powerpc.c 54.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
/*
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License, version 2, as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
 *
 * Copyright IBM Corp. 2007
 *
 * Authors: Hollis Blanchard <hollisb@us.ibm.com>
 *          Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com>
 */

#include <linux/errno.h>
#include <linux/err.h>
#include <linux/kvm_host.h>
#include <linux/vmalloc.h>
A
Alexander Graf 已提交
25
#include <linux/hrtimer.h>
26
#include <linux/sched/signal.h>
27
#include <linux/fs.h>
28
#include <linux/slab.h>
S
Scott Wood 已提交
29
#include <linux/file.h>
30
#include <linux/module.h>
31 32
#include <linux/irqbypass.h>
#include <linux/kvm_irqfd.h>
33
#include <asm/cputable.h>
34
#include <linux/uaccess.h>
35
#include <asm/kvm_ppc.h>
36
#include <asm/cputhreads.h>
37
#include <asm/irqflags.h>
38
#include <asm/iommu.h>
39
#include <asm/switch_to.h>
40
#include <asm/xive.h>
41 42 43 44
#ifdef CONFIG_PPC_PSERIES
#include <asm/hvcall.h>
#include <asm/plpar_wrappers.h>
#endif
45

46
#include "timing.h"
47
#include "irq.h"
P
Paul Mackerras 已提交
48
#include "../mm/mmu_decl.h"
49

50 51 52
#define CREATE_TRACE_POINTS
#include "trace.h"

53 54 55 56 57
struct kvmppc_ops *kvmppc_hv_ops;
EXPORT_SYMBOL_GPL(kvmppc_hv_ops);
struct kvmppc_ops *kvmppc_pr_ops;
EXPORT_SYMBOL_GPL(kvmppc_pr_ops);

58

59 60
int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
{
R
Radim Krčmář 已提交
61
	return !!(v->arch.pending_exceptions) || kvm_request_pending(v);
62 63
}

64 65 66 67 68
bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
{
	return false;
}

69 70 71 72 73
int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
{
	return 1;
}

74 75 76 77
/*
 * Common checks before entering the guest world.  Call with interrupts
 * disabled.
 *
78 79 80 81
 * returns:
 *
 * == 1 if we're ready to go into guest state
 * <= 0 if we need to go back to the host with return value
82 83 84
 */
int kvmppc_prepare_to_enter(struct kvm_vcpu *vcpu)
{
S
Scott Wood 已提交
85 86 87 88
	int r;

	WARN_ON(irqs_disabled());
	hard_irq_disable();
89 90 91 92 93

	while (true) {
		if (need_resched()) {
			local_irq_enable();
			cond_resched();
S
Scott Wood 已提交
94
			hard_irq_disable();
95 96 97 98
			continue;
		}

		if (signal_pending(current)) {
99 100 101
			kvmppc_account_exit(vcpu, SIGNAL_EXITS);
			vcpu->run->exit_reason = KVM_EXIT_INTR;
			r = -EINTR;
102 103 104
			break;
		}

105 106 107 108 109 110 111
		vcpu->mode = IN_GUEST_MODE;

		/*
		 * Reading vcpu->requests must happen after setting vcpu->mode,
		 * so we don't miss a request because the requester sees
		 * OUTSIDE_GUEST_MODE and assumes we'll be checking requests
		 * before next entering the guest (and thus doesn't IPI).
112 113 114
		 * This also orders the write to mode from any reads
		 * to the page tables done while the VCPU is running.
		 * Please see the comment in kvm_flush_remote_tlbs.
115
		 */
116
		smp_mb();
117

R
Radim Krčmář 已提交
118
		if (kvm_request_pending(vcpu)) {
119 120 121
			/* Make sure we process requests preemptable */
			local_irq_enable();
			trace_kvm_check_requests(vcpu);
122
			r = kvmppc_core_check_requests(vcpu);
S
Scott Wood 已提交
123
			hard_irq_disable();
124 125 126
			if (r > 0)
				continue;
			break;
127 128 129 130 131 132 133 134
		}

		if (kvmppc_core_prepare_to_enter(vcpu)) {
			/* interrupts got enabled in between, so we
			   are back at square 1 */
			continue;
		}

135
		guest_enter_irqoff();
S
Scott Wood 已提交
136
		return 1;
137 138
	}

S
Scott Wood 已提交
139 140
	/* return to host */
	local_irq_enable();
141 142
	return r;
}
143
EXPORT_SYMBOL_GPL(kvmppc_prepare_to_enter);
144

145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
#if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_KVM_BOOK3S_PR_POSSIBLE)
static void kvmppc_swab_shared(struct kvm_vcpu *vcpu)
{
	struct kvm_vcpu_arch_shared *shared = vcpu->arch.shared;
	int i;

	shared->sprg0 = swab64(shared->sprg0);
	shared->sprg1 = swab64(shared->sprg1);
	shared->sprg2 = swab64(shared->sprg2);
	shared->sprg3 = swab64(shared->sprg3);
	shared->srr0 = swab64(shared->srr0);
	shared->srr1 = swab64(shared->srr1);
	shared->dar = swab64(shared->dar);
	shared->msr = swab64(shared->msr);
	shared->dsisr = swab32(shared->dsisr);
	shared->int_pending = swab32(shared->int_pending);
	for (i = 0; i < ARRAY_SIZE(shared->sr); i++)
		shared->sr[i] = swab32(shared->sr[i]);
}
#endif

166 167 168 169 170 171 172 173 174 175
int kvmppc_kvm_pv(struct kvm_vcpu *vcpu)
{
	int nr = kvmppc_get_gpr(vcpu, 11);
	int r;
	unsigned long __maybe_unused param1 = kvmppc_get_gpr(vcpu, 3);
	unsigned long __maybe_unused param2 = kvmppc_get_gpr(vcpu, 4);
	unsigned long __maybe_unused param3 = kvmppc_get_gpr(vcpu, 5);
	unsigned long __maybe_unused param4 = kvmppc_get_gpr(vcpu, 6);
	unsigned long r2 = 0;

176
	if (!(kvmppc_get_msr(vcpu) & MSR_SF)) {
177 178 179 180 181 182 183 184
		/* 32 bit mode */
		param1 &= 0xffffffff;
		param2 &= 0xffffffff;
		param3 &= 0xffffffff;
		param4 &= 0xffffffff;
	}

	switch (nr) {
185
	case KVM_HCALL_TOKEN(KVM_HC_PPC_MAP_MAGIC_PAGE):
186
	{
187 188 189 190 191 192 193 194 195 196
#if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_KVM_BOOK3S_PR_POSSIBLE)
		/* Book3S can be little endian, find it out here */
		int shared_big_endian = true;
		if (vcpu->arch.intr_msr & MSR_LE)
			shared_big_endian = false;
		if (shared_big_endian != vcpu->arch.shared_big_endian)
			kvmppc_swab_shared(vcpu);
		vcpu->arch.shared_big_endian = shared_big_endian;
#endif

197 198 199 200 201 202 203 204 205 206 207 208
		if (!(param2 & MAGIC_PAGE_FLAG_NOT_MAPPED_NX)) {
			/*
			 * Older versions of the Linux magic page code had
			 * a bug where they would map their trampoline code
			 * NX. If that's the case, remove !PR NX capability.
			 */
			vcpu->arch.disable_kernel_nx = true;
			kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
		}

		vcpu->arch.magic_page_pa = param1 & ~0xfffULL;
		vcpu->arch.magic_page_ea = param2 & ~0xfffULL;
209

210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
#ifdef CONFIG_PPC_64K_PAGES
		/*
		 * Make sure our 4k magic page is in the same window of a 64k
		 * page within the guest and within the host's page.
		 */
		if ((vcpu->arch.magic_page_pa & 0xf000) !=
		    ((ulong)vcpu->arch.shared & 0xf000)) {
			void *old_shared = vcpu->arch.shared;
			ulong shared = (ulong)vcpu->arch.shared;
			void *new_shared;

			shared &= PAGE_MASK;
			shared |= vcpu->arch.magic_page_pa & 0xf000;
			new_shared = (void*)shared;
			memcpy(new_shared, old_shared, 0x1000);
			vcpu->arch.shared = new_shared;
		}
#endif

229
		r2 = KVM_MAGIC_FEAT_SR | KVM_MAGIC_FEAT_MAS0_TO_SPRG7;
230

231
		r = EV_SUCCESS;
232 233
		break;
	}
234 235
	case KVM_HCALL_TOKEN(KVM_HC_FEATURES):
		r = EV_SUCCESS;
236
#if defined(CONFIG_PPC_BOOK3S) || defined(CONFIG_KVM_E500V2)
237 238
		r2 |= (1 << KVM_FEATURE_MAGIC_PAGE);
#endif
239 240 241

		/* Second return value is in r4 */
		break;
242 243 244
	case EV_HCALL_TOKEN(EV_IDLE):
		r = EV_SUCCESS;
		kvm_vcpu_block(vcpu);
245
		kvm_clear_request(KVM_REQ_UNHALT, vcpu);
246
		break;
247
	default:
248
		r = EV_UNIMPLEMENTED;
249 250 251
		break;
	}

252 253
	kvmppc_set_gpr(vcpu, 4, r2);

254 255
	return r;
}
256
EXPORT_SYMBOL_GPL(kvmppc_kvm_pv);
257

258 259 260 261 262 263 264 265 266 267 268 269 270
int kvmppc_sanity_check(struct kvm_vcpu *vcpu)
{
	int r = false;

	/* We have to know what CPU to virtualize */
	if (!vcpu->arch.pvr)
		goto out;

	/* PAPR only works with book3s_64 */
	if ((vcpu->arch.cpu_type != KVM_CPU_3S_64) && vcpu->arch.papr_enabled)
		goto out;

	/* HV KVM can only do PAPR mode for now */
271
	if (!vcpu->arch.papr_enabled && is_kvmppc_hv_enabled(vcpu->kvm))
272 273
		goto out;

274 275 276 277 278
#ifdef CONFIG_KVM_BOOKE_HV
	if (!cpu_has_feature(CPU_FTR_EMB_HV))
		goto out;
#endif

279 280 281 282 283 284
	r = true;

out:
	vcpu->arch.sane = r;
	return r ? 0 : -EINVAL;
}
285
EXPORT_SYMBOL_GPL(kvmppc_sanity_check);
286

287 288 289 290 291
int kvmppc_emulate_mmio(struct kvm_run *run, struct kvm_vcpu *vcpu)
{
	enum emulation_result er;
	int r;

292
	er = kvmppc_emulate_loadstore(vcpu);
293 294 295 296 297 298
	switch (er) {
	case EMULATE_DONE:
		/* Future optimization: only reload non-volatiles if they were
		 * actually modified. */
		r = RESUME_GUEST_NV;
		break;
299 300 301
	case EMULATE_AGAIN:
		r = RESUME_GUEST;
		break;
302 303 304 305 306 307 308 309 310
	case EMULATE_DO_MMIO:
		run->exit_reason = KVM_EXIT_MMIO;
		/* We must reload nonvolatiles because "update" load/store
		 * instructions modify register state. */
		/* Future optimization: only reload non-volatiles if they were
		 * actually modified. */
		r = RESUME_HOST_NV;
		break;
	case EMULATE_FAIL:
311 312 313
	{
		u32 last_inst;

314
		kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst);
315
		/* XXX Deliver Program interrupt to guest. */
316
		pr_emerg("%s: emulation failed (%08x)\n", __func__, last_inst);
317 318
		r = RESUME_HOST;
		break;
319
	}
320
	default:
321 322
		WARN_ON(1);
		r = RESUME_GUEST;
323 324 325 326
	}

	return r;
}
327
EXPORT_SYMBOL_GPL(kvmppc_emulate_mmio);
328

329 330 331
int kvmppc_st(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr,
	      bool data)
{
332
	ulong mp_pa = vcpu->arch.magic_page_pa & KVM_PAM & PAGE_MASK;
333 334 335 336 337 338 339 340 341 342 343 344 345 346 347
	struct kvmppc_pte pte;
	int r;

	vcpu->stat.st++;

	r = kvmppc_xlate(vcpu, *eaddr, data ? XLATE_DATA : XLATE_INST,
			 XLATE_WRITE, &pte);
	if (r < 0)
		return r;

	*eaddr = pte.raddr;

	if (!pte.may_write)
		return -EPERM;

348 349 350 351 352 353 354 355 356 357
	/* Magic page override */
	if (kvmppc_supports_magic_page(vcpu) && mp_pa &&
	    ((pte.raddr & KVM_PAM & PAGE_MASK) == mp_pa) &&
	    !(kvmppc_get_msr(vcpu) & MSR_PR)) {
		void *magic = vcpu->arch.shared;
		magic += pte.eaddr & 0xfff;
		memcpy(magic, ptr, size);
		return EMULATE_DONE;
	}

358 359 360 361 362 363 364 365 366 367
	if (kvm_write_guest(vcpu->kvm, pte.raddr, ptr, size))
		return EMULATE_DO_MMIO;

	return EMULATE_DONE;
}
EXPORT_SYMBOL_GPL(kvmppc_st);

int kvmppc_ld(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr,
		      bool data)
{
368
	ulong mp_pa = vcpu->arch.magic_page_pa & KVM_PAM & PAGE_MASK;
369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386
	struct kvmppc_pte pte;
	int rc;

	vcpu->stat.ld++;

	rc = kvmppc_xlate(vcpu, *eaddr, data ? XLATE_DATA : XLATE_INST,
			  XLATE_READ, &pte);
	if (rc)
		return rc;

	*eaddr = pte.raddr;

	if (!pte.may_read)
		return -EPERM;

	if (!data && !pte.may_execute)
		return -ENOEXEC;

387 388 389 390 391 392 393 394 395 396
	/* Magic page override */
	if (kvmppc_supports_magic_page(vcpu) && mp_pa &&
	    ((pte.raddr & KVM_PAM & PAGE_MASK) == mp_pa) &&
	    !(kvmppc_get_msr(vcpu) & MSR_PR)) {
		void *magic = vcpu->arch.shared;
		magic += pte.eaddr & 0xfff;
		memcpy(ptr, magic, size);
		return EMULATE_DONE;
	}

397 398
	if (kvm_read_guest(vcpu->kvm, pte.raddr, ptr, size))
		return EMULATE_DO_MMIO;
399 400 401 402 403

	return EMULATE_DONE;
}
EXPORT_SYMBOL_GPL(kvmppc_ld);

404
int kvm_arch_hardware_enable(void)
405
{
406
	return 0;
407 408 409 410 411 412 413 414 415
}

int kvm_arch_hardware_setup(void)
{
	return 0;
}

void kvm_arch_check_processor_compat(void *rtn)
{
416
	*(int *)rtn = kvmppc_core_check_processor_compat();
417 418
}

419
int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
420
{
421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446
	struct kvmppc_ops *kvm_ops = NULL;
	/*
	 * if we have both HV and PR enabled, default is HV
	 */
	if (type == 0) {
		if (kvmppc_hv_ops)
			kvm_ops = kvmppc_hv_ops;
		else
			kvm_ops = kvmppc_pr_ops;
		if (!kvm_ops)
			goto err_out;
	} else	if (type == KVM_VM_PPC_HV) {
		if (!kvmppc_hv_ops)
			goto err_out;
		kvm_ops = kvmppc_hv_ops;
	} else if (type == KVM_VM_PPC_PR) {
		if (!kvmppc_pr_ops)
			goto err_out;
		kvm_ops = kvmppc_pr_ops;
	} else
		goto err_out;

	if (kvm_ops->owner && !try_module_get(kvm_ops->owner))
		return -ENOENT;

	kvm->arch.kvm_ops = kvm_ops;
447
	return kvmppc_core_init_vm(kvm);
448 449
err_out:
	return -EINVAL;
450 451
}

452 453 454 455 456 457 458 459 460 461
bool kvm_arch_has_vcpu_debugfs(void)
{
	return false;
}

int kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
{
	return 0;
}

462
void kvm_arch_destroy_vm(struct kvm *kvm)
463 464
{
	unsigned int i;
465
	struct kvm_vcpu *vcpu;
466

467 468 469 470 471 472 473 474 475 476
#ifdef CONFIG_KVM_XICS
	/*
	 * We call kick_all_cpus_sync() to ensure that all
	 * CPUs have executed any pending IPIs before we
	 * continue and free VCPUs structures below.
	 */
	if (is_kvmppc_hv_enabled(kvm))
		kick_all_cpus_sync();
#endif

477 478 479 480 481 482 483 484
	kvm_for_each_vcpu(i, vcpu, kvm)
		kvm_arch_vcpu_free(vcpu);

	mutex_lock(&kvm->lock);
	for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
		kvm->vcpus[i] = NULL;

	atomic_set(&kvm->online_vcpus, 0);
485 486 487

	kvmppc_core_destroy_vm(kvm);

488
	mutex_unlock(&kvm->lock);
489 490 491

	/* drop the module reference */
	module_put(kvm->arch.kvm_ops->owner);
492 493
}

494
int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
495 496
{
	int r;
497
	/* Assume we're using HV mode when the HV module is loaded */
498
	int hv_enabled = kvmppc_hv_ops ? 1 : 0;
499

500 501 502 503 504 505 506 507
	if (kvm) {
		/*
		 * Hooray - we know which VM type we're running on. Depend on
		 * that rather than the guess above.
		 */
		hv_enabled = is_kvmppc_hv_enabled(kvm);
	}

508
	switch (ext) {
S
Scott Wood 已提交
509 510
#ifdef CONFIG_BOOKE
	case KVM_CAP_PPC_BOOKE_SREGS:
511
	case KVM_CAP_PPC_BOOKE_WATCHDOG:
512
	case KVM_CAP_PPC_EPR:
S
Scott Wood 已提交
513
#else
514
	case KVM_CAP_PPC_SEGSTATE:
515
	case KVM_CAP_PPC_HIOR:
516
	case KVM_CAP_PPC_PAPR:
S
Scott Wood 已提交
517
#endif
518
	case KVM_CAP_PPC_UNSET_IRQ:
519
	case KVM_CAP_PPC_IRQ_LEVEL:
520
	case KVM_CAP_ENABLE_CAP:
521
	case KVM_CAP_ENABLE_CAP_VM:
522
	case KVM_CAP_ONE_REG:
A
Alexander Graf 已提交
523
	case KVM_CAP_IOEVENTFD:
524
	case KVM_CAP_DEVICE_CTRL:
525
	case KVM_CAP_IMMEDIATE_EXIT:
526 527 528
		r = 1;
		break;
	case KVM_CAP_PPC_PAIRED_SINGLES:
529
	case KVM_CAP_PPC_OSI:
530
	case KVM_CAP_PPC_GET_PVINFO:
531
#if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
S
Scott Wood 已提交
532
	case KVM_CAP_SW_TLB:
S
Scott Wood 已提交
533
#endif
534
		/* We support this only for PR */
535
		r = !hv_enabled;
536
		break;
537 538 539 540 541 542
#ifdef CONFIG_KVM_MPIC
	case KVM_CAP_IRQ_MPIC:
		r = 1;
		break;
#endif

543
#ifdef CONFIG_PPC_BOOK3S_64
544
	case KVM_CAP_SPAPR_TCE:
545
	case KVM_CAP_SPAPR_TCE_64:
546 547
		/* fallthrough */
	case KVM_CAP_SPAPR_TCE_VFIO:
548
	case KVM_CAP_PPC_RTAS:
549
	case KVM_CAP_PPC_FIXUP_HCALL:
550
	case KVM_CAP_PPC_ENABLE_HCALL:
551 552 553
#ifdef CONFIG_KVM_XICS
	case KVM_CAP_IRQ_XICS:
#endif
554
	case KVM_CAP_PPC_GET_CPU_CHAR:
555 556
		r = 1;
		break;
557 558 559 560

	case KVM_CAP_PPC_ALLOC_HTAB:
		r = hv_enabled;
		break;
561
#endif /* CONFIG_PPC_BOOK3S_64 */
562
#ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
563
	case KVM_CAP_PPC_SMT:
564
		r = 0;
565 566 567 568 569 570
		if (kvm) {
			if (kvm->arch.emul_smt_mode > 1)
				r = kvm->arch.emul_smt_mode;
			else
				r = kvm->arch.smt_mode;
		} else if (hv_enabled) {
571 572 573 574 575
			if (cpu_has_feature(CPU_FTR_ARCH_300))
				r = 1;
			else
				r = threads_per_subcore;
		}
576
		break;
577 578 579 580 581 582 583 584 585 586
	case KVM_CAP_PPC_SMT_POSSIBLE:
		r = 1;
		if (hv_enabled) {
			if (!cpu_has_feature(CPU_FTR_ARCH_300))
				r = ((threads_per_subcore << 1) - 1);
			else
				/* P9 can emulate dbells, so allow any mode */
				r = 8 | 4 | 2 | 1;
		}
		break;
587
	case KVM_CAP_PPC_RMA:
588
		r = 0;
589
		break;
590 591 592
	case KVM_CAP_PPC_HWRNG:
		r = kvmppc_hwrng_present();
		break;
593
	case KVM_CAP_PPC_MMU_RADIX:
594
		r = !!(hv_enabled && radix_enabled());
595 596
		break;
	case KVM_CAP_PPC_MMU_HASH_V3:
597 598
		r = !!(hv_enabled && cpu_has_feature(CPU_FTR_ARCH_300) &&
		       cpu_has_feature(CPU_FTR_HVMODE));
599
		break;
600
#endif
601
	case KVM_CAP_SYNC_MMU:
602
#ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
603
		r = hv_enabled;
604 605 606 607
#elif defined(KVM_ARCH_WANT_MMU_NOTIFIER)
		r = 1;
#else
		r = 0;
608
#endif
609 610
		break;
#ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
611
	case KVM_CAP_PPC_HTAB_FD:
612
		r = hv_enabled;
613
		break;
614
#endif
615 616 617 618 619 620 621
	case KVM_CAP_NR_VCPUS:
		/*
		 * Recommending a number of CPUs is somewhat arbitrary; we
		 * return the number of present CPUs for -HV (since a host
		 * will have secondary threads "offline"), and for other KVM
		 * implementations just count online CPUs.
		 */
622
		if (hv_enabled)
623 624 625
			r = num_present_cpus();
		else
			r = num_online_cpus();
626
		break;
627 628 629
	case KVM_CAP_NR_MEMSLOTS:
		r = KVM_USER_MEM_SLOTS;
		break;
630 631 632
	case KVM_CAP_MAX_VCPUS:
		r = KVM_MAX_VCPUS;
		break;
633 634 635 636
#ifdef CONFIG_PPC_BOOK3S_64
	case KVM_CAP_PPC_GET_SMMU_INFO:
		r = 1;
		break;
637 638 639
	case KVM_CAP_SPAPR_MULTITCE:
		r = 1;
		break;
640
	case KVM_CAP_SPAPR_RESIZE_HPT:
641
		r = !!hv_enabled;
642
		break;
643 644 645 646 647
#endif
#ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
	case KVM_CAP_PPC_FWNMI:
		r = hv_enabled;
		break;
648
#endif
649
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
650
	case KVM_CAP_PPC_HTM:
651 652
		r = !!(cur_cpu_spec->cpu_user_features2 & PPC_FEATURE2_HTM) ||
		     (hv_enabled && cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST));
653
		break;
654
#endif
655 656 657 658 659 660 661 662 663 664 665 666 667 668
	default:
		r = 0;
		break;
	}
	return r;

}

long kvm_arch_dev_ioctl(struct file *filp,
                        unsigned int ioctl, unsigned long arg)
{
	return -EINVAL;
}

669
void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
670 671
			   struct kvm_memory_slot *dont)
{
672
	kvmppc_core_free_memslot(kvm, free, dont);
673 674
}

675 676
int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
			    unsigned long npages)
677
{
678
	return kvmppc_core_create_memslot(kvm, slot, npages);
679 680
}

681
int kvm_arch_prepare_memory_region(struct kvm *kvm,
682
				   struct kvm_memory_slot *memslot,
683
				   const struct kvm_userspace_memory_region *mem,
684
				   enum kvm_mr_change change)
685
{
686
	return kvmppc_core_prepare_memory_region(kvm, memslot, mem);
687 688
}

689
void kvm_arch_commit_memory_region(struct kvm *kvm,
690
				   const struct kvm_userspace_memory_region *mem,
691
				   const struct kvm_memory_slot *old,
692
				   const struct kvm_memory_slot *new,
693
				   enum kvm_mr_change change)
694
{
695
	kvmppc_core_commit_memory_region(kvm, mem, old, new);
696 697
}

698 699
void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
				   struct kvm_memory_slot *slot)
700
{
701
	kvmppc_core_flush_memslot(kvm, slot);
702 703
}

704 705
struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
{
706 707
	struct kvm_vcpu *vcpu;
	vcpu = kvmppc_core_vcpu_create(kvm, id);
708 709
	if (!IS_ERR(vcpu)) {
		vcpu->arch.wqp = &vcpu->wq;
710
		kvmppc_create_vcpu_debugfs(vcpu, id);
711
	}
712
	return vcpu;
713 714
}

715
void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
716 717 718
{
}

719 720
void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
{
721 722 723
	/* Make sure we're not using the vcpu anymore */
	hrtimer_cancel(&vcpu->arch.dec_timer);

724
	kvmppc_remove_vcpu_debugfs(vcpu);
S
Scott Wood 已提交
725 726 727 728 729

	switch (vcpu->arch.irq_type) {
	case KVMPPC_IRQ_MPIC:
		kvmppc_mpic_disconnect_vcpu(vcpu->arch.mpic, vcpu);
		break;
730
	case KVMPPC_IRQ_XICS:
731 732 733 734
		if (xive_enabled())
			kvmppc_xive_cleanup_vcpu(vcpu);
		else
			kvmppc_xics_free_icp(vcpu);
735
		break;
S
Scott Wood 已提交
736 737
	}

738
	kvmppc_core_vcpu_free(vcpu);
739 740 741 742 743 744 745 746 747
}

void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
{
	kvm_arch_vcpu_free(vcpu);
}

int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
{
748
	return kvmppc_core_pending_dec(vcpu);
749 750
}

T
Thomas Huth 已提交
751
static enum hrtimer_restart kvmppc_decrementer_wakeup(struct hrtimer *timer)
A
Alexander Graf 已提交
752 753 754 755
{
	struct kvm_vcpu *vcpu;

	vcpu = container_of(timer, struct kvm_vcpu, arch.dec_timer);
756
	kvmppc_decrementer_func(vcpu);
A
Alexander Graf 已提交
757 758 759 760

	return HRTIMER_NORESTART;
}

761 762
int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
{
763 764
	int ret;

A
Alexander Graf 已提交
765 766
	hrtimer_init(&vcpu->arch.dec_timer, CLOCK_REALTIME, HRTIMER_MODE_ABS);
	vcpu->arch.dec_timer.function = kvmppc_decrementer_wakeup;
767
	vcpu->arch.dec_expires = get_tb();
768

769 770 771
#ifdef CONFIG_KVM_EXIT_TIMING
	mutex_init(&vcpu->arch.exit_timing_lock);
#endif
772 773
	ret = kvmppc_subarch_vcpu_init(vcpu);
	return ret;
774 775 776 777
}

void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
{
778
	kvmppc_mmu_destroy(vcpu);
779
	kvmppc_subarch_vcpu_uninit(vcpu);
780 781 782 783
}

void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
{
784 785 786 787 788 789 790 791 792 793
#ifdef CONFIG_BOOKE
	/*
	 * vrsave (formerly usprg0) isn't used by Linux, but may
	 * be used by the guest.
	 *
	 * On non-booke this is associated with Altivec and
	 * is handled by code in book3s.c.
	 */
	mtspr(SPRN_VRSAVE, vcpu->arch.vrsave);
#endif
794
	kvmppc_core_vcpu_load(vcpu, cpu);
795 796 797 798
}

void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
{
799
	kvmppc_core_vcpu_put(vcpu);
800 801 802
#ifdef CONFIG_BOOKE
	vcpu->arch.vrsave = mfspr(SPRN_VRSAVE);
#endif
803 804
}

805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840
/*
 * irq_bypass_add_producer and irq_bypass_del_producer are only
 * useful if the architecture supports PCI passthrough.
 * irq_bypass_stop and irq_bypass_start are not needed and so
 * kvm_ops are not defined for them.
 */
bool kvm_arch_has_irq_bypass(void)
{
	return ((kvmppc_hv_ops && kvmppc_hv_ops->irq_bypass_add_producer) ||
		(kvmppc_pr_ops && kvmppc_pr_ops->irq_bypass_add_producer));
}

int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
				     struct irq_bypass_producer *prod)
{
	struct kvm_kernel_irqfd *irqfd =
		container_of(cons, struct kvm_kernel_irqfd, consumer);
	struct kvm *kvm = irqfd->kvm;

	if (kvm->arch.kvm_ops->irq_bypass_add_producer)
		return kvm->arch.kvm_ops->irq_bypass_add_producer(cons, prod);

	return 0;
}

void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
				      struct irq_bypass_producer *prod)
{
	struct kvm_kernel_irqfd *irqfd =
		container_of(cons, struct kvm_kernel_irqfd, consumer);
	struct kvm *kvm = irqfd->kvm;

	if (kvm->arch.kvm_ops->irq_bypass_del_producer)
		kvm->arch.kvm_ops->irq_bypass_del_producer(cons, prod);
}

841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882
#ifdef CONFIG_VSX
static inline int kvmppc_get_vsr_dword_offset(int index)
{
	int offset;

	if ((index != 0) && (index != 1))
		return -1;

#ifdef __BIG_ENDIAN
	offset =  index;
#else
	offset = 1 - index;
#endif

	return offset;
}

static inline int kvmppc_get_vsr_word_offset(int index)
{
	int offset;

	if ((index > 3) || (index < 0))
		return -1;

#ifdef __BIG_ENDIAN
	offset = index;
#else
	offset = 3 - index;
#endif
	return offset;
}

static inline void kvmppc_set_vsr_dword(struct kvm_vcpu *vcpu,
	u64 gpr)
{
	union kvmppc_one_reg val;
	int offset = kvmppc_get_vsr_dword_offset(vcpu->arch.mmio_vsx_offset);
	int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;

	if (offset == -1)
		return;

883 884
	if (index >= 32) {
		val.vval = VCPU_VSX_VR(vcpu, index - 32);
885
		val.vsxval[offset] = gpr;
886
		VCPU_VSX_VR(vcpu, index - 32) = val.vval;
887 888 889 890 891 892 893 894 895 896 897
	} else {
		VCPU_VSX_FPR(vcpu, index, offset) = gpr;
	}
}

static inline void kvmppc_set_vsr_dword_dump(struct kvm_vcpu *vcpu,
	u64 gpr)
{
	union kvmppc_one_reg val;
	int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;

898 899
	if (index >= 32) {
		val.vval = VCPU_VSX_VR(vcpu, index - 32);
900 901
		val.vsxval[0] = gpr;
		val.vsxval[1] = gpr;
902
		VCPU_VSX_VR(vcpu, index - 32) = val.vval;
903 904 905 906 907 908
	} else {
		VCPU_VSX_FPR(vcpu, index, 0) = gpr;
		VCPU_VSX_FPR(vcpu, index, 1) = gpr;
	}
}

909 910 911 912 913 914
static inline void kvmppc_set_vsr_word_dump(struct kvm_vcpu *vcpu,
	u32 gpr)
{
	union kvmppc_one_reg val;
	int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;

915
	if (index >= 32) {
916 917 918 919
		val.vsx32val[0] = gpr;
		val.vsx32val[1] = gpr;
		val.vsx32val[2] = gpr;
		val.vsx32val[3] = gpr;
920
		VCPU_VSX_VR(vcpu, index - 32) = val.vval;
921 922 923 924 925 926 927 928
	} else {
		val.vsx32val[0] = gpr;
		val.vsx32val[1] = gpr;
		VCPU_VSX_FPR(vcpu, index, 0) = val.vsxval[0];
		VCPU_VSX_FPR(vcpu, index, 1) = val.vsxval[0];
	}
}

929 930 931 932 933 934 935 936 937 938 939
static inline void kvmppc_set_vsr_word(struct kvm_vcpu *vcpu,
	u32 gpr32)
{
	union kvmppc_one_reg val;
	int offset = kvmppc_get_vsr_word_offset(vcpu->arch.mmio_vsx_offset);
	int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
	int dword_offset, word_offset;

	if (offset == -1)
		return;

940 941
	if (index >= 32) {
		val.vval = VCPU_VSX_VR(vcpu, index - 32);
942
		val.vsx32val[offset] = gpr32;
943
		VCPU_VSX_VR(vcpu, index - 32) = val.vval;
944 945 946 947 948 949 950 951 952 953
	} else {
		dword_offset = offset / 2;
		word_offset = offset % 2;
		val.vsxval[0] = VCPU_VSX_FPR(vcpu, index, dword_offset);
		val.vsx32val[word_offset] = gpr32;
		VCPU_VSX_FPR(vcpu, index, dword_offset) = val.vsxval[0];
	}
}
#endif /* CONFIG_VSX */

954
#ifdef CONFIG_ALTIVEC
955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996
static inline int kvmppc_get_vmx_offset_generic(struct kvm_vcpu *vcpu,
		int index, int element_size)
{
	int offset;
	int elts = sizeof(vector128)/element_size;

	if ((index < 0) || (index >= elts))
		return -1;

	if (kvmppc_need_byteswap(vcpu))
		offset = elts - index - 1;
	else
		offset = index;

	return offset;
}

static inline int kvmppc_get_vmx_dword_offset(struct kvm_vcpu *vcpu,
		int index)
{
	return kvmppc_get_vmx_offset_generic(vcpu, index, 8);
}

static inline int kvmppc_get_vmx_word_offset(struct kvm_vcpu *vcpu,
		int index)
{
	return kvmppc_get_vmx_offset_generic(vcpu, index, 4);
}

static inline int kvmppc_get_vmx_hword_offset(struct kvm_vcpu *vcpu,
		int index)
{
	return kvmppc_get_vmx_offset_generic(vcpu, index, 2);
}

static inline int kvmppc_get_vmx_byte_offset(struct kvm_vcpu *vcpu,
		int index)
{
	return kvmppc_get_vmx_offset_generic(vcpu, index, 1);
}


997
static inline void kvmppc_set_vmx_dword(struct kvm_vcpu *vcpu,
998
	u64 gpr)
999
{
1000 1001 1002
	union kvmppc_one_reg val;
	int offset = kvmppc_get_vmx_dword_offset(vcpu,
			vcpu->arch.mmio_vmx_offset);
1003 1004
	int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;

1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019
	if (offset == -1)
		return;

	val.vval = VCPU_VSX_VR(vcpu, index);
	val.vsxval[offset] = gpr;
	VCPU_VSX_VR(vcpu, index) = val.vval;
}

static inline void kvmppc_set_vmx_word(struct kvm_vcpu *vcpu,
	u32 gpr32)
{
	union kvmppc_one_reg val;
	int offset = kvmppc_get_vmx_word_offset(vcpu,
			vcpu->arch.mmio_vmx_offset);
	int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
1020

1021
	if (offset == -1)
1022 1023
		return;

1024 1025 1026 1027
	val.vval = VCPU_VSX_VR(vcpu, index);
	val.vsx32val[offset] = gpr32;
	VCPU_VSX_VR(vcpu, index) = val.vval;
}
1028

1029 1030 1031 1032 1033 1034 1035 1036 1037
static inline void kvmppc_set_vmx_hword(struct kvm_vcpu *vcpu,
	u16 gpr16)
{
	union kvmppc_one_reg val;
	int offset = kvmppc_get_vmx_hword_offset(vcpu,
			vcpu->arch.mmio_vmx_offset);
	int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;

	if (offset == -1)
1038 1039
		return;

1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051
	val.vval = VCPU_VSX_VR(vcpu, index);
	val.vsx16val[offset] = gpr16;
	VCPU_VSX_VR(vcpu, index) = val.vval;
}

static inline void kvmppc_set_vmx_byte(struct kvm_vcpu *vcpu,
	u8 gpr8)
{
	union kvmppc_one_reg val;
	int offset = kvmppc_get_vmx_byte_offset(vcpu,
			vcpu->arch.mmio_vmx_offset);
	int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
1052

1053 1054
	if (offset == -1)
		return;
1055

1056 1057 1058
	val.vval = VCPU_VSX_VR(vcpu, index);
	val.vsx8val[offset] = gpr8;
	VCPU_VSX_VR(vcpu, index) = val.vval;
1059 1060 1061
}
#endif /* CONFIG_ALTIVEC */

1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091
#ifdef CONFIG_PPC_FPU
static inline u64 sp_to_dp(u32 fprs)
{
	u64 fprd;

	preempt_disable();
	enable_kernel_fp();
	asm ("lfs%U1%X1 0,%1; stfd%U0%X0 0,%0" : "=m" (fprd) : "m" (fprs)
	     : "fr0");
	preempt_enable();
	return fprd;
}

static inline u32 dp_to_sp(u64 fprd)
{
	u32 fprs;

	preempt_disable();
	enable_kernel_fp();
	asm ("lfd%U1%X1 0,%1; stfs%U0%X0 0,%0" : "=m" (fprs) : "m" (fprd)
	     : "fr0");
	preempt_enable();
	return fprs;
}

#else
#define sp_to_dp(x)	(x)
#define dp_to_sp(x)	(x)
#endif /* CONFIG_PPC_FPU */

1092 1093 1094
static void kvmppc_complete_mmio_load(struct kvm_vcpu *vcpu,
                                      struct kvm_run *run)
{
1095
	u64 uninitialized_var(gpr);
1096

1097
	if (run->mmio.len > sizeof(gpr)) {
1098 1099 1100 1101
		printk(KERN_ERR "bad MMIO length: %d\n", run->mmio.len);
		return;
	}

1102
	if (!vcpu->arch.mmio_host_swabbed) {
1103
		switch (run->mmio.len) {
1104
		case 8: gpr = *(u64 *)run->mmio.data; break;
1105 1106 1107
		case 4: gpr = *(u32 *)run->mmio.data; break;
		case 2: gpr = *(u16 *)run->mmio.data; break;
		case 1: gpr = *(u8 *)run->mmio.data; break;
1108 1109 1110
		}
	} else {
		switch (run->mmio.len) {
1111 1112 1113
		case 8: gpr = swab64(*(u64 *)run->mmio.data); break;
		case 4: gpr = swab32(*(u32 *)run->mmio.data); break;
		case 2: gpr = swab16(*(u16 *)run->mmio.data); break;
1114
		case 1: gpr = *(u8 *)run->mmio.data; break;
1115 1116
		}
	}
1117

1118 1119 1120 1121
	/* conversion between single and double precision */
	if ((vcpu->arch.mmio_sp64_extend) && (run->mmio.len == 4))
		gpr = sp_to_dp(gpr);

A
Alexander Graf 已提交
1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137
	if (vcpu->arch.mmio_sign_extend) {
		switch (run->mmio.len) {
#ifdef CONFIG_PPC64
		case 4:
			gpr = (s64)(s32)gpr;
			break;
#endif
		case 2:
			gpr = (s64)(s16)gpr;
			break;
		case 1:
			gpr = (s64)(s8)gpr;
			break;
		}
	}

1138 1139
	switch (vcpu->arch.io_gpr & KVM_MMIO_REG_EXT_MASK) {
	case KVM_MMIO_REG_GPR:
1140 1141
		kvmppc_set_gpr(vcpu, vcpu->arch.io_gpr, gpr);
		break;
1142
	case KVM_MMIO_REG_FPR:
1143 1144 1145
		if (vcpu->kvm->arch.kvm_ops->giveup_ext)
			vcpu->kvm->arch.kvm_ops->giveup_ext(vcpu, MSR_FP);

1146
		VCPU_FPR(vcpu, vcpu->arch.io_gpr & KVM_MMIO_REG_MASK) = gpr;
1147
		break;
1148
#ifdef CONFIG_PPC_BOOK3S
1149 1150
	case KVM_MMIO_REG_QPR:
		vcpu->arch.qpr[vcpu->arch.io_gpr & KVM_MMIO_REG_MASK] = gpr;
1151
		break;
1152
	case KVM_MMIO_REG_FQPR:
1153
		VCPU_FPR(vcpu, vcpu->arch.io_gpr & KVM_MMIO_REG_MASK) = gpr;
1154
		vcpu->arch.qpr[vcpu->arch.io_gpr & KVM_MMIO_REG_MASK] = gpr;
1155
		break;
1156 1157 1158
#endif
#ifdef CONFIG_VSX
	case KVM_MMIO_REG_VSX:
1159 1160 1161
		if (vcpu->kvm->arch.kvm_ops->giveup_ext)
			vcpu->kvm->arch.kvm_ops->giveup_ext(vcpu, MSR_VSX);

1162
		if (vcpu->arch.mmio_copy_type == KVMPPC_VSX_COPY_DWORD)
1163
			kvmppc_set_vsr_dword(vcpu, gpr);
1164
		else if (vcpu->arch.mmio_copy_type == KVMPPC_VSX_COPY_WORD)
1165
			kvmppc_set_vsr_word(vcpu, gpr);
1166
		else if (vcpu->arch.mmio_copy_type ==
1167 1168
				KVMPPC_VSX_COPY_DWORD_LOAD_DUMP)
			kvmppc_set_vsr_dword_dump(vcpu, gpr);
1169
		else if (vcpu->arch.mmio_copy_type ==
1170 1171
				KVMPPC_VSX_COPY_WORD_LOAD_DUMP)
			kvmppc_set_vsr_word_dump(vcpu, gpr);
1172
		break;
1173 1174 1175
#endif
#ifdef CONFIG_ALTIVEC
	case KVM_MMIO_REG_VMX:
1176 1177 1178
		if (vcpu->kvm->arch.kvm_ops->giveup_ext)
			vcpu->kvm->arch.kvm_ops->giveup_ext(vcpu, MSR_VEC);

1179 1180 1181 1182 1183 1184 1185 1186 1187 1188
		if (vcpu->arch.mmio_copy_type == KVMPPC_VMX_COPY_DWORD)
			kvmppc_set_vmx_dword(vcpu, gpr);
		else if (vcpu->arch.mmio_copy_type == KVMPPC_VMX_COPY_WORD)
			kvmppc_set_vmx_word(vcpu, gpr);
		else if (vcpu->arch.mmio_copy_type ==
				KVMPPC_VMX_COPY_HWORD)
			kvmppc_set_vmx_hword(vcpu, gpr);
		else if (vcpu->arch.mmio_copy_type ==
				KVMPPC_VMX_COPY_BYTE)
			kvmppc_set_vmx_byte(vcpu, gpr);
1189
		break;
1190
#endif
1191 1192 1193
	default:
		BUG();
	}
1194 1195
}

1196 1197 1198
static int __kvmppc_handle_load(struct kvm_run *run, struct kvm_vcpu *vcpu,
				unsigned int rt, unsigned int bytes,
				int is_default_endian, int sign_extend)
1199
{
1200
	int idx, ret;
1201
	bool host_swabbed;
1202

1203
	/* Pity C doesn't have a logical XOR operator */
1204
	if (kvmppc_need_byteswap(vcpu)) {
1205
		host_swabbed = is_default_endian;
1206
	} else {
1207
		host_swabbed = !is_default_endian;
1208
	}
1209

1210 1211 1212 1213 1214 1215 1216 1217 1218 1219
	if (bytes > sizeof(run->mmio.data)) {
		printk(KERN_ERR "%s: bad MMIO length: %d\n", __func__,
		       run->mmio.len);
	}

	run->mmio.phys_addr = vcpu->arch.paddr_accessed;
	run->mmio.len = bytes;
	run->mmio.is_write = 0;

	vcpu->arch.io_gpr = rt;
1220
	vcpu->arch.mmio_host_swabbed = host_swabbed;
1221 1222
	vcpu->mmio_needed = 1;
	vcpu->mmio_is_write = 0;
1223
	vcpu->arch.mmio_sign_extend = sign_extend;
1224

1225 1226
	idx = srcu_read_lock(&vcpu->kvm->srcu);

1227
	ret = kvm_io_bus_read(vcpu, KVM_MMIO_BUS, run->mmio.phys_addr,
1228 1229 1230 1231 1232
			      bytes, &run->mmio.data);

	srcu_read_unlock(&vcpu->kvm->srcu, idx);

	if (!ret) {
A
Alexander Graf 已提交
1233 1234 1235 1236 1237
		kvmppc_complete_mmio_load(vcpu, run);
		vcpu->mmio_needed = 0;
		return EMULATE_DONE;
	}

1238 1239
	return EMULATE_DO_MMIO;
}
1240 1241 1242 1243 1244 1245 1246

int kvmppc_handle_load(struct kvm_run *run, struct kvm_vcpu *vcpu,
		       unsigned int rt, unsigned int bytes,
		       int is_default_endian)
{
	return __kvmppc_handle_load(run, vcpu, rt, bytes, is_default_endian, 0);
}
1247
EXPORT_SYMBOL_GPL(kvmppc_handle_load);
1248

A
Alexander Graf 已提交
1249 1250
/* Same as above, but sign extends */
int kvmppc_handle_loads(struct kvm_run *run, struct kvm_vcpu *vcpu,
1251 1252
			unsigned int rt, unsigned int bytes,
			int is_default_endian)
A
Alexander Graf 已提交
1253
{
1254
	return __kvmppc_handle_load(run, vcpu, rt, bytes, is_default_endian, 1);
A
Alexander Graf 已提交
1255 1256
}

1257 1258 1259 1260 1261 1262 1263
#ifdef CONFIG_VSX
int kvmppc_handle_vsx_load(struct kvm_run *run, struct kvm_vcpu *vcpu,
			unsigned int rt, unsigned int bytes,
			int is_default_endian, int mmio_sign_extend)
{
	enum emulation_result emulated = EMULATE_DONE;

1264 1265
	/* Currently, mmio_vsx_copy_nums only allowed to be 4 or less */
	if (vcpu->arch.mmio_vsx_copy_nums > 4)
1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283
		return EMULATE_FAIL;

	while (vcpu->arch.mmio_vsx_copy_nums) {
		emulated = __kvmppc_handle_load(run, vcpu, rt, bytes,
			is_default_endian, mmio_sign_extend);

		if (emulated != EMULATE_DONE)
			break;

		vcpu->arch.paddr_accessed += run->mmio.len;

		vcpu->arch.mmio_vsx_copy_nums--;
		vcpu->arch.mmio_vsx_offset++;
	}
	return emulated;
}
#endif /* CONFIG_VSX */

1284
int kvmppc_handle_store(struct kvm_run *run, struct kvm_vcpu *vcpu,
1285
			u64 val, unsigned int bytes, int is_default_endian)
1286 1287
{
	void *data = run->mmio.data;
1288
	int idx, ret;
1289
	bool host_swabbed;
1290

1291
	/* Pity C doesn't have a logical XOR operator */
1292
	if (kvmppc_need_byteswap(vcpu)) {
1293
		host_swabbed = is_default_endian;
1294
	} else {
1295
		host_swabbed = !is_default_endian;
1296
	}
1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308

	if (bytes > sizeof(run->mmio.data)) {
		printk(KERN_ERR "%s: bad MMIO length: %d\n", __func__,
		       run->mmio.len);
	}

	run->mmio.phys_addr = vcpu->arch.paddr_accessed;
	run->mmio.len = bytes;
	run->mmio.is_write = 1;
	vcpu->mmio_needed = 1;
	vcpu->mmio_is_write = 1;

1309 1310 1311
	if ((vcpu->arch.mmio_sp64_extend) && (bytes == 4))
		val = dp_to_sp(val);

1312
	/* Store the value at the lowest bytes in 'data'. */
1313
	if (!host_swabbed) {
1314
		switch (bytes) {
1315
		case 8: *(u64 *)data = val; break;
1316 1317 1318 1319 1320 1321
		case 4: *(u32 *)data = val; break;
		case 2: *(u16 *)data = val; break;
		case 1: *(u8  *)data = val; break;
		}
	} else {
		switch (bytes) {
1322 1323 1324 1325
		case 8: *(u64 *)data = swab64(val); break;
		case 4: *(u32 *)data = swab32(val); break;
		case 2: *(u16 *)data = swab16(val); break;
		case 1: *(u8  *)data = val; break;
1326 1327 1328
		}
	}

1329 1330
	idx = srcu_read_lock(&vcpu->kvm->srcu);

1331
	ret = kvm_io_bus_write(vcpu, KVM_MMIO_BUS, run->mmio.phys_addr,
1332 1333 1334 1335 1336
			       bytes, &run->mmio.data);

	srcu_read_unlock(&vcpu->kvm->srcu, idx);

	if (!ret) {
A
Alexander Graf 已提交
1337 1338 1339 1340
		vcpu->mmio_needed = 0;
		return EMULATE_DONE;
	}

1341 1342
	return EMULATE_DO_MMIO;
}
1343
EXPORT_SYMBOL_GPL(kvmppc_handle_store);
1344

1345 1346 1347 1348 1349 1350
#ifdef CONFIG_VSX
static inline int kvmppc_get_vsr_data(struct kvm_vcpu *vcpu, int rs, u64 *val)
{
	u32 dword_offset, word_offset;
	union kvmppc_one_reg reg;
	int vsx_offset = 0;
1351
	int copy_type = vcpu->arch.mmio_copy_type;
1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363
	int result = 0;

	switch (copy_type) {
	case KVMPPC_VSX_COPY_DWORD:
		vsx_offset =
			kvmppc_get_vsr_dword_offset(vcpu->arch.mmio_vsx_offset);

		if (vsx_offset == -1) {
			result = -1;
			break;
		}

1364
		if (rs < 32) {
1365 1366
			*val = VCPU_VSX_FPR(vcpu, rs, vsx_offset);
		} else {
1367
			reg.vval = VCPU_VSX_VR(vcpu, rs - 32);
1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380
			*val = reg.vsxval[vsx_offset];
		}
		break;

	case KVMPPC_VSX_COPY_WORD:
		vsx_offset =
			kvmppc_get_vsr_word_offset(vcpu->arch.mmio_vsx_offset);

		if (vsx_offset == -1) {
			result = -1;
			break;
		}

1381
		if (rs < 32) {
1382 1383 1384 1385 1386
			dword_offset = vsx_offset / 2;
			word_offset = vsx_offset % 2;
			reg.vsxval[0] = VCPU_VSX_FPR(vcpu, rs, dword_offset);
			*val = reg.vsx32val[word_offset];
		} else {
1387
			reg.vval = VCPU_VSX_VR(vcpu, rs - 32);
1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407
			*val = reg.vsx32val[vsx_offset];
		}
		break;

	default:
		result = -1;
		break;
	}

	return result;
}

int kvmppc_handle_vsx_store(struct kvm_run *run, struct kvm_vcpu *vcpu,
			int rs, unsigned int bytes, int is_default_endian)
{
	u64 val;
	enum emulation_result emulated = EMULATE_DONE;

	vcpu->arch.io_gpr = rs;

1408 1409
	/* Currently, mmio_vsx_copy_nums only allowed to be 4 or less */
	if (vcpu->arch.mmio_vsx_copy_nums > 4)
1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465
		return EMULATE_FAIL;

	while (vcpu->arch.mmio_vsx_copy_nums) {
		if (kvmppc_get_vsr_data(vcpu, rs, &val) == -1)
			return EMULATE_FAIL;

		emulated = kvmppc_handle_store(run, vcpu,
			 val, bytes, is_default_endian);

		if (emulated != EMULATE_DONE)
			break;

		vcpu->arch.paddr_accessed += run->mmio.len;

		vcpu->arch.mmio_vsx_copy_nums--;
		vcpu->arch.mmio_vsx_offset++;
	}

	return emulated;
}

static int kvmppc_emulate_mmio_vsx_loadstore(struct kvm_vcpu *vcpu,
			struct kvm_run *run)
{
	enum emulation_result emulated = EMULATE_FAIL;
	int r;

	vcpu->arch.paddr_accessed += run->mmio.len;

	if (!vcpu->mmio_is_write) {
		emulated = kvmppc_handle_vsx_load(run, vcpu, vcpu->arch.io_gpr,
			 run->mmio.len, 1, vcpu->arch.mmio_sign_extend);
	} else {
		emulated = kvmppc_handle_vsx_store(run, vcpu,
			 vcpu->arch.io_gpr, run->mmio.len, 1);
	}

	switch (emulated) {
	case EMULATE_DO_MMIO:
		run->exit_reason = KVM_EXIT_MMIO;
		r = RESUME_HOST;
		break;
	case EMULATE_FAIL:
		pr_info("KVM: MMIO emulation failed (VSX repeat)\n");
		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
		run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
		r = RESUME_HOST;
		break;
	default:
		r = RESUME_GUEST;
		break;
	}
	return r;
}
#endif /* CONFIG_VSX */

1466
#ifdef CONFIG_ALTIVEC
1467 1468
int kvmppc_handle_vmx_load(struct kvm_run *run, struct kvm_vcpu *vcpu,
		unsigned int rt, unsigned int bytes, int is_default_endian)
1469
{
1470
	enum emulation_result emulated = EMULATE_DONE;
1471

1472 1473 1474
	if (vcpu->arch.mmio_vsx_copy_nums > 2)
		return EMULATE_FAIL;

1475
	while (vcpu->arch.mmio_vmx_copy_nums) {
1476
		emulated = __kvmppc_handle_load(run, vcpu, rt, bytes,
1477 1478 1479 1480 1481 1482 1483
				is_default_endian, 0);

		if (emulated != EMULATE_DONE)
			break;

		vcpu->arch.paddr_accessed += run->mmio.len;
		vcpu->arch.mmio_vmx_copy_nums--;
1484
		vcpu->arch.mmio_vmx_offset++;
1485 1486 1487 1488 1489
	}

	return emulated;
}

1490
int kvmppc_get_vmx_dword(struct kvm_vcpu *vcpu, int index, u64 *val)
1491
{
1492 1493 1494
	union kvmppc_one_reg reg;
	int vmx_offset = 0;
	int result = 0;
1495

1496 1497
	vmx_offset =
		kvmppc_get_vmx_dword_offset(vcpu, vcpu->arch.mmio_vmx_offset);
1498

1499
	if (vmx_offset == -1)
1500 1501
		return -1;

1502 1503
	reg.vval = VCPU_VSX_VR(vcpu, index);
	*val = reg.vsxval[vmx_offset];
1504

1505 1506
	return result;
}
1507

1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541
int kvmppc_get_vmx_word(struct kvm_vcpu *vcpu, int index, u64 *val)
{
	union kvmppc_one_reg reg;
	int vmx_offset = 0;
	int result = 0;

	vmx_offset =
		kvmppc_get_vmx_word_offset(vcpu, vcpu->arch.mmio_vmx_offset);

	if (vmx_offset == -1)
		return -1;

	reg.vval = VCPU_VSX_VR(vcpu, index);
	*val = reg.vsx32val[vmx_offset];

	return result;
}

int kvmppc_get_vmx_hword(struct kvm_vcpu *vcpu, int index, u64 *val)
{
	union kvmppc_one_reg reg;
	int vmx_offset = 0;
	int result = 0;

	vmx_offset =
		kvmppc_get_vmx_hword_offset(vcpu, vcpu->arch.mmio_vmx_offset);

	if (vmx_offset == -1)
		return -1;

	reg.vval = VCPU_VSX_VR(vcpu, index);
	*val = reg.vsx16val[vmx_offset];

	return result;
1542 1543
}

1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559
int kvmppc_get_vmx_byte(struct kvm_vcpu *vcpu, int index, u64 *val)
{
	union kvmppc_one_reg reg;
	int vmx_offset = 0;
	int result = 0;

	vmx_offset =
		kvmppc_get_vmx_byte_offset(vcpu, vcpu->arch.mmio_vmx_offset);

	if (vmx_offset == -1)
		return -1;

	reg.vval = VCPU_VSX_VR(vcpu, index);
	*val = reg.vsx8val[vmx_offset];

	return result;
1560 1561
}

1562 1563
int kvmppc_handle_vmx_store(struct kvm_run *run, struct kvm_vcpu *vcpu,
		unsigned int rs, unsigned int bytes, int is_default_endian)
1564 1565
{
	u64 val = 0;
1566
	unsigned int index = rs & KVM_MMIO_REG_MASK;
1567 1568
	enum emulation_result emulated = EMULATE_DONE;

1569 1570 1571
	if (vcpu->arch.mmio_vsx_copy_nums > 2)
		return EMULATE_FAIL;

1572 1573 1574
	vcpu->arch.io_gpr = rs;

	while (vcpu->arch.mmio_vmx_copy_nums) {
1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593
		switch (vcpu->arch.mmio_copy_type) {
		case KVMPPC_VMX_COPY_DWORD:
			if (kvmppc_get_vmx_dword(vcpu, index, &val) == -1)
				return EMULATE_FAIL;

			break;
		case KVMPPC_VMX_COPY_WORD:
			if (kvmppc_get_vmx_word(vcpu, index, &val) == -1)
				return EMULATE_FAIL;
			break;
		case KVMPPC_VMX_COPY_HWORD:
			if (kvmppc_get_vmx_hword(vcpu, index, &val) == -1)
				return EMULATE_FAIL;
			break;
		case KVMPPC_VMX_COPY_BYTE:
			if (kvmppc_get_vmx_byte(vcpu, index, &val) == -1)
				return EMULATE_FAIL;
			break;
		default:
1594
			return EMULATE_FAIL;
1595
		}
1596

1597
		emulated = kvmppc_handle_store(run, vcpu, val, bytes,
1598 1599 1600 1601 1602 1603
				is_default_endian);
		if (emulated != EMULATE_DONE)
			break;

		vcpu->arch.paddr_accessed += run->mmio.len;
		vcpu->arch.mmio_vmx_copy_nums--;
1604
		vcpu->arch.mmio_vmx_offset++;
1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618
	}

	return emulated;
}

static int kvmppc_emulate_mmio_vmx_loadstore(struct kvm_vcpu *vcpu,
		struct kvm_run *run)
{
	enum emulation_result emulated = EMULATE_FAIL;
	int r;

	vcpu->arch.paddr_accessed += run->mmio.len;

	if (!vcpu->mmio_is_write) {
1619 1620
		emulated = kvmppc_handle_vmx_load(run, vcpu,
				vcpu->arch.io_gpr, run->mmio.len, 1);
1621
	} else {
1622 1623
		emulated = kvmppc_handle_vmx_store(run, vcpu,
				vcpu->arch.io_gpr, run->mmio.len, 1);
1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644
	}

	switch (emulated) {
	case EMULATE_DO_MMIO:
		run->exit_reason = KVM_EXIT_MMIO;
		r = RESUME_HOST;
		break;
	case EMULATE_FAIL:
		pr_info("KVM: MMIO emulation failed (VMX repeat)\n");
		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
		run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
		r = RESUME_HOST;
		break;
	default:
		r = RESUME_GUEST;
		break;
	}
	return r;
}
#endif /* CONFIG_ALTIVEC */

1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658
int kvm_vcpu_ioctl_get_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg)
{
	int r = 0;
	union kvmppc_one_reg val;
	int size;

	size = one_reg_size(reg->id);
	if (size > sizeof(val))
		return -EINVAL;

	r = kvmppc_get_one_reg(vcpu, reg->id, &val);
	if (r == -EINVAL) {
		r = 0;
		switch (reg->id) {
1659 1660 1661 1662 1663 1664
#ifdef CONFIG_ALTIVEC
		case KVM_REG_PPC_VR0 ... KVM_REG_PPC_VR31:
			if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
				r = -ENXIO;
				break;
			}
1665
			val.vval = vcpu->arch.vr.vr[reg->id - KVM_REG_PPC_VR0];
1666 1667 1668 1669 1670 1671
			break;
		case KVM_REG_PPC_VSCR:
			if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
				r = -ENXIO;
				break;
			}
1672
			val = get_reg_val(reg->id, vcpu->arch.vr.vscr.u[3]);
1673 1674
			break;
		case KVM_REG_PPC_VRSAVE:
1675
			val = get_reg_val(reg->id, vcpu->arch.vrsave);
1676 1677
			break;
#endif /* CONFIG_ALTIVEC */
1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709
		default:
			r = -EINVAL;
			break;
		}
	}

	if (r)
		return r;

	if (copy_to_user((char __user *)(unsigned long)reg->addr, &val, size))
		r = -EFAULT;

	return r;
}

int kvm_vcpu_ioctl_set_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg)
{
	int r;
	union kvmppc_one_reg val;
	int size;

	size = one_reg_size(reg->id);
	if (size > sizeof(val))
		return -EINVAL;

	if (copy_from_user(&val, (char __user *)(unsigned long)reg->addr, size))
		return -EFAULT;

	r = kvmppc_set_one_reg(vcpu, reg->id, &val);
	if (r == -EINVAL) {
		r = 0;
		switch (reg->id) {
1710 1711 1712 1713 1714 1715
#ifdef CONFIG_ALTIVEC
		case KVM_REG_PPC_VR0 ... KVM_REG_PPC_VR31:
			if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
				r = -ENXIO;
				break;
			}
1716
			vcpu->arch.vr.vr[reg->id - KVM_REG_PPC_VR0] = val.vval;
1717 1718 1719 1720 1721 1722
			break;
		case KVM_REG_PPC_VSCR:
			if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
				r = -ENXIO;
				break;
			}
1723
			vcpu->arch.vr.vscr.u[3] = set_reg_val(reg->id, val);
1724 1725
			break;
		case KVM_REG_PPC_VRSAVE:
1726 1727 1728 1729 1730
			if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
				r = -ENXIO;
				break;
			}
			vcpu->arch.vrsave = set_reg_val(reg->id, val);
1731 1732
			break;
#endif /* CONFIG_ALTIVEC */
1733 1734 1735 1736 1737 1738 1739 1740 1741
		default:
			r = -EINVAL;
			break;
		}
	}

	return r;
}

1742 1743 1744 1745
int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
{
	int r;

1746 1747
	vcpu_load(vcpu);

1748
	if (vcpu->mmio_needed) {
1749
		vcpu->mmio_needed = 0;
1750 1751
		if (!vcpu->mmio_is_write)
			kvmppc_complete_mmio_load(vcpu, run);
1752 1753 1754 1755 1756 1757 1758 1759 1760 1761
#ifdef CONFIG_VSX
		if (vcpu->arch.mmio_vsx_copy_nums > 0) {
			vcpu->arch.mmio_vsx_copy_nums--;
			vcpu->arch.mmio_vsx_offset++;
		}

		if (vcpu->arch.mmio_vsx_copy_nums > 0) {
			r = kvmppc_emulate_mmio_vsx_loadstore(vcpu, run);
			if (r == RESUME_HOST) {
				vcpu->mmio_needed = 1;
1762
				goto out;
1763 1764
			}
		}
1765 1766
#endif
#ifdef CONFIG_ALTIVEC
1767
		if (vcpu->arch.mmio_vmx_copy_nums > 0) {
1768
			vcpu->arch.mmio_vmx_copy_nums--;
1769 1770
			vcpu->arch.mmio_vmx_offset++;
		}
1771 1772 1773 1774 1775

		if (vcpu->arch.mmio_vmx_copy_nums > 0) {
			r = kvmppc_emulate_mmio_vmx_loadstore(vcpu, run);
			if (r == RESUME_HOST) {
				vcpu->mmio_needed = 1;
1776
				goto out;
1777 1778
			}
		}
1779
#endif
1780 1781 1782 1783 1784 1785 1786
	} else if (vcpu->arch.osi_needed) {
		u64 *gprs = run->osi.gprs;
		int i;

		for (i = 0; i < 32; i++)
			kvmppc_set_gpr(vcpu, i, gprs[i]);
		vcpu->arch.osi_needed = 0;
1787 1788 1789 1790 1791 1792 1793
	} else if (vcpu->arch.hcall_needed) {
		int i;

		kvmppc_set_gpr(vcpu, 3, run->papr_hcall.ret);
		for (i = 0; i < 9; ++i)
			kvmppc_set_gpr(vcpu, 4 + i, run->papr_hcall.args[i]);
		vcpu->arch.hcall_needed = 0;
1794 1795 1796 1797 1798
#ifdef CONFIG_BOOKE
	} else if (vcpu->arch.epr_needed) {
		kvmppc_set_epr(vcpu, run->epr.epr);
		vcpu->arch.epr_needed = 0;
#endif
1799 1800
	}

1801
	kvm_sigset_activate(vcpu);
1802

1803 1804 1805 1806
	if (run->immediate_exit)
		r = -EINTR;
	else
		r = kvmppc_vcpu_run(run, vcpu);
1807

1808
	kvm_sigset_deactivate(vcpu);
1809

1810
#ifdef CONFIG_ALTIVEC
1811
out:
1812
#endif
1813
	vcpu_put(vcpu);
1814 1815 1816 1817 1818
	return r;
}

int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, struct kvm_interrupt *irq)
{
1819
	if (irq->irq == KVM_INTERRUPT_UNSET) {
1820
		kvmppc_core_dequeue_external(vcpu);
1821 1822 1823 1824
		return 0;
	}

	kvmppc_core_queue_external(vcpu, irq);
1825

1826
	kvm_vcpu_kick(vcpu);
1827

1828 1829 1830
	return 0;
}

1831 1832 1833 1834 1835 1836 1837 1838 1839
static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
				     struct kvm_enable_cap *cap)
{
	int r;

	if (cap->flags)
		return -EINVAL;

	switch (cap->cap) {
1840 1841 1842 1843
	case KVM_CAP_PPC_OSI:
		r = 0;
		vcpu->arch.osi_enabled = true;
		break;
1844 1845 1846 1847
	case KVM_CAP_PPC_PAPR:
		r = 0;
		vcpu->arch.papr_enabled = true;
		break;
1848 1849
	case KVM_CAP_PPC_EPR:
		r = 0;
1850 1851 1852 1853
		if (cap->args[0])
			vcpu->arch.epr_flags |= KVMPPC_EPR_USER;
		else
			vcpu->arch.epr_flags &= ~KVMPPC_EPR_USER;
1854
		break;
1855 1856 1857 1858 1859 1860
#ifdef CONFIG_BOOKE
	case KVM_CAP_PPC_BOOKE_WATCHDOG:
		r = 0;
		vcpu->arch.watchdog_enabled = true;
		break;
#endif
1861
#if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
S
Scott Wood 已提交
1862 1863 1864 1865 1866 1867 1868 1869 1870 1871
	case KVM_CAP_SW_TLB: {
		struct kvm_config_tlb cfg;
		void __user *user_ptr = (void __user *)(uintptr_t)cap->args[0];

		r = -EFAULT;
		if (copy_from_user(&cfg, user_ptr, sizeof(cfg)))
			break;

		r = kvm_vcpu_ioctl_config_tlb(vcpu, &cfg);
		break;
S
Scott Wood 已提交
1872 1873 1874 1875
	}
#endif
#ifdef CONFIG_KVM_MPIC
	case KVM_CAP_IRQ_MPIC: {
A
Al Viro 已提交
1876
		struct fd f;
S
Scott Wood 已提交
1877 1878 1879
		struct kvm_device *dev;

		r = -EBADF;
A
Al Viro 已提交
1880 1881
		f = fdget(cap->args[0]);
		if (!f.file)
S
Scott Wood 已提交
1882 1883 1884
			break;

		r = -EPERM;
A
Al Viro 已提交
1885
		dev = kvm_device_from_filp(f.file);
S
Scott Wood 已提交
1886 1887 1888
		if (dev)
			r = kvmppc_mpic_connect_vcpu(dev, vcpu, cap->args[1]);

A
Al Viro 已提交
1889
		fdput(f);
S
Scott Wood 已提交
1890
		break;
S
Scott Wood 已提交
1891 1892
	}
#endif
1893 1894
#ifdef CONFIG_KVM_XICS
	case KVM_CAP_IRQ_XICS: {
A
Al Viro 已提交
1895
		struct fd f;
1896 1897 1898
		struct kvm_device *dev;

		r = -EBADF;
A
Al Viro 已提交
1899 1900
		f = fdget(cap->args[0]);
		if (!f.file)
1901 1902 1903
			break;

		r = -EPERM;
A
Al Viro 已提交
1904
		dev = kvm_device_from_filp(f.file);
1905 1906 1907 1908 1909 1910
		if (dev) {
			if (xive_enabled())
				r = kvmppc_xive_connect_vcpu(dev, vcpu, cap->args[1]);
			else
				r = kvmppc_xics_connect_vcpu(dev, vcpu, cap->args[1]);
		}
1911

A
Al Viro 已提交
1912
		fdput(f);
1913 1914 1915
		break;
	}
#endif /* CONFIG_KVM_XICS */
1916 1917 1918 1919 1920 1921 1922 1923 1924
#ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
	case KVM_CAP_PPC_FWNMI:
		r = -EINVAL;
		if (!is_kvmppc_hv_enabled(vcpu->kvm))
			break;
		r = 0;
		vcpu->kvm->arch.fwnmi_enabled = true;
		break;
#endif /* CONFIG_KVM_BOOK3S_HV_POSSIBLE */
1925 1926 1927 1928 1929
	default:
		r = -EINVAL;
		break;
	}

1930 1931 1932
	if (!r)
		r = kvmppc_sanity_check(vcpu);

1933 1934 1935
	return r;
}

1936 1937 1938 1939 1940 1941 1942
bool kvm_arch_intc_initialized(struct kvm *kvm)
{
#ifdef CONFIG_KVM_MPIC
	if (kvm->arch.mpic)
		return true;
#endif
#ifdef CONFIG_KVM_XICS
1943
	if (kvm->arch.xics || kvm->arch.xive)
1944 1945 1946 1947 1948
		return true;
#endif
	return false;
}

1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960
int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
                                    struct kvm_mp_state *mp_state)
{
	return -EINVAL;
}

int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
                                    struct kvm_mp_state *mp_state)
{
	return -EINVAL;
}

1961 1962
long kvm_arch_vcpu_async_ioctl(struct file *filp,
			       unsigned int ioctl, unsigned long arg)
1963 1964 1965 1966
{
	struct kvm_vcpu *vcpu = filp->private_data;
	void __user *argp = (void __user *)arg;

1967
	if (ioctl == KVM_INTERRUPT) {
1968 1969
		struct kvm_interrupt irq;
		if (copy_from_user(&irq, argp, sizeof(irq)))
1970 1971
			return -EFAULT;
		return kvm_vcpu_ioctl_interrupt(vcpu, &irq);
1972
	}
1973 1974 1975 1976 1977 1978 1979 1980 1981
	return -ENOIOCTLCMD;
}

long kvm_arch_vcpu_ioctl(struct file *filp,
                         unsigned int ioctl, unsigned long arg)
{
	struct kvm_vcpu *vcpu = filp->private_data;
	void __user *argp = (void __user *)arg;
	long r;
1982

1983
	switch (ioctl) {
1984 1985 1986 1987
	case KVM_ENABLE_CAP:
	{
		struct kvm_enable_cap cap;
		r = -EFAULT;
1988
		vcpu_load(vcpu);
1989 1990 1991
		if (copy_from_user(&cap, argp, sizeof(cap)))
			goto out;
		r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
1992
		vcpu_put(vcpu);
1993 1994
		break;
	}
S
Scott Wood 已提交
1995

1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009
	case KVM_SET_ONE_REG:
	case KVM_GET_ONE_REG:
	{
		struct kvm_one_reg reg;
		r = -EFAULT;
		if (copy_from_user(&reg, argp, sizeof(reg)))
			goto out;
		if (ioctl == KVM_SET_ONE_REG)
			r = kvm_vcpu_ioctl_set_one_reg(vcpu, &reg);
		else
			r = kvm_vcpu_ioctl_get_one_reg(vcpu, &reg);
		break;
	}

2010
#if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
S
Scott Wood 已提交
2011 2012 2013
	case KVM_DIRTY_TLB: {
		struct kvm_dirty_tlb dirty;
		r = -EFAULT;
2014
		vcpu_load(vcpu);
S
Scott Wood 已提交
2015 2016 2017
		if (copy_from_user(&dirty, argp, sizeof(dirty)))
			goto out;
		r = kvm_vcpu_ioctl_dirty_tlb(vcpu, &dirty);
2018
		vcpu_put(vcpu);
S
Scott Wood 已提交
2019 2020 2021
		break;
	}
#endif
2022 2023 2024 2025 2026 2027 2028 2029
	default:
		r = -EINVAL;
	}

out:
	return r;
}

2030
vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
2031 2032 2033 2034
{
	return VM_FAULT_SIGBUS;
}

2035 2036
static int kvm_vm_ioctl_get_pvinfo(struct kvm_ppc_pvinfo *pvinfo)
{
2037 2038 2039
	u32 inst_nop = 0x60000000;
#ifdef CONFIG_KVM_BOOKE_HV
	u32 inst_sc1 = 0x44000022;
2040 2041 2042 2043
	pvinfo->hcall[0] = cpu_to_be32(inst_sc1);
	pvinfo->hcall[1] = cpu_to_be32(inst_nop);
	pvinfo->hcall[2] = cpu_to_be32(inst_nop);
	pvinfo->hcall[3] = cpu_to_be32(inst_nop);
2044
#else
2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058
	u32 inst_lis = 0x3c000000;
	u32 inst_ori = 0x60000000;
	u32 inst_sc = 0x44000002;
	u32 inst_imm_mask = 0xffff;

	/*
	 * The hypercall to get into KVM from within guest context is as
	 * follows:
	 *
	 *    lis r0, r0, KVM_SC_MAGIC_R0@h
	 *    ori r0, KVM_SC_MAGIC_R0@l
	 *    sc
	 *    nop
	 */
2059 2060 2061 2062
	pvinfo->hcall[0] = cpu_to_be32(inst_lis | ((KVM_SC_MAGIC_R0 >> 16) & inst_imm_mask));
	pvinfo->hcall[1] = cpu_to_be32(inst_ori | (KVM_SC_MAGIC_R0 & inst_imm_mask));
	pvinfo->hcall[2] = cpu_to_be32(inst_sc);
	pvinfo->hcall[3] = cpu_to_be32(inst_nop);
2063
#endif
2064

2065 2066
	pvinfo->flags = KVM_PPC_PVINFO_FLAGS_EV_IDLE;

2067 2068 2069
	return 0;
}

2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081
int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
			  bool line_status)
{
	if (!irqchip_in_kernel(kvm))
		return -ENXIO;

	irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
					irq_event->irq, irq_event->level,
					line_status);
	return 0;
}

2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099

static int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
				   struct kvm_enable_cap *cap)
{
	int r;

	if (cap->flags)
		return -EINVAL;

	switch (cap->cap) {
#ifdef CONFIG_KVM_BOOK3S_64_HANDLER
	case KVM_CAP_PPC_ENABLE_HCALL: {
		unsigned long hcall = cap->args[0];

		r = -EINVAL;
		if (hcall > MAX_HCALL_OPCODE || (hcall & 3) ||
		    cap->args[1] > 1)
			break;
2100 2101
		if (!kvmppc_book3s_hcall_implemented(kvm, hcall))
			break;
2102 2103 2104 2105 2106 2107 2108
		if (cap->args[1])
			set_bit(hcall / 4, kvm->arch.enabled_hcalls);
		else
			clear_bit(hcall / 4, kvm->arch.enabled_hcalls);
		r = 0;
		break;
	}
2109 2110 2111 2112 2113 2114 2115 2116 2117
	case KVM_CAP_PPC_SMT: {
		unsigned long mode = cap->args[0];
		unsigned long flags = cap->args[1];

		r = -EINVAL;
		if (kvm->arch.kvm_ops->set_smt_mode)
			r = kvm->arch.kvm_ops->set_smt_mode(kvm, mode, flags);
		break;
	}
2118 2119 2120 2121 2122 2123 2124 2125 2126
#endif
	default:
		r = -EINVAL;
		break;
	}

	return r;
}

2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244
#ifdef CONFIG_PPC_BOOK3S_64
/*
 * These functions check whether the underlying hardware is safe
 * against attacks based on observing the effects of speculatively
 * executed instructions, and whether it supplies instructions for
 * use in workarounds.  The information comes from firmware, either
 * via the device tree on powernv platforms or from an hcall on
 * pseries platforms.
 */
#ifdef CONFIG_PPC_PSERIES
static int pseries_get_cpu_char(struct kvm_ppc_cpu_char *cp)
{
	struct h_cpu_char_result c;
	unsigned long rc;

	if (!machine_is(pseries))
		return -ENOTTY;

	rc = plpar_get_cpu_characteristics(&c);
	if (rc == H_SUCCESS) {
		cp->character = c.character;
		cp->behaviour = c.behaviour;
		cp->character_mask = KVM_PPC_CPU_CHAR_SPEC_BAR_ORI31 |
			KVM_PPC_CPU_CHAR_BCCTRL_SERIALISED |
			KVM_PPC_CPU_CHAR_L1D_FLUSH_ORI30 |
			KVM_PPC_CPU_CHAR_L1D_FLUSH_TRIG2 |
			KVM_PPC_CPU_CHAR_L1D_THREAD_PRIV |
			KVM_PPC_CPU_CHAR_BR_HINT_HONOURED |
			KVM_PPC_CPU_CHAR_MTTRIG_THR_RECONF |
			KVM_PPC_CPU_CHAR_COUNT_CACHE_DIS;
		cp->behaviour_mask = KVM_PPC_CPU_BEHAV_FAVOUR_SECURITY |
			KVM_PPC_CPU_BEHAV_L1D_FLUSH_PR |
			KVM_PPC_CPU_BEHAV_BNDS_CHK_SPEC_BAR;
	}
	return 0;
}
#else
static int pseries_get_cpu_char(struct kvm_ppc_cpu_char *cp)
{
	return -ENOTTY;
}
#endif

static inline bool have_fw_feat(struct device_node *fw_features,
				const char *state, const char *name)
{
	struct device_node *np;
	bool r = false;

	np = of_get_child_by_name(fw_features, name);
	if (np) {
		r = of_property_read_bool(np, state);
		of_node_put(np);
	}
	return r;
}

static int kvmppc_get_cpu_char(struct kvm_ppc_cpu_char *cp)
{
	struct device_node *np, *fw_features;
	int r;

	memset(cp, 0, sizeof(*cp));
	r = pseries_get_cpu_char(cp);
	if (r != -ENOTTY)
		return r;

	np = of_find_node_by_name(NULL, "ibm,opal");
	if (np) {
		fw_features = of_get_child_by_name(np, "fw-features");
		of_node_put(np);
		if (!fw_features)
			return 0;
		if (have_fw_feat(fw_features, "enabled",
				 "inst-spec-barrier-ori31,31,0"))
			cp->character |= KVM_PPC_CPU_CHAR_SPEC_BAR_ORI31;
		if (have_fw_feat(fw_features, "enabled",
				 "fw-bcctrl-serialized"))
			cp->character |= KVM_PPC_CPU_CHAR_BCCTRL_SERIALISED;
		if (have_fw_feat(fw_features, "enabled",
				 "inst-l1d-flush-ori30,30,0"))
			cp->character |= KVM_PPC_CPU_CHAR_L1D_FLUSH_ORI30;
		if (have_fw_feat(fw_features, "enabled",
				 "inst-l1d-flush-trig2"))
			cp->character |= KVM_PPC_CPU_CHAR_L1D_FLUSH_TRIG2;
		if (have_fw_feat(fw_features, "enabled",
				 "fw-l1d-thread-split"))
			cp->character |= KVM_PPC_CPU_CHAR_L1D_THREAD_PRIV;
		if (have_fw_feat(fw_features, "enabled",
				 "fw-count-cache-disabled"))
			cp->character |= KVM_PPC_CPU_CHAR_COUNT_CACHE_DIS;
		cp->character_mask = KVM_PPC_CPU_CHAR_SPEC_BAR_ORI31 |
			KVM_PPC_CPU_CHAR_BCCTRL_SERIALISED |
			KVM_PPC_CPU_CHAR_L1D_FLUSH_ORI30 |
			KVM_PPC_CPU_CHAR_L1D_FLUSH_TRIG2 |
			KVM_PPC_CPU_CHAR_L1D_THREAD_PRIV |
			KVM_PPC_CPU_CHAR_COUNT_CACHE_DIS;

		if (have_fw_feat(fw_features, "enabled",
				 "speculation-policy-favor-security"))
			cp->behaviour |= KVM_PPC_CPU_BEHAV_FAVOUR_SECURITY;
		if (!have_fw_feat(fw_features, "disabled",
				  "needs-l1d-flush-msr-pr-0-to-1"))
			cp->behaviour |= KVM_PPC_CPU_BEHAV_L1D_FLUSH_PR;
		if (!have_fw_feat(fw_features, "disabled",
				  "needs-spec-barrier-for-bound-checks"))
			cp->behaviour |= KVM_PPC_CPU_BEHAV_BNDS_CHK_SPEC_BAR;
		cp->behaviour_mask = KVM_PPC_CPU_BEHAV_FAVOUR_SECURITY |
			KVM_PPC_CPU_BEHAV_L1D_FLUSH_PR |
			KVM_PPC_CPU_BEHAV_BNDS_CHK_SPEC_BAR;

		of_node_put(fw_features);
	}

	return 0;
}
#endif

2245 2246 2247
long kvm_arch_vm_ioctl(struct file *filp,
                       unsigned int ioctl, unsigned long arg)
{
2248
	struct kvm *kvm __maybe_unused = filp->private_data;
2249
	void __user *argp = (void __user *)arg;
2250 2251 2252
	long r;

	switch (ioctl) {
2253 2254
	case KVM_PPC_GET_PVINFO: {
		struct kvm_ppc_pvinfo pvinfo;
2255
		memset(&pvinfo, 0, sizeof(pvinfo));
2256 2257 2258 2259 2260 2261 2262 2263
		r = kvm_vm_ioctl_get_pvinfo(&pvinfo);
		if (copy_to_user(argp, &pvinfo, sizeof(pvinfo))) {
			r = -EFAULT;
			goto out;
		}

		break;
	}
2264 2265 2266 2267 2268 2269 2270 2271 2272
	case KVM_ENABLE_CAP:
	{
		struct kvm_enable_cap cap;
		r = -EFAULT;
		if (copy_from_user(&cap, argp, sizeof(cap)))
			goto out;
		r = kvm_vm_ioctl_enable_cap(kvm, &cap);
		break;
	}
2273
#ifdef CONFIG_SPAPR_TCE_IOMMU
2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286
	case KVM_CREATE_SPAPR_TCE_64: {
		struct kvm_create_spapr_tce_64 create_tce_64;

		r = -EFAULT;
		if (copy_from_user(&create_tce_64, argp, sizeof(create_tce_64)))
			goto out;
		if (create_tce_64.flags) {
			r = -EINVAL;
			goto out;
		}
		r = kvm_vm_ioctl_create_spapr_tce(kvm, &create_tce_64);
		goto out;
	}
2287 2288
	case KVM_CREATE_SPAPR_TCE: {
		struct kvm_create_spapr_tce create_tce;
2289
		struct kvm_create_spapr_tce_64 create_tce_64;
2290 2291 2292 2293

		r = -EFAULT;
		if (copy_from_user(&create_tce, argp, sizeof(create_tce)))
			goto out;
2294 2295 2296 2297 2298 2299 2300 2301

		create_tce_64.liobn = create_tce.liobn;
		create_tce_64.page_shift = IOMMU_PAGE_SHIFT_4K;
		create_tce_64.offset = 0;
		create_tce_64.size = create_tce.window_size >>
				IOMMU_PAGE_SHIFT_4K;
		create_tce_64.flags = 0;
		r = kvm_vm_ioctl_create_spapr_tce(kvm, &create_tce_64);
2302 2303
		goto out;
	}
2304 2305
#endif
#ifdef CONFIG_PPC_BOOK3S_64
2306 2307
	case KVM_PPC_GET_SMMU_INFO: {
		struct kvm_ppc_smmu_info info;
2308
		struct kvm *kvm = filp->private_data;
2309 2310

		memset(&info, 0, sizeof(info));
2311
		r = kvm->arch.kvm_ops->get_smmu_info(kvm, &info);
2312 2313 2314 2315
		if (r >= 0 && copy_to_user(argp, &info, sizeof(info)))
			r = -EFAULT;
		break;
	}
2316 2317 2318 2319 2320 2321
	case KVM_PPC_RTAS_DEFINE_TOKEN: {
		struct kvm *kvm = filp->private_data;

		r = kvm_vm_ioctl_rtas_define_token(kvm, argp);
		break;
	}
2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346
	case KVM_PPC_CONFIGURE_V3_MMU: {
		struct kvm *kvm = filp->private_data;
		struct kvm_ppc_mmuv3_cfg cfg;

		r = -EINVAL;
		if (!kvm->arch.kvm_ops->configure_mmu)
			goto out;
		r = -EFAULT;
		if (copy_from_user(&cfg, argp, sizeof(cfg)))
			goto out;
		r = kvm->arch.kvm_ops->configure_mmu(kvm, &cfg);
		break;
	}
	case KVM_PPC_GET_RMMU_INFO: {
		struct kvm *kvm = filp->private_data;
		struct kvm_ppc_rmmu_info info;

		r = -EINVAL;
		if (!kvm->arch.kvm_ops->get_rmmu_info)
			goto out;
		r = kvm->arch.kvm_ops->get_rmmu_info(kvm, &info);
		if (r >= 0 && copy_to_user(argp, &info, sizeof(info)))
			r = -EFAULT;
		break;
	}
2347 2348 2349 2350 2351 2352 2353 2354
	case KVM_PPC_GET_CPU_CHAR: {
		struct kvm_ppc_cpu_char cpuchar;

		r = kvmppc_get_cpu_char(&cpuchar);
		if (r >= 0 && copy_to_user(argp, &cpuchar, sizeof(cpuchar)))
			r = -EFAULT;
		break;
	}
2355 2356 2357 2358
	default: {
		struct kvm *kvm = filp->private_data;
		r = kvm->arch.kvm_ops->arch_vm_ioctl(filp, ioctl, arg);
	}
2359
#else /* CONFIG_PPC_BOOK3S_64 */
2360
	default:
2361
		r = -ENOTTY;
2362
#endif
2363
	}
2364
out:
2365 2366 2367
	return r;
}

2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384
static unsigned long lpid_inuse[BITS_TO_LONGS(KVMPPC_NR_LPIDS)];
static unsigned long nr_lpids;

long kvmppc_alloc_lpid(void)
{
	long lpid;

	do {
		lpid = find_first_zero_bit(lpid_inuse, KVMPPC_NR_LPIDS);
		if (lpid >= nr_lpids) {
			pr_err("%s: No LPIDs free\n", __func__);
			return -ENOMEM;
		}
	} while (test_and_set_bit(lpid, lpid_inuse));

	return lpid;
}
2385
EXPORT_SYMBOL_GPL(kvmppc_alloc_lpid);
2386 2387 2388 2389 2390

void kvmppc_claim_lpid(long lpid)
{
	set_bit(lpid, lpid_inuse);
}
2391
EXPORT_SYMBOL_GPL(kvmppc_claim_lpid);
2392 2393 2394 2395 2396

void kvmppc_free_lpid(long lpid)
{
	clear_bit(lpid, lpid_inuse);
}
2397
EXPORT_SYMBOL_GPL(kvmppc_free_lpid);
2398 2399 2400 2401 2402 2403

void kvmppc_init_lpid(unsigned long nr_lpids_param)
{
	nr_lpids = min_t(unsigned long, KVMPPC_NR_LPIDS, nr_lpids_param);
	memset(lpid_inuse, 0, sizeof(lpid_inuse));
}
2404
EXPORT_SYMBOL_GPL(kvmppc_init_lpid);
2405

2406 2407 2408 2409 2410
int kvm_arch_init(void *opaque)
{
	return 0;
}

2411
EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ppc_instr);