powerpc.c 56.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
/*
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License, version 2, as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
 *
 * Copyright IBM Corp. 2007
 *
 * Authors: Hollis Blanchard <hollisb@us.ibm.com>
 *          Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com>
 */

#include <linux/errno.h>
#include <linux/err.h>
#include <linux/kvm_host.h>
#include <linux/vmalloc.h>
A
Alexander Graf 已提交
25
#include <linux/hrtimer.h>
26
#include <linux/sched/signal.h>
27
#include <linux/fs.h>
28
#include <linux/slab.h>
S
Scott Wood 已提交
29
#include <linux/file.h>
30
#include <linux/module.h>
31 32
#include <linux/irqbypass.h>
#include <linux/kvm_irqfd.h>
33
#include <asm/cputable.h>
34
#include <linux/uaccess.h>
35
#include <asm/kvm_ppc.h>
36
#include <asm/cputhreads.h>
37
#include <asm/irqflags.h>
38
#include <asm/iommu.h>
39
#include <asm/switch_to.h>
40
#include <asm/xive.h>
41 42 43 44
#ifdef CONFIG_PPC_PSERIES
#include <asm/hvcall.h>
#include <asm/plpar_wrappers.h>
#endif
45

46
#include "timing.h"
47
#include "irq.h"
P
Paul Mackerras 已提交
48
#include "../mm/mmu_decl.h"
49

50 51 52
#define CREATE_TRACE_POINTS
#include "trace.h"

53 54 55 56 57
struct kvmppc_ops *kvmppc_hv_ops;
EXPORT_SYMBOL_GPL(kvmppc_hv_ops);
struct kvmppc_ops *kvmppc_pr_ops;
EXPORT_SYMBOL_GPL(kvmppc_pr_ops);

58

59 60
int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
{
R
Radim Krčmář 已提交
61
	return !!(v->arch.pending_exceptions) || kvm_request_pending(v);
62 63
}

64 65 66 67 68
bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
{
	return false;
}

69 70 71 72 73
int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
{
	return 1;
}

74 75 76 77
/*
 * Common checks before entering the guest world.  Call with interrupts
 * disabled.
 *
78 79 80 81
 * returns:
 *
 * == 1 if we're ready to go into guest state
 * <= 0 if we need to go back to the host with return value
82 83 84
 */
int kvmppc_prepare_to_enter(struct kvm_vcpu *vcpu)
{
S
Scott Wood 已提交
85 86 87 88
	int r;

	WARN_ON(irqs_disabled());
	hard_irq_disable();
89 90 91 92 93

	while (true) {
		if (need_resched()) {
			local_irq_enable();
			cond_resched();
S
Scott Wood 已提交
94
			hard_irq_disable();
95 96 97 98
			continue;
		}

		if (signal_pending(current)) {
99 100 101
			kvmppc_account_exit(vcpu, SIGNAL_EXITS);
			vcpu->run->exit_reason = KVM_EXIT_INTR;
			r = -EINTR;
102 103 104
			break;
		}

105 106 107 108 109 110 111
		vcpu->mode = IN_GUEST_MODE;

		/*
		 * Reading vcpu->requests must happen after setting vcpu->mode,
		 * so we don't miss a request because the requester sees
		 * OUTSIDE_GUEST_MODE and assumes we'll be checking requests
		 * before next entering the guest (and thus doesn't IPI).
112 113 114
		 * This also orders the write to mode from any reads
		 * to the page tables done while the VCPU is running.
		 * Please see the comment in kvm_flush_remote_tlbs.
115
		 */
116
		smp_mb();
117

R
Radim Krčmář 已提交
118
		if (kvm_request_pending(vcpu)) {
119 120 121
			/* Make sure we process requests preemptable */
			local_irq_enable();
			trace_kvm_check_requests(vcpu);
122
			r = kvmppc_core_check_requests(vcpu);
S
Scott Wood 已提交
123
			hard_irq_disable();
124 125 126
			if (r > 0)
				continue;
			break;
127 128 129 130 131 132 133 134
		}

		if (kvmppc_core_prepare_to_enter(vcpu)) {
			/* interrupts got enabled in between, so we
			   are back at square 1 */
			continue;
		}

135
		guest_enter_irqoff();
S
Scott Wood 已提交
136
		return 1;
137 138
	}

S
Scott Wood 已提交
139 140
	/* return to host */
	local_irq_enable();
141 142
	return r;
}
143
EXPORT_SYMBOL_GPL(kvmppc_prepare_to_enter);
144

145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
#if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_KVM_BOOK3S_PR_POSSIBLE)
static void kvmppc_swab_shared(struct kvm_vcpu *vcpu)
{
	struct kvm_vcpu_arch_shared *shared = vcpu->arch.shared;
	int i;

	shared->sprg0 = swab64(shared->sprg0);
	shared->sprg1 = swab64(shared->sprg1);
	shared->sprg2 = swab64(shared->sprg2);
	shared->sprg3 = swab64(shared->sprg3);
	shared->srr0 = swab64(shared->srr0);
	shared->srr1 = swab64(shared->srr1);
	shared->dar = swab64(shared->dar);
	shared->msr = swab64(shared->msr);
	shared->dsisr = swab32(shared->dsisr);
	shared->int_pending = swab32(shared->int_pending);
	for (i = 0; i < ARRAY_SIZE(shared->sr); i++)
		shared->sr[i] = swab32(shared->sr[i]);
}
#endif

166 167 168 169 170 171 172 173 174 175
int kvmppc_kvm_pv(struct kvm_vcpu *vcpu)
{
	int nr = kvmppc_get_gpr(vcpu, 11);
	int r;
	unsigned long __maybe_unused param1 = kvmppc_get_gpr(vcpu, 3);
	unsigned long __maybe_unused param2 = kvmppc_get_gpr(vcpu, 4);
	unsigned long __maybe_unused param3 = kvmppc_get_gpr(vcpu, 5);
	unsigned long __maybe_unused param4 = kvmppc_get_gpr(vcpu, 6);
	unsigned long r2 = 0;

176
	if (!(kvmppc_get_msr(vcpu) & MSR_SF)) {
177 178 179 180 181 182 183 184
		/* 32 bit mode */
		param1 &= 0xffffffff;
		param2 &= 0xffffffff;
		param3 &= 0xffffffff;
		param4 &= 0xffffffff;
	}

	switch (nr) {
185
	case KVM_HCALL_TOKEN(KVM_HC_PPC_MAP_MAGIC_PAGE):
186
	{
187 188 189 190 191 192 193 194 195 196
#if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_KVM_BOOK3S_PR_POSSIBLE)
		/* Book3S can be little endian, find it out here */
		int shared_big_endian = true;
		if (vcpu->arch.intr_msr & MSR_LE)
			shared_big_endian = false;
		if (shared_big_endian != vcpu->arch.shared_big_endian)
			kvmppc_swab_shared(vcpu);
		vcpu->arch.shared_big_endian = shared_big_endian;
#endif

197 198 199 200 201 202 203 204 205 206 207 208
		if (!(param2 & MAGIC_PAGE_FLAG_NOT_MAPPED_NX)) {
			/*
			 * Older versions of the Linux magic page code had
			 * a bug where they would map their trampoline code
			 * NX. If that's the case, remove !PR NX capability.
			 */
			vcpu->arch.disable_kernel_nx = true;
			kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
		}

		vcpu->arch.magic_page_pa = param1 & ~0xfffULL;
		vcpu->arch.magic_page_ea = param2 & ~0xfffULL;
209

210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
#ifdef CONFIG_PPC_64K_PAGES
		/*
		 * Make sure our 4k magic page is in the same window of a 64k
		 * page within the guest and within the host's page.
		 */
		if ((vcpu->arch.magic_page_pa & 0xf000) !=
		    ((ulong)vcpu->arch.shared & 0xf000)) {
			void *old_shared = vcpu->arch.shared;
			ulong shared = (ulong)vcpu->arch.shared;
			void *new_shared;

			shared &= PAGE_MASK;
			shared |= vcpu->arch.magic_page_pa & 0xf000;
			new_shared = (void*)shared;
			memcpy(new_shared, old_shared, 0x1000);
			vcpu->arch.shared = new_shared;
		}
#endif

229
		r2 = KVM_MAGIC_FEAT_SR | KVM_MAGIC_FEAT_MAS0_TO_SPRG7;
230

231
		r = EV_SUCCESS;
232 233
		break;
	}
234 235
	case KVM_HCALL_TOKEN(KVM_HC_FEATURES):
		r = EV_SUCCESS;
236
#if defined(CONFIG_PPC_BOOK3S) || defined(CONFIG_KVM_E500V2)
237 238
		r2 |= (1 << KVM_FEATURE_MAGIC_PAGE);
#endif
239 240 241

		/* Second return value is in r4 */
		break;
242 243 244
	case EV_HCALL_TOKEN(EV_IDLE):
		r = EV_SUCCESS;
		kvm_vcpu_block(vcpu);
245
		kvm_clear_request(KVM_REQ_UNHALT, vcpu);
246
		break;
247
	default:
248
		r = EV_UNIMPLEMENTED;
249 250 251
		break;
	}

252 253
	kvmppc_set_gpr(vcpu, 4, r2);

254 255
	return r;
}
256
EXPORT_SYMBOL_GPL(kvmppc_kvm_pv);
257

258 259 260 261 262 263 264 265 266 267 268 269 270
int kvmppc_sanity_check(struct kvm_vcpu *vcpu)
{
	int r = false;

	/* We have to know what CPU to virtualize */
	if (!vcpu->arch.pvr)
		goto out;

	/* PAPR only works with book3s_64 */
	if ((vcpu->arch.cpu_type != KVM_CPU_3S_64) && vcpu->arch.papr_enabled)
		goto out;

	/* HV KVM can only do PAPR mode for now */
271
	if (!vcpu->arch.papr_enabled && is_kvmppc_hv_enabled(vcpu->kvm))
272 273
		goto out;

274 275 276 277 278
#ifdef CONFIG_KVM_BOOKE_HV
	if (!cpu_has_feature(CPU_FTR_EMB_HV))
		goto out;
#endif

279 280 281 282 283 284
	r = true;

out:
	vcpu->arch.sane = r;
	return r ? 0 : -EINVAL;
}
285
EXPORT_SYMBOL_GPL(kvmppc_sanity_check);
286

287 288 289 290 291
int kvmppc_emulate_mmio(struct kvm_run *run, struct kvm_vcpu *vcpu)
{
	enum emulation_result er;
	int r;

292
	er = kvmppc_emulate_loadstore(vcpu);
293 294 295 296 297 298
	switch (er) {
	case EMULATE_DONE:
		/* Future optimization: only reload non-volatiles if they were
		 * actually modified. */
		r = RESUME_GUEST_NV;
		break;
299 300 301
	case EMULATE_AGAIN:
		r = RESUME_GUEST;
		break;
302 303 304 305 306 307 308 309 310
	case EMULATE_DO_MMIO:
		run->exit_reason = KVM_EXIT_MMIO;
		/* We must reload nonvolatiles because "update" load/store
		 * instructions modify register state. */
		/* Future optimization: only reload non-volatiles if they were
		 * actually modified. */
		r = RESUME_HOST_NV;
		break;
	case EMULATE_FAIL:
311 312 313
	{
		u32 last_inst;

314
		kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst);
315
		/* XXX Deliver Program interrupt to guest. */
316
		pr_emerg("%s: emulation failed (%08x)\n", __func__, last_inst);
317 318
		r = RESUME_HOST;
		break;
319
	}
320
	default:
321 322
		WARN_ON(1);
		r = RESUME_GUEST;
323 324 325 326
	}

	return r;
}
327
EXPORT_SYMBOL_GPL(kvmppc_emulate_mmio);
328

329 330 331
int kvmppc_st(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr,
	      bool data)
{
332
	ulong mp_pa = vcpu->arch.magic_page_pa & KVM_PAM & PAGE_MASK;
333
	struct kvmppc_pte pte;
334
	int r = -EINVAL;
335 336 337

	vcpu->stat.st++;

338 339 340 341 342 343 344
	if (vcpu->kvm->arch.kvm_ops && vcpu->kvm->arch.kvm_ops->store_to_eaddr)
		r = vcpu->kvm->arch.kvm_ops->store_to_eaddr(vcpu, eaddr, ptr,
							    size);

	if ((!r) || (r == -EAGAIN))
		return r;

345 346 347 348 349 350 351 352 353 354
	r = kvmppc_xlate(vcpu, *eaddr, data ? XLATE_DATA : XLATE_INST,
			 XLATE_WRITE, &pte);
	if (r < 0)
		return r;

	*eaddr = pte.raddr;

	if (!pte.may_write)
		return -EPERM;

355 356 357 358 359 360 361 362 363 364
	/* Magic page override */
	if (kvmppc_supports_magic_page(vcpu) && mp_pa &&
	    ((pte.raddr & KVM_PAM & PAGE_MASK) == mp_pa) &&
	    !(kvmppc_get_msr(vcpu) & MSR_PR)) {
		void *magic = vcpu->arch.shared;
		magic += pte.eaddr & 0xfff;
		memcpy(magic, ptr, size);
		return EMULATE_DONE;
	}

365 366 367 368 369 370 371 372 373 374
	if (kvm_write_guest(vcpu->kvm, pte.raddr, ptr, size))
		return EMULATE_DO_MMIO;

	return EMULATE_DONE;
}
EXPORT_SYMBOL_GPL(kvmppc_st);

int kvmppc_ld(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr,
		      bool data)
{
375
	ulong mp_pa = vcpu->arch.magic_page_pa & KVM_PAM & PAGE_MASK;
376
	struct kvmppc_pte pte;
377
	int rc = -EINVAL;
378 379 380

	vcpu->stat.ld++;

381 382 383 384 385 386 387
	if (vcpu->kvm->arch.kvm_ops && vcpu->kvm->arch.kvm_ops->load_from_eaddr)
		rc = vcpu->kvm->arch.kvm_ops->load_from_eaddr(vcpu, eaddr, ptr,
							      size);

	if ((!rc) || (rc == -EAGAIN))
		return rc;

388 389 390 391 392 393 394 395 396 397 398 399 400
	rc = kvmppc_xlate(vcpu, *eaddr, data ? XLATE_DATA : XLATE_INST,
			  XLATE_READ, &pte);
	if (rc)
		return rc;

	*eaddr = pte.raddr;

	if (!pte.may_read)
		return -EPERM;

	if (!data && !pte.may_execute)
		return -ENOEXEC;

401 402 403 404 405 406 407 408 409 410
	/* Magic page override */
	if (kvmppc_supports_magic_page(vcpu) && mp_pa &&
	    ((pte.raddr & KVM_PAM & PAGE_MASK) == mp_pa) &&
	    !(kvmppc_get_msr(vcpu) & MSR_PR)) {
		void *magic = vcpu->arch.shared;
		magic += pte.eaddr & 0xfff;
		memcpy(ptr, magic, size);
		return EMULATE_DONE;
	}

411 412
	if (kvm_read_guest(vcpu->kvm, pte.raddr, ptr, size))
		return EMULATE_DO_MMIO;
413 414 415 416 417

	return EMULATE_DONE;
}
EXPORT_SYMBOL_GPL(kvmppc_ld);

418
int kvm_arch_hardware_enable(void)
419
{
420
	return 0;
421 422 423 424 425 426 427 428 429
}

int kvm_arch_hardware_setup(void)
{
	return 0;
}

void kvm_arch_check_processor_compat(void *rtn)
{
430
	*(int *)rtn = kvmppc_core_check_processor_compat();
431 432
}

433
int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
434
{
435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460
	struct kvmppc_ops *kvm_ops = NULL;
	/*
	 * if we have both HV and PR enabled, default is HV
	 */
	if (type == 0) {
		if (kvmppc_hv_ops)
			kvm_ops = kvmppc_hv_ops;
		else
			kvm_ops = kvmppc_pr_ops;
		if (!kvm_ops)
			goto err_out;
	} else	if (type == KVM_VM_PPC_HV) {
		if (!kvmppc_hv_ops)
			goto err_out;
		kvm_ops = kvmppc_hv_ops;
	} else if (type == KVM_VM_PPC_PR) {
		if (!kvmppc_pr_ops)
			goto err_out;
		kvm_ops = kvmppc_pr_ops;
	} else
		goto err_out;

	if (kvm_ops->owner && !try_module_get(kvm_ops->owner))
		return -ENOENT;

	kvm->arch.kvm_ops = kvm_ops;
461
	return kvmppc_core_init_vm(kvm);
462 463
err_out:
	return -EINVAL;
464 465
}

466 467 468 469 470 471 472 473 474 475
bool kvm_arch_has_vcpu_debugfs(void)
{
	return false;
}

int kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
{
	return 0;
}

476
void kvm_arch_destroy_vm(struct kvm *kvm)
477 478
{
	unsigned int i;
479
	struct kvm_vcpu *vcpu;
480

481 482 483 484 485 486 487 488 489 490
#ifdef CONFIG_KVM_XICS
	/*
	 * We call kick_all_cpus_sync() to ensure that all
	 * CPUs have executed any pending IPIs before we
	 * continue and free VCPUs structures below.
	 */
	if (is_kvmppc_hv_enabled(kvm))
		kick_all_cpus_sync();
#endif

491 492 493 494 495 496 497 498
	kvm_for_each_vcpu(i, vcpu, kvm)
		kvm_arch_vcpu_free(vcpu);

	mutex_lock(&kvm->lock);
	for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
		kvm->vcpus[i] = NULL;

	atomic_set(&kvm->online_vcpus, 0);
499 500 501

	kvmppc_core_destroy_vm(kvm);

502
	mutex_unlock(&kvm->lock);
503 504 505

	/* drop the module reference */
	module_put(kvm->arch.kvm_ops->owner);
506 507
}

508
int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
509 510
{
	int r;
511
	/* Assume we're using HV mode when the HV module is loaded */
512
	int hv_enabled = kvmppc_hv_ops ? 1 : 0;
513

514 515 516 517 518 519 520 521
	if (kvm) {
		/*
		 * Hooray - we know which VM type we're running on. Depend on
		 * that rather than the guess above.
		 */
		hv_enabled = is_kvmppc_hv_enabled(kvm);
	}

522
	switch (ext) {
S
Scott Wood 已提交
523 524
#ifdef CONFIG_BOOKE
	case KVM_CAP_PPC_BOOKE_SREGS:
525
	case KVM_CAP_PPC_BOOKE_WATCHDOG:
526
	case KVM_CAP_PPC_EPR:
S
Scott Wood 已提交
527
#else
528
	case KVM_CAP_PPC_SEGSTATE:
529
	case KVM_CAP_PPC_HIOR:
530
	case KVM_CAP_PPC_PAPR:
S
Scott Wood 已提交
531
#endif
532
	case KVM_CAP_PPC_UNSET_IRQ:
533
	case KVM_CAP_PPC_IRQ_LEVEL:
534
	case KVM_CAP_ENABLE_CAP:
535
	case KVM_CAP_ONE_REG:
A
Alexander Graf 已提交
536
	case KVM_CAP_IOEVENTFD:
537
	case KVM_CAP_DEVICE_CTRL:
538
	case KVM_CAP_IMMEDIATE_EXIT:
539 540 541
		r = 1;
		break;
	case KVM_CAP_PPC_PAIRED_SINGLES:
542
	case KVM_CAP_PPC_OSI:
543
	case KVM_CAP_PPC_GET_PVINFO:
544
#if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
S
Scott Wood 已提交
545
	case KVM_CAP_SW_TLB:
S
Scott Wood 已提交
546
#endif
547
		/* We support this only for PR */
548
		r = !hv_enabled;
549
		break;
550 551 552 553 554 555
#ifdef CONFIG_KVM_MPIC
	case KVM_CAP_IRQ_MPIC:
		r = 1;
		break;
#endif

556
#ifdef CONFIG_PPC_BOOK3S_64
557
	case KVM_CAP_SPAPR_TCE:
558
	case KVM_CAP_SPAPR_TCE_64:
559 560
		r = 1;
		break;
561
	case KVM_CAP_SPAPR_TCE_VFIO:
562 563
		r = !!cpu_has_feature(CPU_FTR_HVMODE);
		break;
564
	case KVM_CAP_PPC_RTAS:
565
	case KVM_CAP_PPC_FIXUP_HCALL:
566
	case KVM_CAP_PPC_ENABLE_HCALL:
567 568 569
#ifdef CONFIG_KVM_XICS
	case KVM_CAP_IRQ_XICS:
#endif
570
	case KVM_CAP_PPC_GET_CPU_CHAR:
571 572
		r = 1;
		break;
573 574 575
#ifdef CONFIG_KVM_XIVE
	case KVM_CAP_PPC_IRQ_XIVE:
		/*
576 577 578
		 * We need XIVE to be enabled on the platform (implies
		 * a POWER9 processor) and the PowerNV platform, as
		 * nested is not yet supported.
579
		 */
580
		r = xive_enabled() && !!cpu_has_feature(CPU_FTR_HVMODE);
581 582
		break;
#endif
583 584 585 586

	case KVM_CAP_PPC_ALLOC_HTAB:
		r = hv_enabled;
		break;
587
#endif /* CONFIG_PPC_BOOK3S_64 */
588
#ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
589
	case KVM_CAP_PPC_SMT:
590
		r = 0;
591 592 593 594 595 596
		if (kvm) {
			if (kvm->arch.emul_smt_mode > 1)
				r = kvm->arch.emul_smt_mode;
			else
				r = kvm->arch.smt_mode;
		} else if (hv_enabled) {
597 598 599 600 601
			if (cpu_has_feature(CPU_FTR_ARCH_300))
				r = 1;
			else
				r = threads_per_subcore;
		}
602
		break;
603 604 605 606 607 608 609 610 611 612
	case KVM_CAP_PPC_SMT_POSSIBLE:
		r = 1;
		if (hv_enabled) {
			if (!cpu_has_feature(CPU_FTR_ARCH_300))
				r = ((threads_per_subcore << 1) - 1);
			else
				/* P9 can emulate dbells, so allow any mode */
				r = 8 | 4 | 2 | 1;
		}
		break;
613
	case KVM_CAP_PPC_RMA:
614
		r = 0;
615
		break;
616 617 618
	case KVM_CAP_PPC_HWRNG:
		r = kvmppc_hwrng_present();
		break;
619
	case KVM_CAP_PPC_MMU_RADIX:
620
		r = !!(hv_enabled && radix_enabled());
621 622
		break;
	case KVM_CAP_PPC_MMU_HASH_V3:
623 624
		r = !!(hv_enabled && cpu_has_feature(CPU_FTR_ARCH_300) &&
		       cpu_has_feature(CPU_FTR_HVMODE));
625
		break;
626 627 628 629
	case KVM_CAP_PPC_NESTED_HV:
		r = !!(hv_enabled && kvmppc_hv_ops->enable_nested &&
		       !kvmppc_hv_ops->enable_nested(NULL));
		break;
630
#endif
631
	case KVM_CAP_SYNC_MMU:
632
#ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
633
		r = hv_enabled;
634 635 636 637
#elif defined(KVM_ARCH_WANT_MMU_NOTIFIER)
		r = 1;
#else
		r = 0;
638
#endif
639 640
		break;
#ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
641
	case KVM_CAP_PPC_HTAB_FD:
642
		r = hv_enabled;
643
		break;
644
#endif
645 646 647 648 649 650 651
	case KVM_CAP_NR_VCPUS:
		/*
		 * Recommending a number of CPUs is somewhat arbitrary; we
		 * return the number of present CPUs for -HV (since a host
		 * will have secondary threads "offline"), and for other KVM
		 * implementations just count online CPUs.
		 */
652
		if (hv_enabled)
653 654 655
			r = num_present_cpus();
		else
			r = num_online_cpus();
656 657 658 659
		break;
	case KVM_CAP_MAX_VCPUS:
		r = KVM_MAX_VCPUS;
		break;
660 661 662
	case KVM_CAP_MAX_VCPU_ID:
		r = KVM_MAX_VCPU_ID;
		break;
663 664 665 666
#ifdef CONFIG_PPC_BOOK3S_64
	case KVM_CAP_PPC_GET_SMMU_INFO:
		r = 1;
		break;
667 668 669
	case KVM_CAP_SPAPR_MULTITCE:
		r = 1;
		break;
670
	case KVM_CAP_SPAPR_RESIZE_HPT:
671
		r = !!hv_enabled;
672
		break;
673 674 675 676 677
#endif
#ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
	case KVM_CAP_PPC_FWNMI:
		r = hv_enabled;
		break;
678
#endif
679
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
680
	case KVM_CAP_PPC_HTM:
681 682
		r = !!(cur_cpu_spec->cpu_user_features2 & PPC_FEATURE2_HTM) ||
		     (hv_enabled && cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST));
683
		break;
684
#endif
685 686 687 688 689 690 691 692 693 694 695 696 697 698
	default:
		r = 0;
		break;
	}
	return r;

}

long kvm_arch_dev_ioctl(struct file *filp,
                        unsigned int ioctl, unsigned long arg)
{
	return -EINVAL;
}

699
void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
700 701
			   struct kvm_memory_slot *dont)
{
702
	kvmppc_core_free_memslot(kvm, free, dont);
703 704
}

705 706
int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
			    unsigned long npages)
707
{
708
	return kvmppc_core_create_memslot(kvm, slot, npages);
709 710
}

711
int kvm_arch_prepare_memory_region(struct kvm *kvm,
712
				   struct kvm_memory_slot *memslot,
713
				   const struct kvm_userspace_memory_region *mem,
714
				   enum kvm_mr_change change)
715
{
716
	return kvmppc_core_prepare_memory_region(kvm, memslot, mem);
717 718
}

719
void kvm_arch_commit_memory_region(struct kvm *kvm,
720
				   const struct kvm_userspace_memory_region *mem,
721
				   const struct kvm_memory_slot *old,
722
				   const struct kvm_memory_slot *new,
723
				   enum kvm_mr_change change)
724
{
725
	kvmppc_core_commit_memory_region(kvm, mem, old, new, change);
726 727
}

728 729
void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
				   struct kvm_memory_slot *slot)
730
{
731
	kvmppc_core_flush_memslot(kvm, slot);
732 733
}

734 735
struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
{
736 737
	struct kvm_vcpu *vcpu;
	vcpu = kvmppc_core_vcpu_create(kvm, id);
738 739
	if (!IS_ERR(vcpu)) {
		vcpu->arch.wqp = &vcpu->wq;
740
		kvmppc_create_vcpu_debugfs(vcpu, id);
741
	}
742
	return vcpu;
743 744
}

745
void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
746 747 748
{
}

749 750
void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
{
751 752 753
	/* Make sure we're not using the vcpu anymore */
	hrtimer_cancel(&vcpu->arch.dec_timer);

754
	kvmppc_remove_vcpu_debugfs(vcpu);
S
Scott Wood 已提交
755 756 757 758 759

	switch (vcpu->arch.irq_type) {
	case KVMPPC_IRQ_MPIC:
		kvmppc_mpic_disconnect_vcpu(vcpu->arch.mpic, vcpu);
		break;
760
	case KVMPPC_IRQ_XICS:
761
		if (xics_on_xive())
762 763 764
			kvmppc_xive_cleanup_vcpu(vcpu);
		else
			kvmppc_xics_free_icp(vcpu);
765
		break;
766 767 768
	case KVMPPC_IRQ_XIVE:
		kvmppc_xive_native_cleanup_vcpu(vcpu);
		break;
S
Scott Wood 已提交
769 770
	}

771
	kvmppc_core_vcpu_free(vcpu);
772 773 774 775 776 777 778 779 780
}

void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
{
	kvm_arch_vcpu_free(vcpu);
}

int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
{
781
	return kvmppc_core_pending_dec(vcpu);
782 783
}

T
Thomas Huth 已提交
784
static enum hrtimer_restart kvmppc_decrementer_wakeup(struct hrtimer *timer)
A
Alexander Graf 已提交
785 786 787 788
{
	struct kvm_vcpu *vcpu;

	vcpu = container_of(timer, struct kvm_vcpu, arch.dec_timer);
789
	kvmppc_decrementer_func(vcpu);
A
Alexander Graf 已提交
790 791 792 793

	return HRTIMER_NORESTART;
}

794 795
int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
{
796 797
	int ret;

A
Alexander Graf 已提交
798 799
	hrtimer_init(&vcpu->arch.dec_timer, CLOCK_REALTIME, HRTIMER_MODE_ABS);
	vcpu->arch.dec_timer.function = kvmppc_decrementer_wakeup;
800
	vcpu->arch.dec_expires = get_tb();
801

802 803 804
#ifdef CONFIG_KVM_EXIT_TIMING
	mutex_init(&vcpu->arch.exit_timing_lock);
#endif
805 806
	ret = kvmppc_subarch_vcpu_init(vcpu);
	return ret;
807 808 809 810
}

void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
{
811
	kvmppc_mmu_destroy(vcpu);
812
	kvmppc_subarch_vcpu_uninit(vcpu);
813 814 815 816
}

void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
{
817 818 819 820 821 822 823 824 825 826
#ifdef CONFIG_BOOKE
	/*
	 * vrsave (formerly usprg0) isn't used by Linux, but may
	 * be used by the guest.
	 *
	 * On non-booke this is associated with Altivec and
	 * is handled by code in book3s.c.
	 */
	mtspr(SPRN_VRSAVE, vcpu->arch.vrsave);
#endif
827
	kvmppc_core_vcpu_load(vcpu, cpu);
828 829 830 831
}

void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
{
832
	kvmppc_core_vcpu_put(vcpu);
833 834 835
#ifdef CONFIG_BOOKE
	vcpu->arch.vrsave = mfspr(SPRN_VRSAVE);
#endif
836 837
}

838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873
/*
 * irq_bypass_add_producer and irq_bypass_del_producer are only
 * useful if the architecture supports PCI passthrough.
 * irq_bypass_stop and irq_bypass_start are not needed and so
 * kvm_ops are not defined for them.
 */
bool kvm_arch_has_irq_bypass(void)
{
	return ((kvmppc_hv_ops && kvmppc_hv_ops->irq_bypass_add_producer) ||
		(kvmppc_pr_ops && kvmppc_pr_ops->irq_bypass_add_producer));
}

int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
				     struct irq_bypass_producer *prod)
{
	struct kvm_kernel_irqfd *irqfd =
		container_of(cons, struct kvm_kernel_irqfd, consumer);
	struct kvm *kvm = irqfd->kvm;

	if (kvm->arch.kvm_ops->irq_bypass_add_producer)
		return kvm->arch.kvm_ops->irq_bypass_add_producer(cons, prod);

	return 0;
}

void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
				      struct irq_bypass_producer *prod)
{
	struct kvm_kernel_irqfd *irqfd =
		container_of(cons, struct kvm_kernel_irqfd, consumer);
	struct kvm *kvm = irqfd->kvm;

	if (kvm->arch.kvm_ops->irq_bypass_del_producer)
		kvm->arch.kvm_ops->irq_bypass_del_producer(cons, prod);
}

874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915
#ifdef CONFIG_VSX
static inline int kvmppc_get_vsr_dword_offset(int index)
{
	int offset;

	if ((index != 0) && (index != 1))
		return -1;

#ifdef __BIG_ENDIAN
	offset =  index;
#else
	offset = 1 - index;
#endif

	return offset;
}

static inline int kvmppc_get_vsr_word_offset(int index)
{
	int offset;

	if ((index > 3) || (index < 0))
		return -1;

#ifdef __BIG_ENDIAN
	offset = index;
#else
	offset = 3 - index;
#endif
	return offset;
}

static inline void kvmppc_set_vsr_dword(struct kvm_vcpu *vcpu,
	u64 gpr)
{
	union kvmppc_one_reg val;
	int offset = kvmppc_get_vsr_dword_offset(vcpu->arch.mmio_vsx_offset);
	int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;

	if (offset == -1)
		return;

916 917
	if (index >= 32) {
		val.vval = VCPU_VSX_VR(vcpu, index - 32);
918
		val.vsxval[offset] = gpr;
919
		VCPU_VSX_VR(vcpu, index - 32) = val.vval;
920 921 922 923 924 925 926 927 928 929 930
	} else {
		VCPU_VSX_FPR(vcpu, index, offset) = gpr;
	}
}

static inline void kvmppc_set_vsr_dword_dump(struct kvm_vcpu *vcpu,
	u64 gpr)
{
	union kvmppc_one_reg val;
	int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;

931 932
	if (index >= 32) {
		val.vval = VCPU_VSX_VR(vcpu, index - 32);
933 934
		val.vsxval[0] = gpr;
		val.vsxval[1] = gpr;
935
		VCPU_VSX_VR(vcpu, index - 32) = val.vval;
936 937 938 939 940 941
	} else {
		VCPU_VSX_FPR(vcpu, index, 0) = gpr;
		VCPU_VSX_FPR(vcpu, index, 1) = gpr;
	}
}

942 943 944 945 946 947
static inline void kvmppc_set_vsr_word_dump(struct kvm_vcpu *vcpu,
	u32 gpr)
{
	union kvmppc_one_reg val;
	int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;

948
	if (index >= 32) {
949 950 951 952
		val.vsx32val[0] = gpr;
		val.vsx32val[1] = gpr;
		val.vsx32val[2] = gpr;
		val.vsx32val[3] = gpr;
953
		VCPU_VSX_VR(vcpu, index - 32) = val.vval;
954 955 956 957 958 959 960 961
	} else {
		val.vsx32val[0] = gpr;
		val.vsx32val[1] = gpr;
		VCPU_VSX_FPR(vcpu, index, 0) = val.vsxval[0];
		VCPU_VSX_FPR(vcpu, index, 1) = val.vsxval[0];
	}
}

962 963 964 965 966 967 968 969 970 971 972
static inline void kvmppc_set_vsr_word(struct kvm_vcpu *vcpu,
	u32 gpr32)
{
	union kvmppc_one_reg val;
	int offset = kvmppc_get_vsr_word_offset(vcpu->arch.mmio_vsx_offset);
	int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
	int dword_offset, word_offset;

	if (offset == -1)
		return;

973 974
	if (index >= 32) {
		val.vval = VCPU_VSX_VR(vcpu, index - 32);
975
		val.vsx32val[offset] = gpr32;
976
		VCPU_VSX_VR(vcpu, index - 32) = val.vval;
977 978 979 980 981 982 983 984 985 986
	} else {
		dword_offset = offset / 2;
		word_offset = offset % 2;
		val.vsxval[0] = VCPU_VSX_FPR(vcpu, index, dword_offset);
		val.vsx32val[word_offset] = gpr32;
		VCPU_VSX_FPR(vcpu, index, dword_offset) = val.vsxval[0];
	}
}
#endif /* CONFIG_VSX */

987
#ifdef CONFIG_ALTIVEC
988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029
static inline int kvmppc_get_vmx_offset_generic(struct kvm_vcpu *vcpu,
		int index, int element_size)
{
	int offset;
	int elts = sizeof(vector128)/element_size;

	if ((index < 0) || (index >= elts))
		return -1;

	if (kvmppc_need_byteswap(vcpu))
		offset = elts - index - 1;
	else
		offset = index;

	return offset;
}

static inline int kvmppc_get_vmx_dword_offset(struct kvm_vcpu *vcpu,
		int index)
{
	return kvmppc_get_vmx_offset_generic(vcpu, index, 8);
}

static inline int kvmppc_get_vmx_word_offset(struct kvm_vcpu *vcpu,
		int index)
{
	return kvmppc_get_vmx_offset_generic(vcpu, index, 4);
}

static inline int kvmppc_get_vmx_hword_offset(struct kvm_vcpu *vcpu,
		int index)
{
	return kvmppc_get_vmx_offset_generic(vcpu, index, 2);
}

static inline int kvmppc_get_vmx_byte_offset(struct kvm_vcpu *vcpu,
		int index)
{
	return kvmppc_get_vmx_offset_generic(vcpu, index, 1);
}


1030
static inline void kvmppc_set_vmx_dword(struct kvm_vcpu *vcpu,
1031
	u64 gpr)
1032
{
1033 1034 1035
	union kvmppc_one_reg val;
	int offset = kvmppc_get_vmx_dword_offset(vcpu,
			vcpu->arch.mmio_vmx_offset);
1036 1037
	int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;

1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052
	if (offset == -1)
		return;

	val.vval = VCPU_VSX_VR(vcpu, index);
	val.vsxval[offset] = gpr;
	VCPU_VSX_VR(vcpu, index) = val.vval;
}

static inline void kvmppc_set_vmx_word(struct kvm_vcpu *vcpu,
	u32 gpr32)
{
	union kvmppc_one_reg val;
	int offset = kvmppc_get_vmx_word_offset(vcpu,
			vcpu->arch.mmio_vmx_offset);
	int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
1053

1054
	if (offset == -1)
1055 1056
		return;

1057 1058 1059 1060
	val.vval = VCPU_VSX_VR(vcpu, index);
	val.vsx32val[offset] = gpr32;
	VCPU_VSX_VR(vcpu, index) = val.vval;
}
1061

1062 1063 1064 1065 1066 1067 1068 1069 1070
static inline void kvmppc_set_vmx_hword(struct kvm_vcpu *vcpu,
	u16 gpr16)
{
	union kvmppc_one_reg val;
	int offset = kvmppc_get_vmx_hword_offset(vcpu,
			vcpu->arch.mmio_vmx_offset);
	int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;

	if (offset == -1)
1071 1072
		return;

1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084
	val.vval = VCPU_VSX_VR(vcpu, index);
	val.vsx16val[offset] = gpr16;
	VCPU_VSX_VR(vcpu, index) = val.vval;
}

static inline void kvmppc_set_vmx_byte(struct kvm_vcpu *vcpu,
	u8 gpr8)
{
	union kvmppc_one_reg val;
	int offset = kvmppc_get_vmx_byte_offset(vcpu,
			vcpu->arch.mmio_vmx_offset);
	int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
1085

1086 1087
	if (offset == -1)
		return;
1088

1089 1090 1091
	val.vval = VCPU_VSX_VR(vcpu, index);
	val.vsx8val[offset] = gpr8;
	VCPU_VSX_VR(vcpu, index) = val.vval;
1092 1093 1094
}
#endif /* CONFIG_ALTIVEC */

1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124
#ifdef CONFIG_PPC_FPU
static inline u64 sp_to_dp(u32 fprs)
{
	u64 fprd;

	preempt_disable();
	enable_kernel_fp();
	asm ("lfs%U1%X1 0,%1; stfd%U0%X0 0,%0" : "=m" (fprd) : "m" (fprs)
	     : "fr0");
	preempt_enable();
	return fprd;
}

static inline u32 dp_to_sp(u64 fprd)
{
	u32 fprs;

	preempt_disable();
	enable_kernel_fp();
	asm ("lfd%U1%X1 0,%1; stfs%U0%X0 0,%0" : "=m" (fprs) : "m" (fprd)
	     : "fr0");
	preempt_enable();
	return fprs;
}

#else
#define sp_to_dp(x)	(x)
#define dp_to_sp(x)	(x)
#endif /* CONFIG_PPC_FPU */

1125 1126 1127
static void kvmppc_complete_mmio_load(struct kvm_vcpu *vcpu,
                                      struct kvm_run *run)
{
1128
	u64 uninitialized_var(gpr);
1129

1130
	if (run->mmio.len > sizeof(gpr)) {
1131 1132 1133 1134
		printk(KERN_ERR "bad MMIO length: %d\n", run->mmio.len);
		return;
	}

1135
	if (!vcpu->arch.mmio_host_swabbed) {
1136
		switch (run->mmio.len) {
1137
		case 8: gpr = *(u64 *)run->mmio.data; break;
1138 1139 1140
		case 4: gpr = *(u32 *)run->mmio.data; break;
		case 2: gpr = *(u16 *)run->mmio.data; break;
		case 1: gpr = *(u8 *)run->mmio.data; break;
1141 1142 1143
		}
	} else {
		switch (run->mmio.len) {
1144 1145 1146
		case 8: gpr = swab64(*(u64 *)run->mmio.data); break;
		case 4: gpr = swab32(*(u32 *)run->mmio.data); break;
		case 2: gpr = swab16(*(u16 *)run->mmio.data); break;
1147
		case 1: gpr = *(u8 *)run->mmio.data; break;
1148 1149
		}
	}
1150

1151 1152 1153 1154
	/* conversion between single and double precision */
	if ((vcpu->arch.mmio_sp64_extend) && (run->mmio.len == 4))
		gpr = sp_to_dp(gpr);

A
Alexander Graf 已提交
1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170
	if (vcpu->arch.mmio_sign_extend) {
		switch (run->mmio.len) {
#ifdef CONFIG_PPC64
		case 4:
			gpr = (s64)(s32)gpr;
			break;
#endif
		case 2:
			gpr = (s64)(s16)gpr;
			break;
		case 1:
			gpr = (s64)(s8)gpr;
			break;
		}
	}

1171 1172
	switch (vcpu->arch.io_gpr & KVM_MMIO_REG_EXT_MASK) {
	case KVM_MMIO_REG_GPR:
1173 1174
		kvmppc_set_gpr(vcpu, vcpu->arch.io_gpr, gpr);
		break;
1175
	case KVM_MMIO_REG_FPR:
1176 1177 1178
		if (vcpu->kvm->arch.kvm_ops->giveup_ext)
			vcpu->kvm->arch.kvm_ops->giveup_ext(vcpu, MSR_FP);

1179
		VCPU_FPR(vcpu, vcpu->arch.io_gpr & KVM_MMIO_REG_MASK) = gpr;
1180
		break;
1181
#ifdef CONFIG_PPC_BOOK3S
1182 1183
	case KVM_MMIO_REG_QPR:
		vcpu->arch.qpr[vcpu->arch.io_gpr & KVM_MMIO_REG_MASK] = gpr;
1184
		break;
1185
	case KVM_MMIO_REG_FQPR:
1186
		VCPU_FPR(vcpu, vcpu->arch.io_gpr & KVM_MMIO_REG_MASK) = gpr;
1187
		vcpu->arch.qpr[vcpu->arch.io_gpr & KVM_MMIO_REG_MASK] = gpr;
1188
		break;
1189 1190 1191
#endif
#ifdef CONFIG_VSX
	case KVM_MMIO_REG_VSX:
1192 1193 1194
		if (vcpu->kvm->arch.kvm_ops->giveup_ext)
			vcpu->kvm->arch.kvm_ops->giveup_ext(vcpu, MSR_VSX);

1195
		if (vcpu->arch.mmio_copy_type == KVMPPC_VSX_COPY_DWORD)
1196
			kvmppc_set_vsr_dword(vcpu, gpr);
1197
		else if (vcpu->arch.mmio_copy_type == KVMPPC_VSX_COPY_WORD)
1198
			kvmppc_set_vsr_word(vcpu, gpr);
1199
		else if (vcpu->arch.mmio_copy_type ==
1200 1201
				KVMPPC_VSX_COPY_DWORD_LOAD_DUMP)
			kvmppc_set_vsr_dword_dump(vcpu, gpr);
1202
		else if (vcpu->arch.mmio_copy_type ==
1203 1204
				KVMPPC_VSX_COPY_WORD_LOAD_DUMP)
			kvmppc_set_vsr_word_dump(vcpu, gpr);
1205
		break;
1206 1207 1208
#endif
#ifdef CONFIG_ALTIVEC
	case KVM_MMIO_REG_VMX:
1209 1210 1211
		if (vcpu->kvm->arch.kvm_ops->giveup_ext)
			vcpu->kvm->arch.kvm_ops->giveup_ext(vcpu, MSR_VEC);

1212 1213 1214 1215 1216 1217 1218 1219 1220 1221
		if (vcpu->arch.mmio_copy_type == KVMPPC_VMX_COPY_DWORD)
			kvmppc_set_vmx_dword(vcpu, gpr);
		else if (vcpu->arch.mmio_copy_type == KVMPPC_VMX_COPY_WORD)
			kvmppc_set_vmx_word(vcpu, gpr);
		else if (vcpu->arch.mmio_copy_type ==
				KVMPPC_VMX_COPY_HWORD)
			kvmppc_set_vmx_hword(vcpu, gpr);
		else if (vcpu->arch.mmio_copy_type ==
				KVMPPC_VMX_COPY_BYTE)
			kvmppc_set_vmx_byte(vcpu, gpr);
1222
		break;
1223 1224 1225 1226 1227 1228 1229 1230
#endif
#ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
	case KVM_MMIO_REG_NESTED_GPR:
		if (kvmppc_need_byteswap(vcpu))
			gpr = swab64(gpr);
		kvm_vcpu_write_guest(vcpu, vcpu->arch.nested_io_gpr, &gpr,
				     sizeof(gpr));
		break;
1231
#endif
1232 1233 1234
	default:
		BUG();
	}
1235 1236
}

1237 1238 1239
static int __kvmppc_handle_load(struct kvm_run *run, struct kvm_vcpu *vcpu,
				unsigned int rt, unsigned int bytes,
				int is_default_endian, int sign_extend)
1240
{
1241
	int idx, ret;
1242
	bool host_swabbed;
1243

1244
	/* Pity C doesn't have a logical XOR operator */
1245
	if (kvmppc_need_byteswap(vcpu)) {
1246
		host_swabbed = is_default_endian;
1247
	} else {
1248
		host_swabbed = !is_default_endian;
1249
	}
1250

1251 1252 1253 1254 1255 1256 1257 1258 1259 1260
	if (bytes > sizeof(run->mmio.data)) {
		printk(KERN_ERR "%s: bad MMIO length: %d\n", __func__,
		       run->mmio.len);
	}

	run->mmio.phys_addr = vcpu->arch.paddr_accessed;
	run->mmio.len = bytes;
	run->mmio.is_write = 0;

	vcpu->arch.io_gpr = rt;
1261
	vcpu->arch.mmio_host_swabbed = host_swabbed;
1262 1263
	vcpu->mmio_needed = 1;
	vcpu->mmio_is_write = 0;
1264
	vcpu->arch.mmio_sign_extend = sign_extend;
1265

1266 1267
	idx = srcu_read_lock(&vcpu->kvm->srcu);

1268
	ret = kvm_io_bus_read(vcpu, KVM_MMIO_BUS, run->mmio.phys_addr,
1269 1270 1271 1272 1273
			      bytes, &run->mmio.data);

	srcu_read_unlock(&vcpu->kvm->srcu, idx);

	if (!ret) {
A
Alexander Graf 已提交
1274 1275 1276 1277 1278
		kvmppc_complete_mmio_load(vcpu, run);
		vcpu->mmio_needed = 0;
		return EMULATE_DONE;
	}

1279 1280
	return EMULATE_DO_MMIO;
}
1281 1282 1283 1284 1285 1286 1287

int kvmppc_handle_load(struct kvm_run *run, struct kvm_vcpu *vcpu,
		       unsigned int rt, unsigned int bytes,
		       int is_default_endian)
{
	return __kvmppc_handle_load(run, vcpu, rt, bytes, is_default_endian, 0);
}
1288
EXPORT_SYMBOL_GPL(kvmppc_handle_load);
1289

A
Alexander Graf 已提交
1290 1291
/* Same as above, but sign extends */
int kvmppc_handle_loads(struct kvm_run *run, struct kvm_vcpu *vcpu,
1292 1293
			unsigned int rt, unsigned int bytes,
			int is_default_endian)
A
Alexander Graf 已提交
1294
{
1295
	return __kvmppc_handle_load(run, vcpu, rt, bytes, is_default_endian, 1);
A
Alexander Graf 已提交
1296 1297
}

1298 1299 1300 1301 1302 1303 1304
#ifdef CONFIG_VSX
int kvmppc_handle_vsx_load(struct kvm_run *run, struct kvm_vcpu *vcpu,
			unsigned int rt, unsigned int bytes,
			int is_default_endian, int mmio_sign_extend)
{
	enum emulation_result emulated = EMULATE_DONE;

1305 1306
	/* Currently, mmio_vsx_copy_nums only allowed to be 4 or less */
	if (vcpu->arch.mmio_vsx_copy_nums > 4)
1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324
		return EMULATE_FAIL;

	while (vcpu->arch.mmio_vsx_copy_nums) {
		emulated = __kvmppc_handle_load(run, vcpu, rt, bytes,
			is_default_endian, mmio_sign_extend);

		if (emulated != EMULATE_DONE)
			break;

		vcpu->arch.paddr_accessed += run->mmio.len;

		vcpu->arch.mmio_vsx_copy_nums--;
		vcpu->arch.mmio_vsx_offset++;
	}
	return emulated;
}
#endif /* CONFIG_VSX */

1325
int kvmppc_handle_store(struct kvm_run *run, struct kvm_vcpu *vcpu,
1326
			u64 val, unsigned int bytes, int is_default_endian)
1327 1328
{
	void *data = run->mmio.data;
1329
	int idx, ret;
1330
	bool host_swabbed;
1331

1332
	/* Pity C doesn't have a logical XOR operator */
1333
	if (kvmppc_need_byteswap(vcpu)) {
1334
		host_swabbed = is_default_endian;
1335
	} else {
1336
		host_swabbed = !is_default_endian;
1337
	}
1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349

	if (bytes > sizeof(run->mmio.data)) {
		printk(KERN_ERR "%s: bad MMIO length: %d\n", __func__,
		       run->mmio.len);
	}

	run->mmio.phys_addr = vcpu->arch.paddr_accessed;
	run->mmio.len = bytes;
	run->mmio.is_write = 1;
	vcpu->mmio_needed = 1;
	vcpu->mmio_is_write = 1;

1350 1351 1352
	if ((vcpu->arch.mmio_sp64_extend) && (bytes == 4))
		val = dp_to_sp(val);

1353
	/* Store the value at the lowest bytes in 'data'. */
1354
	if (!host_swabbed) {
1355
		switch (bytes) {
1356
		case 8: *(u64 *)data = val; break;
1357 1358 1359 1360 1361 1362
		case 4: *(u32 *)data = val; break;
		case 2: *(u16 *)data = val; break;
		case 1: *(u8  *)data = val; break;
		}
	} else {
		switch (bytes) {
1363 1364 1365 1366
		case 8: *(u64 *)data = swab64(val); break;
		case 4: *(u32 *)data = swab32(val); break;
		case 2: *(u16 *)data = swab16(val); break;
		case 1: *(u8  *)data = val; break;
1367 1368 1369
		}
	}

1370 1371
	idx = srcu_read_lock(&vcpu->kvm->srcu);

1372
	ret = kvm_io_bus_write(vcpu, KVM_MMIO_BUS, run->mmio.phys_addr,
1373 1374 1375 1376 1377
			       bytes, &run->mmio.data);

	srcu_read_unlock(&vcpu->kvm->srcu, idx);

	if (!ret) {
A
Alexander Graf 已提交
1378 1379 1380 1381
		vcpu->mmio_needed = 0;
		return EMULATE_DONE;
	}

1382 1383
	return EMULATE_DO_MMIO;
}
1384
EXPORT_SYMBOL_GPL(kvmppc_handle_store);
1385

1386 1387 1388 1389 1390 1391
#ifdef CONFIG_VSX
static inline int kvmppc_get_vsr_data(struct kvm_vcpu *vcpu, int rs, u64 *val)
{
	u32 dword_offset, word_offset;
	union kvmppc_one_reg reg;
	int vsx_offset = 0;
1392
	int copy_type = vcpu->arch.mmio_copy_type;
1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404
	int result = 0;

	switch (copy_type) {
	case KVMPPC_VSX_COPY_DWORD:
		vsx_offset =
			kvmppc_get_vsr_dword_offset(vcpu->arch.mmio_vsx_offset);

		if (vsx_offset == -1) {
			result = -1;
			break;
		}

1405
		if (rs < 32) {
1406 1407
			*val = VCPU_VSX_FPR(vcpu, rs, vsx_offset);
		} else {
1408
			reg.vval = VCPU_VSX_VR(vcpu, rs - 32);
1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421
			*val = reg.vsxval[vsx_offset];
		}
		break;

	case KVMPPC_VSX_COPY_WORD:
		vsx_offset =
			kvmppc_get_vsr_word_offset(vcpu->arch.mmio_vsx_offset);

		if (vsx_offset == -1) {
			result = -1;
			break;
		}

1422
		if (rs < 32) {
1423 1424 1425 1426 1427
			dword_offset = vsx_offset / 2;
			word_offset = vsx_offset % 2;
			reg.vsxval[0] = VCPU_VSX_FPR(vcpu, rs, dword_offset);
			*val = reg.vsx32val[word_offset];
		} else {
1428
			reg.vval = VCPU_VSX_VR(vcpu, rs - 32);
1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448
			*val = reg.vsx32val[vsx_offset];
		}
		break;

	default:
		result = -1;
		break;
	}

	return result;
}

int kvmppc_handle_vsx_store(struct kvm_run *run, struct kvm_vcpu *vcpu,
			int rs, unsigned int bytes, int is_default_endian)
{
	u64 val;
	enum emulation_result emulated = EMULATE_DONE;

	vcpu->arch.io_gpr = rs;

1449 1450
	/* Currently, mmio_vsx_copy_nums only allowed to be 4 or less */
	if (vcpu->arch.mmio_vsx_copy_nums > 4)
1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506
		return EMULATE_FAIL;

	while (vcpu->arch.mmio_vsx_copy_nums) {
		if (kvmppc_get_vsr_data(vcpu, rs, &val) == -1)
			return EMULATE_FAIL;

		emulated = kvmppc_handle_store(run, vcpu,
			 val, bytes, is_default_endian);

		if (emulated != EMULATE_DONE)
			break;

		vcpu->arch.paddr_accessed += run->mmio.len;

		vcpu->arch.mmio_vsx_copy_nums--;
		vcpu->arch.mmio_vsx_offset++;
	}

	return emulated;
}

static int kvmppc_emulate_mmio_vsx_loadstore(struct kvm_vcpu *vcpu,
			struct kvm_run *run)
{
	enum emulation_result emulated = EMULATE_FAIL;
	int r;

	vcpu->arch.paddr_accessed += run->mmio.len;

	if (!vcpu->mmio_is_write) {
		emulated = kvmppc_handle_vsx_load(run, vcpu, vcpu->arch.io_gpr,
			 run->mmio.len, 1, vcpu->arch.mmio_sign_extend);
	} else {
		emulated = kvmppc_handle_vsx_store(run, vcpu,
			 vcpu->arch.io_gpr, run->mmio.len, 1);
	}

	switch (emulated) {
	case EMULATE_DO_MMIO:
		run->exit_reason = KVM_EXIT_MMIO;
		r = RESUME_HOST;
		break;
	case EMULATE_FAIL:
		pr_info("KVM: MMIO emulation failed (VSX repeat)\n");
		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
		run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
		r = RESUME_HOST;
		break;
	default:
		r = RESUME_GUEST;
		break;
	}
	return r;
}
#endif /* CONFIG_VSX */

1507
#ifdef CONFIG_ALTIVEC
1508 1509
int kvmppc_handle_vmx_load(struct kvm_run *run, struct kvm_vcpu *vcpu,
		unsigned int rt, unsigned int bytes, int is_default_endian)
1510
{
1511
	enum emulation_result emulated = EMULATE_DONE;
1512

1513 1514 1515
	if (vcpu->arch.mmio_vsx_copy_nums > 2)
		return EMULATE_FAIL;

1516
	while (vcpu->arch.mmio_vmx_copy_nums) {
1517
		emulated = __kvmppc_handle_load(run, vcpu, rt, bytes,
1518 1519 1520 1521 1522 1523 1524
				is_default_endian, 0);

		if (emulated != EMULATE_DONE)
			break;

		vcpu->arch.paddr_accessed += run->mmio.len;
		vcpu->arch.mmio_vmx_copy_nums--;
1525
		vcpu->arch.mmio_vmx_offset++;
1526 1527 1528 1529 1530
	}

	return emulated;
}

1531
int kvmppc_get_vmx_dword(struct kvm_vcpu *vcpu, int index, u64 *val)
1532
{
1533 1534 1535
	union kvmppc_one_reg reg;
	int vmx_offset = 0;
	int result = 0;
1536

1537 1538
	vmx_offset =
		kvmppc_get_vmx_dword_offset(vcpu, vcpu->arch.mmio_vmx_offset);
1539

1540
	if (vmx_offset == -1)
1541 1542
		return -1;

1543 1544
	reg.vval = VCPU_VSX_VR(vcpu, index);
	*val = reg.vsxval[vmx_offset];
1545

1546 1547
	return result;
}
1548

1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582
int kvmppc_get_vmx_word(struct kvm_vcpu *vcpu, int index, u64 *val)
{
	union kvmppc_one_reg reg;
	int vmx_offset = 0;
	int result = 0;

	vmx_offset =
		kvmppc_get_vmx_word_offset(vcpu, vcpu->arch.mmio_vmx_offset);

	if (vmx_offset == -1)
		return -1;

	reg.vval = VCPU_VSX_VR(vcpu, index);
	*val = reg.vsx32val[vmx_offset];

	return result;
}

int kvmppc_get_vmx_hword(struct kvm_vcpu *vcpu, int index, u64 *val)
{
	union kvmppc_one_reg reg;
	int vmx_offset = 0;
	int result = 0;

	vmx_offset =
		kvmppc_get_vmx_hword_offset(vcpu, vcpu->arch.mmio_vmx_offset);

	if (vmx_offset == -1)
		return -1;

	reg.vval = VCPU_VSX_VR(vcpu, index);
	*val = reg.vsx16val[vmx_offset];

	return result;
1583 1584
}

1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600
int kvmppc_get_vmx_byte(struct kvm_vcpu *vcpu, int index, u64 *val)
{
	union kvmppc_one_reg reg;
	int vmx_offset = 0;
	int result = 0;

	vmx_offset =
		kvmppc_get_vmx_byte_offset(vcpu, vcpu->arch.mmio_vmx_offset);

	if (vmx_offset == -1)
		return -1;

	reg.vval = VCPU_VSX_VR(vcpu, index);
	*val = reg.vsx8val[vmx_offset];

	return result;
1601 1602
}

1603 1604
int kvmppc_handle_vmx_store(struct kvm_run *run, struct kvm_vcpu *vcpu,
		unsigned int rs, unsigned int bytes, int is_default_endian)
1605 1606
{
	u64 val = 0;
1607
	unsigned int index = rs & KVM_MMIO_REG_MASK;
1608 1609
	enum emulation_result emulated = EMULATE_DONE;

1610 1611 1612
	if (vcpu->arch.mmio_vsx_copy_nums > 2)
		return EMULATE_FAIL;

1613 1614 1615
	vcpu->arch.io_gpr = rs;

	while (vcpu->arch.mmio_vmx_copy_nums) {
1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634
		switch (vcpu->arch.mmio_copy_type) {
		case KVMPPC_VMX_COPY_DWORD:
			if (kvmppc_get_vmx_dword(vcpu, index, &val) == -1)
				return EMULATE_FAIL;

			break;
		case KVMPPC_VMX_COPY_WORD:
			if (kvmppc_get_vmx_word(vcpu, index, &val) == -1)
				return EMULATE_FAIL;
			break;
		case KVMPPC_VMX_COPY_HWORD:
			if (kvmppc_get_vmx_hword(vcpu, index, &val) == -1)
				return EMULATE_FAIL;
			break;
		case KVMPPC_VMX_COPY_BYTE:
			if (kvmppc_get_vmx_byte(vcpu, index, &val) == -1)
				return EMULATE_FAIL;
			break;
		default:
1635
			return EMULATE_FAIL;
1636
		}
1637

1638
		emulated = kvmppc_handle_store(run, vcpu, val, bytes,
1639 1640 1641 1642 1643 1644
				is_default_endian);
		if (emulated != EMULATE_DONE)
			break;

		vcpu->arch.paddr_accessed += run->mmio.len;
		vcpu->arch.mmio_vmx_copy_nums--;
1645
		vcpu->arch.mmio_vmx_offset++;
1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659
	}

	return emulated;
}

static int kvmppc_emulate_mmio_vmx_loadstore(struct kvm_vcpu *vcpu,
		struct kvm_run *run)
{
	enum emulation_result emulated = EMULATE_FAIL;
	int r;

	vcpu->arch.paddr_accessed += run->mmio.len;

	if (!vcpu->mmio_is_write) {
1660 1661
		emulated = kvmppc_handle_vmx_load(run, vcpu,
				vcpu->arch.io_gpr, run->mmio.len, 1);
1662
	} else {
1663 1664
		emulated = kvmppc_handle_vmx_store(run, vcpu,
				vcpu->arch.io_gpr, run->mmio.len, 1);
1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685
	}

	switch (emulated) {
	case EMULATE_DO_MMIO:
		run->exit_reason = KVM_EXIT_MMIO;
		r = RESUME_HOST;
		break;
	case EMULATE_FAIL:
		pr_info("KVM: MMIO emulation failed (VMX repeat)\n");
		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
		run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
		r = RESUME_HOST;
		break;
	default:
		r = RESUME_GUEST;
		break;
	}
	return r;
}
#endif /* CONFIG_ALTIVEC */

1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699
int kvm_vcpu_ioctl_get_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg)
{
	int r = 0;
	union kvmppc_one_reg val;
	int size;

	size = one_reg_size(reg->id);
	if (size > sizeof(val))
		return -EINVAL;

	r = kvmppc_get_one_reg(vcpu, reg->id, &val);
	if (r == -EINVAL) {
		r = 0;
		switch (reg->id) {
1700 1701 1702 1703 1704 1705
#ifdef CONFIG_ALTIVEC
		case KVM_REG_PPC_VR0 ... KVM_REG_PPC_VR31:
			if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
				r = -ENXIO;
				break;
			}
1706
			val.vval = vcpu->arch.vr.vr[reg->id - KVM_REG_PPC_VR0];
1707 1708 1709 1710 1711 1712
			break;
		case KVM_REG_PPC_VSCR:
			if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
				r = -ENXIO;
				break;
			}
1713
			val = get_reg_val(reg->id, vcpu->arch.vr.vscr.u[3]);
1714 1715
			break;
		case KVM_REG_PPC_VRSAVE:
1716
			val = get_reg_val(reg->id, vcpu->arch.vrsave);
1717 1718
			break;
#endif /* CONFIG_ALTIVEC */
1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750
		default:
			r = -EINVAL;
			break;
		}
	}

	if (r)
		return r;

	if (copy_to_user((char __user *)(unsigned long)reg->addr, &val, size))
		r = -EFAULT;

	return r;
}

int kvm_vcpu_ioctl_set_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg)
{
	int r;
	union kvmppc_one_reg val;
	int size;

	size = one_reg_size(reg->id);
	if (size > sizeof(val))
		return -EINVAL;

	if (copy_from_user(&val, (char __user *)(unsigned long)reg->addr, size))
		return -EFAULT;

	r = kvmppc_set_one_reg(vcpu, reg->id, &val);
	if (r == -EINVAL) {
		r = 0;
		switch (reg->id) {
1751 1752 1753 1754 1755 1756
#ifdef CONFIG_ALTIVEC
		case KVM_REG_PPC_VR0 ... KVM_REG_PPC_VR31:
			if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
				r = -ENXIO;
				break;
			}
1757
			vcpu->arch.vr.vr[reg->id - KVM_REG_PPC_VR0] = val.vval;
1758 1759 1760 1761 1762 1763
			break;
		case KVM_REG_PPC_VSCR:
			if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
				r = -ENXIO;
				break;
			}
1764
			vcpu->arch.vr.vscr.u[3] = set_reg_val(reg->id, val);
1765 1766
			break;
		case KVM_REG_PPC_VRSAVE:
1767 1768 1769 1770 1771
			if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
				r = -ENXIO;
				break;
			}
			vcpu->arch.vrsave = set_reg_val(reg->id, val);
1772 1773
			break;
#endif /* CONFIG_ALTIVEC */
1774 1775 1776 1777 1778 1779 1780 1781 1782
		default:
			r = -EINVAL;
			break;
		}
	}

	return r;
}

1783 1784 1785 1786
int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
{
	int r;

1787 1788
	vcpu_load(vcpu);

1789
	if (vcpu->mmio_needed) {
1790
		vcpu->mmio_needed = 0;
1791 1792
		if (!vcpu->mmio_is_write)
			kvmppc_complete_mmio_load(vcpu, run);
1793 1794 1795 1796 1797 1798 1799 1800 1801 1802
#ifdef CONFIG_VSX
		if (vcpu->arch.mmio_vsx_copy_nums > 0) {
			vcpu->arch.mmio_vsx_copy_nums--;
			vcpu->arch.mmio_vsx_offset++;
		}

		if (vcpu->arch.mmio_vsx_copy_nums > 0) {
			r = kvmppc_emulate_mmio_vsx_loadstore(vcpu, run);
			if (r == RESUME_HOST) {
				vcpu->mmio_needed = 1;
1803
				goto out;
1804 1805
			}
		}
1806 1807
#endif
#ifdef CONFIG_ALTIVEC
1808
		if (vcpu->arch.mmio_vmx_copy_nums > 0) {
1809
			vcpu->arch.mmio_vmx_copy_nums--;
1810 1811
			vcpu->arch.mmio_vmx_offset++;
		}
1812 1813 1814 1815 1816

		if (vcpu->arch.mmio_vmx_copy_nums > 0) {
			r = kvmppc_emulate_mmio_vmx_loadstore(vcpu, run);
			if (r == RESUME_HOST) {
				vcpu->mmio_needed = 1;
1817
				goto out;
1818 1819
			}
		}
1820
#endif
1821 1822 1823 1824 1825 1826 1827
	} else if (vcpu->arch.osi_needed) {
		u64 *gprs = run->osi.gprs;
		int i;

		for (i = 0; i < 32; i++)
			kvmppc_set_gpr(vcpu, i, gprs[i]);
		vcpu->arch.osi_needed = 0;
1828 1829 1830 1831 1832 1833 1834
	} else if (vcpu->arch.hcall_needed) {
		int i;

		kvmppc_set_gpr(vcpu, 3, run->papr_hcall.ret);
		for (i = 0; i < 9; ++i)
			kvmppc_set_gpr(vcpu, 4 + i, run->papr_hcall.args[i]);
		vcpu->arch.hcall_needed = 0;
1835 1836 1837 1838 1839
#ifdef CONFIG_BOOKE
	} else if (vcpu->arch.epr_needed) {
		kvmppc_set_epr(vcpu, run->epr.epr);
		vcpu->arch.epr_needed = 0;
#endif
1840 1841
	}

1842
	kvm_sigset_activate(vcpu);
1843

1844 1845 1846 1847
	if (run->immediate_exit)
		r = -EINTR;
	else
		r = kvmppc_vcpu_run(run, vcpu);
1848

1849
	kvm_sigset_deactivate(vcpu);
1850

1851
#ifdef CONFIG_ALTIVEC
1852
out:
1853
#endif
1854
	vcpu_put(vcpu);
1855 1856 1857 1858 1859
	return r;
}

int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, struct kvm_interrupt *irq)
{
1860
	if (irq->irq == KVM_INTERRUPT_UNSET) {
1861
		kvmppc_core_dequeue_external(vcpu);
1862 1863 1864 1865
		return 0;
	}

	kvmppc_core_queue_external(vcpu, irq);
1866

1867
	kvm_vcpu_kick(vcpu);
1868

1869 1870 1871
	return 0;
}

1872 1873 1874 1875 1876 1877 1878 1879 1880
static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
				     struct kvm_enable_cap *cap)
{
	int r;

	if (cap->flags)
		return -EINVAL;

	switch (cap->cap) {
1881 1882 1883 1884
	case KVM_CAP_PPC_OSI:
		r = 0;
		vcpu->arch.osi_enabled = true;
		break;
1885 1886 1887 1888
	case KVM_CAP_PPC_PAPR:
		r = 0;
		vcpu->arch.papr_enabled = true;
		break;
1889 1890
	case KVM_CAP_PPC_EPR:
		r = 0;
1891 1892 1893 1894
		if (cap->args[0])
			vcpu->arch.epr_flags |= KVMPPC_EPR_USER;
		else
			vcpu->arch.epr_flags &= ~KVMPPC_EPR_USER;
1895
		break;
1896 1897 1898 1899 1900 1901
#ifdef CONFIG_BOOKE
	case KVM_CAP_PPC_BOOKE_WATCHDOG:
		r = 0;
		vcpu->arch.watchdog_enabled = true;
		break;
#endif
1902
#if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
S
Scott Wood 已提交
1903 1904 1905 1906 1907 1908 1909 1910 1911 1912
	case KVM_CAP_SW_TLB: {
		struct kvm_config_tlb cfg;
		void __user *user_ptr = (void __user *)(uintptr_t)cap->args[0];

		r = -EFAULT;
		if (copy_from_user(&cfg, user_ptr, sizeof(cfg)))
			break;

		r = kvm_vcpu_ioctl_config_tlb(vcpu, &cfg);
		break;
S
Scott Wood 已提交
1913 1914 1915 1916
	}
#endif
#ifdef CONFIG_KVM_MPIC
	case KVM_CAP_IRQ_MPIC: {
A
Al Viro 已提交
1917
		struct fd f;
S
Scott Wood 已提交
1918 1919 1920
		struct kvm_device *dev;

		r = -EBADF;
A
Al Viro 已提交
1921 1922
		f = fdget(cap->args[0]);
		if (!f.file)
S
Scott Wood 已提交
1923 1924 1925
			break;

		r = -EPERM;
A
Al Viro 已提交
1926
		dev = kvm_device_from_filp(f.file);
S
Scott Wood 已提交
1927 1928 1929
		if (dev)
			r = kvmppc_mpic_connect_vcpu(dev, vcpu, cap->args[1]);

A
Al Viro 已提交
1930
		fdput(f);
S
Scott Wood 已提交
1931
		break;
S
Scott Wood 已提交
1932 1933
	}
#endif
1934 1935
#ifdef CONFIG_KVM_XICS
	case KVM_CAP_IRQ_XICS: {
A
Al Viro 已提交
1936
		struct fd f;
1937 1938 1939
		struct kvm_device *dev;

		r = -EBADF;
A
Al Viro 已提交
1940 1941
		f = fdget(cap->args[0]);
		if (!f.file)
1942 1943 1944
			break;

		r = -EPERM;
A
Al Viro 已提交
1945
		dev = kvm_device_from_filp(f.file);
1946
		if (dev) {
1947
			if (xics_on_xive())
1948 1949 1950 1951
				r = kvmppc_xive_connect_vcpu(dev, vcpu, cap->args[1]);
			else
				r = kvmppc_xics_connect_vcpu(dev, vcpu, cap->args[1]);
		}
1952

A
Al Viro 已提交
1953
		fdput(f);
1954 1955 1956
		break;
	}
#endif /* CONFIG_KVM_XICS */
1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980
#ifdef CONFIG_KVM_XIVE
	case KVM_CAP_PPC_IRQ_XIVE: {
		struct fd f;
		struct kvm_device *dev;

		r = -EBADF;
		f = fdget(cap->args[0]);
		if (!f.file)
			break;

		r = -ENXIO;
		if (!xive_enabled())
			break;

		r = -EPERM;
		dev = kvm_device_from_filp(f.file);
		if (dev)
			r = kvmppc_xive_native_connect_vcpu(dev, vcpu,
							    cap->args[1]);

		fdput(f);
		break;
	}
#endif /* CONFIG_KVM_XIVE */
1981 1982 1983 1984 1985 1986 1987 1988 1989
#ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
	case KVM_CAP_PPC_FWNMI:
		r = -EINVAL;
		if (!is_kvmppc_hv_enabled(vcpu->kvm))
			break;
		r = 0;
		vcpu->kvm->arch.fwnmi_enabled = true;
		break;
#endif /* CONFIG_KVM_BOOK3S_HV_POSSIBLE */
1990 1991 1992 1993 1994
	default:
		r = -EINVAL;
		break;
	}

1995 1996 1997
	if (!r)
		r = kvmppc_sanity_check(vcpu);

1998 1999 2000
	return r;
}

2001 2002 2003 2004 2005 2006 2007
bool kvm_arch_intc_initialized(struct kvm *kvm)
{
#ifdef CONFIG_KVM_MPIC
	if (kvm->arch.mpic)
		return true;
#endif
#ifdef CONFIG_KVM_XICS
2008
	if (kvm->arch.xics || kvm->arch.xive)
2009 2010 2011 2012 2013
		return true;
#endif
	return false;
}

2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025
int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
                                    struct kvm_mp_state *mp_state)
{
	return -EINVAL;
}

int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
                                    struct kvm_mp_state *mp_state)
{
	return -EINVAL;
}

2026 2027
long kvm_arch_vcpu_async_ioctl(struct file *filp,
			       unsigned int ioctl, unsigned long arg)
2028 2029 2030 2031
{
	struct kvm_vcpu *vcpu = filp->private_data;
	void __user *argp = (void __user *)arg;

2032
	if (ioctl == KVM_INTERRUPT) {
2033 2034
		struct kvm_interrupt irq;
		if (copy_from_user(&irq, argp, sizeof(irq)))
2035 2036
			return -EFAULT;
		return kvm_vcpu_ioctl_interrupt(vcpu, &irq);
2037
	}
2038 2039 2040 2041 2042 2043 2044 2045 2046
	return -ENOIOCTLCMD;
}

long kvm_arch_vcpu_ioctl(struct file *filp,
                         unsigned int ioctl, unsigned long arg)
{
	struct kvm_vcpu *vcpu = filp->private_data;
	void __user *argp = (void __user *)arg;
	long r;
2047

2048
	switch (ioctl) {
2049 2050 2051 2052
	case KVM_ENABLE_CAP:
	{
		struct kvm_enable_cap cap;
		r = -EFAULT;
2053
		vcpu_load(vcpu);
2054 2055 2056
		if (copy_from_user(&cap, argp, sizeof(cap)))
			goto out;
		r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
2057
		vcpu_put(vcpu);
2058 2059
		break;
	}
S
Scott Wood 已提交
2060

2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074
	case KVM_SET_ONE_REG:
	case KVM_GET_ONE_REG:
	{
		struct kvm_one_reg reg;
		r = -EFAULT;
		if (copy_from_user(&reg, argp, sizeof(reg)))
			goto out;
		if (ioctl == KVM_SET_ONE_REG)
			r = kvm_vcpu_ioctl_set_one_reg(vcpu, &reg);
		else
			r = kvm_vcpu_ioctl_get_one_reg(vcpu, &reg);
		break;
	}

2075
#if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
S
Scott Wood 已提交
2076 2077 2078
	case KVM_DIRTY_TLB: {
		struct kvm_dirty_tlb dirty;
		r = -EFAULT;
2079
		vcpu_load(vcpu);
S
Scott Wood 已提交
2080 2081 2082
		if (copy_from_user(&dirty, argp, sizeof(dirty)))
			goto out;
		r = kvm_vcpu_ioctl_dirty_tlb(vcpu, &dirty);
2083
		vcpu_put(vcpu);
S
Scott Wood 已提交
2084 2085 2086
		break;
	}
#endif
2087 2088 2089 2090 2091 2092 2093 2094
	default:
		r = -EINVAL;
	}

out:
	return r;
}

2095
vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
2096 2097 2098 2099
{
	return VM_FAULT_SIGBUS;
}

2100 2101
static int kvm_vm_ioctl_get_pvinfo(struct kvm_ppc_pvinfo *pvinfo)
{
2102 2103 2104
	u32 inst_nop = 0x60000000;
#ifdef CONFIG_KVM_BOOKE_HV
	u32 inst_sc1 = 0x44000022;
2105 2106 2107 2108
	pvinfo->hcall[0] = cpu_to_be32(inst_sc1);
	pvinfo->hcall[1] = cpu_to_be32(inst_nop);
	pvinfo->hcall[2] = cpu_to_be32(inst_nop);
	pvinfo->hcall[3] = cpu_to_be32(inst_nop);
2109
#else
2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123
	u32 inst_lis = 0x3c000000;
	u32 inst_ori = 0x60000000;
	u32 inst_sc = 0x44000002;
	u32 inst_imm_mask = 0xffff;

	/*
	 * The hypercall to get into KVM from within guest context is as
	 * follows:
	 *
	 *    lis r0, r0, KVM_SC_MAGIC_R0@h
	 *    ori r0, KVM_SC_MAGIC_R0@l
	 *    sc
	 *    nop
	 */
2124 2125 2126 2127
	pvinfo->hcall[0] = cpu_to_be32(inst_lis | ((KVM_SC_MAGIC_R0 >> 16) & inst_imm_mask));
	pvinfo->hcall[1] = cpu_to_be32(inst_ori | (KVM_SC_MAGIC_R0 & inst_imm_mask));
	pvinfo->hcall[2] = cpu_to_be32(inst_sc);
	pvinfo->hcall[3] = cpu_to_be32(inst_nop);
2128
#endif
2129

2130 2131
	pvinfo->flags = KVM_PPC_PVINFO_FLAGS_EV_IDLE;

2132 2133 2134
	return 0;
}

2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146
int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
			  bool line_status)
{
	if (!irqchip_in_kernel(kvm))
		return -ENXIO;

	irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
					irq_event->irq, irq_event->level,
					line_status);
	return 0;
}

2147

2148 2149
int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
			    struct kvm_enable_cap *cap)
2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164
{
	int r;

	if (cap->flags)
		return -EINVAL;

	switch (cap->cap) {
#ifdef CONFIG_KVM_BOOK3S_64_HANDLER
	case KVM_CAP_PPC_ENABLE_HCALL: {
		unsigned long hcall = cap->args[0];

		r = -EINVAL;
		if (hcall > MAX_HCALL_OPCODE || (hcall & 3) ||
		    cap->args[1] > 1)
			break;
2165 2166
		if (!kvmppc_book3s_hcall_implemented(kvm, hcall))
			break;
2167 2168 2169 2170 2171 2172 2173
		if (cap->args[1])
			set_bit(hcall / 4, kvm->arch.enabled_hcalls);
		else
			clear_bit(hcall / 4, kvm->arch.enabled_hcalls);
		r = 0;
		break;
	}
2174 2175 2176 2177 2178 2179 2180 2181 2182
	case KVM_CAP_PPC_SMT: {
		unsigned long mode = cap->args[0];
		unsigned long flags = cap->args[1];

		r = -EINVAL;
		if (kvm->arch.kvm_ops->set_smt_mode)
			r = kvm->arch.kvm_ops->set_smt_mode(kvm, mode, flags);
		break;
	}
2183 2184 2185 2186 2187 2188 2189 2190

	case KVM_CAP_PPC_NESTED_HV:
		r = -EINVAL;
		if (!is_kvmppc_hv_enabled(kvm) ||
		    !kvm->arch.kvm_ops->enable_nested)
			break;
		r = kvm->arch.kvm_ops->enable_nested(kvm);
		break;
2191 2192 2193 2194 2195 2196 2197 2198 2199
#endif
	default:
		r = -EINVAL;
		break;
	}

	return r;
}

2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228
#ifdef CONFIG_PPC_BOOK3S_64
/*
 * These functions check whether the underlying hardware is safe
 * against attacks based on observing the effects of speculatively
 * executed instructions, and whether it supplies instructions for
 * use in workarounds.  The information comes from firmware, either
 * via the device tree on powernv platforms or from an hcall on
 * pseries platforms.
 */
#ifdef CONFIG_PPC_PSERIES
static int pseries_get_cpu_char(struct kvm_ppc_cpu_char *cp)
{
	struct h_cpu_char_result c;
	unsigned long rc;

	if (!machine_is(pseries))
		return -ENOTTY;

	rc = plpar_get_cpu_characteristics(&c);
	if (rc == H_SUCCESS) {
		cp->character = c.character;
		cp->behaviour = c.behaviour;
		cp->character_mask = KVM_PPC_CPU_CHAR_SPEC_BAR_ORI31 |
			KVM_PPC_CPU_CHAR_BCCTRL_SERIALISED |
			KVM_PPC_CPU_CHAR_L1D_FLUSH_ORI30 |
			KVM_PPC_CPU_CHAR_L1D_FLUSH_TRIG2 |
			KVM_PPC_CPU_CHAR_L1D_THREAD_PRIV |
			KVM_PPC_CPU_CHAR_BR_HINT_HONOURED |
			KVM_PPC_CPU_CHAR_MTTRIG_THR_RECONF |
2229 2230
			KVM_PPC_CPU_CHAR_COUNT_CACHE_DIS |
			KVM_PPC_CPU_CHAR_BCCTR_FLUSH_ASSIST;
2231 2232
		cp->behaviour_mask = KVM_PPC_CPU_BEHAV_FAVOUR_SECURITY |
			KVM_PPC_CPU_BEHAV_L1D_FLUSH_PR |
2233 2234
			KVM_PPC_CPU_BEHAV_BNDS_CHK_SPEC_BAR |
			KVM_PPC_CPU_BEHAV_FLUSH_COUNT_CACHE;
2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292
	}
	return 0;
}
#else
static int pseries_get_cpu_char(struct kvm_ppc_cpu_char *cp)
{
	return -ENOTTY;
}
#endif

static inline bool have_fw_feat(struct device_node *fw_features,
				const char *state, const char *name)
{
	struct device_node *np;
	bool r = false;

	np = of_get_child_by_name(fw_features, name);
	if (np) {
		r = of_property_read_bool(np, state);
		of_node_put(np);
	}
	return r;
}

static int kvmppc_get_cpu_char(struct kvm_ppc_cpu_char *cp)
{
	struct device_node *np, *fw_features;
	int r;

	memset(cp, 0, sizeof(*cp));
	r = pseries_get_cpu_char(cp);
	if (r != -ENOTTY)
		return r;

	np = of_find_node_by_name(NULL, "ibm,opal");
	if (np) {
		fw_features = of_get_child_by_name(np, "fw-features");
		of_node_put(np);
		if (!fw_features)
			return 0;
		if (have_fw_feat(fw_features, "enabled",
				 "inst-spec-barrier-ori31,31,0"))
			cp->character |= KVM_PPC_CPU_CHAR_SPEC_BAR_ORI31;
		if (have_fw_feat(fw_features, "enabled",
				 "fw-bcctrl-serialized"))
			cp->character |= KVM_PPC_CPU_CHAR_BCCTRL_SERIALISED;
		if (have_fw_feat(fw_features, "enabled",
				 "inst-l1d-flush-ori30,30,0"))
			cp->character |= KVM_PPC_CPU_CHAR_L1D_FLUSH_ORI30;
		if (have_fw_feat(fw_features, "enabled",
				 "inst-l1d-flush-trig2"))
			cp->character |= KVM_PPC_CPU_CHAR_L1D_FLUSH_TRIG2;
		if (have_fw_feat(fw_features, "enabled",
				 "fw-l1d-thread-split"))
			cp->character |= KVM_PPC_CPU_CHAR_L1D_THREAD_PRIV;
		if (have_fw_feat(fw_features, "enabled",
				 "fw-count-cache-disabled"))
			cp->character |= KVM_PPC_CPU_CHAR_COUNT_CACHE_DIS;
2293 2294 2295
		if (have_fw_feat(fw_features, "enabled",
				 "fw-count-cache-flush-bcctr2,0,0"))
			cp->character |= KVM_PPC_CPU_CHAR_BCCTR_FLUSH_ASSIST;
2296 2297 2298 2299 2300
		cp->character_mask = KVM_PPC_CPU_CHAR_SPEC_BAR_ORI31 |
			KVM_PPC_CPU_CHAR_BCCTRL_SERIALISED |
			KVM_PPC_CPU_CHAR_L1D_FLUSH_ORI30 |
			KVM_PPC_CPU_CHAR_L1D_FLUSH_TRIG2 |
			KVM_PPC_CPU_CHAR_L1D_THREAD_PRIV |
2301 2302
			KVM_PPC_CPU_CHAR_COUNT_CACHE_DIS |
			KVM_PPC_CPU_CHAR_BCCTR_FLUSH_ASSIST;
2303 2304 2305 2306 2307 2308 2309 2310 2311 2312

		if (have_fw_feat(fw_features, "enabled",
				 "speculation-policy-favor-security"))
			cp->behaviour |= KVM_PPC_CPU_BEHAV_FAVOUR_SECURITY;
		if (!have_fw_feat(fw_features, "disabled",
				  "needs-l1d-flush-msr-pr-0-to-1"))
			cp->behaviour |= KVM_PPC_CPU_BEHAV_L1D_FLUSH_PR;
		if (!have_fw_feat(fw_features, "disabled",
				  "needs-spec-barrier-for-bound-checks"))
			cp->behaviour |= KVM_PPC_CPU_BEHAV_BNDS_CHK_SPEC_BAR;
2313 2314 2315
		if (have_fw_feat(fw_features, "enabled",
				 "needs-count-cache-flush-on-context-switch"))
			cp->behaviour |= KVM_PPC_CPU_BEHAV_FLUSH_COUNT_CACHE;
2316 2317
		cp->behaviour_mask = KVM_PPC_CPU_BEHAV_FAVOUR_SECURITY |
			KVM_PPC_CPU_BEHAV_L1D_FLUSH_PR |
2318 2319
			KVM_PPC_CPU_BEHAV_BNDS_CHK_SPEC_BAR |
			KVM_PPC_CPU_BEHAV_FLUSH_COUNT_CACHE;
2320 2321 2322 2323 2324 2325 2326 2327

		of_node_put(fw_features);
	}

	return 0;
}
#endif

2328 2329 2330
long kvm_arch_vm_ioctl(struct file *filp,
                       unsigned int ioctl, unsigned long arg)
{
2331
	struct kvm *kvm __maybe_unused = filp->private_data;
2332
	void __user *argp = (void __user *)arg;
2333 2334 2335
	long r;

	switch (ioctl) {
2336 2337
	case KVM_PPC_GET_PVINFO: {
		struct kvm_ppc_pvinfo pvinfo;
2338
		memset(&pvinfo, 0, sizeof(pvinfo));
2339 2340 2341 2342 2343 2344 2345 2346
		r = kvm_vm_ioctl_get_pvinfo(&pvinfo);
		if (copy_to_user(argp, &pvinfo, sizeof(pvinfo))) {
			r = -EFAULT;
			goto out;
		}

		break;
	}
2347
#ifdef CONFIG_SPAPR_TCE_IOMMU
2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360
	case KVM_CREATE_SPAPR_TCE_64: {
		struct kvm_create_spapr_tce_64 create_tce_64;

		r = -EFAULT;
		if (copy_from_user(&create_tce_64, argp, sizeof(create_tce_64)))
			goto out;
		if (create_tce_64.flags) {
			r = -EINVAL;
			goto out;
		}
		r = kvm_vm_ioctl_create_spapr_tce(kvm, &create_tce_64);
		goto out;
	}
2361 2362
	case KVM_CREATE_SPAPR_TCE: {
		struct kvm_create_spapr_tce create_tce;
2363
		struct kvm_create_spapr_tce_64 create_tce_64;
2364 2365 2366 2367

		r = -EFAULT;
		if (copy_from_user(&create_tce, argp, sizeof(create_tce)))
			goto out;
2368 2369 2370 2371 2372 2373 2374 2375

		create_tce_64.liobn = create_tce.liobn;
		create_tce_64.page_shift = IOMMU_PAGE_SHIFT_4K;
		create_tce_64.offset = 0;
		create_tce_64.size = create_tce.window_size >>
				IOMMU_PAGE_SHIFT_4K;
		create_tce_64.flags = 0;
		r = kvm_vm_ioctl_create_spapr_tce(kvm, &create_tce_64);
2376 2377
		goto out;
	}
2378 2379
#endif
#ifdef CONFIG_PPC_BOOK3S_64
2380 2381
	case KVM_PPC_GET_SMMU_INFO: {
		struct kvm_ppc_smmu_info info;
2382
		struct kvm *kvm = filp->private_data;
2383 2384

		memset(&info, 0, sizeof(info));
2385
		r = kvm->arch.kvm_ops->get_smmu_info(kvm, &info);
2386 2387 2388 2389
		if (r >= 0 && copy_to_user(argp, &info, sizeof(info)))
			r = -EFAULT;
		break;
	}
2390 2391 2392 2393 2394 2395
	case KVM_PPC_RTAS_DEFINE_TOKEN: {
		struct kvm *kvm = filp->private_data;

		r = kvm_vm_ioctl_rtas_define_token(kvm, argp);
		break;
	}
2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420
	case KVM_PPC_CONFIGURE_V3_MMU: {
		struct kvm *kvm = filp->private_data;
		struct kvm_ppc_mmuv3_cfg cfg;

		r = -EINVAL;
		if (!kvm->arch.kvm_ops->configure_mmu)
			goto out;
		r = -EFAULT;
		if (copy_from_user(&cfg, argp, sizeof(cfg)))
			goto out;
		r = kvm->arch.kvm_ops->configure_mmu(kvm, &cfg);
		break;
	}
	case KVM_PPC_GET_RMMU_INFO: {
		struct kvm *kvm = filp->private_data;
		struct kvm_ppc_rmmu_info info;

		r = -EINVAL;
		if (!kvm->arch.kvm_ops->get_rmmu_info)
			goto out;
		r = kvm->arch.kvm_ops->get_rmmu_info(kvm, &info);
		if (r >= 0 && copy_to_user(argp, &info, sizeof(info)))
			r = -EFAULT;
		break;
	}
2421 2422 2423 2424 2425 2426 2427 2428
	case KVM_PPC_GET_CPU_CHAR: {
		struct kvm_ppc_cpu_char cpuchar;

		r = kvmppc_get_cpu_char(&cpuchar);
		if (r >= 0 && copy_to_user(argp, &cpuchar, sizeof(cpuchar)))
			r = -EFAULT;
		break;
	}
2429 2430 2431 2432
	default: {
		struct kvm *kvm = filp->private_data;
		r = kvm->arch.kvm_ops->arch_vm_ioctl(filp, ioctl, arg);
	}
2433
#else /* CONFIG_PPC_BOOK3S_64 */
2434
	default:
2435
		r = -ENOTTY;
2436
#endif
2437
	}
2438
out:
2439 2440 2441
	return r;
}

2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458
static unsigned long lpid_inuse[BITS_TO_LONGS(KVMPPC_NR_LPIDS)];
static unsigned long nr_lpids;

long kvmppc_alloc_lpid(void)
{
	long lpid;

	do {
		lpid = find_first_zero_bit(lpid_inuse, KVMPPC_NR_LPIDS);
		if (lpid >= nr_lpids) {
			pr_err("%s: No LPIDs free\n", __func__);
			return -ENOMEM;
		}
	} while (test_and_set_bit(lpid, lpid_inuse));

	return lpid;
}
2459
EXPORT_SYMBOL_GPL(kvmppc_alloc_lpid);
2460 2461 2462 2463 2464

void kvmppc_claim_lpid(long lpid)
{
	set_bit(lpid, lpid_inuse);
}
2465
EXPORT_SYMBOL_GPL(kvmppc_claim_lpid);
2466 2467 2468 2469 2470

void kvmppc_free_lpid(long lpid)
{
	clear_bit(lpid, lpid_inuse);
}
2471
EXPORT_SYMBOL_GPL(kvmppc_free_lpid);
2472 2473 2474 2475 2476 2477

void kvmppc_init_lpid(unsigned long nr_lpids_param)
{
	nr_lpids = min_t(unsigned long, KVMPPC_NR_LPIDS, nr_lpids_param);
	memset(lpid_inuse, 0, sizeof(lpid_inuse));
}
2478
EXPORT_SYMBOL_GPL(kvmppc_init_lpid);
2479

2480 2481 2482 2483 2484
int kvm_arch_init(void *opaque)
{
	return 0;
}

2485
EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ppc_instr);