powerpc.c 55.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
/*
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License, version 2, as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
 *
 * Copyright IBM Corp. 2007
 *
 * Authors: Hollis Blanchard <hollisb@us.ibm.com>
 *          Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com>
 */

#include <linux/errno.h>
#include <linux/err.h>
#include <linux/kvm_host.h>
#include <linux/vmalloc.h>
A
Alexander Graf 已提交
25
#include <linux/hrtimer.h>
26
#include <linux/sched/signal.h>
27
#include <linux/fs.h>
28
#include <linux/slab.h>
S
Scott Wood 已提交
29
#include <linux/file.h>
30
#include <linux/module.h>
31 32
#include <linux/irqbypass.h>
#include <linux/kvm_irqfd.h>
33
#include <asm/cputable.h>
34
#include <linux/uaccess.h>
35
#include <asm/kvm_ppc.h>
36
#include <asm/cputhreads.h>
37
#include <asm/irqflags.h>
38
#include <asm/iommu.h>
39
#include <asm/switch_to.h>
40
#include <asm/xive.h>
41 42 43 44
#ifdef CONFIG_PPC_PSERIES
#include <asm/hvcall.h>
#include <asm/plpar_wrappers.h>
#endif
45

46
#include "timing.h"
47
#include "irq.h"
P
Paul Mackerras 已提交
48
#include "../mm/mmu_decl.h"
49

50 51 52
#define CREATE_TRACE_POINTS
#include "trace.h"

53 54 55 56 57
struct kvmppc_ops *kvmppc_hv_ops;
EXPORT_SYMBOL_GPL(kvmppc_hv_ops);
struct kvmppc_ops *kvmppc_pr_ops;
EXPORT_SYMBOL_GPL(kvmppc_pr_ops);

58

59 60
int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
{
R
Radim Krčmář 已提交
61
	return !!(v->arch.pending_exceptions) || kvm_request_pending(v);
62 63
}

64 65 66 67 68
bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
{
	return false;
}

69 70 71 72 73
int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
{
	return 1;
}

74 75 76 77
/*
 * Common checks before entering the guest world.  Call with interrupts
 * disabled.
 *
78 79 80 81
 * returns:
 *
 * == 1 if we're ready to go into guest state
 * <= 0 if we need to go back to the host with return value
82 83 84
 */
int kvmppc_prepare_to_enter(struct kvm_vcpu *vcpu)
{
S
Scott Wood 已提交
85 86 87 88
	int r;

	WARN_ON(irqs_disabled());
	hard_irq_disable();
89 90 91 92 93

	while (true) {
		if (need_resched()) {
			local_irq_enable();
			cond_resched();
S
Scott Wood 已提交
94
			hard_irq_disable();
95 96 97 98
			continue;
		}

		if (signal_pending(current)) {
99 100 101
			kvmppc_account_exit(vcpu, SIGNAL_EXITS);
			vcpu->run->exit_reason = KVM_EXIT_INTR;
			r = -EINTR;
102 103 104
			break;
		}

105 106 107 108 109 110 111
		vcpu->mode = IN_GUEST_MODE;

		/*
		 * Reading vcpu->requests must happen after setting vcpu->mode,
		 * so we don't miss a request because the requester sees
		 * OUTSIDE_GUEST_MODE and assumes we'll be checking requests
		 * before next entering the guest (and thus doesn't IPI).
112 113 114
		 * This also orders the write to mode from any reads
		 * to the page tables done while the VCPU is running.
		 * Please see the comment in kvm_flush_remote_tlbs.
115
		 */
116
		smp_mb();
117

R
Radim Krčmář 已提交
118
		if (kvm_request_pending(vcpu)) {
119 120 121
			/* Make sure we process requests preemptable */
			local_irq_enable();
			trace_kvm_check_requests(vcpu);
122
			r = kvmppc_core_check_requests(vcpu);
S
Scott Wood 已提交
123
			hard_irq_disable();
124 125 126
			if (r > 0)
				continue;
			break;
127 128 129 130 131 132 133 134
		}

		if (kvmppc_core_prepare_to_enter(vcpu)) {
			/* interrupts got enabled in between, so we
			   are back at square 1 */
			continue;
		}

135
		guest_enter_irqoff();
S
Scott Wood 已提交
136
		return 1;
137 138
	}

S
Scott Wood 已提交
139 140
	/* return to host */
	local_irq_enable();
141 142
	return r;
}
143
EXPORT_SYMBOL_GPL(kvmppc_prepare_to_enter);
144

145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
#if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_KVM_BOOK3S_PR_POSSIBLE)
static void kvmppc_swab_shared(struct kvm_vcpu *vcpu)
{
	struct kvm_vcpu_arch_shared *shared = vcpu->arch.shared;
	int i;

	shared->sprg0 = swab64(shared->sprg0);
	shared->sprg1 = swab64(shared->sprg1);
	shared->sprg2 = swab64(shared->sprg2);
	shared->sprg3 = swab64(shared->sprg3);
	shared->srr0 = swab64(shared->srr0);
	shared->srr1 = swab64(shared->srr1);
	shared->dar = swab64(shared->dar);
	shared->msr = swab64(shared->msr);
	shared->dsisr = swab32(shared->dsisr);
	shared->int_pending = swab32(shared->int_pending);
	for (i = 0; i < ARRAY_SIZE(shared->sr); i++)
		shared->sr[i] = swab32(shared->sr[i]);
}
#endif

166 167 168 169 170 171 172 173 174 175
int kvmppc_kvm_pv(struct kvm_vcpu *vcpu)
{
	int nr = kvmppc_get_gpr(vcpu, 11);
	int r;
	unsigned long __maybe_unused param1 = kvmppc_get_gpr(vcpu, 3);
	unsigned long __maybe_unused param2 = kvmppc_get_gpr(vcpu, 4);
	unsigned long __maybe_unused param3 = kvmppc_get_gpr(vcpu, 5);
	unsigned long __maybe_unused param4 = kvmppc_get_gpr(vcpu, 6);
	unsigned long r2 = 0;

176
	if (!(kvmppc_get_msr(vcpu) & MSR_SF)) {
177 178 179 180 181 182 183 184
		/* 32 bit mode */
		param1 &= 0xffffffff;
		param2 &= 0xffffffff;
		param3 &= 0xffffffff;
		param4 &= 0xffffffff;
	}

	switch (nr) {
185
	case KVM_HCALL_TOKEN(KVM_HC_PPC_MAP_MAGIC_PAGE):
186
	{
187 188 189 190 191 192 193 194 195 196
#if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_KVM_BOOK3S_PR_POSSIBLE)
		/* Book3S can be little endian, find it out here */
		int shared_big_endian = true;
		if (vcpu->arch.intr_msr & MSR_LE)
			shared_big_endian = false;
		if (shared_big_endian != vcpu->arch.shared_big_endian)
			kvmppc_swab_shared(vcpu);
		vcpu->arch.shared_big_endian = shared_big_endian;
#endif

197 198 199 200 201 202 203 204 205 206 207 208
		if (!(param2 & MAGIC_PAGE_FLAG_NOT_MAPPED_NX)) {
			/*
			 * Older versions of the Linux magic page code had
			 * a bug where they would map their trampoline code
			 * NX. If that's the case, remove !PR NX capability.
			 */
			vcpu->arch.disable_kernel_nx = true;
			kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
		}

		vcpu->arch.magic_page_pa = param1 & ~0xfffULL;
		vcpu->arch.magic_page_ea = param2 & ~0xfffULL;
209

210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
#ifdef CONFIG_PPC_64K_PAGES
		/*
		 * Make sure our 4k magic page is in the same window of a 64k
		 * page within the guest and within the host's page.
		 */
		if ((vcpu->arch.magic_page_pa & 0xf000) !=
		    ((ulong)vcpu->arch.shared & 0xf000)) {
			void *old_shared = vcpu->arch.shared;
			ulong shared = (ulong)vcpu->arch.shared;
			void *new_shared;

			shared &= PAGE_MASK;
			shared |= vcpu->arch.magic_page_pa & 0xf000;
			new_shared = (void*)shared;
			memcpy(new_shared, old_shared, 0x1000);
			vcpu->arch.shared = new_shared;
		}
#endif

229
		r2 = KVM_MAGIC_FEAT_SR | KVM_MAGIC_FEAT_MAS0_TO_SPRG7;
230

231
		r = EV_SUCCESS;
232 233
		break;
	}
234 235
	case KVM_HCALL_TOKEN(KVM_HC_FEATURES):
		r = EV_SUCCESS;
236
#if defined(CONFIG_PPC_BOOK3S) || defined(CONFIG_KVM_E500V2)
237 238
		r2 |= (1 << KVM_FEATURE_MAGIC_PAGE);
#endif
239 240 241

		/* Second return value is in r4 */
		break;
242 243 244
	case EV_HCALL_TOKEN(EV_IDLE):
		r = EV_SUCCESS;
		kvm_vcpu_block(vcpu);
245
		kvm_clear_request(KVM_REQ_UNHALT, vcpu);
246
		break;
247
	default:
248
		r = EV_UNIMPLEMENTED;
249 250 251
		break;
	}

252 253
	kvmppc_set_gpr(vcpu, 4, r2);

254 255
	return r;
}
256
EXPORT_SYMBOL_GPL(kvmppc_kvm_pv);
257

258 259 260 261 262 263 264 265 266 267 268 269 270
int kvmppc_sanity_check(struct kvm_vcpu *vcpu)
{
	int r = false;

	/* We have to know what CPU to virtualize */
	if (!vcpu->arch.pvr)
		goto out;

	/* PAPR only works with book3s_64 */
	if ((vcpu->arch.cpu_type != KVM_CPU_3S_64) && vcpu->arch.papr_enabled)
		goto out;

	/* HV KVM can only do PAPR mode for now */
271
	if (!vcpu->arch.papr_enabled && is_kvmppc_hv_enabled(vcpu->kvm))
272 273
		goto out;

274 275 276 277 278
#ifdef CONFIG_KVM_BOOKE_HV
	if (!cpu_has_feature(CPU_FTR_EMB_HV))
		goto out;
#endif

279 280 281 282 283 284
	r = true;

out:
	vcpu->arch.sane = r;
	return r ? 0 : -EINVAL;
}
285
EXPORT_SYMBOL_GPL(kvmppc_sanity_check);
286

287 288 289 290 291
int kvmppc_emulate_mmio(struct kvm_run *run, struct kvm_vcpu *vcpu)
{
	enum emulation_result er;
	int r;

292
	er = kvmppc_emulate_loadstore(vcpu);
293 294 295 296 297 298
	switch (er) {
	case EMULATE_DONE:
		/* Future optimization: only reload non-volatiles if they were
		 * actually modified. */
		r = RESUME_GUEST_NV;
		break;
299 300 301
	case EMULATE_AGAIN:
		r = RESUME_GUEST;
		break;
302 303 304 305 306 307 308 309 310
	case EMULATE_DO_MMIO:
		run->exit_reason = KVM_EXIT_MMIO;
		/* We must reload nonvolatiles because "update" load/store
		 * instructions modify register state. */
		/* Future optimization: only reload non-volatiles if they were
		 * actually modified. */
		r = RESUME_HOST_NV;
		break;
	case EMULATE_FAIL:
311 312 313
	{
		u32 last_inst;

314
		kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst);
315
		/* XXX Deliver Program interrupt to guest. */
316
		pr_emerg("%s: emulation failed (%08x)\n", __func__, last_inst);
317 318
		r = RESUME_HOST;
		break;
319
	}
320
	default:
321 322
		WARN_ON(1);
		r = RESUME_GUEST;
323 324 325 326
	}

	return r;
}
327
EXPORT_SYMBOL_GPL(kvmppc_emulate_mmio);
328

329 330 331
int kvmppc_st(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr,
	      bool data)
{
332
	ulong mp_pa = vcpu->arch.magic_page_pa & KVM_PAM & PAGE_MASK;
333
	struct kvmppc_pte pte;
334
	int r = -EINVAL;
335 336 337

	vcpu->stat.st++;

338 339 340 341 342 343 344
	if (vcpu->kvm->arch.kvm_ops && vcpu->kvm->arch.kvm_ops->store_to_eaddr)
		r = vcpu->kvm->arch.kvm_ops->store_to_eaddr(vcpu, eaddr, ptr,
							    size);

	if ((!r) || (r == -EAGAIN))
		return r;

345 346 347 348 349 350 351 352 353 354
	r = kvmppc_xlate(vcpu, *eaddr, data ? XLATE_DATA : XLATE_INST,
			 XLATE_WRITE, &pte);
	if (r < 0)
		return r;

	*eaddr = pte.raddr;

	if (!pte.may_write)
		return -EPERM;

355 356 357 358 359 360 361 362 363 364
	/* Magic page override */
	if (kvmppc_supports_magic_page(vcpu) && mp_pa &&
	    ((pte.raddr & KVM_PAM & PAGE_MASK) == mp_pa) &&
	    !(kvmppc_get_msr(vcpu) & MSR_PR)) {
		void *magic = vcpu->arch.shared;
		magic += pte.eaddr & 0xfff;
		memcpy(magic, ptr, size);
		return EMULATE_DONE;
	}

365 366 367 368 369 370 371 372 373 374
	if (kvm_write_guest(vcpu->kvm, pte.raddr, ptr, size))
		return EMULATE_DO_MMIO;

	return EMULATE_DONE;
}
EXPORT_SYMBOL_GPL(kvmppc_st);

int kvmppc_ld(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr,
		      bool data)
{
375
	ulong mp_pa = vcpu->arch.magic_page_pa & KVM_PAM & PAGE_MASK;
376
	struct kvmppc_pte pte;
377
	int rc = -EINVAL;
378 379 380

	vcpu->stat.ld++;

381 382 383 384 385 386 387
	if (vcpu->kvm->arch.kvm_ops && vcpu->kvm->arch.kvm_ops->load_from_eaddr)
		rc = vcpu->kvm->arch.kvm_ops->load_from_eaddr(vcpu, eaddr, ptr,
							      size);

	if ((!rc) || (rc == -EAGAIN))
		return rc;

388 389 390 391 392 393 394 395 396 397 398 399 400
	rc = kvmppc_xlate(vcpu, *eaddr, data ? XLATE_DATA : XLATE_INST,
			  XLATE_READ, &pte);
	if (rc)
		return rc;

	*eaddr = pte.raddr;

	if (!pte.may_read)
		return -EPERM;

	if (!data && !pte.may_execute)
		return -ENOEXEC;

401 402 403 404 405 406 407 408 409 410
	/* Magic page override */
	if (kvmppc_supports_magic_page(vcpu) && mp_pa &&
	    ((pte.raddr & KVM_PAM & PAGE_MASK) == mp_pa) &&
	    !(kvmppc_get_msr(vcpu) & MSR_PR)) {
		void *magic = vcpu->arch.shared;
		magic += pte.eaddr & 0xfff;
		memcpy(ptr, magic, size);
		return EMULATE_DONE;
	}

411 412
	if (kvm_read_guest(vcpu->kvm, pte.raddr, ptr, size))
		return EMULATE_DO_MMIO;
413 414 415 416 417

	return EMULATE_DONE;
}
EXPORT_SYMBOL_GPL(kvmppc_ld);

418
int kvm_arch_hardware_enable(void)
419
{
420
	return 0;
421 422 423 424 425 426 427 428 429
}

int kvm_arch_hardware_setup(void)
{
	return 0;
}

void kvm_arch_check_processor_compat(void *rtn)
{
430
	*(int *)rtn = kvmppc_core_check_processor_compat();
431 432
}

433
int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
434
{
435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460
	struct kvmppc_ops *kvm_ops = NULL;
	/*
	 * if we have both HV and PR enabled, default is HV
	 */
	if (type == 0) {
		if (kvmppc_hv_ops)
			kvm_ops = kvmppc_hv_ops;
		else
			kvm_ops = kvmppc_pr_ops;
		if (!kvm_ops)
			goto err_out;
	} else	if (type == KVM_VM_PPC_HV) {
		if (!kvmppc_hv_ops)
			goto err_out;
		kvm_ops = kvmppc_hv_ops;
	} else if (type == KVM_VM_PPC_PR) {
		if (!kvmppc_pr_ops)
			goto err_out;
		kvm_ops = kvmppc_pr_ops;
	} else
		goto err_out;

	if (kvm_ops->owner && !try_module_get(kvm_ops->owner))
		return -ENOENT;

	kvm->arch.kvm_ops = kvm_ops;
461
	return kvmppc_core_init_vm(kvm);
462 463
err_out:
	return -EINVAL;
464 465
}

466 467 468 469 470 471 472 473 474 475
bool kvm_arch_has_vcpu_debugfs(void)
{
	return false;
}

int kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
{
	return 0;
}

476
void kvm_arch_destroy_vm(struct kvm *kvm)
477 478
{
	unsigned int i;
479
	struct kvm_vcpu *vcpu;
480

481 482 483 484 485 486 487 488 489 490
#ifdef CONFIG_KVM_XICS
	/*
	 * We call kick_all_cpus_sync() to ensure that all
	 * CPUs have executed any pending IPIs before we
	 * continue and free VCPUs structures below.
	 */
	if (is_kvmppc_hv_enabled(kvm))
		kick_all_cpus_sync();
#endif

491 492 493 494 495 496 497 498
	kvm_for_each_vcpu(i, vcpu, kvm)
		kvm_arch_vcpu_free(vcpu);

	mutex_lock(&kvm->lock);
	for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
		kvm->vcpus[i] = NULL;

	atomic_set(&kvm->online_vcpus, 0);
499 500 501

	kvmppc_core_destroy_vm(kvm);

502
	mutex_unlock(&kvm->lock);
503 504 505

	/* drop the module reference */
	module_put(kvm->arch.kvm_ops->owner);
506 507
}

508
int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
509 510
{
	int r;
511
	/* Assume we're using HV mode when the HV module is loaded */
512
	int hv_enabled = kvmppc_hv_ops ? 1 : 0;
513

514 515 516 517 518 519 520 521
	if (kvm) {
		/*
		 * Hooray - we know which VM type we're running on. Depend on
		 * that rather than the guess above.
		 */
		hv_enabled = is_kvmppc_hv_enabled(kvm);
	}

522
	switch (ext) {
S
Scott Wood 已提交
523 524
#ifdef CONFIG_BOOKE
	case KVM_CAP_PPC_BOOKE_SREGS:
525
	case KVM_CAP_PPC_BOOKE_WATCHDOG:
526
	case KVM_CAP_PPC_EPR:
S
Scott Wood 已提交
527
#else
528
	case KVM_CAP_PPC_SEGSTATE:
529
	case KVM_CAP_PPC_HIOR:
530
	case KVM_CAP_PPC_PAPR:
S
Scott Wood 已提交
531
#endif
532
	case KVM_CAP_PPC_UNSET_IRQ:
533
	case KVM_CAP_PPC_IRQ_LEVEL:
534
	case KVM_CAP_ENABLE_CAP:
535
	case KVM_CAP_ONE_REG:
A
Alexander Graf 已提交
536
	case KVM_CAP_IOEVENTFD:
537
	case KVM_CAP_DEVICE_CTRL:
538
	case KVM_CAP_IMMEDIATE_EXIT:
539 540 541
		r = 1;
		break;
	case KVM_CAP_PPC_PAIRED_SINGLES:
542
	case KVM_CAP_PPC_OSI:
543
	case KVM_CAP_PPC_GET_PVINFO:
544
#if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
S
Scott Wood 已提交
545
	case KVM_CAP_SW_TLB:
S
Scott Wood 已提交
546
#endif
547
		/* We support this only for PR */
548
		r = !hv_enabled;
549
		break;
550 551 552 553 554 555
#ifdef CONFIG_KVM_MPIC
	case KVM_CAP_IRQ_MPIC:
		r = 1;
		break;
#endif

556
#ifdef CONFIG_PPC_BOOK3S_64
557
	case KVM_CAP_SPAPR_TCE:
558
	case KVM_CAP_SPAPR_TCE_64:
559 560
		r = 1;
		break;
561
	case KVM_CAP_SPAPR_TCE_VFIO:
562 563
		r = !!cpu_has_feature(CPU_FTR_HVMODE);
		break;
564
	case KVM_CAP_PPC_RTAS:
565
	case KVM_CAP_PPC_FIXUP_HCALL:
566
	case KVM_CAP_PPC_ENABLE_HCALL:
567 568 569
#ifdef CONFIG_KVM_XICS
	case KVM_CAP_IRQ_XICS:
#endif
570
	case KVM_CAP_PPC_GET_CPU_CHAR:
571 572
		r = 1;
		break;
573 574 575 576

	case KVM_CAP_PPC_ALLOC_HTAB:
		r = hv_enabled;
		break;
577
#endif /* CONFIG_PPC_BOOK3S_64 */
578
#ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
579
	case KVM_CAP_PPC_SMT:
580
		r = 0;
581 582 583 584 585 586
		if (kvm) {
			if (kvm->arch.emul_smt_mode > 1)
				r = kvm->arch.emul_smt_mode;
			else
				r = kvm->arch.smt_mode;
		} else if (hv_enabled) {
587 588 589 590 591
			if (cpu_has_feature(CPU_FTR_ARCH_300))
				r = 1;
			else
				r = threads_per_subcore;
		}
592
		break;
593 594 595 596 597 598 599 600 601 602
	case KVM_CAP_PPC_SMT_POSSIBLE:
		r = 1;
		if (hv_enabled) {
			if (!cpu_has_feature(CPU_FTR_ARCH_300))
				r = ((threads_per_subcore << 1) - 1);
			else
				/* P9 can emulate dbells, so allow any mode */
				r = 8 | 4 | 2 | 1;
		}
		break;
603
	case KVM_CAP_PPC_RMA:
604
		r = 0;
605
		break;
606 607 608
	case KVM_CAP_PPC_HWRNG:
		r = kvmppc_hwrng_present();
		break;
609
	case KVM_CAP_PPC_MMU_RADIX:
610
		r = !!(hv_enabled && radix_enabled());
611 612
		break;
	case KVM_CAP_PPC_MMU_HASH_V3:
613 614
		r = !!(hv_enabled && cpu_has_feature(CPU_FTR_ARCH_300) &&
		       cpu_has_feature(CPU_FTR_HVMODE));
615
		break;
616 617 618 619
	case KVM_CAP_PPC_NESTED_HV:
		r = !!(hv_enabled && kvmppc_hv_ops->enable_nested &&
		       !kvmppc_hv_ops->enable_nested(NULL));
		break;
620
#endif
621
	case KVM_CAP_SYNC_MMU:
622
#ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
623
		r = hv_enabled;
624 625 626 627
#elif defined(KVM_ARCH_WANT_MMU_NOTIFIER)
		r = 1;
#else
		r = 0;
628
#endif
629 630
		break;
#ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
631
	case KVM_CAP_PPC_HTAB_FD:
632
		r = hv_enabled;
633
		break;
634
#endif
635 636 637 638 639 640 641
	case KVM_CAP_NR_VCPUS:
		/*
		 * Recommending a number of CPUs is somewhat arbitrary; we
		 * return the number of present CPUs for -HV (since a host
		 * will have secondary threads "offline"), and for other KVM
		 * implementations just count online CPUs.
		 */
642
		if (hv_enabled)
643 644 645
			r = num_present_cpus();
		else
			r = num_online_cpus();
646
		break;
647 648 649
	case KVM_CAP_NR_MEMSLOTS:
		r = KVM_USER_MEM_SLOTS;
		break;
650 651 652
	case KVM_CAP_MAX_VCPUS:
		r = KVM_MAX_VCPUS;
		break;
653 654 655 656
#ifdef CONFIG_PPC_BOOK3S_64
	case KVM_CAP_PPC_GET_SMMU_INFO:
		r = 1;
		break;
657 658 659
	case KVM_CAP_SPAPR_MULTITCE:
		r = 1;
		break;
660
	case KVM_CAP_SPAPR_RESIZE_HPT:
661
		r = !!hv_enabled;
662
		break;
663 664 665 666 667
#endif
#ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
	case KVM_CAP_PPC_FWNMI:
		r = hv_enabled;
		break;
668
#endif
669
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
670
	case KVM_CAP_PPC_HTM:
671 672
		r = !!(cur_cpu_spec->cpu_user_features2 & PPC_FEATURE2_HTM) ||
		     (hv_enabled && cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST));
673
		break;
674
#endif
675 676 677 678 679 680 681 682 683 684 685 686 687 688
	default:
		r = 0;
		break;
	}
	return r;

}

long kvm_arch_dev_ioctl(struct file *filp,
                        unsigned int ioctl, unsigned long arg)
{
	return -EINVAL;
}

689
void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
690 691
			   struct kvm_memory_slot *dont)
{
692
	kvmppc_core_free_memslot(kvm, free, dont);
693 694
}

695 696
int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
			    unsigned long npages)
697
{
698
	return kvmppc_core_create_memslot(kvm, slot, npages);
699 700
}

701
int kvm_arch_prepare_memory_region(struct kvm *kvm,
702
				   struct kvm_memory_slot *memslot,
703
				   const struct kvm_userspace_memory_region *mem,
704
				   enum kvm_mr_change change)
705
{
706
	return kvmppc_core_prepare_memory_region(kvm, memslot, mem);
707 708
}

709
void kvm_arch_commit_memory_region(struct kvm *kvm,
710
				   const struct kvm_userspace_memory_region *mem,
711
				   const struct kvm_memory_slot *old,
712
				   const struct kvm_memory_slot *new,
713
				   enum kvm_mr_change change)
714
{
715
	kvmppc_core_commit_memory_region(kvm, mem, old, new, change);
716 717
}

718 719
void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
				   struct kvm_memory_slot *slot)
720
{
721
	kvmppc_core_flush_memslot(kvm, slot);
722 723
}

724 725
struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
{
726 727
	struct kvm_vcpu *vcpu;
	vcpu = kvmppc_core_vcpu_create(kvm, id);
728 729
	if (!IS_ERR(vcpu)) {
		vcpu->arch.wqp = &vcpu->wq;
730
		kvmppc_create_vcpu_debugfs(vcpu, id);
731
	}
732
	return vcpu;
733 734
}

735
void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
736 737 738
{
}

739 740
void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
{
741 742 743
	/* Make sure we're not using the vcpu anymore */
	hrtimer_cancel(&vcpu->arch.dec_timer);

744
	kvmppc_remove_vcpu_debugfs(vcpu);
S
Scott Wood 已提交
745 746 747 748 749

	switch (vcpu->arch.irq_type) {
	case KVMPPC_IRQ_MPIC:
		kvmppc_mpic_disconnect_vcpu(vcpu->arch.mpic, vcpu);
		break;
750
	case KVMPPC_IRQ_XICS:
751
		if (xics_on_xive())
752 753 754
			kvmppc_xive_cleanup_vcpu(vcpu);
		else
			kvmppc_xics_free_icp(vcpu);
755
		break;
S
Scott Wood 已提交
756 757
	}

758
	kvmppc_core_vcpu_free(vcpu);
759 760 761 762 763 764 765 766 767
}

void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
{
	kvm_arch_vcpu_free(vcpu);
}

int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
{
768
	return kvmppc_core_pending_dec(vcpu);
769 770
}

T
Thomas Huth 已提交
771
static enum hrtimer_restart kvmppc_decrementer_wakeup(struct hrtimer *timer)
A
Alexander Graf 已提交
772 773 774 775
{
	struct kvm_vcpu *vcpu;

	vcpu = container_of(timer, struct kvm_vcpu, arch.dec_timer);
776
	kvmppc_decrementer_func(vcpu);
A
Alexander Graf 已提交
777 778 779 780

	return HRTIMER_NORESTART;
}

781 782
int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
{
783 784
	int ret;

A
Alexander Graf 已提交
785 786
	hrtimer_init(&vcpu->arch.dec_timer, CLOCK_REALTIME, HRTIMER_MODE_ABS);
	vcpu->arch.dec_timer.function = kvmppc_decrementer_wakeup;
787
	vcpu->arch.dec_expires = get_tb();
788

789 790 791
#ifdef CONFIG_KVM_EXIT_TIMING
	mutex_init(&vcpu->arch.exit_timing_lock);
#endif
792 793
	ret = kvmppc_subarch_vcpu_init(vcpu);
	return ret;
794 795 796 797
}

void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
{
798
	kvmppc_mmu_destroy(vcpu);
799
	kvmppc_subarch_vcpu_uninit(vcpu);
800 801 802 803
}

void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
{
804 805 806 807 808 809 810 811 812 813
#ifdef CONFIG_BOOKE
	/*
	 * vrsave (formerly usprg0) isn't used by Linux, but may
	 * be used by the guest.
	 *
	 * On non-booke this is associated with Altivec and
	 * is handled by code in book3s.c.
	 */
	mtspr(SPRN_VRSAVE, vcpu->arch.vrsave);
#endif
814
	kvmppc_core_vcpu_load(vcpu, cpu);
815 816 817 818
}

void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
{
819
	kvmppc_core_vcpu_put(vcpu);
820 821 822
#ifdef CONFIG_BOOKE
	vcpu->arch.vrsave = mfspr(SPRN_VRSAVE);
#endif
823 824
}

825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860
/*
 * irq_bypass_add_producer and irq_bypass_del_producer are only
 * useful if the architecture supports PCI passthrough.
 * irq_bypass_stop and irq_bypass_start are not needed and so
 * kvm_ops are not defined for them.
 */
bool kvm_arch_has_irq_bypass(void)
{
	return ((kvmppc_hv_ops && kvmppc_hv_ops->irq_bypass_add_producer) ||
		(kvmppc_pr_ops && kvmppc_pr_ops->irq_bypass_add_producer));
}

int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
				     struct irq_bypass_producer *prod)
{
	struct kvm_kernel_irqfd *irqfd =
		container_of(cons, struct kvm_kernel_irqfd, consumer);
	struct kvm *kvm = irqfd->kvm;

	if (kvm->arch.kvm_ops->irq_bypass_add_producer)
		return kvm->arch.kvm_ops->irq_bypass_add_producer(cons, prod);

	return 0;
}

void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
				      struct irq_bypass_producer *prod)
{
	struct kvm_kernel_irqfd *irqfd =
		container_of(cons, struct kvm_kernel_irqfd, consumer);
	struct kvm *kvm = irqfd->kvm;

	if (kvm->arch.kvm_ops->irq_bypass_del_producer)
		kvm->arch.kvm_ops->irq_bypass_del_producer(cons, prod);
}

861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902
#ifdef CONFIG_VSX
static inline int kvmppc_get_vsr_dword_offset(int index)
{
	int offset;

	if ((index != 0) && (index != 1))
		return -1;

#ifdef __BIG_ENDIAN
	offset =  index;
#else
	offset = 1 - index;
#endif

	return offset;
}

static inline int kvmppc_get_vsr_word_offset(int index)
{
	int offset;

	if ((index > 3) || (index < 0))
		return -1;

#ifdef __BIG_ENDIAN
	offset = index;
#else
	offset = 3 - index;
#endif
	return offset;
}

static inline void kvmppc_set_vsr_dword(struct kvm_vcpu *vcpu,
	u64 gpr)
{
	union kvmppc_one_reg val;
	int offset = kvmppc_get_vsr_dword_offset(vcpu->arch.mmio_vsx_offset);
	int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;

	if (offset == -1)
		return;

903 904
	if (index >= 32) {
		val.vval = VCPU_VSX_VR(vcpu, index - 32);
905
		val.vsxval[offset] = gpr;
906
		VCPU_VSX_VR(vcpu, index - 32) = val.vval;
907 908 909 910 911 912 913 914 915 916 917
	} else {
		VCPU_VSX_FPR(vcpu, index, offset) = gpr;
	}
}

static inline void kvmppc_set_vsr_dword_dump(struct kvm_vcpu *vcpu,
	u64 gpr)
{
	union kvmppc_one_reg val;
	int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;

918 919
	if (index >= 32) {
		val.vval = VCPU_VSX_VR(vcpu, index - 32);
920 921
		val.vsxval[0] = gpr;
		val.vsxval[1] = gpr;
922
		VCPU_VSX_VR(vcpu, index - 32) = val.vval;
923 924 925 926 927 928
	} else {
		VCPU_VSX_FPR(vcpu, index, 0) = gpr;
		VCPU_VSX_FPR(vcpu, index, 1) = gpr;
	}
}

929 930 931 932 933 934
static inline void kvmppc_set_vsr_word_dump(struct kvm_vcpu *vcpu,
	u32 gpr)
{
	union kvmppc_one_reg val;
	int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;

935
	if (index >= 32) {
936 937 938 939
		val.vsx32val[0] = gpr;
		val.vsx32val[1] = gpr;
		val.vsx32val[2] = gpr;
		val.vsx32val[3] = gpr;
940
		VCPU_VSX_VR(vcpu, index - 32) = val.vval;
941 942 943 944 945 946 947 948
	} else {
		val.vsx32val[0] = gpr;
		val.vsx32val[1] = gpr;
		VCPU_VSX_FPR(vcpu, index, 0) = val.vsxval[0];
		VCPU_VSX_FPR(vcpu, index, 1) = val.vsxval[0];
	}
}

949 950 951 952 953 954 955 956 957 958 959
static inline void kvmppc_set_vsr_word(struct kvm_vcpu *vcpu,
	u32 gpr32)
{
	union kvmppc_one_reg val;
	int offset = kvmppc_get_vsr_word_offset(vcpu->arch.mmio_vsx_offset);
	int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
	int dword_offset, word_offset;

	if (offset == -1)
		return;

960 961
	if (index >= 32) {
		val.vval = VCPU_VSX_VR(vcpu, index - 32);
962
		val.vsx32val[offset] = gpr32;
963
		VCPU_VSX_VR(vcpu, index - 32) = val.vval;
964 965 966 967 968 969 970 971 972 973
	} else {
		dword_offset = offset / 2;
		word_offset = offset % 2;
		val.vsxval[0] = VCPU_VSX_FPR(vcpu, index, dword_offset);
		val.vsx32val[word_offset] = gpr32;
		VCPU_VSX_FPR(vcpu, index, dword_offset) = val.vsxval[0];
	}
}
#endif /* CONFIG_VSX */

974
#ifdef CONFIG_ALTIVEC
975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016
static inline int kvmppc_get_vmx_offset_generic(struct kvm_vcpu *vcpu,
		int index, int element_size)
{
	int offset;
	int elts = sizeof(vector128)/element_size;

	if ((index < 0) || (index >= elts))
		return -1;

	if (kvmppc_need_byteswap(vcpu))
		offset = elts - index - 1;
	else
		offset = index;

	return offset;
}

static inline int kvmppc_get_vmx_dword_offset(struct kvm_vcpu *vcpu,
		int index)
{
	return kvmppc_get_vmx_offset_generic(vcpu, index, 8);
}

static inline int kvmppc_get_vmx_word_offset(struct kvm_vcpu *vcpu,
		int index)
{
	return kvmppc_get_vmx_offset_generic(vcpu, index, 4);
}

static inline int kvmppc_get_vmx_hword_offset(struct kvm_vcpu *vcpu,
		int index)
{
	return kvmppc_get_vmx_offset_generic(vcpu, index, 2);
}

static inline int kvmppc_get_vmx_byte_offset(struct kvm_vcpu *vcpu,
		int index)
{
	return kvmppc_get_vmx_offset_generic(vcpu, index, 1);
}


1017
static inline void kvmppc_set_vmx_dword(struct kvm_vcpu *vcpu,
1018
	u64 gpr)
1019
{
1020 1021 1022
	union kvmppc_one_reg val;
	int offset = kvmppc_get_vmx_dword_offset(vcpu,
			vcpu->arch.mmio_vmx_offset);
1023 1024
	int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;

1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039
	if (offset == -1)
		return;

	val.vval = VCPU_VSX_VR(vcpu, index);
	val.vsxval[offset] = gpr;
	VCPU_VSX_VR(vcpu, index) = val.vval;
}

static inline void kvmppc_set_vmx_word(struct kvm_vcpu *vcpu,
	u32 gpr32)
{
	union kvmppc_one_reg val;
	int offset = kvmppc_get_vmx_word_offset(vcpu,
			vcpu->arch.mmio_vmx_offset);
	int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
1040

1041
	if (offset == -1)
1042 1043
		return;

1044 1045 1046 1047
	val.vval = VCPU_VSX_VR(vcpu, index);
	val.vsx32val[offset] = gpr32;
	VCPU_VSX_VR(vcpu, index) = val.vval;
}
1048

1049 1050 1051 1052 1053 1054 1055 1056 1057
static inline void kvmppc_set_vmx_hword(struct kvm_vcpu *vcpu,
	u16 gpr16)
{
	union kvmppc_one_reg val;
	int offset = kvmppc_get_vmx_hword_offset(vcpu,
			vcpu->arch.mmio_vmx_offset);
	int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;

	if (offset == -1)
1058 1059
		return;

1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071
	val.vval = VCPU_VSX_VR(vcpu, index);
	val.vsx16val[offset] = gpr16;
	VCPU_VSX_VR(vcpu, index) = val.vval;
}

static inline void kvmppc_set_vmx_byte(struct kvm_vcpu *vcpu,
	u8 gpr8)
{
	union kvmppc_one_reg val;
	int offset = kvmppc_get_vmx_byte_offset(vcpu,
			vcpu->arch.mmio_vmx_offset);
	int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
1072

1073 1074
	if (offset == -1)
		return;
1075

1076 1077 1078
	val.vval = VCPU_VSX_VR(vcpu, index);
	val.vsx8val[offset] = gpr8;
	VCPU_VSX_VR(vcpu, index) = val.vval;
1079 1080 1081
}
#endif /* CONFIG_ALTIVEC */

1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111
#ifdef CONFIG_PPC_FPU
static inline u64 sp_to_dp(u32 fprs)
{
	u64 fprd;

	preempt_disable();
	enable_kernel_fp();
	asm ("lfs%U1%X1 0,%1; stfd%U0%X0 0,%0" : "=m" (fprd) : "m" (fprs)
	     : "fr0");
	preempt_enable();
	return fprd;
}

static inline u32 dp_to_sp(u64 fprd)
{
	u32 fprs;

	preempt_disable();
	enable_kernel_fp();
	asm ("lfd%U1%X1 0,%1; stfs%U0%X0 0,%0" : "=m" (fprs) : "m" (fprd)
	     : "fr0");
	preempt_enable();
	return fprs;
}

#else
#define sp_to_dp(x)	(x)
#define dp_to_sp(x)	(x)
#endif /* CONFIG_PPC_FPU */

1112 1113 1114
static void kvmppc_complete_mmio_load(struct kvm_vcpu *vcpu,
                                      struct kvm_run *run)
{
1115
	u64 uninitialized_var(gpr);
1116

1117
	if (run->mmio.len > sizeof(gpr)) {
1118 1119 1120 1121
		printk(KERN_ERR "bad MMIO length: %d\n", run->mmio.len);
		return;
	}

1122
	if (!vcpu->arch.mmio_host_swabbed) {
1123
		switch (run->mmio.len) {
1124
		case 8: gpr = *(u64 *)run->mmio.data; break;
1125 1126 1127
		case 4: gpr = *(u32 *)run->mmio.data; break;
		case 2: gpr = *(u16 *)run->mmio.data; break;
		case 1: gpr = *(u8 *)run->mmio.data; break;
1128 1129 1130
		}
	} else {
		switch (run->mmio.len) {
1131 1132 1133
		case 8: gpr = swab64(*(u64 *)run->mmio.data); break;
		case 4: gpr = swab32(*(u32 *)run->mmio.data); break;
		case 2: gpr = swab16(*(u16 *)run->mmio.data); break;
1134
		case 1: gpr = *(u8 *)run->mmio.data; break;
1135 1136
		}
	}
1137

1138 1139 1140 1141
	/* conversion between single and double precision */
	if ((vcpu->arch.mmio_sp64_extend) && (run->mmio.len == 4))
		gpr = sp_to_dp(gpr);

A
Alexander Graf 已提交
1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157
	if (vcpu->arch.mmio_sign_extend) {
		switch (run->mmio.len) {
#ifdef CONFIG_PPC64
		case 4:
			gpr = (s64)(s32)gpr;
			break;
#endif
		case 2:
			gpr = (s64)(s16)gpr;
			break;
		case 1:
			gpr = (s64)(s8)gpr;
			break;
		}
	}

1158 1159
	switch (vcpu->arch.io_gpr & KVM_MMIO_REG_EXT_MASK) {
	case KVM_MMIO_REG_GPR:
1160 1161
		kvmppc_set_gpr(vcpu, vcpu->arch.io_gpr, gpr);
		break;
1162
	case KVM_MMIO_REG_FPR:
1163 1164 1165
		if (vcpu->kvm->arch.kvm_ops->giveup_ext)
			vcpu->kvm->arch.kvm_ops->giveup_ext(vcpu, MSR_FP);

1166
		VCPU_FPR(vcpu, vcpu->arch.io_gpr & KVM_MMIO_REG_MASK) = gpr;
1167
		break;
1168
#ifdef CONFIG_PPC_BOOK3S
1169 1170
	case KVM_MMIO_REG_QPR:
		vcpu->arch.qpr[vcpu->arch.io_gpr & KVM_MMIO_REG_MASK] = gpr;
1171
		break;
1172
	case KVM_MMIO_REG_FQPR:
1173
		VCPU_FPR(vcpu, vcpu->arch.io_gpr & KVM_MMIO_REG_MASK) = gpr;
1174
		vcpu->arch.qpr[vcpu->arch.io_gpr & KVM_MMIO_REG_MASK] = gpr;
1175
		break;
1176 1177 1178
#endif
#ifdef CONFIG_VSX
	case KVM_MMIO_REG_VSX:
1179 1180 1181
		if (vcpu->kvm->arch.kvm_ops->giveup_ext)
			vcpu->kvm->arch.kvm_ops->giveup_ext(vcpu, MSR_VSX);

1182
		if (vcpu->arch.mmio_copy_type == KVMPPC_VSX_COPY_DWORD)
1183
			kvmppc_set_vsr_dword(vcpu, gpr);
1184
		else if (vcpu->arch.mmio_copy_type == KVMPPC_VSX_COPY_WORD)
1185
			kvmppc_set_vsr_word(vcpu, gpr);
1186
		else if (vcpu->arch.mmio_copy_type ==
1187 1188
				KVMPPC_VSX_COPY_DWORD_LOAD_DUMP)
			kvmppc_set_vsr_dword_dump(vcpu, gpr);
1189
		else if (vcpu->arch.mmio_copy_type ==
1190 1191
				KVMPPC_VSX_COPY_WORD_LOAD_DUMP)
			kvmppc_set_vsr_word_dump(vcpu, gpr);
1192
		break;
1193 1194 1195
#endif
#ifdef CONFIG_ALTIVEC
	case KVM_MMIO_REG_VMX:
1196 1197 1198
		if (vcpu->kvm->arch.kvm_ops->giveup_ext)
			vcpu->kvm->arch.kvm_ops->giveup_ext(vcpu, MSR_VEC);

1199 1200 1201 1202 1203 1204 1205 1206 1207 1208
		if (vcpu->arch.mmio_copy_type == KVMPPC_VMX_COPY_DWORD)
			kvmppc_set_vmx_dword(vcpu, gpr);
		else if (vcpu->arch.mmio_copy_type == KVMPPC_VMX_COPY_WORD)
			kvmppc_set_vmx_word(vcpu, gpr);
		else if (vcpu->arch.mmio_copy_type ==
				KVMPPC_VMX_COPY_HWORD)
			kvmppc_set_vmx_hword(vcpu, gpr);
		else if (vcpu->arch.mmio_copy_type ==
				KVMPPC_VMX_COPY_BYTE)
			kvmppc_set_vmx_byte(vcpu, gpr);
1209
		break;
1210 1211 1212 1213 1214 1215 1216 1217
#endif
#ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
	case KVM_MMIO_REG_NESTED_GPR:
		if (kvmppc_need_byteswap(vcpu))
			gpr = swab64(gpr);
		kvm_vcpu_write_guest(vcpu, vcpu->arch.nested_io_gpr, &gpr,
				     sizeof(gpr));
		break;
1218
#endif
1219 1220 1221
	default:
		BUG();
	}
1222 1223
}

1224 1225 1226
static int __kvmppc_handle_load(struct kvm_run *run, struct kvm_vcpu *vcpu,
				unsigned int rt, unsigned int bytes,
				int is_default_endian, int sign_extend)
1227
{
1228
	int idx, ret;
1229
	bool host_swabbed;
1230

1231
	/* Pity C doesn't have a logical XOR operator */
1232
	if (kvmppc_need_byteswap(vcpu)) {
1233
		host_swabbed = is_default_endian;
1234
	} else {
1235
		host_swabbed = !is_default_endian;
1236
	}
1237

1238 1239 1240 1241 1242 1243 1244 1245 1246 1247
	if (bytes > sizeof(run->mmio.data)) {
		printk(KERN_ERR "%s: bad MMIO length: %d\n", __func__,
		       run->mmio.len);
	}

	run->mmio.phys_addr = vcpu->arch.paddr_accessed;
	run->mmio.len = bytes;
	run->mmio.is_write = 0;

	vcpu->arch.io_gpr = rt;
1248
	vcpu->arch.mmio_host_swabbed = host_swabbed;
1249 1250
	vcpu->mmio_needed = 1;
	vcpu->mmio_is_write = 0;
1251
	vcpu->arch.mmio_sign_extend = sign_extend;
1252

1253 1254
	idx = srcu_read_lock(&vcpu->kvm->srcu);

1255
	ret = kvm_io_bus_read(vcpu, KVM_MMIO_BUS, run->mmio.phys_addr,
1256 1257 1258 1259 1260
			      bytes, &run->mmio.data);

	srcu_read_unlock(&vcpu->kvm->srcu, idx);

	if (!ret) {
A
Alexander Graf 已提交
1261 1262 1263 1264 1265
		kvmppc_complete_mmio_load(vcpu, run);
		vcpu->mmio_needed = 0;
		return EMULATE_DONE;
	}

1266 1267
	return EMULATE_DO_MMIO;
}
1268 1269 1270 1271 1272 1273 1274

int kvmppc_handle_load(struct kvm_run *run, struct kvm_vcpu *vcpu,
		       unsigned int rt, unsigned int bytes,
		       int is_default_endian)
{
	return __kvmppc_handle_load(run, vcpu, rt, bytes, is_default_endian, 0);
}
1275
EXPORT_SYMBOL_GPL(kvmppc_handle_load);
1276

A
Alexander Graf 已提交
1277 1278
/* Same as above, but sign extends */
int kvmppc_handle_loads(struct kvm_run *run, struct kvm_vcpu *vcpu,
1279 1280
			unsigned int rt, unsigned int bytes,
			int is_default_endian)
A
Alexander Graf 已提交
1281
{
1282
	return __kvmppc_handle_load(run, vcpu, rt, bytes, is_default_endian, 1);
A
Alexander Graf 已提交
1283 1284
}

1285 1286 1287 1288 1289 1290 1291
#ifdef CONFIG_VSX
int kvmppc_handle_vsx_load(struct kvm_run *run, struct kvm_vcpu *vcpu,
			unsigned int rt, unsigned int bytes,
			int is_default_endian, int mmio_sign_extend)
{
	enum emulation_result emulated = EMULATE_DONE;

1292 1293
	/* Currently, mmio_vsx_copy_nums only allowed to be 4 or less */
	if (vcpu->arch.mmio_vsx_copy_nums > 4)
1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311
		return EMULATE_FAIL;

	while (vcpu->arch.mmio_vsx_copy_nums) {
		emulated = __kvmppc_handle_load(run, vcpu, rt, bytes,
			is_default_endian, mmio_sign_extend);

		if (emulated != EMULATE_DONE)
			break;

		vcpu->arch.paddr_accessed += run->mmio.len;

		vcpu->arch.mmio_vsx_copy_nums--;
		vcpu->arch.mmio_vsx_offset++;
	}
	return emulated;
}
#endif /* CONFIG_VSX */

1312
int kvmppc_handle_store(struct kvm_run *run, struct kvm_vcpu *vcpu,
1313
			u64 val, unsigned int bytes, int is_default_endian)
1314 1315
{
	void *data = run->mmio.data;
1316
	int idx, ret;
1317
	bool host_swabbed;
1318

1319
	/* Pity C doesn't have a logical XOR operator */
1320
	if (kvmppc_need_byteswap(vcpu)) {
1321
		host_swabbed = is_default_endian;
1322
	} else {
1323
		host_swabbed = !is_default_endian;
1324
	}
1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336

	if (bytes > sizeof(run->mmio.data)) {
		printk(KERN_ERR "%s: bad MMIO length: %d\n", __func__,
		       run->mmio.len);
	}

	run->mmio.phys_addr = vcpu->arch.paddr_accessed;
	run->mmio.len = bytes;
	run->mmio.is_write = 1;
	vcpu->mmio_needed = 1;
	vcpu->mmio_is_write = 1;

1337 1338 1339
	if ((vcpu->arch.mmio_sp64_extend) && (bytes == 4))
		val = dp_to_sp(val);

1340
	/* Store the value at the lowest bytes in 'data'. */
1341
	if (!host_swabbed) {
1342
		switch (bytes) {
1343
		case 8: *(u64 *)data = val; break;
1344 1345 1346 1347 1348 1349
		case 4: *(u32 *)data = val; break;
		case 2: *(u16 *)data = val; break;
		case 1: *(u8  *)data = val; break;
		}
	} else {
		switch (bytes) {
1350 1351 1352 1353
		case 8: *(u64 *)data = swab64(val); break;
		case 4: *(u32 *)data = swab32(val); break;
		case 2: *(u16 *)data = swab16(val); break;
		case 1: *(u8  *)data = val; break;
1354 1355 1356
		}
	}

1357 1358
	idx = srcu_read_lock(&vcpu->kvm->srcu);

1359
	ret = kvm_io_bus_write(vcpu, KVM_MMIO_BUS, run->mmio.phys_addr,
1360 1361 1362 1363 1364
			       bytes, &run->mmio.data);

	srcu_read_unlock(&vcpu->kvm->srcu, idx);

	if (!ret) {
A
Alexander Graf 已提交
1365 1366 1367 1368
		vcpu->mmio_needed = 0;
		return EMULATE_DONE;
	}

1369 1370
	return EMULATE_DO_MMIO;
}
1371
EXPORT_SYMBOL_GPL(kvmppc_handle_store);
1372

1373 1374 1375 1376 1377 1378
#ifdef CONFIG_VSX
static inline int kvmppc_get_vsr_data(struct kvm_vcpu *vcpu, int rs, u64 *val)
{
	u32 dword_offset, word_offset;
	union kvmppc_one_reg reg;
	int vsx_offset = 0;
1379
	int copy_type = vcpu->arch.mmio_copy_type;
1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391
	int result = 0;

	switch (copy_type) {
	case KVMPPC_VSX_COPY_DWORD:
		vsx_offset =
			kvmppc_get_vsr_dword_offset(vcpu->arch.mmio_vsx_offset);

		if (vsx_offset == -1) {
			result = -1;
			break;
		}

1392
		if (rs < 32) {
1393 1394
			*val = VCPU_VSX_FPR(vcpu, rs, vsx_offset);
		} else {
1395
			reg.vval = VCPU_VSX_VR(vcpu, rs - 32);
1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408
			*val = reg.vsxval[vsx_offset];
		}
		break;

	case KVMPPC_VSX_COPY_WORD:
		vsx_offset =
			kvmppc_get_vsr_word_offset(vcpu->arch.mmio_vsx_offset);

		if (vsx_offset == -1) {
			result = -1;
			break;
		}

1409
		if (rs < 32) {
1410 1411 1412 1413 1414
			dword_offset = vsx_offset / 2;
			word_offset = vsx_offset % 2;
			reg.vsxval[0] = VCPU_VSX_FPR(vcpu, rs, dword_offset);
			*val = reg.vsx32val[word_offset];
		} else {
1415
			reg.vval = VCPU_VSX_VR(vcpu, rs - 32);
1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435
			*val = reg.vsx32val[vsx_offset];
		}
		break;

	default:
		result = -1;
		break;
	}

	return result;
}

int kvmppc_handle_vsx_store(struct kvm_run *run, struct kvm_vcpu *vcpu,
			int rs, unsigned int bytes, int is_default_endian)
{
	u64 val;
	enum emulation_result emulated = EMULATE_DONE;

	vcpu->arch.io_gpr = rs;

1436 1437
	/* Currently, mmio_vsx_copy_nums only allowed to be 4 or less */
	if (vcpu->arch.mmio_vsx_copy_nums > 4)
1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493
		return EMULATE_FAIL;

	while (vcpu->arch.mmio_vsx_copy_nums) {
		if (kvmppc_get_vsr_data(vcpu, rs, &val) == -1)
			return EMULATE_FAIL;

		emulated = kvmppc_handle_store(run, vcpu,
			 val, bytes, is_default_endian);

		if (emulated != EMULATE_DONE)
			break;

		vcpu->arch.paddr_accessed += run->mmio.len;

		vcpu->arch.mmio_vsx_copy_nums--;
		vcpu->arch.mmio_vsx_offset++;
	}

	return emulated;
}

static int kvmppc_emulate_mmio_vsx_loadstore(struct kvm_vcpu *vcpu,
			struct kvm_run *run)
{
	enum emulation_result emulated = EMULATE_FAIL;
	int r;

	vcpu->arch.paddr_accessed += run->mmio.len;

	if (!vcpu->mmio_is_write) {
		emulated = kvmppc_handle_vsx_load(run, vcpu, vcpu->arch.io_gpr,
			 run->mmio.len, 1, vcpu->arch.mmio_sign_extend);
	} else {
		emulated = kvmppc_handle_vsx_store(run, vcpu,
			 vcpu->arch.io_gpr, run->mmio.len, 1);
	}

	switch (emulated) {
	case EMULATE_DO_MMIO:
		run->exit_reason = KVM_EXIT_MMIO;
		r = RESUME_HOST;
		break;
	case EMULATE_FAIL:
		pr_info("KVM: MMIO emulation failed (VSX repeat)\n");
		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
		run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
		r = RESUME_HOST;
		break;
	default:
		r = RESUME_GUEST;
		break;
	}
	return r;
}
#endif /* CONFIG_VSX */

1494
#ifdef CONFIG_ALTIVEC
1495 1496
int kvmppc_handle_vmx_load(struct kvm_run *run, struct kvm_vcpu *vcpu,
		unsigned int rt, unsigned int bytes, int is_default_endian)
1497
{
1498
	enum emulation_result emulated = EMULATE_DONE;
1499

1500 1501 1502
	if (vcpu->arch.mmio_vsx_copy_nums > 2)
		return EMULATE_FAIL;

1503
	while (vcpu->arch.mmio_vmx_copy_nums) {
1504
		emulated = __kvmppc_handle_load(run, vcpu, rt, bytes,
1505 1506 1507 1508 1509 1510 1511
				is_default_endian, 0);

		if (emulated != EMULATE_DONE)
			break;

		vcpu->arch.paddr_accessed += run->mmio.len;
		vcpu->arch.mmio_vmx_copy_nums--;
1512
		vcpu->arch.mmio_vmx_offset++;
1513 1514 1515 1516 1517
	}

	return emulated;
}

1518
int kvmppc_get_vmx_dword(struct kvm_vcpu *vcpu, int index, u64 *val)
1519
{
1520 1521 1522
	union kvmppc_one_reg reg;
	int vmx_offset = 0;
	int result = 0;
1523

1524 1525
	vmx_offset =
		kvmppc_get_vmx_dword_offset(vcpu, vcpu->arch.mmio_vmx_offset);
1526

1527
	if (vmx_offset == -1)
1528 1529
		return -1;

1530 1531
	reg.vval = VCPU_VSX_VR(vcpu, index);
	*val = reg.vsxval[vmx_offset];
1532

1533 1534
	return result;
}
1535

1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569
int kvmppc_get_vmx_word(struct kvm_vcpu *vcpu, int index, u64 *val)
{
	union kvmppc_one_reg reg;
	int vmx_offset = 0;
	int result = 0;

	vmx_offset =
		kvmppc_get_vmx_word_offset(vcpu, vcpu->arch.mmio_vmx_offset);

	if (vmx_offset == -1)
		return -1;

	reg.vval = VCPU_VSX_VR(vcpu, index);
	*val = reg.vsx32val[vmx_offset];

	return result;
}

int kvmppc_get_vmx_hword(struct kvm_vcpu *vcpu, int index, u64 *val)
{
	union kvmppc_one_reg reg;
	int vmx_offset = 0;
	int result = 0;

	vmx_offset =
		kvmppc_get_vmx_hword_offset(vcpu, vcpu->arch.mmio_vmx_offset);

	if (vmx_offset == -1)
		return -1;

	reg.vval = VCPU_VSX_VR(vcpu, index);
	*val = reg.vsx16val[vmx_offset];

	return result;
1570 1571
}

1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587
int kvmppc_get_vmx_byte(struct kvm_vcpu *vcpu, int index, u64 *val)
{
	union kvmppc_one_reg reg;
	int vmx_offset = 0;
	int result = 0;

	vmx_offset =
		kvmppc_get_vmx_byte_offset(vcpu, vcpu->arch.mmio_vmx_offset);

	if (vmx_offset == -1)
		return -1;

	reg.vval = VCPU_VSX_VR(vcpu, index);
	*val = reg.vsx8val[vmx_offset];

	return result;
1588 1589
}

1590 1591
int kvmppc_handle_vmx_store(struct kvm_run *run, struct kvm_vcpu *vcpu,
		unsigned int rs, unsigned int bytes, int is_default_endian)
1592 1593
{
	u64 val = 0;
1594
	unsigned int index = rs & KVM_MMIO_REG_MASK;
1595 1596
	enum emulation_result emulated = EMULATE_DONE;

1597 1598 1599
	if (vcpu->arch.mmio_vsx_copy_nums > 2)
		return EMULATE_FAIL;

1600 1601 1602
	vcpu->arch.io_gpr = rs;

	while (vcpu->arch.mmio_vmx_copy_nums) {
1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621
		switch (vcpu->arch.mmio_copy_type) {
		case KVMPPC_VMX_COPY_DWORD:
			if (kvmppc_get_vmx_dword(vcpu, index, &val) == -1)
				return EMULATE_FAIL;

			break;
		case KVMPPC_VMX_COPY_WORD:
			if (kvmppc_get_vmx_word(vcpu, index, &val) == -1)
				return EMULATE_FAIL;
			break;
		case KVMPPC_VMX_COPY_HWORD:
			if (kvmppc_get_vmx_hword(vcpu, index, &val) == -1)
				return EMULATE_FAIL;
			break;
		case KVMPPC_VMX_COPY_BYTE:
			if (kvmppc_get_vmx_byte(vcpu, index, &val) == -1)
				return EMULATE_FAIL;
			break;
		default:
1622
			return EMULATE_FAIL;
1623
		}
1624

1625
		emulated = kvmppc_handle_store(run, vcpu, val, bytes,
1626 1627 1628 1629 1630 1631
				is_default_endian);
		if (emulated != EMULATE_DONE)
			break;

		vcpu->arch.paddr_accessed += run->mmio.len;
		vcpu->arch.mmio_vmx_copy_nums--;
1632
		vcpu->arch.mmio_vmx_offset++;
1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646
	}

	return emulated;
}

static int kvmppc_emulate_mmio_vmx_loadstore(struct kvm_vcpu *vcpu,
		struct kvm_run *run)
{
	enum emulation_result emulated = EMULATE_FAIL;
	int r;

	vcpu->arch.paddr_accessed += run->mmio.len;

	if (!vcpu->mmio_is_write) {
1647 1648
		emulated = kvmppc_handle_vmx_load(run, vcpu,
				vcpu->arch.io_gpr, run->mmio.len, 1);
1649
	} else {
1650 1651
		emulated = kvmppc_handle_vmx_store(run, vcpu,
				vcpu->arch.io_gpr, run->mmio.len, 1);
1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672
	}

	switch (emulated) {
	case EMULATE_DO_MMIO:
		run->exit_reason = KVM_EXIT_MMIO;
		r = RESUME_HOST;
		break;
	case EMULATE_FAIL:
		pr_info("KVM: MMIO emulation failed (VMX repeat)\n");
		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
		run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
		r = RESUME_HOST;
		break;
	default:
		r = RESUME_GUEST;
		break;
	}
	return r;
}
#endif /* CONFIG_ALTIVEC */

1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686
int kvm_vcpu_ioctl_get_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg)
{
	int r = 0;
	union kvmppc_one_reg val;
	int size;

	size = one_reg_size(reg->id);
	if (size > sizeof(val))
		return -EINVAL;

	r = kvmppc_get_one_reg(vcpu, reg->id, &val);
	if (r == -EINVAL) {
		r = 0;
		switch (reg->id) {
1687 1688 1689 1690 1691 1692
#ifdef CONFIG_ALTIVEC
		case KVM_REG_PPC_VR0 ... KVM_REG_PPC_VR31:
			if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
				r = -ENXIO;
				break;
			}
1693
			val.vval = vcpu->arch.vr.vr[reg->id - KVM_REG_PPC_VR0];
1694 1695 1696 1697 1698 1699
			break;
		case KVM_REG_PPC_VSCR:
			if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
				r = -ENXIO;
				break;
			}
1700
			val = get_reg_val(reg->id, vcpu->arch.vr.vscr.u[3]);
1701 1702
			break;
		case KVM_REG_PPC_VRSAVE:
1703
			val = get_reg_val(reg->id, vcpu->arch.vrsave);
1704 1705
			break;
#endif /* CONFIG_ALTIVEC */
1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737
		default:
			r = -EINVAL;
			break;
		}
	}

	if (r)
		return r;

	if (copy_to_user((char __user *)(unsigned long)reg->addr, &val, size))
		r = -EFAULT;

	return r;
}

int kvm_vcpu_ioctl_set_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg)
{
	int r;
	union kvmppc_one_reg val;
	int size;

	size = one_reg_size(reg->id);
	if (size > sizeof(val))
		return -EINVAL;

	if (copy_from_user(&val, (char __user *)(unsigned long)reg->addr, size))
		return -EFAULT;

	r = kvmppc_set_one_reg(vcpu, reg->id, &val);
	if (r == -EINVAL) {
		r = 0;
		switch (reg->id) {
1738 1739 1740 1741 1742 1743
#ifdef CONFIG_ALTIVEC
		case KVM_REG_PPC_VR0 ... KVM_REG_PPC_VR31:
			if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
				r = -ENXIO;
				break;
			}
1744
			vcpu->arch.vr.vr[reg->id - KVM_REG_PPC_VR0] = val.vval;
1745 1746 1747 1748 1749 1750
			break;
		case KVM_REG_PPC_VSCR:
			if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
				r = -ENXIO;
				break;
			}
1751
			vcpu->arch.vr.vscr.u[3] = set_reg_val(reg->id, val);
1752 1753
			break;
		case KVM_REG_PPC_VRSAVE:
1754 1755 1756 1757 1758
			if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
				r = -ENXIO;
				break;
			}
			vcpu->arch.vrsave = set_reg_val(reg->id, val);
1759 1760
			break;
#endif /* CONFIG_ALTIVEC */
1761 1762 1763 1764 1765 1766 1767 1768 1769
		default:
			r = -EINVAL;
			break;
		}
	}

	return r;
}

1770 1771 1772 1773
int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
{
	int r;

1774 1775
	vcpu_load(vcpu);

1776
	if (vcpu->mmio_needed) {
1777
		vcpu->mmio_needed = 0;
1778 1779
		if (!vcpu->mmio_is_write)
			kvmppc_complete_mmio_load(vcpu, run);
1780 1781 1782 1783 1784 1785 1786 1787 1788 1789
#ifdef CONFIG_VSX
		if (vcpu->arch.mmio_vsx_copy_nums > 0) {
			vcpu->arch.mmio_vsx_copy_nums--;
			vcpu->arch.mmio_vsx_offset++;
		}

		if (vcpu->arch.mmio_vsx_copy_nums > 0) {
			r = kvmppc_emulate_mmio_vsx_loadstore(vcpu, run);
			if (r == RESUME_HOST) {
				vcpu->mmio_needed = 1;
1790
				goto out;
1791 1792
			}
		}
1793 1794
#endif
#ifdef CONFIG_ALTIVEC
1795
		if (vcpu->arch.mmio_vmx_copy_nums > 0) {
1796
			vcpu->arch.mmio_vmx_copy_nums--;
1797 1798
			vcpu->arch.mmio_vmx_offset++;
		}
1799 1800 1801 1802 1803

		if (vcpu->arch.mmio_vmx_copy_nums > 0) {
			r = kvmppc_emulate_mmio_vmx_loadstore(vcpu, run);
			if (r == RESUME_HOST) {
				vcpu->mmio_needed = 1;
1804
				goto out;
1805 1806
			}
		}
1807
#endif
1808 1809 1810 1811 1812 1813 1814
	} else if (vcpu->arch.osi_needed) {
		u64 *gprs = run->osi.gprs;
		int i;

		for (i = 0; i < 32; i++)
			kvmppc_set_gpr(vcpu, i, gprs[i]);
		vcpu->arch.osi_needed = 0;
1815 1816 1817 1818 1819 1820 1821
	} else if (vcpu->arch.hcall_needed) {
		int i;

		kvmppc_set_gpr(vcpu, 3, run->papr_hcall.ret);
		for (i = 0; i < 9; ++i)
			kvmppc_set_gpr(vcpu, 4 + i, run->papr_hcall.args[i]);
		vcpu->arch.hcall_needed = 0;
1822 1823 1824 1825 1826
#ifdef CONFIG_BOOKE
	} else if (vcpu->arch.epr_needed) {
		kvmppc_set_epr(vcpu, run->epr.epr);
		vcpu->arch.epr_needed = 0;
#endif
1827 1828
	}

1829
	kvm_sigset_activate(vcpu);
1830

1831 1832 1833 1834
	if (run->immediate_exit)
		r = -EINTR;
	else
		r = kvmppc_vcpu_run(run, vcpu);
1835

1836
	kvm_sigset_deactivate(vcpu);
1837

1838
#ifdef CONFIG_ALTIVEC
1839
out:
1840
#endif
1841
	vcpu_put(vcpu);
1842 1843 1844 1845 1846
	return r;
}

int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, struct kvm_interrupt *irq)
{
1847
	if (irq->irq == KVM_INTERRUPT_UNSET) {
1848
		kvmppc_core_dequeue_external(vcpu);
1849 1850 1851 1852
		return 0;
	}

	kvmppc_core_queue_external(vcpu, irq);
1853

1854
	kvm_vcpu_kick(vcpu);
1855

1856 1857 1858
	return 0;
}

1859 1860 1861 1862 1863 1864 1865 1866 1867
static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
				     struct kvm_enable_cap *cap)
{
	int r;

	if (cap->flags)
		return -EINVAL;

	switch (cap->cap) {
1868 1869 1870 1871
	case KVM_CAP_PPC_OSI:
		r = 0;
		vcpu->arch.osi_enabled = true;
		break;
1872 1873 1874 1875
	case KVM_CAP_PPC_PAPR:
		r = 0;
		vcpu->arch.papr_enabled = true;
		break;
1876 1877
	case KVM_CAP_PPC_EPR:
		r = 0;
1878 1879 1880 1881
		if (cap->args[0])
			vcpu->arch.epr_flags |= KVMPPC_EPR_USER;
		else
			vcpu->arch.epr_flags &= ~KVMPPC_EPR_USER;
1882
		break;
1883 1884 1885 1886 1887 1888
#ifdef CONFIG_BOOKE
	case KVM_CAP_PPC_BOOKE_WATCHDOG:
		r = 0;
		vcpu->arch.watchdog_enabled = true;
		break;
#endif
1889
#if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
S
Scott Wood 已提交
1890 1891 1892 1893 1894 1895 1896 1897 1898 1899
	case KVM_CAP_SW_TLB: {
		struct kvm_config_tlb cfg;
		void __user *user_ptr = (void __user *)(uintptr_t)cap->args[0];

		r = -EFAULT;
		if (copy_from_user(&cfg, user_ptr, sizeof(cfg)))
			break;

		r = kvm_vcpu_ioctl_config_tlb(vcpu, &cfg);
		break;
S
Scott Wood 已提交
1900 1901 1902 1903
	}
#endif
#ifdef CONFIG_KVM_MPIC
	case KVM_CAP_IRQ_MPIC: {
A
Al Viro 已提交
1904
		struct fd f;
S
Scott Wood 已提交
1905 1906 1907
		struct kvm_device *dev;

		r = -EBADF;
A
Al Viro 已提交
1908 1909
		f = fdget(cap->args[0]);
		if (!f.file)
S
Scott Wood 已提交
1910 1911 1912
			break;

		r = -EPERM;
A
Al Viro 已提交
1913
		dev = kvm_device_from_filp(f.file);
S
Scott Wood 已提交
1914 1915 1916
		if (dev)
			r = kvmppc_mpic_connect_vcpu(dev, vcpu, cap->args[1]);

A
Al Viro 已提交
1917
		fdput(f);
S
Scott Wood 已提交
1918
		break;
S
Scott Wood 已提交
1919 1920
	}
#endif
1921 1922
#ifdef CONFIG_KVM_XICS
	case KVM_CAP_IRQ_XICS: {
A
Al Viro 已提交
1923
		struct fd f;
1924 1925 1926
		struct kvm_device *dev;

		r = -EBADF;
A
Al Viro 已提交
1927 1928
		f = fdget(cap->args[0]);
		if (!f.file)
1929 1930 1931
			break;

		r = -EPERM;
A
Al Viro 已提交
1932
		dev = kvm_device_from_filp(f.file);
1933
		if (dev) {
1934
			if (xics_on_xive())
1935 1936 1937 1938
				r = kvmppc_xive_connect_vcpu(dev, vcpu, cap->args[1]);
			else
				r = kvmppc_xics_connect_vcpu(dev, vcpu, cap->args[1]);
		}
1939

A
Al Viro 已提交
1940
		fdput(f);
1941 1942 1943
		break;
	}
#endif /* CONFIG_KVM_XICS */
1944 1945 1946 1947 1948 1949 1950 1951 1952
#ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
	case KVM_CAP_PPC_FWNMI:
		r = -EINVAL;
		if (!is_kvmppc_hv_enabled(vcpu->kvm))
			break;
		r = 0;
		vcpu->kvm->arch.fwnmi_enabled = true;
		break;
#endif /* CONFIG_KVM_BOOK3S_HV_POSSIBLE */
1953 1954 1955 1956 1957
	default:
		r = -EINVAL;
		break;
	}

1958 1959 1960
	if (!r)
		r = kvmppc_sanity_check(vcpu);

1961 1962 1963
	return r;
}

1964 1965 1966 1967 1968 1969 1970
bool kvm_arch_intc_initialized(struct kvm *kvm)
{
#ifdef CONFIG_KVM_MPIC
	if (kvm->arch.mpic)
		return true;
#endif
#ifdef CONFIG_KVM_XICS
1971
	if (kvm->arch.xics || kvm->arch.xive)
1972 1973 1974 1975 1976
		return true;
#endif
	return false;
}

1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988
int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
                                    struct kvm_mp_state *mp_state)
{
	return -EINVAL;
}

int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
                                    struct kvm_mp_state *mp_state)
{
	return -EINVAL;
}

1989 1990
long kvm_arch_vcpu_async_ioctl(struct file *filp,
			       unsigned int ioctl, unsigned long arg)
1991 1992 1993 1994
{
	struct kvm_vcpu *vcpu = filp->private_data;
	void __user *argp = (void __user *)arg;

1995
	if (ioctl == KVM_INTERRUPT) {
1996 1997
		struct kvm_interrupt irq;
		if (copy_from_user(&irq, argp, sizeof(irq)))
1998 1999
			return -EFAULT;
		return kvm_vcpu_ioctl_interrupt(vcpu, &irq);
2000
	}
2001 2002 2003 2004 2005 2006 2007 2008 2009
	return -ENOIOCTLCMD;
}

long kvm_arch_vcpu_ioctl(struct file *filp,
                         unsigned int ioctl, unsigned long arg)
{
	struct kvm_vcpu *vcpu = filp->private_data;
	void __user *argp = (void __user *)arg;
	long r;
2010

2011
	switch (ioctl) {
2012 2013 2014 2015
	case KVM_ENABLE_CAP:
	{
		struct kvm_enable_cap cap;
		r = -EFAULT;
2016
		vcpu_load(vcpu);
2017 2018 2019
		if (copy_from_user(&cap, argp, sizeof(cap)))
			goto out;
		r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
2020
		vcpu_put(vcpu);
2021 2022
		break;
	}
S
Scott Wood 已提交
2023

2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037
	case KVM_SET_ONE_REG:
	case KVM_GET_ONE_REG:
	{
		struct kvm_one_reg reg;
		r = -EFAULT;
		if (copy_from_user(&reg, argp, sizeof(reg)))
			goto out;
		if (ioctl == KVM_SET_ONE_REG)
			r = kvm_vcpu_ioctl_set_one_reg(vcpu, &reg);
		else
			r = kvm_vcpu_ioctl_get_one_reg(vcpu, &reg);
		break;
	}

2038
#if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
S
Scott Wood 已提交
2039 2040 2041
	case KVM_DIRTY_TLB: {
		struct kvm_dirty_tlb dirty;
		r = -EFAULT;
2042
		vcpu_load(vcpu);
S
Scott Wood 已提交
2043 2044 2045
		if (copy_from_user(&dirty, argp, sizeof(dirty)))
			goto out;
		r = kvm_vcpu_ioctl_dirty_tlb(vcpu, &dirty);
2046
		vcpu_put(vcpu);
S
Scott Wood 已提交
2047 2048 2049
		break;
	}
#endif
2050 2051 2052 2053 2054 2055 2056 2057
	default:
		r = -EINVAL;
	}

out:
	return r;
}

2058
vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
2059 2060 2061 2062
{
	return VM_FAULT_SIGBUS;
}

2063 2064
static int kvm_vm_ioctl_get_pvinfo(struct kvm_ppc_pvinfo *pvinfo)
{
2065 2066 2067
	u32 inst_nop = 0x60000000;
#ifdef CONFIG_KVM_BOOKE_HV
	u32 inst_sc1 = 0x44000022;
2068 2069 2070 2071
	pvinfo->hcall[0] = cpu_to_be32(inst_sc1);
	pvinfo->hcall[1] = cpu_to_be32(inst_nop);
	pvinfo->hcall[2] = cpu_to_be32(inst_nop);
	pvinfo->hcall[3] = cpu_to_be32(inst_nop);
2072
#else
2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086
	u32 inst_lis = 0x3c000000;
	u32 inst_ori = 0x60000000;
	u32 inst_sc = 0x44000002;
	u32 inst_imm_mask = 0xffff;

	/*
	 * The hypercall to get into KVM from within guest context is as
	 * follows:
	 *
	 *    lis r0, r0, KVM_SC_MAGIC_R0@h
	 *    ori r0, KVM_SC_MAGIC_R0@l
	 *    sc
	 *    nop
	 */
2087 2088 2089 2090
	pvinfo->hcall[0] = cpu_to_be32(inst_lis | ((KVM_SC_MAGIC_R0 >> 16) & inst_imm_mask));
	pvinfo->hcall[1] = cpu_to_be32(inst_ori | (KVM_SC_MAGIC_R0 & inst_imm_mask));
	pvinfo->hcall[2] = cpu_to_be32(inst_sc);
	pvinfo->hcall[3] = cpu_to_be32(inst_nop);
2091
#endif
2092

2093 2094
	pvinfo->flags = KVM_PPC_PVINFO_FLAGS_EV_IDLE;

2095 2096 2097
	return 0;
}

2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109
int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
			  bool line_status)
{
	if (!irqchip_in_kernel(kvm))
		return -ENXIO;

	irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
					irq_event->irq, irq_event->level,
					line_status);
	return 0;
}

2110

2111 2112
int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
			    struct kvm_enable_cap *cap)
2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127
{
	int r;

	if (cap->flags)
		return -EINVAL;

	switch (cap->cap) {
#ifdef CONFIG_KVM_BOOK3S_64_HANDLER
	case KVM_CAP_PPC_ENABLE_HCALL: {
		unsigned long hcall = cap->args[0];

		r = -EINVAL;
		if (hcall > MAX_HCALL_OPCODE || (hcall & 3) ||
		    cap->args[1] > 1)
			break;
2128 2129
		if (!kvmppc_book3s_hcall_implemented(kvm, hcall))
			break;
2130 2131 2132 2133 2134 2135 2136
		if (cap->args[1])
			set_bit(hcall / 4, kvm->arch.enabled_hcalls);
		else
			clear_bit(hcall / 4, kvm->arch.enabled_hcalls);
		r = 0;
		break;
	}
2137 2138 2139 2140 2141 2142 2143 2144 2145
	case KVM_CAP_PPC_SMT: {
		unsigned long mode = cap->args[0];
		unsigned long flags = cap->args[1];

		r = -EINVAL;
		if (kvm->arch.kvm_ops->set_smt_mode)
			r = kvm->arch.kvm_ops->set_smt_mode(kvm, mode, flags);
		break;
	}
2146 2147 2148 2149 2150 2151 2152 2153

	case KVM_CAP_PPC_NESTED_HV:
		r = -EINVAL;
		if (!is_kvmppc_hv_enabled(kvm) ||
		    !kvm->arch.kvm_ops->enable_nested)
			break;
		r = kvm->arch.kvm_ops->enable_nested(kvm);
		break;
2154 2155 2156 2157 2158 2159 2160 2161 2162
#endif
	default:
		r = -EINVAL;
		break;
	}

	return r;
}

2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191
#ifdef CONFIG_PPC_BOOK3S_64
/*
 * These functions check whether the underlying hardware is safe
 * against attacks based on observing the effects of speculatively
 * executed instructions, and whether it supplies instructions for
 * use in workarounds.  The information comes from firmware, either
 * via the device tree on powernv platforms or from an hcall on
 * pseries platforms.
 */
#ifdef CONFIG_PPC_PSERIES
static int pseries_get_cpu_char(struct kvm_ppc_cpu_char *cp)
{
	struct h_cpu_char_result c;
	unsigned long rc;

	if (!machine_is(pseries))
		return -ENOTTY;

	rc = plpar_get_cpu_characteristics(&c);
	if (rc == H_SUCCESS) {
		cp->character = c.character;
		cp->behaviour = c.behaviour;
		cp->character_mask = KVM_PPC_CPU_CHAR_SPEC_BAR_ORI31 |
			KVM_PPC_CPU_CHAR_BCCTRL_SERIALISED |
			KVM_PPC_CPU_CHAR_L1D_FLUSH_ORI30 |
			KVM_PPC_CPU_CHAR_L1D_FLUSH_TRIG2 |
			KVM_PPC_CPU_CHAR_L1D_THREAD_PRIV |
			KVM_PPC_CPU_CHAR_BR_HINT_HONOURED |
			KVM_PPC_CPU_CHAR_MTTRIG_THR_RECONF |
2192 2193
			KVM_PPC_CPU_CHAR_COUNT_CACHE_DIS |
			KVM_PPC_CPU_CHAR_BCCTR_FLUSH_ASSIST;
2194 2195
		cp->behaviour_mask = KVM_PPC_CPU_BEHAV_FAVOUR_SECURITY |
			KVM_PPC_CPU_BEHAV_L1D_FLUSH_PR |
2196 2197
			KVM_PPC_CPU_BEHAV_BNDS_CHK_SPEC_BAR |
			KVM_PPC_CPU_BEHAV_FLUSH_COUNT_CACHE;
2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255
	}
	return 0;
}
#else
static int pseries_get_cpu_char(struct kvm_ppc_cpu_char *cp)
{
	return -ENOTTY;
}
#endif

static inline bool have_fw_feat(struct device_node *fw_features,
				const char *state, const char *name)
{
	struct device_node *np;
	bool r = false;

	np = of_get_child_by_name(fw_features, name);
	if (np) {
		r = of_property_read_bool(np, state);
		of_node_put(np);
	}
	return r;
}

static int kvmppc_get_cpu_char(struct kvm_ppc_cpu_char *cp)
{
	struct device_node *np, *fw_features;
	int r;

	memset(cp, 0, sizeof(*cp));
	r = pseries_get_cpu_char(cp);
	if (r != -ENOTTY)
		return r;

	np = of_find_node_by_name(NULL, "ibm,opal");
	if (np) {
		fw_features = of_get_child_by_name(np, "fw-features");
		of_node_put(np);
		if (!fw_features)
			return 0;
		if (have_fw_feat(fw_features, "enabled",
				 "inst-spec-barrier-ori31,31,0"))
			cp->character |= KVM_PPC_CPU_CHAR_SPEC_BAR_ORI31;
		if (have_fw_feat(fw_features, "enabled",
				 "fw-bcctrl-serialized"))
			cp->character |= KVM_PPC_CPU_CHAR_BCCTRL_SERIALISED;
		if (have_fw_feat(fw_features, "enabled",
				 "inst-l1d-flush-ori30,30,0"))
			cp->character |= KVM_PPC_CPU_CHAR_L1D_FLUSH_ORI30;
		if (have_fw_feat(fw_features, "enabled",
				 "inst-l1d-flush-trig2"))
			cp->character |= KVM_PPC_CPU_CHAR_L1D_FLUSH_TRIG2;
		if (have_fw_feat(fw_features, "enabled",
				 "fw-l1d-thread-split"))
			cp->character |= KVM_PPC_CPU_CHAR_L1D_THREAD_PRIV;
		if (have_fw_feat(fw_features, "enabled",
				 "fw-count-cache-disabled"))
			cp->character |= KVM_PPC_CPU_CHAR_COUNT_CACHE_DIS;
2256 2257 2258
		if (have_fw_feat(fw_features, "enabled",
				 "fw-count-cache-flush-bcctr2,0,0"))
			cp->character |= KVM_PPC_CPU_CHAR_BCCTR_FLUSH_ASSIST;
2259 2260 2261 2262 2263
		cp->character_mask = KVM_PPC_CPU_CHAR_SPEC_BAR_ORI31 |
			KVM_PPC_CPU_CHAR_BCCTRL_SERIALISED |
			KVM_PPC_CPU_CHAR_L1D_FLUSH_ORI30 |
			KVM_PPC_CPU_CHAR_L1D_FLUSH_TRIG2 |
			KVM_PPC_CPU_CHAR_L1D_THREAD_PRIV |
2264 2265
			KVM_PPC_CPU_CHAR_COUNT_CACHE_DIS |
			KVM_PPC_CPU_CHAR_BCCTR_FLUSH_ASSIST;
2266 2267 2268 2269 2270 2271 2272 2273 2274 2275

		if (have_fw_feat(fw_features, "enabled",
				 "speculation-policy-favor-security"))
			cp->behaviour |= KVM_PPC_CPU_BEHAV_FAVOUR_SECURITY;
		if (!have_fw_feat(fw_features, "disabled",
				  "needs-l1d-flush-msr-pr-0-to-1"))
			cp->behaviour |= KVM_PPC_CPU_BEHAV_L1D_FLUSH_PR;
		if (!have_fw_feat(fw_features, "disabled",
				  "needs-spec-barrier-for-bound-checks"))
			cp->behaviour |= KVM_PPC_CPU_BEHAV_BNDS_CHK_SPEC_BAR;
2276 2277 2278
		if (have_fw_feat(fw_features, "enabled",
				 "needs-count-cache-flush-on-context-switch"))
			cp->behaviour |= KVM_PPC_CPU_BEHAV_FLUSH_COUNT_CACHE;
2279 2280
		cp->behaviour_mask = KVM_PPC_CPU_BEHAV_FAVOUR_SECURITY |
			KVM_PPC_CPU_BEHAV_L1D_FLUSH_PR |
2281 2282
			KVM_PPC_CPU_BEHAV_BNDS_CHK_SPEC_BAR |
			KVM_PPC_CPU_BEHAV_FLUSH_COUNT_CACHE;
2283 2284 2285 2286 2287 2288 2289 2290

		of_node_put(fw_features);
	}

	return 0;
}
#endif

2291 2292 2293
long kvm_arch_vm_ioctl(struct file *filp,
                       unsigned int ioctl, unsigned long arg)
{
2294
	struct kvm *kvm __maybe_unused = filp->private_data;
2295
	void __user *argp = (void __user *)arg;
2296 2297 2298
	long r;

	switch (ioctl) {
2299 2300
	case KVM_PPC_GET_PVINFO: {
		struct kvm_ppc_pvinfo pvinfo;
2301
		memset(&pvinfo, 0, sizeof(pvinfo));
2302 2303 2304 2305 2306 2307 2308 2309
		r = kvm_vm_ioctl_get_pvinfo(&pvinfo);
		if (copy_to_user(argp, &pvinfo, sizeof(pvinfo))) {
			r = -EFAULT;
			goto out;
		}

		break;
	}
2310
#ifdef CONFIG_SPAPR_TCE_IOMMU
2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323
	case KVM_CREATE_SPAPR_TCE_64: {
		struct kvm_create_spapr_tce_64 create_tce_64;

		r = -EFAULT;
		if (copy_from_user(&create_tce_64, argp, sizeof(create_tce_64)))
			goto out;
		if (create_tce_64.flags) {
			r = -EINVAL;
			goto out;
		}
		r = kvm_vm_ioctl_create_spapr_tce(kvm, &create_tce_64);
		goto out;
	}
2324 2325
	case KVM_CREATE_SPAPR_TCE: {
		struct kvm_create_spapr_tce create_tce;
2326
		struct kvm_create_spapr_tce_64 create_tce_64;
2327 2328 2329 2330

		r = -EFAULT;
		if (copy_from_user(&create_tce, argp, sizeof(create_tce)))
			goto out;
2331 2332 2333 2334 2335 2336 2337 2338

		create_tce_64.liobn = create_tce.liobn;
		create_tce_64.page_shift = IOMMU_PAGE_SHIFT_4K;
		create_tce_64.offset = 0;
		create_tce_64.size = create_tce.window_size >>
				IOMMU_PAGE_SHIFT_4K;
		create_tce_64.flags = 0;
		r = kvm_vm_ioctl_create_spapr_tce(kvm, &create_tce_64);
2339 2340
		goto out;
	}
2341 2342
#endif
#ifdef CONFIG_PPC_BOOK3S_64
2343 2344
	case KVM_PPC_GET_SMMU_INFO: {
		struct kvm_ppc_smmu_info info;
2345
		struct kvm *kvm = filp->private_data;
2346 2347

		memset(&info, 0, sizeof(info));
2348
		r = kvm->arch.kvm_ops->get_smmu_info(kvm, &info);
2349 2350 2351 2352
		if (r >= 0 && copy_to_user(argp, &info, sizeof(info)))
			r = -EFAULT;
		break;
	}
2353 2354 2355 2356 2357 2358
	case KVM_PPC_RTAS_DEFINE_TOKEN: {
		struct kvm *kvm = filp->private_data;

		r = kvm_vm_ioctl_rtas_define_token(kvm, argp);
		break;
	}
2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383
	case KVM_PPC_CONFIGURE_V3_MMU: {
		struct kvm *kvm = filp->private_data;
		struct kvm_ppc_mmuv3_cfg cfg;

		r = -EINVAL;
		if (!kvm->arch.kvm_ops->configure_mmu)
			goto out;
		r = -EFAULT;
		if (copy_from_user(&cfg, argp, sizeof(cfg)))
			goto out;
		r = kvm->arch.kvm_ops->configure_mmu(kvm, &cfg);
		break;
	}
	case KVM_PPC_GET_RMMU_INFO: {
		struct kvm *kvm = filp->private_data;
		struct kvm_ppc_rmmu_info info;

		r = -EINVAL;
		if (!kvm->arch.kvm_ops->get_rmmu_info)
			goto out;
		r = kvm->arch.kvm_ops->get_rmmu_info(kvm, &info);
		if (r >= 0 && copy_to_user(argp, &info, sizeof(info)))
			r = -EFAULT;
		break;
	}
2384 2385 2386 2387 2388 2389 2390 2391
	case KVM_PPC_GET_CPU_CHAR: {
		struct kvm_ppc_cpu_char cpuchar;

		r = kvmppc_get_cpu_char(&cpuchar);
		if (r >= 0 && copy_to_user(argp, &cpuchar, sizeof(cpuchar)))
			r = -EFAULT;
		break;
	}
2392 2393 2394 2395
	default: {
		struct kvm *kvm = filp->private_data;
		r = kvm->arch.kvm_ops->arch_vm_ioctl(filp, ioctl, arg);
	}
2396
#else /* CONFIG_PPC_BOOK3S_64 */
2397
	default:
2398
		r = -ENOTTY;
2399
#endif
2400
	}
2401
out:
2402 2403 2404
	return r;
}

2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421
static unsigned long lpid_inuse[BITS_TO_LONGS(KVMPPC_NR_LPIDS)];
static unsigned long nr_lpids;

long kvmppc_alloc_lpid(void)
{
	long lpid;

	do {
		lpid = find_first_zero_bit(lpid_inuse, KVMPPC_NR_LPIDS);
		if (lpid >= nr_lpids) {
			pr_err("%s: No LPIDs free\n", __func__);
			return -ENOMEM;
		}
	} while (test_and_set_bit(lpid, lpid_inuse));

	return lpid;
}
2422
EXPORT_SYMBOL_GPL(kvmppc_alloc_lpid);
2423 2424 2425 2426 2427

void kvmppc_claim_lpid(long lpid)
{
	set_bit(lpid, lpid_inuse);
}
2428
EXPORT_SYMBOL_GPL(kvmppc_claim_lpid);
2429 2430 2431 2432 2433

void kvmppc_free_lpid(long lpid)
{
	clear_bit(lpid, lpid_inuse);
}
2434
EXPORT_SYMBOL_GPL(kvmppc_free_lpid);
2435 2436 2437 2438 2439 2440

void kvmppc_init_lpid(unsigned long nr_lpids_param)
{
	nr_lpids = min_t(unsigned long, KVMPPC_NR_LPIDS, nr_lpids_param);
	memset(lpid_inuse, 0, sizeof(lpid_inuse));
}
2441
EXPORT_SYMBOL_GPL(kvmppc_init_lpid);
2442

2443 2444 2445 2446 2447
int kvm_arch_init(void *opaque)
{
	return 0;
}

2448
EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ppc_instr);