powerpc.c 42.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
/*
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License, version 2, as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
 *
 * Copyright IBM Corp. 2007
 *
 * Authors: Hollis Blanchard <hollisb@us.ibm.com>
 *          Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com>
 */

#include <linux/errno.h>
#include <linux/err.h>
#include <linux/kvm_host.h>
#include <linux/vmalloc.h>
A
Alexander Graf 已提交
25
#include <linux/hrtimer.h>
26
#include <linux/sched/signal.h>
27
#include <linux/fs.h>
28
#include <linux/slab.h>
S
Scott Wood 已提交
29
#include <linux/file.h>
30
#include <linux/module.h>
31 32
#include <linux/irqbypass.h>
#include <linux/kvm_irqfd.h>
33
#include <asm/cputable.h>
34
#include <linux/uaccess.h>
35
#include <asm/kvm_ppc.h>
36
#include <asm/tlbflush.h>
37
#include <asm/cputhreads.h>
38
#include <asm/irqflags.h>
39
#include <asm/iommu.h>
40
#include <asm/switch_to.h>
41 42
#include <asm/xive.h>

43
#include "timing.h"
44
#include "irq.h"
P
Paul Mackerras 已提交
45
#include "../mm/mmu_decl.h"
46

47 48 49
#define CREATE_TRACE_POINTS
#include "trace.h"

50 51 52 53 54
struct kvmppc_ops *kvmppc_hv_ops;
EXPORT_SYMBOL_GPL(kvmppc_hv_ops);
struct kvmppc_ops *kvmppc_pr_ops;
EXPORT_SYMBOL_GPL(kvmppc_pr_ops);

55

56 57
int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
{
58
	return !!(v->arch.pending_exceptions) ||
59
	       v->requests;
60 61
}

62 63 64 65 66
int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
{
	return 1;
}

67 68 69 70
/*
 * Common checks before entering the guest world.  Call with interrupts
 * disabled.
 *
71 72 73 74
 * returns:
 *
 * == 1 if we're ready to go into guest state
 * <= 0 if we need to go back to the host with return value
75 76 77
 */
int kvmppc_prepare_to_enter(struct kvm_vcpu *vcpu)
{
S
Scott Wood 已提交
78 79 80 81
	int r;

	WARN_ON(irqs_disabled());
	hard_irq_disable();
82 83 84 85 86

	while (true) {
		if (need_resched()) {
			local_irq_enable();
			cond_resched();
S
Scott Wood 已提交
87
			hard_irq_disable();
88 89 90 91
			continue;
		}

		if (signal_pending(current)) {
92 93 94
			kvmppc_account_exit(vcpu, SIGNAL_EXITS);
			vcpu->run->exit_reason = KVM_EXIT_INTR;
			r = -EINTR;
95 96 97
			break;
		}

98 99 100 101 102 103 104
		vcpu->mode = IN_GUEST_MODE;

		/*
		 * Reading vcpu->requests must happen after setting vcpu->mode,
		 * so we don't miss a request because the requester sees
		 * OUTSIDE_GUEST_MODE and assumes we'll be checking requests
		 * before next entering the guest (and thus doesn't IPI).
105 106 107
		 * This also orders the write to mode from any reads
		 * to the page tables done while the VCPU is running.
		 * Please see the comment in kvm_flush_remote_tlbs.
108
		 */
109
		smp_mb();
110

111 112 113 114
		if (vcpu->requests) {
			/* Make sure we process requests preemptable */
			local_irq_enable();
			trace_kvm_check_requests(vcpu);
115
			r = kvmppc_core_check_requests(vcpu);
S
Scott Wood 已提交
116
			hard_irq_disable();
117 118 119
			if (r > 0)
				continue;
			break;
120 121 122 123 124 125 126 127
		}

		if (kvmppc_core_prepare_to_enter(vcpu)) {
			/* interrupts got enabled in between, so we
			   are back at square 1 */
			continue;
		}

128
		guest_enter_irqoff();
S
Scott Wood 已提交
129
		return 1;
130 131
	}

S
Scott Wood 已提交
132 133
	/* return to host */
	local_irq_enable();
134 135
	return r;
}
136
EXPORT_SYMBOL_GPL(kvmppc_prepare_to_enter);
137

138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
#if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_KVM_BOOK3S_PR_POSSIBLE)
static void kvmppc_swab_shared(struct kvm_vcpu *vcpu)
{
	struct kvm_vcpu_arch_shared *shared = vcpu->arch.shared;
	int i;

	shared->sprg0 = swab64(shared->sprg0);
	shared->sprg1 = swab64(shared->sprg1);
	shared->sprg2 = swab64(shared->sprg2);
	shared->sprg3 = swab64(shared->sprg3);
	shared->srr0 = swab64(shared->srr0);
	shared->srr1 = swab64(shared->srr1);
	shared->dar = swab64(shared->dar);
	shared->msr = swab64(shared->msr);
	shared->dsisr = swab32(shared->dsisr);
	shared->int_pending = swab32(shared->int_pending);
	for (i = 0; i < ARRAY_SIZE(shared->sr); i++)
		shared->sr[i] = swab32(shared->sr[i]);
}
#endif

159 160 161 162 163 164 165 166 167 168
int kvmppc_kvm_pv(struct kvm_vcpu *vcpu)
{
	int nr = kvmppc_get_gpr(vcpu, 11);
	int r;
	unsigned long __maybe_unused param1 = kvmppc_get_gpr(vcpu, 3);
	unsigned long __maybe_unused param2 = kvmppc_get_gpr(vcpu, 4);
	unsigned long __maybe_unused param3 = kvmppc_get_gpr(vcpu, 5);
	unsigned long __maybe_unused param4 = kvmppc_get_gpr(vcpu, 6);
	unsigned long r2 = 0;

169
	if (!(kvmppc_get_msr(vcpu) & MSR_SF)) {
170 171 172 173 174 175 176 177
		/* 32 bit mode */
		param1 &= 0xffffffff;
		param2 &= 0xffffffff;
		param3 &= 0xffffffff;
		param4 &= 0xffffffff;
	}

	switch (nr) {
178
	case KVM_HCALL_TOKEN(KVM_HC_PPC_MAP_MAGIC_PAGE):
179
	{
180 181 182 183 184 185 186 187 188 189
#if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_KVM_BOOK3S_PR_POSSIBLE)
		/* Book3S can be little endian, find it out here */
		int shared_big_endian = true;
		if (vcpu->arch.intr_msr & MSR_LE)
			shared_big_endian = false;
		if (shared_big_endian != vcpu->arch.shared_big_endian)
			kvmppc_swab_shared(vcpu);
		vcpu->arch.shared_big_endian = shared_big_endian;
#endif

190 191 192 193 194 195 196 197 198 199 200 201
		if (!(param2 & MAGIC_PAGE_FLAG_NOT_MAPPED_NX)) {
			/*
			 * Older versions of the Linux magic page code had
			 * a bug where they would map their trampoline code
			 * NX. If that's the case, remove !PR NX capability.
			 */
			vcpu->arch.disable_kernel_nx = true;
			kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
		}

		vcpu->arch.magic_page_pa = param1 & ~0xfffULL;
		vcpu->arch.magic_page_ea = param2 & ~0xfffULL;
202

203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
#ifdef CONFIG_PPC_64K_PAGES
		/*
		 * Make sure our 4k magic page is in the same window of a 64k
		 * page within the guest and within the host's page.
		 */
		if ((vcpu->arch.magic_page_pa & 0xf000) !=
		    ((ulong)vcpu->arch.shared & 0xf000)) {
			void *old_shared = vcpu->arch.shared;
			ulong shared = (ulong)vcpu->arch.shared;
			void *new_shared;

			shared &= PAGE_MASK;
			shared |= vcpu->arch.magic_page_pa & 0xf000;
			new_shared = (void*)shared;
			memcpy(new_shared, old_shared, 0x1000);
			vcpu->arch.shared = new_shared;
		}
#endif

222
		r2 = KVM_MAGIC_FEAT_SR | KVM_MAGIC_FEAT_MAS0_TO_SPRG7;
223

224
		r = EV_SUCCESS;
225 226
		break;
	}
227 228
	case KVM_HCALL_TOKEN(KVM_HC_FEATURES):
		r = EV_SUCCESS;
229
#if defined(CONFIG_PPC_BOOK3S) || defined(CONFIG_KVM_E500V2)
230 231
		r2 |= (1 << KVM_FEATURE_MAGIC_PAGE);
#endif
232 233 234

		/* Second return value is in r4 */
		break;
235 236 237
	case EV_HCALL_TOKEN(EV_IDLE):
		r = EV_SUCCESS;
		kvm_vcpu_block(vcpu);
238
		kvm_clear_request(KVM_REQ_UNHALT, vcpu);
239
		break;
240
	default:
241
		r = EV_UNIMPLEMENTED;
242 243 244
		break;
	}

245 246
	kvmppc_set_gpr(vcpu, 4, r2);

247 248
	return r;
}
249
EXPORT_SYMBOL_GPL(kvmppc_kvm_pv);
250

251 252 253 254 255 256 257 258 259 260 261 262 263
int kvmppc_sanity_check(struct kvm_vcpu *vcpu)
{
	int r = false;

	/* We have to know what CPU to virtualize */
	if (!vcpu->arch.pvr)
		goto out;

	/* PAPR only works with book3s_64 */
	if ((vcpu->arch.cpu_type != KVM_CPU_3S_64) && vcpu->arch.papr_enabled)
		goto out;

	/* HV KVM can only do PAPR mode for now */
264
	if (!vcpu->arch.papr_enabled && is_kvmppc_hv_enabled(vcpu->kvm))
265 266
		goto out;

267 268 269 270 271
#ifdef CONFIG_KVM_BOOKE_HV
	if (!cpu_has_feature(CPU_FTR_EMB_HV))
		goto out;
#endif

272 273 274 275 276 277
	r = true;

out:
	vcpu->arch.sane = r;
	return r ? 0 : -EINVAL;
}
278
EXPORT_SYMBOL_GPL(kvmppc_sanity_check);
279

280 281 282 283 284
int kvmppc_emulate_mmio(struct kvm_run *run, struct kvm_vcpu *vcpu)
{
	enum emulation_result er;
	int r;

285
	er = kvmppc_emulate_loadstore(vcpu);
286 287 288 289 290 291
	switch (er) {
	case EMULATE_DONE:
		/* Future optimization: only reload non-volatiles if they were
		 * actually modified. */
		r = RESUME_GUEST_NV;
		break;
292 293 294
	case EMULATE_AGAIN:
		r = RESUME_GUEST;
		break;
295 296 297 298 299 300 301 302 303
	case EMULATE_DO_MMIO:
		run->exit_reason = KVM_EXIT_MMIO;
		/* We must reload nonvolatiles because "update" load/store
		 * instructions modify register state. */
		/* Future optimization: only reload non-volatiles if they were
		 * actually modified. */
		r = RESUME_HOST_NV;
		break;
	case EMULATE_FAIL:
304 305 306
	{
		u32 last_inst;

307
		kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst);
308
		/* XXX Deliver Program interrupt to guest. */
309
		pr_emerg("%s: emulation failed (%08x)\n", __func__, last_inst);
310 311
		r = RESUME_HOST;
		break;
312
	}
313
	default:
314 315
		WARN_ON(1);
		r = RESUME_GUEST;
316 317 318 319
	}

	return r;
}
320
EXPORT_SYMBOL_GPL(kvmppc_emulate_mmio);
321

322 323 324
int kvmppc_st(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr,
	      bool data)
{
325
	ulong mp_pa = vcpu->arch.magic_page_pa & KVM_PAM & PAGE_MASK;
326 327 328 329 330 331 332 333 334 335 336 337 338 339 340
	struct kvmppc_pte pte;
	int r;

	vcpu->stat.st++;

	r = kvmppc_xlate(vcpu, *eaddr, data ? XLATE_DATA : XLATE_INST,
			 XLATE_WRITE, &pte);
	if (r < 0)
		return r;

	*eaddr = pte.raddr;

	if (!pte.may_write)
		return -EPERM;

341 342 343 344 345 346 347 348 349 350
	/* Magic page override */
	if (kvmppc_supports_magic_page(vcpu) && mp_pa &&
	    ((pte.raddr & KVM_PAM & PAGE_MASK) == mp_pa) &&
	    !(kvmppc_get_msr(vcpu) & MSR_PR)) {
		void *magic = vcpu->arch.shared;
		magic += pte.eaddr & 0xfff;
		memcpy(magic, ptr, size);
		return EMULATE_DONE;
	}

351 352 353 354 355 356 357 358 359 360
	if (kvm_write_guest(vcpu->kvm, pte.raddr, ptr, size))
		return EMULATE_DO_MMIO;

	return EMULATE_DONE;
}
EXPORT_SYMBOL_GPL(kvmppc_st);

int kvmppc_ld(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr,
		      bool data)
{
361
	ulong mp_pa = vcpu->arch.magic_page_pa & KVM_PAM & PAGE_MASK;
362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379
	struct kvmppc_pte pte;
	int rc;

	vcpu->stat.ld++;

	rc = kvmppc_xlate(vcpu, *eaddr, data ? XLATE_DATA : XLATE_INST,
			  XLATE_READ, &pte);
	if (rc)
		return rc;

	*eaddr = pte.raddr;

	if (!pte.may_read)
		return -EPERM;

	if (!data && !pte.may_execute)
		return -ENOEXEC;

380 381 382 383 384 385 386 387 388 389
	/* Magic page override */
	if (kvmppc_supports_magic_page(vcpu) && mp_pa &&
	    ((pte.raddr & KVM_PAM & PAGE_MASK) == mp_pa) &&
	    !(kvmppc_get_msr(vcpu) & MSR_PR)) {
		void *magic = vcpu->arch.shared;
		magic += pte.eaddr & 0xfff;
		memcpy(ptr, magic, size);
		return EMULATE_DONE;
	}

390 391
	if (kvm_read_guest(vcpu->kvm, pte.raddr, ptr, size))
		return EMULATE_DO_MMIO;
392 393 394 395 396

	return EMULATE_DONE;
}
EXPORT_SYMBOL_GPL(kvmppc_ld);

397
int kvm_arch_hardware_enable(void)
398
{
399
	return 0;
400 401 402 403 404 405 406 407 408
}

int kvm_arch_hardware_setup(void)
{
	return 0;
}

void kvm_arch_check_processor_compat(void *rtn)
{
409
	*(int *)rtn = kvmppc_core_check_processor_compat();
410 411
}

412
int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
413
{
414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439
	struct kvmppc_ops *kvm_ops = NULL;
	/*
	 * if we have both HV and PR enabled, default is HV
	 */
	if (type == 0) {
		if (kvmppc_hv_ops)
			kvm_ops = kvmppc_hv_ops;
		else
			kvm_ops = kvmppc_pr_ops;
		if (!kvm_ops)
			goto err_out;
	} else	if (type == KVM_VM_PPC_HV) {
		if (!kvmppc_hv_ops)
			goto err_out;
		kvm_ops = kvmppc_hv_ops;
	} else if (type == KVM_VM_PPC_PR) {
		if (!kvmppc_pr_ops)
			goto err_out;
		kvm_ops = kvmppc_pr_ops;
	} else
		goto err_out;

	if (kvm_ops->owner && !try_module_get(kvm_ops->owner))
		return -ENOENT;

	kvm->arch.kvm_ops = kvm_ops;
440
	return kvmppc_core_init_vm(kvm);
441 442
err_out:
	return -EINVAL;
443 444
}

445 446 447 448 449 450 451 452 453 454
bool kvm_arch_has_vcpu_debugfs(void)
{
	return false;
}

int kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
{
	return 0;
}

455
void kvm_arch_destroy_vm(struct kvm *kvm)
456 457
{
	unsigned int i;
458
	struct kvm_vcpu *vcpu;
459

460 461 462 463 464 465 466 467 468 469
#ifdef CONFIG_KVM_XICS
	/*
	 * We call kick_all_cpus_sync() to ensure that all
	 * CPUs have executed any pending IPIs before we
	 * continue and free VCPUs structures below.
	 */
	if (is_kvmppc_hv_enabled(kvm))
		kick_all_cpus_sync();
#endif

470 471 472 473 474 475 476 477
	kvm_for_each_vcpu(i, vcpu, kvm)
		kvm_arch_vcpu_free(vcpu);

	mutex_lock(&kvm->lock);
	for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
		kvm->vcpus[i] = NULL;

	atomic_set(&kvm->online_vcpus, 0);
478 479 480

	kvmppc_core_destroy_vm(kvm);

481
	mutex_unlock(&kvm->lock);
482 483 484

	/* drop the module reference */
	module_put(kvm->arch.kvm_ops->owner);
485 486
}

487
int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
488 489
{
	int r;
490
	/* Assume we're using HV mode when the HV module is loaded */
491
	int hv_enabled = kvmppc_hv_ops ? 1 : 0;
492

493 494 495 496 497 498 499 500
	if (kvm) {
		/*
		 * Hooray - we know which VM type we're running on. Depend on
		 * that rather than the guess above.
		 */
		hv_enabled = is_kvmppc_hv_enabled(kvm);
	}

501
	switch (ext) {
S
Scott Wood 已提交
502 503
#ifdef CONFIG_BOOKE
	case KVM_CAP_PPC_BOOKE_SREGS:
504
	case KVM_CAP_PPC_BOOKE_WATCHDOG:
505
	case KVM_CAP_PPC_EPR:
S
Scott Wood 已提交
506
#else
507
	case KVM_CAP_PPC_SEGSTATE:
508
	case KVM_CAP_PPC_HIOR:
509
	case KVM_CAP_PPC_PAPR:
S
Scott Wood 已提交
510
#endif
511
	case KVM_CAP_PPC_UNSET_IRQ:
512
	case KVM_CAP_PPC_IRQ_LEVEL:
513
	case KVM_CAP_ENABLE_CAP:
514
	case KVM_CAP_ENABLE_CAP_VM:
515
	case KVM_CAP_ONE_REG:
A
Alexander Graf 已提交
516
	case KVM_CAP_IOEVENTFD:
517
	case KVM_CAP_DEVICE_CTRL:
518
	case KVM_CAP_IMMEDIATE_EXIT:
519 520 521
		r = 1;
		break;
	case KVM_CAP_PPC_PAIRED_SINGLES:
522
	case KVM_CAP_PPC_OSI:
523
	case KVM_CAP_PPC_GET_PVINFO:
524
#if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
S
Scott Wood 已提交
525
	case KVM_CAP_SW_TLB:
S
Scott Wood 已提交
526
#endif
527
		/* We support this only for PR */
528
		r = !hv_enabled;
529
		break;
530 531 532 533 534 535
#ifdef CONFIG_KVM_MPIC
	case KVM_CAP_IRQ_MPIC:
		r = 1;
		break;
#endif

536
#ifdef CONFIG_PPC_BOOK3S_64
537
	case KVM_CAP_SPAPR_TCE:
538
	case KVM_CAP_SPAPR_TCE_64:
539 540
		/* fallthrough */
	case KVM_CAP_SPAPR_TCE_VFIO:
541
	case KVM_CAP_PPC_RTAS:
542
	case KVM_CAP_PPC_FIXUP_HCALL:
543
	case KVM_CAP_PPC_ENABLE_HCALL:
544 545 546
#ifdef CONFIG_KVM_XICS
	case KVM_CAP_IRQ_XICS:
#endif
547 548
		r = 1;
		break;
549 550 551 552

	case KVM_CAP_PPC_ALLOC_HTAB:
		r = hv_enabled;
		break;
553
#endif /* CONFIG_PPC_BOOK3S_64 */
554
#ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
555
	case KVM_CAP_PPC_SMT:
556
		r = 0;
557 558 559 560 561 562
		if (kvm) {
			if (kvm->arch.emul_smt_mode > 1)
				r = kvm->arch.emul_smt_mode;
			else
				r = kvm->arch.smt_mode;
		} else if (hv_enabled) {
563 564 565 566 567
			if (cpu_has_feature(CPU_FTR_ARCH_300))
				r = 1;
			else
				r = threads_per_subcore;
		}
568
		break;
569
	case KVM_CAP_PPC_RMA:
570
		r = 0;
571
		break;
572 573 574
	case KVM_CAP_PPC_HWRNG:
		r = kvmppc_hwrng_present();
		break;
575
	case KVM_CAP_PPC_MMU_RADIX:
576
		r = !!(hv_enabled && radix_enabled());
577 578
		break;
	case KVM_CAP_PPC_MMU_HASH_V3:
579
		r = !!(hv_enabled && !radix_enabled() &&
580 581
		       cpu_has_feature(CPU_FTR_ARCH_300));
		break;
582
#endif
583
	case KVM_CAP_SYNC_MMU:
584
#ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
585
		r = hv_enabled;
586 587 588 589
#elif defined(KVM_ARCH_WANT_MMU_NOTIFIER)
		r = 1;
#else
		r = 0;
590
#endif
591 592
		break;
#ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
593
	case KVM_CAP_PPC_HTAB_FD:
594
		r = hv_enabled;
595
		break;
596
#endif
597 598 599 600 601 602 603
	case KVM_CAP_NR_VCPUS:
		/*
		 * Recommending a number of CPUs is somewhat arbitrary; we
		 * return the number of present CPUs for -HV (since a host
		 * will have secondary threads "offline"), and for other KVM
		 * implementations just count online CPUs.
		 */
604
		if (hv_enabled)
605 606 607
			r = num_present_cpus();
		else
			r = num_online_cpus();
608
		break;
609 610 611
	case KVM_CAP_NR_MEMSLOTS:
		r = KVM_USER_MEM_SLOTS;
		break;
612 613 614
	case KVM_CAP_MAX_VCPUS:
		r = KVM_MAX_VCPUS;
		break;
615 616 617 618
#ifdef CONFIG_PPC_BOOK3S_64
	case KVM_CAP_PPC_GET_SMMU_INFO:
		r = 1;
		break;
619 620 621
	case KVM_CAP_SPAPR_MULTITCE:
		r = 1;
		break;
622
	case KVM_CAP_SPAPR_RESIZE_HPT:
623 624
		/* Disable this on POWER9 until code handles new HPTE format */
		r = !!hv_enabled && !cpu_has_feature(CPU_FTR_ARCH_300);
625
		break;
626
#endif
627 628 629 630
	case KVM_CAP_PPC_HTM:
		r = cpu_has_feature(CPU_FTR_TM_COMP) &&
		    is_kvmppc_hv_enabled(kvm);
		break;
631 632 633 634 635 636 637 638 639 640 641 642 643 644
	default:
		r = 0;
		break;
	}
	return r;

}

long kvm_arch_dev_ioctl(struct file *filp,
                        unsigned int ioctl, unsigned long arg)
{
	return -EINVAL;
}

645
void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
646 647
			   struct kvm_memory_slot *dont)
{
648
	kvmppc_core_free_memslot(kvm, free, dont);
649 650
}

651 652
int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
			    unsigned long npages)
653
{
654
	return kvmppc_core_create_memslot(kvm, slot, npages);
655 656
}

657
int kvm_arch_prepare_memory_region(struct kvm *kvm,
658
				   struct kvm_memory_slot *memslot,
659
				   const struct kvm_userspace_memory_region *mem,
660
				   enum kvm_mr_change change)
661
{
662
	return kvmppc_core_prepare_memory_region(kvm, memslot, mem);
663 664
}

665
void kvm_arch_commit_memory_region(struct kvm *kvm,
666
				   const struct kvm_userspace_memory_region *mem,
667
				   const struct kvm_memory_slot *old,
668
				   const struct kvm_memory_slot *new,
669
				   enum kvm_mr_change change)
670
{
671
	kvmppc_core_commit_memory_region(kvm, mem, old, new);
672 673
}

674 675
void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
				   struct kvm_memory_slot *slot)
676
{
677
	kvmppc_core_flush_memslot(kvm, slot);
678 679
}

680 681
struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
{
682 683
	struct kvm_vcpu *vcpu;
	vcpu = kvmppc_core_vcpu_create(kvm, id);
684 685
	if (!IS_ERR(vcpu)) {
		vcpu->arch.wqp = &vcpu->wq;
686
		kvmppc_create_vcpu_debugfs(vcpu, id);
687
	}
688
	return vcpu;
689 690
}

691
void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
692 693 694
{
}

695 696
void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
{
697 698 699
	/* Make sure we're not using the vcpu anymore */
	hrtimer_cancel(&vcpu->arch.dec_timer);

700
	kvmppc_remove_vcpu_debugfs(vcpu);
S
Scott Wood 已提交
701 702 703 704 705

	switch (vcpu->arch.irq_type) {
	case KVMPPC_IRQ_MPIC:
		kvmppc_mpic_disconnect_vcpu(vcpu->arch.mpic, vcpu);
		break;
706
	case KVMPPC_IRQ_XICS:
707 708 709 710
		if (xive_enabled())
			kvmppc_xive_cleanup_vcpu(vcpu);
		else
			kvmppc_xics_free_icp(vcpu);
711
		break;
S
Scott Wood 已提交
712 713
	}

714
	kvmppc_core_vcpu_free(vcpu);
715 716 717 718 719 720 721 722 723
}

void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
{
	kvm_arch_vcpu_free(vcpu);
}

int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
{
724
	return kvmppc_core_pending_dec(vcpu);
725 726
}

T
Thomas Huth 已提交
727
static enum hrtimer_restart kvmppc_decrementer_wakeup(struct hrtimer *timer)
A
Alexander Graf 已提交
728 729 730 731
{
	struct kvm_vcpu *vcpu;

	vcpu = container_of(timer, struct kvm_vcpu, arch.dec_timer);
732
	kvmppc_decrementer_func(vcpu);
A
Alexander Graf 已提交
733 734 735 736

	return HRTIMER_NORESTART;
}

737 738
int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
{
739 740
	int ret;

A
Alexander Graf 已提交
741 742
	hrtimer_init(&vcpu->arch.dec_timer, CLOCK_REALTIME, HRTIMER_MODE_ABS);
	vcpu->arch.dec_timer.function = kvmppc_decrementer_wakeup;
743
	vcpu->arch.dec_expires = ~(u64)0;
744

745 746 747
#ifdef CONFIG_KVM_EXIT_TIMING
	mutex_init(&vcpu->arch.exit_timing_lock);
#endif
748 749
	ret = kvmppc_subarch_vcpu_init(vcpu);
	return ret;
750 751 752 753
}

void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
{
754
	kvmppc_mmu_destroy(vcpu);
755
	kvmppc_subarch_vcpu_uninit(vcpu);
756 757 758 759
}

void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
{
760 761 762 763 764 765 766 767 768 769
#ifdef CONFIG_BOOKE
	/*
	 * vrsave (formerly usprg0) isn't used by Linux, but may
	 * be used by the guest.
	 *
	 * On non-booke this is associated with Altivec and
	 * is handled by code in book3s.c.
	 */
	mtspr(SPRN_VRSAVE, vcpu->arch.vrsave);
#endif
770
	kvmppc_core_vcpu_load(vcpu, cpu);
771 772 773 774
}

void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
{
775
	kvmppc_core_vcpu_put(vcpu);
776 777 778
#ifdef CONFIG_BOOKE
	vcpu->arch.vrsave = mfspr(SPRN_VRSAVE);
#endif
779 780
}

781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816
/*
 * irq_bypass_add_producer and irq_bypass_del_producer are only
 * useful if the architecture supports PCI passthrough.
 * irq_bypass_stop and irq_bypass_start are not needed and so
 * kvm_ops are not defined for them.
 */
bool kvm_arch_has_irq_bypass(void)
{
	return ((kvmppc_hv_ops && kvmppc_hv_ops->irq_bypass_add_producer) ||
		(kvmppc_pr_ops && kvmppc_pr_ops->irq_bypass_add_producer));
}

int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
				     struct irq_bypass_producer *prod)
{
	struct kvm_kernel_irqfd *irqfd =
		container_of(cons, struct kvm_kernel_irqfd, consumer);
	struct kvm *kvm = irqfd->kvm;

	if (kvm->arch.kvm_ops->irq_bypass_add_producer)
		return kvm->arch.kvm_ops->irq_bypass_add_producer(cons, prod);

	return 0;
}

void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
				      struct irq_bypass_producer *prod)
{
	struct kvm_kernel_irqfd *irqfd =
		container_of(cons, struct kvm_kernel_irqfd, consumer);
	struct kvm *kvm = irqfd->kvm;

	if (kvm->arch.kvm_ops->irq_bypass_del_producer)
		kvm->arch.kvm_ops->irq_bypass_del_producer(cons, prod);
}

817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939
#ifdef CONFIG_VSX
static inline int kvmppc_get_vsr_dword_offset(int index)
{
	int offset;

	if ((index != 0) && (index != 1))
		return -1;

#ifdef __BIG_ENDIAN
	offset =  index;
#else
	offset = 1 - index;
#endif

	return offset;
}

static inline int kvmppc_get_vsr_word_offset(int index)
{
	int offset;

	if ((index > 3) || (index < 0))
		return -1;

#ifdef __BIG_ENDIAN
	offset = index;
#else
	offset = 3 - index;
#endif
	return offset;
}

static inline void kvmppc_set_vsr_dword(struct kvm_vcpu *vcpu,
	u64 gpr)
{
	union kvmppc_one_reg val;
	int offset = kvmppc_get_vsr_dword_offset(vcpu->arch.mmio_vsx_offset);
	int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;

	if (offset == -1)
		return;

	if (vcpu->arch.mmio_vsx_tx_sx_enabled) {
		val.vval = VCPU_VSX_VR(vcpu, index);
		val.vsxval[offset] = gpr;
		VCPU_VSX_VR(vcpu, index) = val.vval;
	} else {
		VCPU_VSX_FPR(vcpu, index, offset) = gpr;
	}
}

static inline void kvmppc_set_vsr_dword_dump(struct kvm_vcpu *vcpu,
	u64 gpr)
{
	union kvmppc_one_reg val;
	int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;

	if (vcpu->arch.mmio_vsx_tx_sx_enabled) {
		val.vval = VCPU_VSX_VR(vcpu, index);
		val.vsxval[0] = gpr;
		val.vsxval[1] = gpr;
		VCPU_VSX_VR(vcpu, index) = val.vval;
	} else {
		VCPU_VSX_FPR(vcpu, index, 0) = gpr;
		VCPU_VSX_FPR(vcpu, index, 1) = gpr;
	}
}

static inline void kvmppc_set_vsr_word(struct kvm_vcpu *vcpu,
	u32 gpr32)
{
	union kvmppc_one_reg val;
	int offset = kvmppc_get_vsr_word_offset(vcpu->arch.mmio_vsx_offset);
	int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
	int dword_offset, word_offset;

	if (offset == -1)
		return;

	if (vcpu->arch.mmio_vsx_tx_sx_enabled) {
		val.vval = VCPU_VSX_VR(vcpu, index);
		val.vsx32val[offset] = gpr32;
		VCPU_VSX_VR(vcpu, index) = val.vval;
	} else {
		dword_offset = offset / 2;
		word_offset = offset % 2;
		val.vsxval[0] = VCPU_VSX_FPR(vcpu, index, dword_offset);
		val.vsx32val[word_offset] = gpr32;
		VCPU_VSX_FPR(vcpu, index, dword_offset) = val.vsxval[0];
	}
}
#endif /* CONFIG_VSX */

#ifdef CONFIG_PPC_FPU
static inline u64 sp_to_dp(u32 fprs)
{
	u64 fprd;

	preempt_disable();
	enable_kernel_fp();
	asm ("lfs%U1%X1 0,%1; stfd%U0%X0 0,%0" : "=m" (fprd) : "m" (fprs)
	     : "fr0");
	preempt_enable();
	return fprd;
}

static inline u32 dp_to_sp(u64 fprd)
{
	u32 fprs;

	preempt_disable();
	enable_kernel_fp();
	asm ("lfd%U1%X1 0,%1; stfs%U0%X0 0,%0" : "=m" (fprs) : "m" (fprd)
	     : "fr0");
	preempt_enable();
	return fprs;
}

#else
#define sp_to_dp(x)	(x)
#define dp_to_sp(x)	(x)
#endif /* CONFIG_PPC_FPU */

940 941 942
static void kvmppc_complete_mmio_load(struct kvm_vcpu *vcpu,
                                      struct kvm_run *run)
{
943
	u64 uninitialized_var(gpr);
944

945
	if (run->mmio.len > sizeof(gpr)) {
946 947 948 949
		printk(KERN_ERR "bad MMIO length: %d\n", run->mmio.len);
		return;
	}

950
	if (!vcpu->arch.mmio_host_swabbed) {
951
		switch (run->mmio.len) {
952
		case 8: gpr = *(u64 *)run->mmio.data; break;
953 954 955
		case 4: gpr = *(u32 *)run->mmio.data; break;
		case 2: gpr = *(u16 *)run->mmio.data; break;
		case 1: gpr = *(u8 *)run->mmio.data; break;
956 957 958
		}
	} else {
		switch (run->mmio.len) {
959 960 961
		case 8: gpr = swab64(*(u64 *)run->mmio.data); break;
		case 4: gpr = swab32(*(u32 *)run->mmio.data); break;
		case 2: gpr = swab16(*(u16 *)run->mmio.data); break;
962
		case 1: gpr = *(u8 *)run->mmio.data; break;
963 964
		}
	}
965

966 967 968 969
	/* conversion between single and double precision */
	if ((vcpu->arch.mmio_sp64_extend) && (run->mmio.len == 4))
		gpr = sp_to_dp(gpr);

A
Alexander Graf 已提交
970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985
	if (vcpu->arch.mmio_sign_extend) {
		switch (run->mmio.len) {
#ifdef CONFIG_PPC64
		case 4:
			gpr = (s64)(s32)gpr;
			break;
#endif
		case 2:
			gpr = (s64)(s16)gpr;
			break;
		case 1:
			gpr = (s64)(s8)gpr;
			break;
		}
	}

986 987
	switch (vcpu->arch.io_gpr & KVM_MMIO_REG_EXT_MASK) {
	case KVM_MMIO_REG_GPR:
988 989
		kvmppc_set_gpr(vcpu, vcpu->arch.io_gpr, gpr);
		break;
990
	case KVM_MMIO_REG_FPR:
991
		VCPU_FPR(vcpu, vcpu->arch.io_gpr & KVM_MMIO_REG_MASK) = gpr;
992
		break;
993
#ifdef CONFIG_PPC_BOOK3S
994 995
	case KVM_MMIO_REG_QPR:
		vcpu->arch.qpr[vcpu->arch.io_gpr & KVM_MMIO_REG_MASK] = gpr;
996
		break;
997
	case KVM_MMIO_REG_FQPR:
998
		VCPU_FPR(vcpu, vcpu->arch.io_gpr & KVM_MMIO_REG_MASK) = gpr;
999
		vcpu->arch.qpr[vcpu->arch.io_gpr & KVM_MMIO_REG_MASK] = gpr;
1000
		break;
1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011
#endif
#ifdef CONFIG_VSX
	case KVM_MMIO_REG_VSX:
		if (vcpu->arch.mmio_vsx_copy_type == KVMPPC_VSX_COPY_DWORD)
			kvmppc_set_vsr_dword(vcpu, gpr);
		else if (vcpu->arch.mmio_vsx_copy_type == KVMPPC_VSX_COPY_WORD)
			kvmppc_set_vsr_word(vcpu, gpr);
		else if (vcpu->arch.mmio_vsx_copy_type ==
				KVMPPC_VSX_COPY_DWORD_LOAD_DUMP)
			kvmppc_set_vsr_dword_dump(vcpu, gpr);
		break;
1012
#endif
1013 1014 1015
	default:
		BUG();
	}
1016 1017
}

1018 1019 1020
static int __kvmppc_handle_load(struct kvm_run *run, struct kvm_vcpu *vcpu,
				unsigned int rt, unsigned int bytes,
				int is_default_endian, int sign_extend)
1021
{
1022
	int idx, ret;
1023
	bool host_swabbed;
1024

1025
	/* Pity C doesn't have a logical XOR operator */
1026
	if (kvmppc_need_byteswap(vcpu)) {
1027
		host_swabbed = is_default_endian;
1028
	} else {
1029
		host_swabbed = !is_default_endian;
1030
	}
1031

1032 1033 1034 1035 1036 1037 1038 1039 1040 1041
	if (bytes > sizeof(run->mmio.data)) {
		printk(KERN_ERR "%s: bad MMIO length: %d\n", __func__,
		       run->mmio.len);
	}

	run->mmio.phys_addr = vcpu->arch.paddr_accessed;
	run->mmio.len = bytes;
	run->mmio.is_write = 0;

	vcpu->arch.io_gpr = rt;
1042
	vcpu->arch.mmio_host_swabbed = host_swabbed;
1043 1044
	vcpu->mmio_needed = 1;
	vcpu->mmio_is_write = 0;
1045
	vcpu->arch.mmio_sign_extend = sign_extend;
1046

1047 1048
	idx = srcu_read_lock(&vcpu->kvm->srcu);

1049
	ret = kvm_io_bus_read(vcpu, KVM_MMIO_BUS, run->mmio.phys_addr,
1050 1051 1052 1053 1054
			      bytes, &run->mmio.data);

	srcu_read_unlock(&vcpu->kvm->srcu, idx);

	if (!ret) {
A
Alexander Graf 已提交
1055 1056 1057 1058 1059
		kvmppc_complete_mmio_load(vcpu, run);
		vcpu->mmio_needed = 0;
		return EMULATE_DONE;
	}

1060 1061
	return EMULATE_DO_MMIO;
}
1062 1063 1064 1065 1066 1067 1068

int kvmppc_handle_load(struct kvm_run *run, struct kvm_vcpu *vcpu,
		       unsigned int rt, unsigned int bytes,
		       int is_default_endian)
{
	return __kvmppc_handle_load(run, vcpu, rt, bytes, is_default_endian, 0);
}
1069
EXPORT_SYMBOL_GPL(kvmppc_handle_load);
1070

A
Alexander Graf 已提交
1071 1072
/* Same as above, but sign extends */
int kvmppc_handle_loads(struct kvm_run *run, struct kvm_vcpu *vcpu,
1073 1074
			unsigned int rt, unsigned int bytes,
			int is_default_endian)
A
Alexander Graf 已提交
1075
{
1076
	return __kvmppc_handle_load(run, vcpu, rt, bytes, is_default_endian, 1);
A
Alexander Graf 已提交
1077 1078
}

1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107
#ifdef CONFIG_VSX
int kvmppc_handle_vsx_load(struct kvm_run *run, struct kvm_vcpu *vcpu,
			unsigned int rt, unsigned int bytes,
			int is_default_endian, int mmio_sign_extend)
{
	enum emulation_result emulated = EMULATE_DONE;

	/* Currently, mmio_vsx_copy_nums only allowed to be less than 4 */
	if ( (vcpu->arch.mmio_vsx_copy_nums > 4) ||
		(vcpu->arch.mmio_vsx_copy_nums < 0) ) {
		return EMULATE_FAIL;
	}

	while (vcpu->arch.mmio_vsx_copy_nums) {
		emulated = __kvmppc_handle_load(run, vcpu, rt, bytes,
			is_default_endian, mmio_sign_extend);

		if (emulated != EMULATE_DONE)
			break;

		vcpu->arch.paddr_accessed += run->mmio.len;

		vcpu->arch.mmio_vsx_copy_nums--;
		vcpu->arch.mmio_vsx_offset++;
	}
	return emulated;
}
#endif /* CONFIG_VSX */

1108
int kvmppc_handle_store(struct kvm_run *run, struct kvm_vcpu *vcpu,
1109
			u64 val, unsigned int bytes, int is_default_endian)
1110 1111
{
	void *data = run->mmio.data;
1112
	int idx, ret;
1113
	bool host_swabbed;
1114

1115
	/* Pity C doesn't have a logical XOR operator */
1116
	if (kvmppc_need_byteswap(vcpu)) {
1117
		host_swabbed = is_default_endian;
1118
	} else {
1119
		host_swabbed = !is_default_endian;
1120
	}
1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132

	if (bytes > sizeof(run->mmio.data)) {
		printk(KERN_ERR "%s: bad MMIO length: %d\n", __func__,
		       run->mmio.len);
	}

	run->mmio.phys_addr = vcpu->arch.paddr_accessed;
	run->mmio.len = bytes;
	run->mmio.is_write = 1;
	vcpu->mmio_needed = 1;
	vcpu->mmio_is_write = 1;

1133 1134 1135
	if ((vcpu->arch.mmio_sp64_extend) && (bytes == 4))
		val = dp_to_sp(val);

1136
	/* Store the value at the lowest bytes in 'data'. */
1137
	if (!host_swabbed) {
1138
		switch (bytes) {
1139
		case 8: *(u64 *)data = val; break;
1140 1141 1142 1143 1144 1145
		case 4: *(u32 *)data = val; break;
		case 2: *(u16 *)data = val; break;
		case 1: *(u8  *)data = val; break;
		}
	} else {
		switch (bytes) {
1146 1147 1148 1149
		case 8: *(u64 *)data = swab64(val); break;
		case 4: *(u32 *)data = swab32(val); break;
		case 2: *(u16 *)data = swab16(val); break;
		case 1: *(u8  *)data = val; break;
1150 1151 1152
		}
	}

1153 1154
	idx = srcu_read_lock(&vcpu->kvm->srcu);

1155
	ret = kvm_io_bus_write(vcpu, KVM_MMIO_BUS, run->mmio.phys_addr,
1156 1157 1158 1159 1160
			       bytes, &run->mmio.data);

	srcu_read_unlock(&vcpu->kvm->srcu, idx);

	if (!ret) {
A
Alexander Graf 已提交
1161 1162 1163 1164
		vcpu->mmio_needed = 0;
		return EMULATE_DONE;
	}

1165 1166
	return EMULATE_DO_MMIO;
}
1167
EXPORT_SYMBOL_GPL(kvmppc_handle_store);
1168

1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291
#ifdef CONFIG_VSX
static inline int kvmppc_get_vsr_data(struct kvm_vcpu *vcpu, int rs, u64 *val)
{
	u32 dword_offset, word_offset;
	union kvmppc_one_reg reg;
	int vsx_offset = 0;
	int copy_type = vcpu->arch.mmio_vsx_copy_type;
	int result = 0;

	switch (copy_type) {
	case KVMPPC_VSX_COPY_DWORD:
		vsx_offset =
			kvmppc_get_vsr_dword_offset(vcpu->arch.mmio_vsx_offset);

		if (vsx_offset == -1) {
			result = -1;
			break;
		}

		if (!vcpu->arch.mmio_vsx_tx_sx_enabled) {
			*val = VCPU_VSX_FPR(vcpu, rs, vsx_offset);
		} else {
			reg.vval = VCPU_VSX_VR(vcpu, rs);
			*val = reg.vsxval[vsx_offset];
		}
		break;

	case KVMPPC_VSX_COPY_WORD:
		vsx_offset =
			kvmppc_get_vsr_word_offset(vcpu->arch.mmio_vsx_offset);

		if (vsx_offset == -1) {
			result = -1;
			break;
		}

		if (!vcpu->arch.mmio_vsx_tx_sx_enabled) {
			dword_offset = vsx_offset / 2;
			word_offset = vsx_offset % 2;
			reg.vsxval[0] = VCPU_VSX_FPR(vcpu, rs, dword_offset);
			*val = reg.vsx32val[word_offset];
		} else {
			reg.vval = VCPU_VSX_VR(vcpu, rs);
			*val = reg.vsx32val[vsx_offset];
		}
		break;

	default:
		result = -1;
		break;
	}

	return result;
}

int kvmppc_handle_vsx_store(struct kvm_run *run, struct kvm_vcpu *vcpu,
			int rs, unsigned int bytes, int is_default_endian)
{
	u64 val;
	enum emulation_result emulated = EMULATE_DONE;

	vcpu->arch.io_gpr = rs;

	/* Currently, mmio_vsx_copy_nums only allowed to be less than 4 */
	if ( (vcpu->arch.mmio_vsx_copy_nums > 4) ||
		(vcpu->arch.mmio_vsx_copy_nums < 0) ) {
		return EMULATE_FAIL;
	}

	while (vcpu->arch.mmio_vsx_copy_nums) {
		if (kvmppc_get_vsr_data(vcpu, rs, &val) == -1)
			return EMULATE_FAIL;

		emulated = kvmppc_handle_store(run, vcpu,
			 val, bytes, is_default_endian);

		if (emulated != EMULATE_DONE)
			break;

		vcpu->arch.paddr_accessed += run->mmio.len;

		vcpu->arch.mmio_vsx_copy_nums--;
		vcpu->arch.mmio_vsx_offset++;
	}

	return emulated;
}

static int kvmppc_emulate_mmio_vsx_loadstore(struct kvm_vcpu *vcpu,
			struct kvm_run *run)
{
	enum emulation_result emulated = EMULATE_FAIL;
	int r;

	vcpu->arch.paddr_accessed += run->mmio.len;

	if (!vcpu->mmio_is_write) {
		emulated = kvmppc_handle_vsx_load(run, vcpu, vcpu->arch.io_gpr,
			 run->mmio.len, 1, vcpu->arch.mmio_sign_extend);
	} else {
		emulated = kvmppc_handle_vsx_store(run, vcpu,
			 vcpu->arch.io_gpr, run->mmio.len, 1);
	}

	switch (emulated) {
	case EMULATE_DO_MMIO:
		run->exit_reason = KVM_EXIT_MMIO;
		r = RESUME_HOST;
		break;
	case EMULATE_FAIL:
		pr_info("KVM: MMIO emulation failed (VSX repeat)\n");
		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
		run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
		r = RESUME_HOST;
		break;
	default:
		r = RESUME_GUEST;
		break;
	}
	return r;
}
#endif /* CONFIG_VSX */

1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305
int kvm_vcpu_ioctl_get_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg)
{
	int r = 0;
	union kvmppc_one_reg val;
	int size;

	size = one_reg_size(reg->id);
	if (size > sizeof(val))
		return -EINVAL;

	r = kvmppc_get_one_reg(vcpu, reg->id, &val);
	if (r == -EINVAL) {
		r = 0;
		switch (reg->id) {
1306 1307 1308 1309 1310 1311
#ifdef CONFIG_ALTIVEC
		case KVM_REG_PPC_VR0 ... KVM_REG_PPC_VR31:
			if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
				r = -ENXIO;
				break;
			}
1312
			val.vval = vcpu->arch.vr.vr[reg->id - KVM_REG_PPC_VR0];
1313 1314 1315 1316 1317 1318
			break;
		case KVM_REG_PPC_VSCR:
			if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
				r = -ENXIO;
				break;
			}
1319
			val = get_reg_val(reg->id, vcpu->arch.vr.vscr.u[3]);
1320 1321
			break;
		case KVM_REG_PPC_VRSAVE:
1322
			val = get_reg_val(reg->id, vcpu->arch.vrsave);
1323 1324
			break;
#endif /* CONFIG_ALTIVEC */
1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356
		default:
			r = -EINVAL;
			break;
		}
	}

	if (r)
		return r;

	if (copy_to_user((char __user *)(unsigned long)reg->addr, &val, size))
		r = -EFAULT;

	return r;
}

int kvm_vcpu_ioctl_set_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg)
{
	int r;
	union kvmppc_one_reg val;
	int size;

	size = one_reg_size(reg->id);
	if (size > sizeof(val))
		return -EINVAL;

	if (copy_from_user(&val, (char __user *)(unsigned long)reg->addr, size))
		return -EFAULT;

	r = kvmppc_set_one_reg(vcpu, reg->id, &val);
	if (r == -EINVAL) {
		r = 0;
		switch (reg->id) {
1357 1358 1359 1360 1361 1362
#ifdef CONFIG_ALTIVEC
		case KVM_REG_PPC_VR0 ... KVM_REG_PPC_VR31:
			if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
				r = -ENXIO;
				break;
			}
1363
			vcpu->arch.vr.vr[reg->id - KVM_REG_PPC_VR0] = val.vval;
1364 1365 1366 1367 1368 1369
			break;
		case KVM_REG_PPC_VSCR:
			if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
				r = -ENXIO;
				break;
			}
1370
			vcpu->arch.vr.vscr.u[3] = set_reg_val(reg->id, val);
1371 1372
			break;
		case KVM_REG_PPC_VRSAVE:
1373 1374 1375 1376 1377
			if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
				r = -ENXIO;
				break;
			}
			vcpu->arch.vrsave = set_reg_val(reg->id, val);
1378 1379
			break;
#endif /* CONFIG_ALTIVEC */
1380 1381 1382 1383 1384 1385 1386 1387 1388
		default:
			r = -EINVAL;
			break;
		}
	}

	return r;
}

1389 1390 1391 1392 1393 1394
int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
{
	int r;
	sigset_t sigsaved;

	if (vcpu->mmio_needed) {
1395
		vcpu->mmio_needed = 0;
1396 1397
		if (!vcpu->mmio_is_write)
			kvmppc_complete_mmio_load(vcpu, run);
1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411
#ifdef CONFIG_VSX
		if (vcpu->arch.mmio_vsx_copy_nums > 0) {
			vcpu->arch.mmio_vsx_copy_nums--;
			vcpu->arch.mmio_vsx_offset++;
		}

		if (vcpu->arch.mmio_vsx_copy_nums > 0) {
			r = kvmppc_emulate_mmio_vsx_loadstore(vcpu, run);
			if (r == RESUME_HOST) {
				vcpu->mmio_needed = 1;
				return r;
			}
		}
#endif
1412 1413 1414 1415 1416 1417 1418
	} else if (vcpu->arch.osi_needed) {
		u64 *gprs = run->osi.gprs;
		int i;

		for (i = 0; i < 32; i++)
			kvmppc_set_gpr(vcpu, i, gprs[i]);
		vcpu->arch.osi_needed = 0;
1419 1420 1421 1422 1423 1424 1425
	} else if (vcpu->arch.hcall_needed) {
		int i;

		kvmppc_set_gpr(vcpu, 3, run->papr_hcall.ret);
		for (i = 0; i < 9; ++i)
			kvmppc_set_gpr(vcpu, 4 + i, run->papr_hcall.args[i]);
		vcpu->arch.hcall_needed = 0;
1426 1427 1428 1429 1430
#ifdef CONFIG_BOOKE
	} else if (vcpu->arch.epr_needed) {
		kvmppc_set_epr(vcpu, run->epr.epr);
		vcpu->arch.epr_needed = 0;
#endif
1431 1432
	}

1433 1434 1435
	if (vcpu->sigset_active)
		sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);

1436 1437 1438 1439
	if (run->immediate_exit)
		r = -EINTR;
	else
		r = kvmppc_vcpu_run(run, vcpu);
1440 1441 1442 1443 1444 1445 1446 1447 1448

	if (vcpu->sigset_active)
		sigprocmask(SIG_SETMASK, &sigsaved, NULL);

	return r;
}

int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, struct kvm_interrupt *irq)
{
1449
	if (irq->irq == KVM_INTERRUPT_UNSET) {
1450
		kvmppc_core_dequeue_external(vcpu);
1451 1452 1453 1454
		return 0;
	}

	kvmppc_core_queue_external(vcpu, irq);
1455

1456
	kvm_vcpu_kick(vcpu);
1457

1458 1459 1460
	return 0;
}

1461 1462 1463 1464 1465 1466 1467 1468 1469
static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
				     struct kvm_enable_cap *cap)
{
	int r;

	if (cap->flags)
		return -EINVAL;

	switch (cap->cap) {
1470 1471 1472 1473
	case KVM_CAP_PPC_OSI:
		r = 0;
		vcpu->arch.osi_enabled = true;
		break;
1474 1475 1476 1477
	case KVM_CAP_PPC_PAPR:
		r = 0;
		vcpu->arch.papr_enabled = true;
		break;
1478 1479
	case KVM_CAP_PPC_EPR:
		r = 0;
1480 1481 1482 1483
		if (cap->args[0])
			vcpu->arch.epr_flags |= KVMPPC_EPR_USER;
		else
			vcpu->arch.epr_flags &= ~KVMPPC_EPR_USER;
1484
		break;
1485 1486 1487 1488 1489 1490
#ifdef CONFIG_BOOKE
	case KVM_CAP_PPC_BOOKE_WATCHDOG:
		r = 0;
		vcpu->arch.watchdog_enabled = true;
		break;
#endif
1491
#if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
S
Scott Wood 已提交
1492 1493 1494 1495 1496 1497 1498 1499 1500 1501
	case KVM_CAP_SW_TLB: {
		struct kvm_config_tlb cfg;
		void __user *user_ptr = (void __user *)(uintptr_t)cap->args[0];

		r = -EFAULT;
		if (copy_from_user(&cfg, user_ptr, sizeof(cfg)))
			break;

		r = kvm_vcpu_ioctl_config_tlb(vcpu, &cfg);
		break;
S
Scott Wood 已提交
1502 1503 1504 1505
	}
#endif
#ifdef CONFIG_KVM_MPIC
	case KVM_CAP_IRQ_MPIC: {
A
Al Viro 已提交
1506
		struct fd f;
S
Scott Wood 已提交
1507 1508 1509
		struct kvm_device *dev;

		r = -EBADF;
A
Al Viro 已提交
1510 1511
		f = fdget(cap->args[0]);
		if (!f.file)
S
Scott Wood 已提交
1512 1513 1514
			break;

		r = -EPERM;
A
Al Viro 已提交
1515
		dev = kvm_device_from_filp(f.file);
S
Scott Wood 已提交
1516 1517 1518
		if (dev)
			r = kvmppc_mpic_connect_vcpu(dev, vcpu, cap->args[1]);

A
Al Viro 已提交
1519
		fdput(f);
S
Scott Wood 已提交
1520
		break;
S
Scott Wood 已提交
1521 1522
	}
#endif
1523 1524
#ifdef CONFIG_KVM_XICS
	case KVM_CAP_IRQ_XICS: {
A
Al Viro 已提交
1525
		struct fd f;
1526 1527 1528
		struct kvm_device *dev;

		r = -EBADF;
A
Al Viro 已提交
1529 1530
		f = fdget(cap->args[0]);
		if (!f.file)
1531 1532 1533
			break;

		r = -EPERM;
A
Al Viro 已提交
1534
		dev = kvm_device_from_filp(f.file);
1535 1536 1537 1538 1539 1540
		if (dev) {
			if (xive_enabled())
				r = kvmppc_xive_connect_vcpu(dev, vcpu, cap->args[1]);
			else
				r = kvmppc_xics_connect_vcpu(dev, vcpu, cap->args[1]);
		}
1541

A
Al Viro 已提交
1542
		fdput(f);
1543 1544 1545
		break;
	}
#endif /* CONFIG_KVM_XICS */
1546 1547 1548 1549 1550
	default:
		r = -EINVAL;
		break;
	}

1551 1552 1553
	if (!r)
		r = kvmppc_sanity_check(vcpu);

1554 1555 1556
	return r;
}

1557 1558 1559 1560 1561 1562 1563
bool kvm_arch_intc_initialized(struct kvm *kvm)
{
#ifdef CONFIG_KVM_MPIC
	if (kvm->arch.mpic)
		return true;
#endif
#ifdef CONFIG_KVM_XICS
1564
	if (kvm->arch.xics || kvm->arch.xive)
1565 1566 1567 1568 1569
		return true;
#endif
	return false;
}

1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588
int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
                                    struct kvm_mp_state *mp_state)
{
	return -EINVAL;
}

int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
                                    struct kvm_mp_state *mp_state)
{
	return -EINVAL;
}

long kvm_arch_vcpu_ioctl(struct file *filp,
                         unsigned int ioctl, unsigned long arg)
{
	struct kvm_vcpu *vcpu = filp->private_data;
	void __user *argp = (void __user *)arg;
	long r;

1589 1590
	switch (ioctl) {
	case KVM_INTERRUPT: {
1591 1592 1593
		struct kvm_interrupt irq;
		r = -EFAULT;
		if (copy_from_user(&irq, argp, sizeof(irq)))
1594
			goto out;
1595
		r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
1596
		goto out;
1597
	}
1598

1599 1600 1601 1602 1603 1604 1605 1606 1607
	case KVM_ENABLE_CAP:
	{
		struct kvm_enable_cap cap;
		r = -EFAULT;
		if (copy_from_user(&cap, argp, sizeof(cap)))
			goto out;
		r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
		break;
	}
S
Scott Wood 已提交
1608

1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622
	case KVM_SET_ONE_REG:
	case KVM_GET_ONE_REG:
	{
		struct kvm_one_reg reg;
		r = -EFAULT;
		if (copy_from_user(&reg, argp, sizeof(reg)))
			goto out;
		if (ioctl == KVM_SET_ONE_REG)
			r = kvm_vcpu_ioctl_set_one_reg(vcpu, &reg);
		else
			r = kvm_vcpu_ioctl_get_one_reg(vcpu, &reg);
		break;
	}

1623
#if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
S
Scott Wood 已提交
1624 1625 1626 1627 1628 1629 1630 1631 1632
	case KVM_DIRTY_TLB: {
		struct kvm_dirty_tlb dirty;
		r = -EFAULT;
		if (copy_from_user(&dirty, argp, sizeof(dirty)))
			goto out;
		r = kvm_vcpu_ioctl_dirty_tlb(vcpu, &dirty);
		break;
	}
#endif
1633 1634 1635 1636 1637 1638 1639 1640
	default:
		r = -EINVAL;
	}

out:
	return r;
}

1641 1642 1643 1644 1645
int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
{
	return VM_FAULT_SIGBUS;
}

1646 1647
static int kvm_vm_ioctl_get_pvinfo(struct kvm_ppc_pvinfo *pvinfo)
{
1648 1649 1650
	u32 inst_nop = 0x60000000;
#ifdef CONFIG_KVM_BOOKE_HV
	u32 inst_sc1 = 0x44000022;
1651 1652 1653 1654
	pvinfo->hcall[0] = cpu_to_be32(inst_sc1);
	pvinfo->hcall[1] = cpu_to_be32(inst_nop);
	pvinfo->hcall[2] = cpu_to_be32(inst_nop);
	pvinfo->hcall[3] = cpu_to_be32(inst_nop);
1655
#else
1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669
	u32 inst_lis = 0x3c000000;
	u32 inst_ori = 0x60000000;
	u32 inst_sc = 0x44000002;
	u32 inst_imm_mask = 0xffff;

	/*
	 * The hypercall to get into KVM from within guest context is as
	 * follows:
	 *
	 *    lis r0, r0, KVM_SC_MAGIC_R0@h
	 *    ori r0, KVM_SC_MAGIC_R0@l
	 *    sc
	 *    nop
	 */
1670 1671 1672 1673
	pvinfo->hcall[0] = cpu_to_be32(inst_lis | ((KVM_SC_MAGIC_R0 >> 16) & inst_imm_mask));
	pvinfo->hcall[1] = cpu_to_be32(inst_ori | (KVM_SC_MAGIC_R0 & inst_imm_mask));
	pvinfo->hcall[2] = cpu_to_be32(inst_sc);
	pvinfo->hcall[3] = cpu_to_be32(inst_nop);
1674
#endif
1675

1676 1677
	pvinfo->flags = KVM_PPC_PVINFO_FLAGS_EV_IDLE;

1678 1679 1680
	return 0;
}

1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692
int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
			  bool line_status)
{
	if (!irqchip_in_kernel(kvm))
		return -ENXIO;

	irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
					irq_event->irq, irq_event->level,
					line_status);
	return 0;
}

1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710

static int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
				   struct kvm_enable_cap *cap)
{
	int r;

	if (cap->flags)
		return -EINVAL;

	switch (cap->cap) {
#ifdef CONFIG_KVM_BOOK3S_64_HANDLER
	case KVM_CAP_PPC_ENABLE_HCALL: {
		unsigned long hcall = cap->args[0];

		r = -EINVAL;
		if (hcall > MAX_HCALL_OPCODE || (hcall & 3) ||
		    cap->args[1] > 1)
			break;
1711 1712
		if (!kvmppc_book3s_hcall_implemented(kvm, hcall))
			break;
1713 1714 1715 1716 1717 1718 1719
		if (cap->args[1])
			set_bit(hcall / 4, kvm->arch.enabled_hcalls);
		else
			clear_bit(hcall / 4, kvm->arch.enabled_hcalls);
		r = 0;
		break;
	}
1720 1721 1722 1723 1724 1725 1726 1727 1728
	case KVM_CAP_PPC_SMT: {
		unsigned long mode = cap->args[0];
		unsigned long flags = cap->args[1];

		r = -EINVAL;
		if (kvm->arch.kvm_ops->set_smt_mode)
			r = kvm->arch.kvm_ops->set_smt_mode(kvm, mode, flags);
		break;
	}
1729 1730 1731 1732 1733 1734 1735 1736 1737
#endif
	default:
		r = -EINVAL;
		break;
	}

	return r;
}

1738 1739 1740
long kvm_arch_vm_ioctl(struct file *filp,
                       unsigned int ioctl, unsigned long arg)
{
1741
	struct kvm *kvm __maybe_unused = filp->private_data;
1742
	void __user *argp = (void __user *)arg;
1743 1744 1745
	long r;

	switch (ioctl) {
1746 1747
	case KVM_PPC_GET_PVINFO: {
		struct kvm_ppc_pvinfo pvinfo;
1748
		memset(&pvinfo, 0, sizeof(pvinfo));
1749 1750 1751 1752 1753 1754 1755 1756
		r = kvm_vm_ioctl_get_pvinfo(&pvinfo);
		if (copy_to_user(argp, &pvinfo, sizeof(pvinfo))) {
			r = -EFAULT;
			goto out;
		}

		break;
	}
1757 1758 1759 1760 1761 1762 1763 1764 1765
	case KVM_ENABLE_CAP:
	{
		struct kvm_enable_cap cap;
		r = -EFAULT;
		if (copy_from_user(&cap, argp, sizeof(cap)))
			goto out;
		r = kvm_vm_ioctl_enable_cap(kvm, &cap);
		break;
	}
1766
#ifdef CONFIG_SPAPR_TCE_IOMMU
1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779
	case KVM_CREATE_SPAPR_TCE_64: {
		struct kvm_create_spapr_tce_64 create_tce_64;

		r = -EFAULT;
		if (copy_from_user(&create_tce_64, argp, sizeof(create_tce_64)))
			goto out;
		if (create_tce_64.flags) {
			r = -EINVAL;
			goto out;
		}
		r = kvm_vm_ioctl_create_spapr_tce(kvm, &create_tce_64);
		goto out;
	}
1780 1781
	case KVM_CREATE_SPAPR_TCE: {
		struct kvm_create_spapr_tce create_tce;
1782
		struct kvm_create_spapr_tce_64 create_tce_64;
1783 1784 1785 1786

		r = -EFAULT;
		if (copy_from_user(&create_tce, argp, sizeof(create_tce)))
			goto out;
1787 1788 1789 1790 1791 1792 1793 1794

		create_tce_64.liobn = create_tce.liobn;
		create_tce_64.page_shift = IOMMU_PAGE_SHIFT_4K;
		create_tce_64.offset = 0;
		create_tce_64.size = create_tce.window_size >>
				IOMMU_PAGE_SHIFT_4K;
		create_tce_64.flags = 0;
		r = kvm_vm_ioctl_create_spapr_tce(kvm, &create_tce_64);
1795 1796
		goto out;
	}
1797 1798
#endif
#ifdef CONFIG_PPC_BOOK3S_64
1799 1800
	case KVM_PPC_GET_SMMU_INFO: {
		struct kvm_ppc_smmu_info info;
1801
		struct kvm *kvm = filp->private_data;
1802 1803

		memset(&info, 0, sizeof(info));
1804
		r = kvm->arch.kvm_ops->get_smmu_info(kvm, &info);
1805 1806 1807 1808
		if (r >= 0 && copy_to_user(argp, &info, sizeof(info)))
			r = -EFAULT;
		break;
	}
1809 1810 1811 1812 1813 1814
	case KVM_PPC_RTAS_DEFINE_TOKEN: {
		struct kvm *kvm = filp->private_data;

		r = kvm_vm_ioctl_rtas_define_token(kvm, argp);
		break;
	}
1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839
	case KVM_PPC_CONFIGURE_V3_MMU: {
		struct kvm *kvm = filp->private_data;
		struct kvm_ppc_mmuv3_cfg cfg;

		r = -EINVAL;
		if (!kvm->arch.kvm_ops->configure_mmu)
			goto out;
		r = -EFAULT;
		if (copy_from_user(&cfg, argp, sizeof(cfg)))
			goto out;
		r = kvm->arch.kvm_ops->configure_mmu(kvm, &cfg);
		break;
	}
	case KVM_PPC_GET_RMMU_INFO: {
		struct kvm *kvm = filp->private_data;
		struct kvm_ppc_rmmu_info info;

		r = -EINVAL;
		if (!kvm->arch.kvm_ops->get_rmmu_info)
			goto out;
		r = kvm->arch.kvm_ops->get_rmmu_info(kvm, &info);
		if (r >= 0 && copy_to_user(argp, &info, sizeof(info)))
			r = -EFAULT;
		break;
	}
1840 1841 1842 1843
	default: {
		struct kvm *kvm = filp->private_data;
		r = kvm->arch.kvm_ops->arch_vm_ioctl(filp, ioctl, arg);
	}
1844
#else /* CONFIG_PPC_BOOK3S_64 */
1845
	default:
1846
		r = -ENOTTY;
1847
#endif
1848
	}
1849
out:
1850 1851 1852
	return r;
}

1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869
static unsigned long lpid_inuse[BITS_TO_LONGS(KVMPPC_NR_LPIDS)];
static unsigned long nr_lpids;

long kvmppc_alloc_lpid(void)
{
	long lpid;

	do {
		lpid = find_first_zero_bit(lpid_inuse, KVMPPC_NR_LPIDS);
		if (lpid >= nr_lpids) {
			pr_err("%s: No LPIDs free\n", __func__);
			return -ENOMEM;
		}
	} while (test_and_set_bit(lpid, lpid_inuse));

	return lpid;
}
1870
EXPORT_SYMBOL_GPL(kvmppc_alloc_lpid);
1871 1872 1873 1874 1875

void kvmppc_claim_lpid(long lpid)
{
	set_bit(lpid, lpid_inuse);
}
1876
EXPORT_SYMBOL_GPL(kvmppc_claim_lpid);
1877 1878 1879 1880 1881

void kvmppc_free_lpid(long lpid)
{
	clear_bit(lpid, lpid_inuse);
}
1882
EXPORT_SYMBOL_GPL(kvmppc_free_lpid);
1883 1884 1885 1886 1887 1888

void kvmppc_init_lpid(unsigned long nr_lpids_param)
{
	nr_lpids = min_t(unsigned long, KVMPPC_NR_LPIDS, nr_lpids_param);
	memset(lpid_inuse, 0, sizeof(lpid_inuse));
}
1889
EXPORT_SYMBOL_GPL(kvmppc_init_lpid);
1890

1891 1892 1893 1894 1895
int kvm_arch_init(void *opaque)
{
	return 0;
}

1896
EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ppc_instr);