);
918 919
		val.vsxval[0] = gpr;
		val.vsxval[1] = gpr;
920
		VCPU_VSX_VR(vcpu, index - 32) = val.vval;
921 922 923 924 925 926
	} else {
		VCPU_VSX_FPR(vcpu, index, 0) = gpr;
		VCPU_VSX_FPR(vcpu, index, 1) = gpr;
	}
}

927 928 929 930 931 932
static inline void kvmppc_set_vsr_word_dump(struct kvm_vcpu *vcpu,
	u32 gpr)
{
	union kvmppc_one_reg val;
	int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;

933
	if (index >= 32) {
934 935 936 937
		val.vsx32val[0] = gpr;
		val.vsx32val[1] = gpr;
		val.vsx32val[2] = gpr;
		val.vsx32val[3] = gpr;
938
		VCPU_VSX_VR(vcpu, index - 32) = val.vval;
939 940 941 942 943 944 945 946
	} else {
		val.vsx32val[0] = gpr;
		val.vsx32val[1] = gpr;
		VCPU_VSX_FPR(vcpu, index, 0) = val.vsxval[0];
		VCPU_VSX_FPR(vcpu, index, 1) = val.vsxval[0];
	}
}

947 948 949 950 951 952 953 954 955 956 957
static inline void kvmppc_set_vsr_word(struct kvm_vcpu *vcpu,
	u32 gpr32)
{
	union kvmppc_one_reg val;
	int offset = kvmppc_get_vsr_word_offset(vcpu->arch.mmio_vsx_offset);
	int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
	int dword_offset, word_offset;

	if (offset == -1)
		return;

958 959
	if (index >= 32) {
		val.vval = VCPU_VSX_VR(vcpu, index - 32);
960
		val.vsx32val[offset] = gpr32;
961
		VCPU_VSX_VR(vcpu, index - 32) = val.vval;
962 963 964 965 966 967 968 969 970 971
	} else {
		dword_offset = offset / 2;
		word_offset = offset % 2;
		val.vsxval[0] = VCPU_VSX_FPR(vcpu, index, dword_offset);
		val.vsx32val[word_offset] = gpr32;
		VCPU_VSX_FPR(vcpu, index, dword_offset) = val.vsxval[0];
	}
}
#endif /* CONFIG_VSX */

972
#ifdef CONFIG_ALTIVEC
973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014
static inline int kvmppc_get_vmx_offset_generic(struct kvm_vcpu *vcpu,
		int index, int element_size)
{
	int offset;
	int elts = sizeof(vector128)/element_size;

	if ((index < 0) || (index >= elts))
		return -1;

	if (kvmppc_need_byteswap(vcpu))
		offset = elts - index - 1;
	else
		offset = index;

	return offset;
}

static inline int kvmppc_get_vmx_dword_offset(struct kvm_vcpu *vcpu,
		int index)
{
	return kvmppc_get_vmx_offset_generic(vcpu, index, 8);
}

static inline int kvmppc_get_vmx_word_offset(struct kvm_vcpu *vcpu,
		int index)
{
	return kvmppc_get_vmx_offset_generic(vcpu, index, 4);
}

static inline int kvmppc_get_vmx_hword_offset(struct kvm_vcpu *vcpu,
		int index)
{
	return kvmppc_get_vmx_offset_generic(vcpu, index, 2);
}

static inline int kvmppc_get_vmx_byte_offset(struct kvm_vcpu *vcpu,
		int index)
{
	return kvmppc_get_vmx_offset_generic(vcpu, index, 1);
}


1015
static inline void kvmppc_set_vmx_dword(struct kvm_vcpu *vcpu,
1016
	u64 gpr)
1017
{
1018 1019 1020
	union kvmppc_one_reg val;
	int offset = kvmppc_get_vmx_dword_offset(vcpu,
			vcpu->arch.mmio_vmx_offset);
1021 1022
	int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;

1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037
	if (offset == -1)
		return;

	val.vval = VCPU_VSX_VR(vcpu, index);
	val.vsxval[offset] = gpr;
	VCPU_VSX_VR(vcpu, index) = val.vval;
}

static inline void kvmppc_set_vmx_word(struct kvm_vcpu *vcpu,
	u32 gpr32)
{
	union kvmppc_one_reg val;
	int offset = kvmppc_get_vmx_word_offset(vcpu,
			vcpu->arch.mmio_vmx_offset);
	int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
1038

1039
	if (offset == -1)
1040 1041
		return;

1042 1043 1044 1045
	val.vval = VCPU_VSX_VR(vcpu, index);
	val.vsx32val[offset] = gpr32;
	VCPU_VSX_VR(vcpu, index) = val.vval;
}
1046

1047 1048 1049 1050 1051 1052 1053 1054 1055
static inline void kvmppc_set_vmx_hword(struct kvm_vcpu *vcpu,
	u16 gpr16)
{
	union kvmppc_one_reg val;
	int offset = kvmppc_get_vmx_hword_offset(vcpu,
			vcpu->arch.mmio_vmx_offset);
	int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;

	if (offset == -1)
1056 1057
		return;

1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069
	val.vval = VCPU_VSX_VR(vcpu, index);
	val.vsx16val[offset] = gpr16;
	VCPU_VSX_VR(vcpu, index) = val.vval;
}

static inline void kvmppc_set_vmx_byte(struct kvm_vcpu *vcpu,
	u8 gpr8)
{
	union kvmppc_one_reg val;
	int offset = kvmppc_get_vmx_byte_offset(vcpu,
			vcpu->arch.mmio_vmx_offset);
	int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
1070

1071 1072
	if (offset == -1)
		return;
1073

1074 1075 1076
	val.vval = VCPU_VSX_VR(vcpu, index);
	val.vsx8val[offset] = gpr8;
	VCPU_VSX_VR(vcpu, index) = val.vval;
1077 1078 1079
}
#endif /* CONFIG_ALTIVEC */

1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109
#ifdef CONFIG_PPC_FPU
static inline u64 sp_to_dp(u32 fprs)
{
	u64 fprd;

	preempt_disable();
	enable_kernel_fp();
	asm ("lfs%U1%X1 0,%1; stfd%U0%X0 0,%0" : "=m" (fprd) : "m" (fprs)
	     : "fr0");
	preempt_enable();
	return fprd;
}

static inline u32 dp_to_sp(u64 fprd)
{
	u32 fprs;

	preempt_disable();
	enable_kernel_fp();
	asm ("lfd%U1%X1 0,%1; stfs%U0%X0 0,%0" : "=m" (fprs) : "m" (fprd)
	     : "fr0");
	preempt_enable();
	return fprs;
}

#else
#define sp_to_dp(x)	(x)
#define dp_to_sp(x)	(x)
#endif /* CONFIG_PPC_FPU */

1110 1111 1112
static void kvmppc_complete_mmio_load(struct kvm_vcpu *vcpu,
                                      struct kvm_run *run)
{
1113
	u64 uninitialized_var(gpr);
1114

1115
	if (run->mmio.len > sizeof(gpr)) {
1116 1117 1118 1119
		printk(KERN_ERR "bad MMIO length: %d\n", run->mmio.len);
		return;
	}

1120
	if (!vcpu->arch.mmio_host_swabbed) {
1121
		switch (run->mmio.len) {
1122
		case 8: gpr = *(u64 *)run->mmio.data; break;
1123 1124 1125
		case 4: gpr = *(u32 *)run->mmio.data; break;
		case 2: gpr = *(u16 *)run->mmio.data; break;
		case 1: gpr = *(u8 *)run->mmio.data; break;
1126 1127 1128
		}
	} else {
		switch (run->mmio.len) {
1129 1130 1131
		case 8: gpr = swab64(*(u64 *)run->mmio.data); break;
		case 4: gpr = swab32(*(u32 *)run->mmio.data); break;
		case 2: gpr = swab16(*(u16 *)run->mmio.data); break;
1132
		case 1: gpr = *(u8 *)run->mmio.data; break;
1133 1134
		}
	}
1135

1136 1137 1138 1139
	/* conversion between single and double precision */
	if ((vcpu->arch.mmio_sp64_extend) && (run->mmio.len == 4))
		gpr = sp_to_dp(gpr);

A
Alexander Graf 已提交
1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155
	if (vcpu->arch.mmio_sign_extend) {
		switch (run->mmio.len) {
#ifdef CONFIG_PPC64
		case 4:
			gpr = (s64)(s32)gpr;
			break;
#endif
		case 2:
			gpr = (s64)(s16)gpr;
			break;
		case 1:
			gpr = (s64)(s8)gpr;
			break;
		}
	}

1156 1157
	switch (vcpu->arch.io_gpr & KVM_MMIO_REG_EXT_MASK) {
	case KVM_MMIO_REG_GPR:
1158 1159
		kvmppc_set_gpr(vcpu, vcpu->arch.io_gpr, gpr);
		break;
1160
	case KVM_MMIO_REG_FPR:
1161 1162 1163
		if (vcpu->kvm->arch.kvm_ops->giveup_ext)
			vcpu->kvm->arch.kvm_ops->giveup_ext(vcpu, MSR_FP);

1164
		VCPU_FPR(vcpu, vcpu->arch.io_gpr & KVM_MMIO_REG_MASK) = gpr;
1165
		break;
1166
#ifdef CONFIG_PPC_BOOK3S
1167 1168
	case KVM_MMIO_REG_QPR:
		vcpu->arch.qpr[vcpu->arch.io_gpr & KVM_MMIO_REG_MASK] = gpr;
1169
		break;
1170
	case KVM_MMIO_REG_FQPR:
1171
		VCPU_FPR(vcpu, vcpu->arch.io_gpr & KVM_MMIO_REG_MASK) = gpr;
1172
		vcpu->arch.qpr[vcpu->arch.io_gpr & KVM_MMIO_REG_MASK] = gpr;
1173
		break;
1174 1175 1176
#endif
#ifdef CONFIG_VSX
	case KVM_MMIO_REG_VSX:
1177 1178 1179
		if (vcpu->kvm->arch.kvm_ops->giveup_ext)
			vcpu->kvm->arch.kvm_ops->giveup_ext(vcpu, MSR_VSX);

1180
		if (vcpu->arch.mmio_copy_type == KVMPPC_VSX_COPY_DWORD)
1181
			kvmppc_set_vsr_dword(vcpu, gpr);
1182
		else if (vcpu->arch.mmio_copy_type == KVMPPC_VSX_COPY_WORD)
1183
			kvmppc_set_vsr_word(vcpu, gpr);
1184
		else if (vcpu->arch.mmio_copy_type ==
1185 1186
				KVMPPC_VSX_COPY_DWORD_LOAD_DUMP)
			kvmppc_set_vsr_dword_dump(vcpu, gpr);
1187
		else if (vcpu->arch.mmio_copy_type ==
1188 1189
				KVMPPC_VSX_COPY_WORD_LOAD_DUMP)
			kvmppc_set_vsr_word_dump(vcpu, gpr);
1190
		break;
1191 1192 1193
#endif
#ifdef CONFIG_ALTIVEC
	case KVM_MMIO_REG_VMX:
1194 1195 1196
		if (vcpu->kvm->arch.kvm_ops->giveup_ext)
			vcpu->kvm->arch.kvm_ops->giveup_ext(vcpu, MSR_VEC);

1197 1198 1199 1200 1201 1202 1203 1204 1205 1206
		if (vcpu->arch.mmio_copy_type == KVMPPC_VMX_COPY_DWORD)
			kvmppc_set_vmx_dword(vcpu, gpr);
		else if (vcpu->arch.mmio_copy_type == KVMPPC_VMX_COPY_WORD)
			kvmppc_set_vmx_word(vcpu, gpr);
		else if (vcpu->arch.mmio_copy_type ==
				KVMPPC_VMX_COPY_HWORD)
			kvmppc_set_vmx_hword(vcpu, gpr);
		else if (vcpu->arch.mmio_copy_type ==
				KVMPPC_VMX_COPY_BYTE)
			kvmppc_set_vmx_byte(vcpu, gpr);
1207
		break;
1208 1209 1210 1211 1212 1213 1214 1215
#endif
#ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
	case KVM_MMIO_REG_NESTED_GPR:
		if (kvmppc_need_byteswap(vcpu))
			gpr = swab64(gpr);
		kvm_vcpu_write_guest(vcpu, vcpu->arch.nested_io_gpr, &gpr,
				     sizeof(gpr));
		break;
1216
#endif
1217 1218 1219
	default:
		BUG();
	}
1220 1221
}

1222 1223 1224
static int __kvmppc_handle_load(struct kvm_run *run, struct kvm_vcpu *vcpu,
				unsigned int rt, unsigned int bytes,
				int is_default_endian, int sign_extend)
1225
{
1226
	int idx, ret;
1227
	bool host_swabbed;
1228

1229
	/* Pity C doesn't have a logical XOR operator */
1230
	if (kvmppc_need_byteswap(vcpu)) {
1231
		host_swabbed = is_default_endian;
1232
	} else {
1233
		host_swabbed = !is_default_endian;
1234
	}
1235

1236 1237 1238 1239 1240 1241 1242 1243 1244 1245
	if (bytes > sizeof(run->mmio.data)) {
		printk(KERN_ERR "%s: bad MMIO length: %d\n", __func__,
		       run->mmio.len);
	}

	run->mmio.phys_addr = vcpu->arch.paddr_accessed;
	run->mmio.len = bytes;
	run->mmio.is_write = 0;

	vcpu->arch.io_gpr = rt;
1246
	vcpu->arch.mmio_host_swabbed = host_swabbed;
1247 1248
	vcpu->mmio_needed = 1;
	vcpu->mmio_is_write = 0;
1249
	vcpu->arch.mmio_sign_extend = sign_extend;
1250

1251 1252
	idx = srcu_read_lock(&vcpu->kvm->srcu);

1253
	ret = kvm_io_bus_read(vcpu, KVM_MMIO_BUS, run->mmio.phys_addr,
1254 1255 1256 1257 1258
			      bytes, &run->mmio.data);

	srcu_read_unlock(&vcpu->kvm->srcu, idx);

	if (!ret) {
A
Alexander Graf 已提交
1259 1260 1261 1262 1263
		kvmppc_complete_mmio_load(vcpu, run);
		vcpu->mmio_needed = 0;
		return EMULATE_DONE;
	}

1264 1265
	return EMULATE_DO_MMIO;
}
1266 1267 1268 1269 1270 1271 1272

int kvmppc_handle_load(struct kvm_run *run, struct kvm_vcpu *vcpu,
		       unsigned int rt, unsigned int bytes,
		       int is_default_endian)
{
	return __kvmppc_handle_load(run, vcpu, rt, bytes, is_default_endian, 0);
}
1273
EXPORT_SYMBOL_GPL(kvmppc_handle_load);
1274

A
Alexander Graf 已提交
1275 1276
/* Same as above, but sign extends */
int kvmppc_handle_loads(struct kvm_run *run, struct kvm_vcpu *vcpu,
1277 1278
			unsigned int rt, unsigned int bytes,
			int is_default_endian)
A
Alexander Graf 已提交
1279
{
1280
	return __kvmppc_handle_load(run, vcpu, rt, bytes, is_default_endian, 1);
A
Alexander Graf 已提交
1281 1282
}

1283 1284 1285 1286 1287 1288 1289
#ifdef CONFIG_VSX
int kvmppc_handle_vsx_load(struct kvm_run *run, struct kvm_vcpu *vcpu,
			unsigned int rt, unsigned int bytes,
			int is_default_endian, int mmio_sign_extend)
{
	enum emulation_result emulated = EMULATE_DONE;

1290 1291
	/* Currently, mmio_vsx_copy_nums only allowed to be 4 or less */
	if (vcpu->arch.mmio_vsx_copy_nums > 4)
1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309
		return EMULATE_FAIL;

	while (vcpu->arch.mmio_vsx_copy_nums) {
		emulated = __kvmppc_handle_load(run, vcpu, rt, bytes,
			is_default_endian, mmio_sign_extend);

		if (emulated != EMULATE_DONE)
			break;

		vcpu->arch.paddr_accessed += run->mmio.len;

		vcpu->arch.mmio_vsx_copy_nums--;
		vcpu->arch.mmio_vsx_offset++;
	}
	return emulated;
}
#endif /* CONFIG_VSX */

1310
int kvmppc_handle_store(struct kvm_run *run, struct kvm_vcpu *vcpu,
1311
			u64 val, unsigned int bytes, int is_default_endian)
1312 1313
{
	void *data = run->mmio.data;
1314
	int idx, ret;
1315
	bool host_swabbed;
1316

1317
	/* Pity C doesn't have a logical XOR operator */
1318
	if (kvmppc_need_byteswap(vcpu)) {
1319
		host_swabbed = is_default_endian;
1320
	} else {
1321
		host_swabbed = !is_default_endian;
1322
	}
1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334

	if (bytes > sizeof(run->mmio.data)) {
		printk(KERN_ERR "%s: bad MMIO length: %d\n", __func__,
		       run->mmio.len);
	}

	run->mmio.phys_addr = vcpu->arch.paddr_accessed;
	run->mmio.len = bytes;
	run->mmio.is_write = 1;
	vcpu->mmio_needed = 1;
	vcpu->mmio_is_write = 1;

1335 1336 1337
	if ((vcpu->arch.mmio_sp64_extend) && (bytes == 4))
		val = dp_to_sp(val);

1338
	/* Store the value at the lowest bytes in 'data'. */
1339
	if (!host_swabbed) {
1340
		switch (bytes) {
1341
		case 8: *(u64 *)data = val; break;
1342 1343 1344 1345 1346 1347
		case 4: *(u32 *)data = val; break;
		case 2: *(u16 *)data = val; break;
		case 1: *(u8  *)data = val; break;
		}
	} else {
		switch (bytes) {
1348 1349 1350 1351
		case 8: *(u64 *)data = swab64(val); break;
		case 4: *(u32 *)data = swab32(val); break;
		case 2: *(u16 *)data = swab16(val); break;
		case 1: *(u8  *)data = val; break;
1352 1353 1354
		}
	}

1355 1356
	idx = srcu_read_lock(&vcpu->kvm->srcu);

1357
	ret = kvm_io_bus_write(vcpu, KVM_MMIO_BUS, run->mmio.phys_addr,
1358 1359 1360 1361 1362
			       bytes, &run->mmio.data);

	srcu_read_unlock(&vcpu->kvm->srcu, idx);

	if (!ret) {
A
Alexander Graf 已提交
1363 1364 1365 1366
		vcpu->mmio_needed = 0;
		return EMULATE_DONE;
	}

1367 1368
	return EMULATE_DO_MMIO;
}
1369
EXPORT_SYMBOL_GPL(kvmppc_handle_store);
1370

1371 1372 1373 1374 1375 1376
#ifdef CONFIG_VSX
static inline int kvmppc_get_vsr_data(struct kvm_vcpu *vcpu, int rs, u64 *val)
{
	u32 dword_offset, word_offset;
	union kvmppc_one_reg reg;
	int vsx_offset = 0;
1377
	int copy_type = vcpu->arch.mmio_copy_type;
1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389
	int result = 0;

	switch (copy_type) {
	case KVMPPC_VSX_COPY_DWORD:
		vsx_offset =
			kvmppc_get_vsr_dword_offset(vcpu->arch.mmio_vsx_offset);

		if (vsx_offset == -1) {
			result = -1;
			break;
		}

1390
		if (rs < 32) {
1391 1392
			*val = VCPU_VSX_FPR(vcpu, rs, vsx_offset);
		} else {
1393
			reg.vval = VCPU_VSX_VR(vcpu, rs - 32);
1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406
			*val = reg.vsxval[vsx_offset];
		}
		break;

	case KVMPPC_VSX_COPY_WORD:
		vsx_offset =
			kvmppc_get_vsr_word_offset(vcpu->arch.mmio_vsx_offset);

		if (vsx_offset == -1) {
			result = -1;
			break;
		}

1407
		if (rs < 32) {
1408 1409 1410 1411 1412
			dword_offset = vsx_offset / 2;
			word_offset = vsx_offset % 2;
			reg.vsxval[0] = VCPU_VSX_FPR(vcpu, rs, dword_offset);
			*val = reg.vsx32val[word_offset];
		} else {
1413
			reg.vval = VCPU_VSX_VR(vcpu, rs - 32);
1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433
			*val = reg.vsx32val[vsx_offset];
		}
		break;

	default:
		result = -1;
		break;
	}

	return result;
}

int kvmppc_handle_vsx_store(struct kvm_run *run, struct kvm_vcpu *vcpu,
			int rs, unsigned int bytes, int is_default_endian)
{
	u64 val;
	enum emulation_result emulated = EMULATE_DONE;

	vcpu->arch.io_gpr = rs;

1434 1435
	/* Currently, mmio_vsx_copy_nums only allowed to be 4 or less */
	if (vcpu->arch.mmio_vsx_copy_nums > 4)
1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491
		return EMULATE_FAIL;

	while (vcpu->arch.mmio_vsx_copy_nums) {
		if (kvmppc_get_vsr_data(vcpu, rs, &val) == -1)
			return EMULATE_FAIL;

		emulated = kvmppc_handle_store(run, vcpu,
			 val, bytes, is_default_endian);

		if (emulated != EMULATE_DONE)
			break;

		vcpu->arch.paddr_accessed += run->mmio.len;

		vcpu->arch.mmio_vsx_copy_nums--;
		vcpu->arch.mmio_vsx_offset++;
	}

	return emulated;
}

static int kvmppc_emulate_mmio_vsx_loadstore(struct kvm_vcpu *vcpu,
			struct kvm_run *run)
{
	enum emulation_result emulated = EMULATE_FAIL;
	int r;

	vcpu->arch.paddr_accessed += run->mmio.len;

	if (!vcpu->mmio_is_write) {
		emulated = kvmppc_handle_vsx_load(run, vcpu, vcpu->arch.io_gpr,
			 run->mmio.len, 1, vcpu->arch.mmio_sign_extend);
	} else {
		emulated = kvmppc_handle_vsx_store(run, vcpu,
			 vcpu->arch.io_gpr, run->mmio.len, 1);
	}

	switch (emulated) {
	case EMULATE_DO_MMIO:
		run->exit_reason = KVM_EXIT_MMIO;
		r = RESUME_HOST;
		break;
	case EMULATE_FAIL:
		pr_info("KVM: MMIO emulation failed (VSX repeat)\n");
		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
		run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
		r = RESUME_HOST;
		break;
	default:
		r = RESUME_GUEST;
		break;
	}
	return r;
}
#endif /* CONFIG_VSX */

1492
#ifdef CONFIG_ALTIVEC
1493 1494
int kvmppc_handle_vmx_load(struct kvm_run *run, struct kvm_vcpu *vcpu,
		unsigned int rt, unsigned int bytes, int is_default_endian)
1495
{
1496
	enum emulation_result emulated = EMULATE_DONE;
1497

1498 1499 1500
	if (vcpu->arch.mmio_vsx_copy_nums > 2)
		return EMULATE_FAIL;

1501
	while (vcpu->arch.mmio_vmx_copy_nums) {
1502
		emulated = __kvmppc_handle_load(run, vcpu, rt, bytes,
1503 1504 1505 1506 1507 1508 1509
				is_default_endian, 0);

		if (emulated != EMULATE_DONE)
			break;

		vcpu->arch.paddr_accessed += run->mmio.len;
		vcpu->arch.mmio_vmx_copy_nums--;
1510
		vcpu->arch.mmio_vmx_offset++;
1511 1512 1513 1514 1515
	}

	return emulated;
}

1516
int kvmppc_get_vmx_dword(struct kvm_vcpu *vcpu, int index, u64 *val)
1517
{
1518 1519 1520
	union kvmppc_one_reg reg;
	int vmx_offset = 0;
	int result = 0;
1521

1522 1523
	vmx_offset =
		kvmppc_get_vmx_dword_offset(vcpu, vcpu->arch.mmio_vmx_offset);
1524

1525
	if (vmx_offset == -1)
1526 1527
		return -1;

1528 1529
	reg.vval = VCPU_VSX_VR(vcpu, index);
	*val = reg.vsxval[vmx_offset];
1530

1531 1532
	return result;
}
1533

1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567
int kvmppc_get_vmx_word(struct kvm_vcpu *vcpu, int index, u64 *val)
{
	union kvmppc_one_reg reg;
	int vmx_offset = 0;
	int result = 0;

	vmx_offset =
		kvmppc_get_vmx_word_offset(vcpu, vcpu->arch.mmio_vmx_offset);

	if (vmx_offset == -1)
		return -1;

	reg.vval = VCPU_VSX_VR(vcpu, index);
	*val = reg.vsx32val[vmx_offset];

	return result;
}

int kvmppc_get_vmx_hword(struct kvm_vcpu *vcpu, int index, u64 *val)
{
	union kvmppc_one_reg reg;
	int vmx_offset = 0;
	int result = 0;

	vmx_offset =
		kvmppc_get_vmx_hword_offset(vcpu, vcpu->arch.mmio_vmx_offset);

	if (vmx_offset == -1)
		return -1;

	reg.vval = VCPU_VSX_VR(vcpu, index);
	*val = reg.vsx16val[vmx_offset];

	return result;
1568 1569
}

1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585
int kvmppc_get_vmx_byte(struct kvm_vcpu *vcpu, int index, u64 *val)
{
	union kvmppc_one_reg reg;
	int vmx_offset = 0;
	int result = 0;

	vmx_offset =
		kvmppc_get_vmx_byte_offset(vcpu, vcpu->arch.mmio_vmx_offset);

	if (vmx_offset == -1)
		return -1;

	reg.vval = VCPU_VSX_VR(vcpu, index);
	*val = reg.vsx8val[vmx_offset];

	return result;
1586 1587
}

1588 1589
int kvmppc_handle_vmx_store(struct kvm_run *run, struct kvm_vcpu *vcpu,
		unsigned int rs, unsigned int bytes, int is_default_endian)
1590 1591
{
	u64 val = 0;
1592
	unsigned int index = rs & KVM_MMIO_REG_MASK;
1593 1594
	enum emulation_result emulated = EMULATE_DONE;

1595 1596 1597
	if (vcpu->arch.mmio_vsx_copy_nums > 2)
		return EMULATE_FAIL;

1598 1599 1600
	vcpu->arch.io_gpr = rs;

	while (vcpu->arch.mmio_vmx_copy_nums) {
1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619
		switch (vcpu->arch.mmio_copy_type) {
		case KVMPPC_VMX_COPY_DWORD:
			if (kvmppc_get_vmx_dword(vcpu, index, &val) == -1)
				return EMULATE_FAIL;

			break;
		case KVMPPC_VMX_COPY_WORD:
			if (kvmppc_get_vmx_word(vcpu, index, &val) == -1)
				return EMULATE_FAIL;
			break;
		case KVMPPC_VMX_COPY_HWORD:
			if (kvmppc_get_vmx_hword(vcpu, index, &val) == -1)
				return EMULATE_FAIL;
			break;
		case KVMPPC_VMX_COPY_BYTE:
			if (kvmppc_get_vmx_byte(vcpu, index, &val) == -1)
				return EMULATE_FAIL;
			break;
		default:
1620
			return EMULATE_FAIL;
1621
		}
1622

1623
		emulated = kvmppc_handle_store(run, vcpu, val, bytes,
1624 1625 1626 1627 1628 1629
				is_default_endian);
		if (emulated != EMULATE_DONE)
			break;

		vcpu->arch.paddr_accessed += run->mmio.len;
		vcpu->arch.mmio_vmx_copy_nums--;
1630
		vcpu->arch.mmio_vmx_offset++;
1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644
	}

	return emulated;
}

static int kvmppc_emulate_mmio_vmx_loadstore(struct kvm_vcpu *vcpu,
		struct kvm_run *run)
{
	enum emulation_result emulated = EMULATE_FAIL;
	int r;

	vcpu->arch.paddr_accessed += run->mmio.len;

	if (!vcpu->mmio_is_write) {
1645 1646
		emulated = kvmppc_handle_vmx_load(run, vcpu,
				vcpu->arch.io_gpr, run->mmio.len, 1);
1647
	} else {
1648 1649
		emulated = kvmppc_handle_vmx_store(run, vcpu,
				vcpu->arch.io_gpr, run->mmio.len, 1);
1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670
	}

	switch (emulated) {
	case EMULATE_DO_MMIO:
		run->exit_reason = KVM_EXIT_MMIO;
		r = RESUME_HOST;
		break;
	case EMULATE_FAIL:
		pr_info("KVM: MMIO emulation failed (VMX repeat)\n");
		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
		run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
		r = RESUME_HOST;
		break;
	default:
		r = RESUME_GUEST;
		break;
	}
	return r;
}
#endif /* CONFIG_ALTIVEC */

1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684
int kvm_vcpu_ioctl_get_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg)
{
	int r = 0;
	union kvmppc_one_reg val;
	int size;

	size = one_reg_size(reg->id);
	if (size > sizeof(val))
		return -EINVAL;

	r = kvmppc_get_one_reg(vcpu, reg->id, &val);
	if (r == -EINVAL) {
		r = 0;
		switch (reg->id) {
1685 1686 1687 1688 1689 1690
#ifdef CONFIG_ALTIVEC
		case KVM_REG_PPC_VR0 ... KVM_REG_PPC_VR31:
			if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
				r = -ENXIO;
				break;
			}
1691
			val.vval = vcpu->arch.vr.vr[reg->id - KVM_REG_PPC_VR0];
1692 1693 1694 1695 1696 1697
			break;
		case KVM_REG_PPC_VSCR:
			if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
				r = -ENXIO;
				break;
			}
1698
			val = get_reg_val(reg->id, vcpu->arch.vr.vscr.u[3]);
1699 1700
			break;
		case KVM_REG_PPC_VRSAVE:
1701
			val = get_reg_val(reg->id, vcpu->arch.vrsave);
1702 1703
			break;
#endif /* CONFIG_ALTIVEC */
1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735
		default:
			r = -EINVAL;
			break;
		}
	}

	if (r)
		return r;

	if (copy_to_user((char __user *)(unsigned long)reg->addr, &val, size))
		r = -EFAULT;

	return r;
}

int kvm_vcpu_ioctl_set_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg)
{
	int r;
	union kvmppc_one_reg val;
	int size;

	size = one_reg_size(reg->id);
	if (size > sizeof(val))
		return -EINVAL;

	if (copy_from_user(&val, (char __user *)(unsigned long)reg->addr, size))
		return -EFAULT;

	r = kvmppc_set_one_reg(vcpu, reg->id, &val);
	if (r == -EINVAL) {
		r = 0;
		switch (reg->id) {
1736 1737 1738 1739 1740 1741
#ifdef CONFIG_ALTIVEC
		case KVM_REG_PPC_VR0 ... KVM_REG_PPC_VR31:
			if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
				r = -ENXIO;
				break;
			}
1742
			vcpu->arch.vr.vr[reg->id - KVM_REG_PPC_VR0] = val.vval;
1743 1744 1745 1746 1747 1748
			break;
		case KVM_REG_PPC_VSCR:
			if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
				r = -ENXIO;
				break;
			}
1749
			vcpu->arch.vr.vscr.u[3] = set_reg_val(reg->id, val);
1750 1751
			break;
		case KVM_REG_PPC_VRSAVE:
1752 1753 1754 1755 1756
			if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
				r = -ENXIO;
				break;
			}
			vcpu->arch.vrsave = set_reg_val(reg->id, val);
1757 1758
			break;
#endif /* CONFIG_ALTIVEC */
1759 1760 1761 1762 1763 1764 1765 1766 1767
		default:
			r = -EINVAL;
			break;
		}
	}

	return r;
}

1768 1769 1770 1771
int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
{
	int r;

1772 1773
	vcpu_load(vcpu);

1774
	if (vcpu->mmio_needed) {
1775
		vcpu->mmio_needed = 0;
1776 1777
		if (!vcpu->mmio_is_write)
			kvmppc_complete_mmio_load(vcpu, run);
1778 1779 1780 1781 1782 1783 1784 1785 1786 1787
#ifdef CONFIG_VSX
		if (vcpu->arch.mmio_vsx_copy_nums > 0) {
			vcpu->arch.mmio_vsx_copy_nums--;
			vcpu->arch.mmio_vsx_offset++;
		}

		if (vcpu->arch.mmio_vsx_copy_nums > 0) {
			r = kvmppc_emulate_mmio_vsx_loadstore(vcpu, run);
			if (r == RESUME_HOST) {
				vcpu->mmio_needed = 1;
1788
				goto out;
1789 1790
			}
		}
1791 1792
#endif
#ifdef CONFIG_ALTIVEC
1793
		if (vcpu->arch.mmio_vmx_copy_nums > 0) {
1794
			vcpu->arch.mmio_vmx_copy_nums--;
1795 1796
			vcpu->arch.mmio_vmx_offset++;
		}
1797 1798 1799 1800 1801

		if (vcpu->arch.mmio_vmx_copy_nums > 0) {
			r = kvmppc_emulate_mmio_vmx_loadstore(vcpu, run);
			if (r == RESUME_HOST) {
				vcpu->mmio_needed = 1;
1802
				goto out;
1803 1804
			}
		}
1805
#endif
1806 1807 1808 1809 1810 1811 1812
	} else if (vcpu->arch.osi_needed) {
		u64 *gprs = run->osi.gprs;
		int i;

		for (i = 0; i < 32; i++)
			kvmppc_set_gpr(vcpu, i, gprs[i]);
		vcpu->arch.osi_needed = 0;
1813 1814 1815 1816 1817 1818 1819
	} else if (vcpu->arch.hcall_needed) {
		int i;

		kvmppc_set_gpr(vcpu, 3, run->papr_hcall.ret);
		for (i = 0; i < 9; ++i)
			kvmppc_set_gpr(vcpu, 4 + i, run->papr_hcall.args[i]);
		vcpu->arch.hcall_needed = 0;
1820 1821 1822 1823 1824
#ifdef CONFIG_BOOKE
	} else if (vcpu->arch.epr_needed) {
		kvmppc_set_epr(vcpu, run->epr.epr);
		vcpu->arch.epr_needed = 0;
#endif
1825 1826
	}

1827
	kvm_sigset_activate(vcpu);
1828

1829 1830 1831 1832
	if (run->immediate_exit)
		r = -EINTR;
	else
		r = kvmppc_vcpu_run(run, vcpu);
1833

1834
	kvm_sigset_deactivate(vcpu);
1835

1836
#ifdef CONFIG_ALTIVEC
1837
out:
1838
#endif
1839
	vcpu_put(vcpu);
1840 1841 1842 1843 1844
	return r;
}

int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, struct kvm_interrupt *irq)
{
1845
	if (irq->irq == KVM_INTERRUPT_UNSET) {
1846
		kvmppc_core_dequeue_external(vcpu);
1847 1848 1849 1850
		return 0;
	}

	kvmppc_core_queue_external(vcpu, irq);
1851

1852
	kvm_vcpu_kick(vcpu);
1853

1854 1855 1856
	return 0;
}

1857 1858 1859 1860 1861 1862 1863 1864 1865
static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
				     struct kvm_enable_cap *cap)
{
	int r;

	if (cap->flags)
		return -EINVAL;

	switch (cap->cap) {
1866 1867 1868 1869
	case KVM_CAP_PPC_OSI:
		r = 0;
		vcpu->arch.osi_enabled = true;
		break;
1870 1871 1872 1873
	case KVM_CAP_PPC_PAPR:
		r = 0;
		vcpu->arch.papr_enabled = true;
		break;
1874 1875
	case KVM_CAP_PPC_EPR:
		r = 0;
1876 1877 1878 1879
		if (cap->args[0])
			vcpu->arch.epr_flags |= KVMPPC_EPR_USER;
		else
			vcpu->arch.epr_flags &= ~KVMPPC_EPR_USER;
1880
		break;
1881 1882 1883 1884 1885 1886
#ifdef CONFIG_BOOKE
	case KVM_CAP_PPC_BOOKE_WATCHDOG:
		r = 0;
		vcpu->arch.watchdog_enabled = true;
		break;
#endif
1887
#if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
S
Scott Wood 已提交
1888 1889 1890 1891 1892 1893 1894 1895 1896 1897
	case KVM_CAP_SW_TLB: {
		struct kvm_config_tlb cfg;
		void __user *user_ptr = (void __user *)(uintptr_t)cap->args[0];

		r = -EFAULT;
		if (copy_from_user(&cfg, user_ptr, sizeof(cfg)))
			break;

		r = kvm_vcpu_ioctl_config_tlb(vcpu, &cfg);
		break;
S
Scott Wood 已提交
1898 1899 1900 1901
	}
#endif
#ifdef CONFIG_KVM_MPIC
	case KVM_CAP_IRQ_MPIC: {
A
Al Viro 已提交
1902
		struct fd f;
S
Scott Wood 已提交
1903 1904 1905
		struct kvm_device *dev;

		r = -EBADF;
A
Al Viro 已提交
1906 1907
		f = fdget(cap->args[0]);
		if (!f.file)
S
Scott Wood 已提交
1908 1909 1910
			break;

		r = -EPERM;
A
Al Viro 已提交
1911
		dev = kvm_device_from_filp(f.file);
S
Scott Wood 已提交
1912 1913 1914
		if (dev)
			r = kvmppc_mpic_connect_vcpu(dev, vcpu, cap->args[1]);

A
Al Viro 已提交
1915
		fdput(f);
S
Scott Wood 已提交
1916
		break;
S
Scott Wood 已提交
1917 1918
	}
#endif
1919 1920
#ifdef CONFIG_KVM_XICS
	case KVM_CAP_IRQ_XICS: {
A
Al Viro 已提交
1921
		struct fd f;
1922 1923 1924
		struct kvm_device *dev;

		r = -EBADF;
A
Al Viro 已提交
1925 1926
		f = fdget(cap->args[0]);
		if (!f.file)
1927 1928 1929
			break;

		r = -EPERM;
A
Al Viro 已提交
1930
		dev = kvm_device_from_filp(f.file);
1931
		if (dev) {
1932
			if (xics_on_xive())
1933 1934 1935 1936
				r = kvmppc_xive_connect_vcpu(dev, vcpu, cap->args[1]);
			else
				r = kvmppc_xics_connect_vcpu(dev, vcpu, cap->args[1]);
		}
1937

A
Al Viro 已提交
1938
		fdput(f);
1939 1940 1941
		break;
	}
#endif /* CONFIG_KVM_XICS */
1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965
#ifdef CONFIG_KVM_XIVE
	case KVM_CAP_PPC_IRQ_XIVE: {
		struct fd f;
		struct kvm_device *dev;

		r = -EBADF;
		f = fdget(cap->args[0]);
		if (!f.file)
			break;

		r = -ENXIO;
		if (!xive_enabled())
			break;

		r = -EPERM;
		dev = kvm_device_from_filp(f.file);
		if (dev)
			r = kvmppc_xive_native_connect_vcpu(dev, vcpu,
							    cap->args[1]);

		fdput(f);
		break;
	}
#endif /* CONFIG_KVM_XIVE */
1966 1967 1968 1969 1970 1971 1972 1973 1974
#ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
	case KVM_CAP_PPC_FWNMI:
		r = -EINVAL;
		if (!is_kvmppc_hv_enabled(vcpu->kvm))
			break;
		r = 0;
		vcpu->kvm->arch.fwnmi_enabled = true;
		break;
#endif /* CONFIG_KVM_BOOK3S_HV_POSSIBLE */
1975 1976 1977 1978 1979
	default:
		r = -EINVAL;
		break;
	}

1980 1981 1982
	if (!r)
		r = kvmppc_sanity_check(vcpu);

1983 1984 1985
	return r;
}

1986 1987 1988 1989 1990 1991 1992
bool kvm_arch_intc_initialized(struct kvm *kvm)
{
#ifdef CONFIG_KVM_MPIC
	if (kvm->arch.mpic)
		return true;
#endif
#ifdef CONFIG_KVM_XICS
1993
	if (kvm->arch.xics || kvm->arch.xive)
1994 1995 1996 1997 1998
		return true;
#endif
	return false;
}

1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010
int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
                                    struct kvm_mp_state *mp_state)
{
	return -EINVAL;
}

int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
                                    struct kvm_mp_state *mp_state)
{
	return -EINVAL;
}

2011 2012
long kvm_arch_vcpu_async_ioctl(struct file *filp,
			       unsigned int ioctl, unsigned long arg)
2013 2014 2015 2016
{
	struct kvm_vcpu *vcpu = filp->private_data;
	void __user *argp = (void __user *)arg;

2017
	if (ioctl == KVM_INTERRUPT) {
2018 2019
		struct kvm_interrupt irq;
		if (copy_from_user(&irq, argp, sizeof(irq)))
2020 2021
			return -EFAULT;
		return kvm_vcpu_ioctl_interrupt(vcpu, &irq);
2022
	}
2023 2024 2025 2026 2027 2028 2029 2030 2031
	return -ENOIOCTLCMD;
}

long kvm_arch_vcpu_ioctl(struct file *filp,
                         unsigned int ioctl, unsigned long arg)
{
	struct kvm_vcpu *vcpu = filp->private_data;
	void __user *argp = (void __user *)arg;
	long r;
2032

2033
	switch (ioctl) {
2034 2035 2036 2037
	case KVM_ENABLE_CAP:
	{
		struct kvm_enable_cap cap;
		r = -EFAULT;
2038
		vcpu_load(vcpu);
2039 2040 2041
		if (copy_from_user(&cap, argp, sizeof(cap)))
			goto out;
		r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
2042
		vcpu_put(vcpu);
2043 2044
		break;
	}
S
Scott Wood 已提交
2045

2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059
	case KVM_SET_ONE_REG:
	case KVM_GET_ONE_REG:
	{
		struct kvm_one_reg reg;
		r = -EFAULT;
		if (copy_from_user(&reg, argp, sizeof(reg)))
			goto out;
		if (ioctl == KVM_SET_ONE_REG)
			r = kvm_vcpu_ioctl_set_one_reg(vcpu, &reg);
		else
			r = kvm_vcpu_ioctl_get_one_reg(vcpu, &reg);
		break;
	}

2060
#if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
S
Scott Wood 已提交
2061 2062 2063
	case KVM_DIRTY_TLB: {
		struct kvm_dirty_tlb dirty;
		r = -EFAULT;
2064
		vcpu_load(vcpu);
S
Scott Wood 已提交
2065 2066 2067
		if (copy_from_user(&dirty, argp, sizeof(dirty)))
			goto out;
		r = kvm_vcpu_ioctl_dirty_tlb(vcpu, &dirty);
2068
		vcpu_put(vcpu);
S
Scott Wood 已提交
2069 2070 2071
		break;
	}
#endif
2072 2073 2074 2075 2076 2077 2078 2079
	default:
		r = -EINVAL;
	}

out:
	return r;
}

2080
vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
2081 2082 2083 2084
{
	return VM_FAULT_SIGBUS;
}

2085 2086
static int kvm_vm_ioctl_get_pvinfo(struct kvm_ppc_pvinfo *pvinfo)
{
2087 2088 2089
	u32 inst_nop = 0x60000000;
#ifdef CONFIG_KVM_BOOKE_HV
	u32 inst_sc1 = 0x44000022;
2090 2091 2092 2093
	pvinfo->hcall[0] = cpu_to_be32(inst_sc1);
	pvinfo->hcall[1] = cpu_to_be32(inst_nop);
	pvinfo->hcall[2] = cpu_to_be32(inst_nop);
	pvinfo->hcall[3] = cpu_to_be32(inst_nop);
2094
#else
2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108
	u32 inst_lis = 0x3c000000;
	u32 inst_ori = 0x60000000;
	u32 inst_sc = 0x44000002;
	u32 inst_imm_mask = 0xffff;

	/*
	 * The hypercall to get into KVM from within guest context is as
	 * follows:
	 *
	 *    lis r0, r0, KVM_SC_MAGIC_R0@h
	 *    ori r0, KVM_SC_MAGIC_R0@l
	 *    sc
	 *    nop
	 */
2109 2110 2111 2112
	pvinfo->hcall[0] = cpu_to_be32(inst_lis | ((KVM_SC_MAGIC_R0 >> 16) & inst_imm_mask));
	pvinfo->hcall[1] = cpu_to_be32(inst_ori | (KVM_SC_MAGIC_R0 & inst_imm_mask));
	pvinfo->hcall[2] = cpu_to_be32(inst_sc);
	pvinfo->hcall[3] = cpu_to_be32(inst_nop);
2113
#endif
2114

2115 2116
	pvinfo->flags = KVM_PPC_PVINFO_FLAGS_EV_IDLE;

2117 2118 2119
	return 0;
}

2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131
int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
			  bool line_status)
{
	if (!irqchip_in_kernel(kvm))
		return -ENXIO;

	irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
					irq_event->irq, irq_event->level,
					line_status);
	return 0;
}

2132

2133 2134
int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
			    struct kvm_enable_cap *cap)
2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149
{
	int r;

	if (cap->flags)
		return -EINVAL;

	switch (cap->cap) {
#ifdef CONFIG_KVM_BOOK3S_64_HANDLER
	case KVM_CAP_PPC_ENABLE_HCALL: {
		unsigned long hcall = cap->args[0];

		r = -EINVAL;
		if (hcall > MAX_HCALL_OPCODE || (hcall & 3) ||
		    cap->args[1] > 1)
			break;
2150 2151
		if (!kvmppc_book3s_hcall_implemented(kvm, hcall))
			break;
2152 2153 2154 2155 2156 2157 2158
		if (cap->args[1])
			set_bit(hcall / 4, kvm->arch.enabled_hcalls);
		else
			clear_bit(hcall / 4, kvm->arch.enabled_hcalls);
		r = 0;
		break;
	}
2159 2160 2161 2162 2163 2164 2165 2166 2167
	case KVM_CAP_PPC_SMT: {
		unsigned long mode = cap->args[0];
		unsigned long flags = cap->args[1];

		r = -EINVAL;
		if (kvm->arch.kvm_ops->set_smt_mode)
			r = kvm->arch.kvm_ops->set_smt_mode(kvm, mode, flags);
		break;
	}
2168 2169 2170 2171 2172 2173 2174 2175

	case KVM_CAP_PPC_NESTED_HV:
		r = -EINVAL;
		if (!is_kvmppc_hv_enabled(kvm) ||
		    !kvm->arch.kvm_ops->enable_nested)
			break;
		r = kvm->arch.kvm_ops->enable_nested(kvm);
		break;
2176 2177 2178 2179 2180 2181 2182 2183 2184
#endif
	default:
		r = -EINVAL;
		break;
	}

	return r;
}

2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213
#ifdef CONFIG_PPC_BOOK3S_64
/*
 * These functions check whether the underlying hardware is safe
 * against attacks based on observing the effects of speculatively
 * executed instructions, and whether it supplies instructions for
 * use in workarounds.  The information comes from firmware, either
 * via the device tree on powernv platforms or from an hcall on
 * pseries platforms.
 */
#ifdef CONFIG_PPC_PSERIES
static int pseries_get_cpu_char(struct kvm_ppc_cpu_char *cp)
{
	struct h_cpu_char_result c;
	unsigned long rc;

	if (!machine_is(pseries))
		return -ENOTTY;

	rc = plpar_get_cpu_characteristics(&c);
	if (rc == H_SUCCESS) {
		cp->character = c.character;
		cp->behaviour = c.behaviour;
		cp->character_mask = KVM_PPC_CPU_CHAR_SPEC_BAR_ORI31 |
			KVM_PPC_CPU_CHAR_BCCTRL_SERIALISED |
			KVM_PPC_CPU_CHAR_L1D_FLUSH_ORI30 |
			KVM_PPC_CPU_CHAR_L1D_FLUSH_TRIG2 |
			KVM_PPC_CPU_CHAR_L1D_THREAD_PRIV |
			KVM_PPC_CPU_CHAR_BR_HINT_HONOURED |
			KVM_PPC_CPU_CHAR_MTTRIG_THR_RECONF |
2214 2215
			KVM_PPC_CPU_CHAR_COUNT_CACHE_DIS |
			KVM_PPC_CPU_CHAR_BCCTR_FLUSH_ASSIST;
2216 2217
		cp->behaviour_mask = KVM_PPC_CPU_BEHAV_FAVOUR_SECURITY |
			KVM_PPC_CPU_BEHAV_L1D_FLUSH_PR |
2218 2219
			KVM_PPC_CPU_BEHAV_BNDS_CHK_SPEC_BAR |
			KVM_PPC_CPU_BEHAV_FLUSH_COUNT_CACHE;
2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277
	}
	return 0;
}
#else
static int pseries_get_cpu_char(struct kvm_ppc_cpu_char *cp)
{
	return -ENOTTY;
}
#endif

static inline bool have_fw_feat(struct device_node *fw_features,
				const char *state, const char *name)
{
	struct device_node *np;
	bool r = false;

	np = of_get_child_by_name(fw_features, name);
	if (np) {
		r = of_property_read_bool(np, state);
		of_node_put(np);
	}
	return r;
}

static int kvmppc_get_cpu_char(struct kvm_ppc_cpu_char *cp)
{
	struct device_node *np, *fw_features;
	int r;

	memset(cp, 0, sizeof(*cp));
	r = pseries_get_cpu_char(cp);
	if (r != -ENOTTY)
		return r;

	np = of_find_node_by_name(NULL, "ibm,opal");
	if (np) {
		fw_features = of_get_child_by_name(np, "fw-features");
		of_node_put(np);
		if (!fw_features)
			return 0;
		if (have_fw_feat(fw_features, "enabled",
				 "inst-spec-barrier-ori31,31,0"))
			cp->character |= KVM_PPC_CPU_CHAR_SPEC_BAR_ORI31;
		if (have_fw_feat(fw_features, "enabled",
				 "fw-bcctrl-serialized"))
			cp->character |= KVM_PPC_CPU_CHAR_BCCTRL_SERIALISED;
		if (have_fw_feat(fw_features, "enabled",
				 "inst-l1d-flush-ori30,30,0"))
			cp->character |= KVM_PPC_CPU_CHAR_L1D_FLUSH_ORI30;
		if (have_fw_feat(fw_features, "enabled",
				 "inst-l1d-flush-trig2"))
			cp->character |= KVM_PPC_CPU_CHAR_L1D_FLUSH_TRIG2;
		if (have_fw_feat(fw_features, "enabled",
				 "fw-l1d-thread-split"))
			cp->character |= KVM_PPC_CPU_CHAR_L1D_THREAD_PRIV;
		if (have_fw_feat(fw_features, "enabled",
				 "fw-count-cache-disabled"))
			cp->character |= KVM_PPC_CPU_CHAR_COUNT_CACHE_DIS;
2278 2279 2280
		if (have_fw_feat(fw_features, "enabled",
				 "fw-count-cache-flush-bcctr2,0,0"))
			cp->character |= KVM_PPC_CPU_CHAR_BCCTR_FLUSH_ASSIST;
2281 2282 2283 2284 2285
		cp->character_mask = KVM_PPC_CPU_CHAR_SPEC_BAR_ORI31 |
			KVM_PPC_CPU_CHAR_BCCTRL_SERIALISED |
			KVM_PPC_CPU_CHAR_L1D_FLUSH_ORI30 |
			KVM_PPC_CPU_CHAR_L1D_FLUSH_TRIG2 |
			KVM_PPC_CPU_CHAR_L1D_THREAD_PRIV |
2286 2287
			KVM_PPC_CPU_CHAR_COUNT_CACHE_DIS |
			KVM_PPC_CPU_CHAR_BCCTR_FLUSH_ASSIST;
2288 2289 2290 2291 2292 2293 2294 2295 2296 2297

		if (have_fw_feat(fw_features, "enabled",
				 "speculation-policy-favor-security"))
			cp->behaviour |= KVM_PPC_CPU_BEHAV_FAVOUR_SECURITY;
		if (!have_fw_feat(fw_features, "disabled",
				  "needs-l1d-flush-msr-pr-0-to-1"))
			cp->behaviour |= KVM_PPC_CPU_BEHAV_L1D_FLUSH_PR;
		if (!have_fw_feat(fw_features, "disabled",
				  "needs-spec-barrier-for-bound-checks"))
			cp->behaviour |= KVM_PPC_CPU_BEHAV_BNDS_CHK_SPEC_BAR;
2298 2299 2300
		if (have_fw_feat(fw_features, "enabled",
				 "needs-count-cache-flush-on-context-switch"))
			cp->behaviour |= KVM_PPC_CPU_BEHAV_FLUSH_COUNT_CACHE;
2301 2302
		cp->behaviour_mask = KVM_PPC_CPU_BEHAV_FAVOUR_SECURITY |
			KVM_PPC_CPU_BEHAV_L1D_FLUSH_PR |
2303 2304
			KVM_PPC_CPU_BEHAV_BNDS_CHK_SPEC_BAR |
			KVM_PPC_CPU_BEHAV_FLUSH_COUNT_CACHE;
2305 2306 2307 2308 2309 2310 2311 2312

		of_node_put(fw_features);
	}

	return 0;
}
#endif

2313 2314 2315
long kvm_arch_vm_ioctl(struct file *filp,
                       unsigned int ioctl, unsigned long arg)
{
2316
	struct kvm *kvm __maybe_unused = filp->private_data;
2317
	void __user *argp = (void __user *)arg;
2318 2319 2320
	long r;

	switch (ioctl) {
2321 2322
	case KVM_PPC_GET_PVINFO: {
		struct kvm_ppc_pvinfo pvinfo;
2323
		memset(&pvinfo, 0, sizeof(pvinfo));
2324 2325 2326 2327 2328 2329 2330 2331
		r = kvm_vm_ioctl_get_pvinfo(&pvinfo);
		if (copy_to_user(argp, &pvinfo, sizeof(pvinfo))) {
			r = -EFAULT;
			goto out;
		}

		break;
	}
2332
#ifdef CONFIG_SPAPR_TCE_IOMMU
2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345
	case KVM_CREATE_SPAPR_TCE_64: {
		struct kvm_create_spapr_tce_64 create_tce_64;

		r = -EFAULT;
		if (copy_from_user(&create_tce_64, argp, sizeof(create_tce_64)))
			goto out;
		if (create_tce_64.flags) {
			r = -EINVAL;
			goto out;
		}
		r = kvm_vm_ioctl_create_spapr_tce(kvm, &create_tce_64);
		goto out;
	}
2346 2347
	case KVM_CREATE_SPAPR_TCE: {
		struct kvm_create_spapr_tce create_tce;
2348
		struct kvm_create_spapr_tce_64 create_tce_64;
2349 2350 2351 2352

		r = -EFAULT;
		if (copy_from_user(&create_tce, argp, sizeof(create_tce)))
			goto out;
2353 2354 2355 2356 2357 2358 2359 2360

		create_tce_64.liobn = create_tce.liobn;
		create_tce_64.page_shift = IOMMU_PAGE_SHIFT_4K;
		create_tce_64.offset = 0;
		create_tce_64.size = create_tce.window_size >>
				IOMMU_PAGE_SHIFT_4K;
		create_tce_64.flags = 0;
		r = kvm_vm_ioctl_create_spapr_tce(kvm, &create_tce_64);
2361 2362
		goto out;
	}
2363 2364
#endif
#ifdef CONFIG_PPC_BOOK3S_64
2365 2366
	case KVM_PPC_GET_SMMU_INFO: {
		struct kvm_ppc_smmu_info info;
2367
		struct kvm *kvm = filp->private_data;
2368 2369

		memset(&info, 0, sizeof(info));
2370
		r = kvm->arch.kvm_ops->get_smmu_info(kvm, &info);
2371 2372 2373 2374
		if (r >= 0 && copy_to_user(argp, &info, sizeof(info)))
			r = -EFAULT;
		break;
	}
2375 2376 2377 2378 2379 2380
	case KVM_PPC_RTAS_DEFINE_TOKEN: {
		struct kvm *kvm = filp->private_data;

		r = kvm_vm_ioctl_rtas_define_token(kvm, argp);
		break;
	}
2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405
	case KVM_PPC_CONFIGURE_V3_MMU: {
		struct kvm *kvm = filp->private_data;
		struct kvm_ppc_mmuv3_cfg cfg;

		r = -EINVAL;
		if (!kvm->arch.kvm_ops->configure_mmu)
			goto out;
		r = -EFAULT;
		if (copy_from_user(&cfg, argp, sizeof(cfg)))
			goto out;
		r = kvm->arch.kvm_ops->configure_mmu(kvm, &cfg);
		break;
	}
	case KVM_PPC_GET_RMMU_INFO: {
		struct kvm *kvm = filp->private_data;
		struct kvm_ppc_rmmu_info info;

		r = -EINVAL;
		if (!kvm->arch.kvm_ops->get_rmmu_info)
			goto out;
		r = kvm->arch.kvm_ops->get_rmmu_info(kvm, &info);
		if (r >= 0 && copy_to_user(argp, &info, sizeof(info)))
			r = -EFAULT;
		break;
	}
2406 2407 2408 2409 2410 2411 2412 2413
	case KVM_PPC_GET_CPU_CHAR: {
		struct kvm_ppc_cpu_char cpuchar;

		r = kvmppc_get_cpu_char(&cpuchar);
		if (r >= 0 && copy_to_user(argp, &cpuchar, sizeof(cpuchar)))
			r = -EFAULT;
		break;
	}
2414 2415 2416 2417
	default: {
		struct kvm *kvm = filp->private_data;
		r = kvm->arch.kvm_ops->arch_vm_ioctl(filp, ioctl, arg);
	}
2418
#else /* CONFIG_PPC_BOOK3S_64 */
2419
	default:
2420
		r = -ENOTTY;
2421
#endif
2422
	}
2423
out:
2424 2425 2426
	return r;
}

2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443
static unsigned long lpid_inuse[BITS_TO_LONGS(KVMPPC_NR_LPIDS)];
static unsigned long nr_lpids;

long kvmppc_alloc_lpid(void)
{
	long lpid;

	do {
		lpid = find_first_zero_bit(lpid_inuse, KVMPPC_NR_LPIDS);
		if (lpid >= nr_lpids) {
			pr_err("%s: No LPIDs free\n", __func__);
			return -ENOMEM;
		}
	} while (test_and_set_bit(lpid, lpid_inuse));

	return lpid;
}
2444
EXPORT_SYMBOL_GPL(kvmppc_alloc_lpid);
2445 2446 2447 2448 2449

void kvmppc_claim_lpid(long lpid)
{
	set_bit(lpid, lpid_inuse);
}
2450
EXPORT_SYMBOL_GPL(kvmppc_claim_lpid);
2451 2452 2453 2454 2455

void kvmppc_free_lpid(long lpid)
{
	clear_bit(lpid, lpid_inuse);
}
2456
EXPORT_SYMBOL_GPL(kvmppc_free_lpid);
2457 2458 2459 2460 2461 2462

void kvmppc_init_lpid(unsigned long nr_lpids_param)
{
	nr_lpids = min_t(unsigned long, KVMPPC_NR_LPIDS, nr_lpids_param);
	memset(lpid_inuse, 0, sizeof(lpid_inuse));
}
2463
EXPORT_SYMBOL_GPL(kvmppc_init_lpid);
2464

2465 2466 2467 2468 2469
int kvm_arch_init(void *opaque)
{
	return 0;
}

2470
EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ppc_instr);