powerpc.c 56.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
/*
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License, version 2, as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
 *
 * Copyright IBM Corp. 2007
 *
 * Authors: Hollis Blanchard <hollisb@us.ibm.com>
 *          Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com>
 */

#include <linux/errno.h>
#include <linux/err.h>
#include <linux/kvm_host.h>
#include <linux/vmalloc.h>
A
Alexander Graf 已提交
25
#include <linux/hrtimer.h>
26
#include <linux/sched/signal.h>
27
#include <linux/fs.h>
28
#include <linux/slab.h>
S
Scott Wood 已提交
29
#include <linux/file.h>
30
#include <linux/module.h>
31 32
#include <linux/irqbypass.h>
#include <linux/kvm_irqfd.h>
33
#include <asm/cputable.h>
34
#include <linux/uaccess.h>
35
#include <asm/kvm_ppc.h>
36
#include <asm/cputhreads.h>
37
#include <asm/irqflags.h>
38
#include <asm/iommu.h>
39
#include <asm/switch_to.h>
40
#include <asm/xive.h>
41 42 43 44
#ifdef CONFIG_PPC_PSERIES
#include <asm/hvcall.h>
#include <asm/plpar_wrappers.h>
#endif
45

46
#include "timing.h"
47
#include "irq.h"
P
Paul Mackerras 已提交
48
#include "../mm/mmu_decl.h"
49

50 51 52
#define CREATE_TRACE_POINTS
#include "trace.h"

53 54 55 56 57
struct kvmppc_ops *kvmppc_hv_ops;
EXPORT_SYMBOL_GPL(kvmppc_hv_ops);
struct kvmppc_ops *kvmppc_pr_ops;
EXPORT_SYMBOL_GPL(kvmppc_pr_ops);

58

59 60
int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
{
R
Radim Krčmář 已提交
61
	return !!(v->arch.pending_exceptions) || kvm_request_pending(v);
62 63
}

64 65 66 67 68
bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
{
	return false;
}

69 70 71 72 73
int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
{
	return 1;
}

74 75 76 77
/*
 * Common checks before entering the guest world.  Call with interrupts
 * disabled.
 *
78 79 80 81
 * returns:
 *
 * == 1 if we're ready to go into guest state
 * <= 0 if we need to go back to the host with return value
82 83 84
 */
int kvmppc_prepare_to_enter(struct kvm_vcpu *vcpu)
{
S
Scott Wood 已提交
85 86 87 88
	int r;

	WARN_ON(irqs_disabled());
	hard_irq_disable();
89 90 91 92 93

	while (true) {
		if (need_resched()) {
			local_irq_enable();
			cond_resched();
S
Scott Wood 已提交
94
			hard_irq_disable();
95 96 97 98
			continue;
		}

		if (signal_pending(current)) {
99 100 101
			kvmppc_account_exit(vcpu, SIGNAL_EXITS);
			vcpu->run->exit_reason = KVM_EXIT_INTR;
			r = -EINTR;
102 103 104
			break;
		}

105 106 107 108 109 110 111
		vcpu->mode = IN_GUEST_MODE;

		/*
		 * Reading vcpu->requests must happen after setting vcpu->mode,
		 * so we don't miss a request because the requester sees
		 * OUTSIDE_GUEST_MODE and assumes we'll be checking requests
		 * before next entering the guest (and thus doesn't IPI).
112 113 114
		 * This also orders the write to mode from any reads
		 * to the page tables done while the VCPU is running.
		 * Please see the comment in kvm_flush_remote_tlbs.
115
		 */
116
		smp_mb();
117

R
Radim Krčmář 已提交
118
		if (kvm_request_pending(vcpu)) {
119 120 121
			/* Make sure we process requests preemptable */
			local_irq_enable();
			trace_kvm_check_requests(vcpu);
122
			r = kvmppc_core_check_requests(vcpu);
S
Scott Wood 已提交
123
			hard_irq_disable();
124 125 126
			if (r > 0)
				continue;
			break;
127 128 129 130 131 132 133 134
		}

		if (kvmppc_core_prepare_to_enter(vcpu)) {
			/* interrupts got enabled in between, so we
			   are back at square 1 */
			continue;
		}

135
		guest_enter_irqoff();
S
Scott Wood 已提交
136
		return 1;
137 138
	}

S
Scott Wood 已提交
139 140
	/* return to host */
	local_irq_enable();
141 142
	return r;
}
143
EXPORT_SYMBOL_GPL(kvmppc_prepare_to_enter);
144

145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
#if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_KVM_BOOK3S_PR_POSSIBLE)
static void kvmppc_swab_shared(struct kvm_vcpu *vcpu)
{
	struct kvm_vcpu_arch_shared *shared = vcpu->arch.shared;
	int i;

	shared->sprg0 = swab64(shared->sprg0);
	shared->sprg1 = swab64(shared->sprg1);
	shared->sprg2 = swab64(shared->sprg2);
	shared->sprg3 = swab64(shared->sprg3);
	shared->srr0 = swab64(shared->srr0);
	shared->srr1 = swab64(shared->srr1);
	shared->dar = swab64(shared->dar);
	shared->msr = swab64(shared->msr);
	shared->dsisr = swab32(shared->dsisr);
	shared->int_pending = swab32(shared->int_pending);
	for (i = 0; i < ARRAY_SIZE(shared->sr); i++)
		shared->sr[i] = swab32(shared->sr[i]);
}
#endif

166 167 168 169 170 171 172 173 174 175
int kvmppc_kvm_pv(struct kvm_vcpu *vcpu)
{
	int nr = kvmppc_get_gpr(vcpu, 11);
	int r;
	unsigned long __maybe_unused param1 = kvmppc_get_gpr(vcpu, 3);
	unsigned long __maybe_unused param2 = kvmppc_get_gpr(vcpu, 4);
	unsigned long __maybe_unused param3 = kvmppc_get_gpr(vcpu, 5);
	unsigned long __maybe_unused param4 = kvmppc_get_gpr(vcpu, 6);
	unsigned long r2 = 0;

176
	if (!(kvmppc_get_msr(vcpu) & MSR_SF)) {
177 178 179 180 181 182 183 184
		/* 32 bit mode */
		param1 &= 0xffffffff;
		param2 &= 0xffffffff;
		param3 &= 0xffffffff;
		param4 &= 0xffffffff;
	}

	switch (nr) {
185
	case KVM_HCALL_TOKEN(KVM_HC_PPC_MAP_MAGIC_PAGE):
186
	{
187 188 189 190 191 192 193 194 195 196
#if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_KVM_BOOK3S_PR_POSSIBLE)
		/* Book3S can be little endian, find it out here */
		int shared_big_endian = true;
		if (vcpu->arch.intr_msr & MSR_LE)
			shared_big_endian = false;
		if (shared_big_endian != vcpu->arch.shared_big_endian)
			kvmppc_swab_shared(vcpu);
		vcpu->arch.shared_big_endian = shared_big_endian;
#endif

197 198 199 200 201 202 203 204 205 206 207 208
		if (!(param2 & MAGIC_PAGE_FLAG_NOT_MAPPED_NX)) {
			/*
			 * Older versions of the Linux magic page code had
			 * a bug where they would map their trampoline code
			 * NX. If that's the case, remove !PR NX capability.
			 */
			vcpu->arch.disable_kernel_nx = true;
			kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
		}

		vcpu->arch.magic_page_pa = param1 & ~0xfffULL;
		vcpu->arch.magic_page_ea = param2 & ~0xfffULL;
209

210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
#ifdef CONFIG_PPC_64K_PAGES
		/*
		 * Make sure our 4k magic page is in the same window of a 64k
		 * page within the guest and within the host's page.
		 */
		if ((vcpu->arch.magic_page_pa & 0xf000) !=
		    ((ulong)vcpu->arch.shared & 0xf000)) {
			void *old_shared = vcpu->arch.shared;
			ulong shared = (ulong)vcpu->arch.shared;
			void *new_shared;

			shared &= PAGE_MASK;
			shared |= vcpu->arch.magic_page_pa & 0xf000;
			new_shared = (void*)shared;
			memcpy(new_shared, old_shared, 0x1000);
			vcpu->arch.shared = new_shared;
		}
#endif

229
		r2 = KVM_MAGIC_FEAT_SR | KVM_MAGIC_FEAT_MAS0_TO_SPRG7;
230

231
		r = EV_SUCCESS;
232 233
		break;
	}
234 235
	case KVM_HCALL_TOKEN(KVM_HC_FEATURES):
		r = EV_SUCCESS;
236
#if defined(CONFIG_PPC_BOOK3S) || defined(CONFIG_KVM_E500V2)
237 238
		r2 |= (1 << KVM_FEATURE_MAGIC_PAGE);
#endif
239 240 241

		/* Second return value is in r4 */
		break;
242 243 244
	case EV_HCALL_TOKEN(EV_IDLE):
		r = EV_SUCCESS;
		kvm_vcpu_block(vcpu);
245
		kvm_clear_request(KVM_REQ_UNHALT, vcpu);
246
		break;
247
	default:
248
		r = EV_UNIMPLEMENTED;
249 250 251
		break;
	}

252 253
	kvmppc_set_gpr(vcpu, 4, r2);

254 255
	return r;
}
256
EXPORT_SYMBOL_GPL(kvmppc_kvm_pv);
257

258 259 260 261 262 263 264 265 266 267 268 269 270
int kvmppc_sanity_check(struct kvm_vcpu *vcpu)
{
	int r = false;

	/* We have to know what CPU to virtualize */
	if (!vcpu->arch.pvr)
		goto out;

	/* PAPR only works with book3s_64 */
	if ((vcpu->arch.cpu_type != KVM_CPU_3S_64) && vcpu->arch.papr_enabled)
		goto out;

	/* HV KVM can only do PAPR mode for now */
271
	if (!vcpu->arch.papr_enabled && is_kvmppc_hv_enabled(vcpu->kvm))
272 273
		goto out;

274 275 276 277 278
#ifdef CONFIG_KVM_BOOKE_HV
	if (!cpu_has_feature(CPU_FTR_EMB_HV))
		goto out;
#endif

279 280 281 282 283 284
	r = true;

out:
	vcpu->arch.sane = r;
	return r ? 0 : -EINVAL;
}
285
EXPORT_SYMBOL_GPL(kvmppc_sanity_check);
286

287 288 289 290 291
int kvmppc_emulate_mmio(struct kvm_run *run, struct kvm_vcpu *vcpu)
{
	enum emulation_result er;
	int r;

292
	er = kvmppc_emulate_loadstore(vcpu);
293 294 295 296 297 298
	switch (er) {
	case EMULATE_DONE:
		/* Future optimization: only reload non-volatiles if they were
		 * actually modified. */
		r = RESUME_GUEST_NV;
		break;
299 300 301
	case EMULATE_AGAIN:
		r = RESUME_GUEST;
		break;
302 303 304 305 306 307 308 309 310
	case EMULATE_DO_MMIO:
		run->exit_reason = KVM_EXIT_MMIO;
		/* We must reload nonvolatiles because "update" load/store
		 * instructions modify register state. */
		/* Future optimization: only reload non-volatiles if they were
		 * actually modified. */
		r = RESUME_HOST_NV;
		break;
	case EMULATE_FAIL:
311 312 313
	{
		u32 last_inst;

314
		kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst);
315
		/* XXX Deliver Program interrupt to guest. */
316
		pr_emerg("%s: emulation failed (%08x)\n", __func__, last_inst);
317 318
		r = RESUME_HOST;
		break;
319
	}
320
	default:
321 322
		WARN_ON(1);
		r = RESUME_GUEST;
323 324 325 326
	}

	return r;
}
327
EXPORT_SYMBOL_GPL(kvmppc_emulate_mmio);
328

329 330 331
int kvmppc_st(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr,
	      bool data)
{
332
	ulong mp_pa = vcpu->arch.magic_page_pa & KVM_PAM & PAGE_MASK;
333
	struct kvmppc_pte pte;
334
	int r = -EINVAL;
335 336 337

	vcpu->stat.st++;

338 339 340 341 342 343 344
	if (vcpu->kvm->arch.kvm_ops && vcpu->kvm->arch.kvm_ops->store_to_eaddr)
		r = vcpu->kvm->arch.kvm_ops->store_to_eaddr(vcpu, eaddr, ptr,
							    size);

	if ((!r) || (r == -EAGAIN))
		return r;

345 346 347 348 349 350 351 352 353 354
	r = kvmppc_xlate(vcpu, *eaddr, data ? XLATE_DATA : XLATE_INST,
			 XLATE_WRITE, &pte);
	if (r < 0)
		return r;

	*eaddr = pte.raddr;

	if (!pte.may_write)
		return -EPERM;

355 356 357 358 359 360 361 362 363 364
	/* Magic page override */
	if (kvmppc_supports_magic_page(vcpu) && mp_pa &&
	    ((pte.raddr & KVM_PAM & PAGE_MASK) == mp_pa) &&
	    !(kvmppc_get_msr(vcpu) & MSR_PR)) {
		void *magic = vcpu->arch.shared;
		magic += pte.eaddr & 0xfff;
		memcpy(magic, ptr, size);
		return EMULATE_DONE;
	}

365 366 367 368 369 370 371 372 373 374
	if (kvm_write_guest(vcpu->kvm, pte.raddr, ptr, size))
		return EMULATE_DO_MMIO;

	return EMULATE_DONE;
}
EXPORT_SYMBOL_GPL(kvmppc_st);

int kvmppc_ld(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr,
		      bool data)
{
375
	ulong mp_pa = vcpu->arch.magic_page_pa & KVM_PAM & PAGE_MASK;
376
	struct kvmppc_pte pte;
377
	int rc = -EINVAL;
378 379 380

	vcpu->stat.ld++;

381 382 383 384 385 386 387
	if (vcpu->kvm->arch.kvm_ops && vcpu->kvm->arch.kvm_ops->load_from_eaddr)
		rc = vcpu->kvm->arch.kvm_ops->load_from_eaddr(vcpu, eaddr, ptr,
							      size);

	if ((!rc) || (rc == -EAGAIN))
		return rc;

388 389 390 391 392 393 394 395 396 397 398 399 400
	rc = kvmppc_xlate(vcpu, *eaddr, data ? XLATE_DATA : XLATE_INST,
			  XLATE_READ, &pte);
	if (rc)
		return rc;

	*eaddr = pte.raddr;

	if (!pte.may_read)
		return -EPERM;

	if (!data && !pte.may_execute)
		return -ENOEXEC;

401 402 403 404 405 406 407 408 409 410
	/* Magic page override */
	if (kvmppc_supports_magic_page(vcpu) && mp_pa &&
	    ((pte.raddr & KVM_PAM & PAGE_MASK) == mp_pa) &&
	    !(kvmppc_get_msr(vcpu) & MSR_PR)) {
		void *magic = vcpu->arch.shared;
		magic += pte.eaddr & 0xfff;
		memcpy(ptr, magic, size);
		return EMULATE_DONE;
	}

411 412
	if (kvm_read_guest(vcpu->kvm, pte.raddr, ptr, size))
		return EMULATE_DO_MMIO;
413 414 415 416 417

	return EMULATE_DONE;
}
EXPORT_SYMBOL_GPL(kvmppc_ld);

418
int kvm_arch_hardware_enable(void)
419
{
420
	return 0;
421 422 423 424 425 426 427 428 429
}

int kvm_arch_hardware_setup(void)
{
	return 0;
}

void kvm_arch_check_processor_compat(void *rtn)
{
430
	*(int *)rtn = kvmppc_core_check_processor_compat();
431 432
}

433
int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
434
{
435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460
	struct kvmppc_ops *kvm_ops = NULL;
	/*
	 * if we have both HV and PR enabled, default is HV
	 */
	if (type == 0) {
		if (kvmppc_hv_ops)
			kvm_ops = kvmppc_hv_ops;
		else
			kvm_ops = kvmppc_pr_ops;
		if (!kvm_ops)
			goto err_out;
	} else	if (type == KVM_VM_PPC_HV) {
		if (!kvmppc_hv_ops)
			goto err_out;
		kvm_ops = kvmppc_hv_ops;
	} else if (type == KVM_VM_PPC_PR) {
		if (!kvmppc_pr_ops)
			goto err_out;
		kvm_ops = kvmppc_pr_ops;
	} else
		goto err_out;

	if (kvm_ops->owner && !try_module_get(kvm_ops->owner))
		return -ENOENT;

	kvm->arch.kvm_ops = kvm_ops;
461
	return kvmppc_core_init_vm(kvm);
462 463
err_out:
	return -EINVAL;
464 465
}

466 467 468 469 470 471 472 473 474 475
bool kvm_arch_has_vcpu_debugfs(void)
{
	return false;
}

int kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
{
	return 0;
}

476
void kvm_arch_destroy_vm(struct kvm *kvm)
477 478
{
	unsigned int i;
479
	struct kvm_vcpu *vcpu;
480

481 482 483 484 485 486 487 488 489 490
#ifdef CONFIG_KVM_XICS
	/*
	 * We call kick_all_cpus_sync() to ensure that all
	 * CPUs have executed any pending IPIs before we
	 * continue and free VCPUs structures below.
	 */
	if (is_kvmppc_hv_enabled(kvm))
		kick_all_cpus_sync();
#endif

491 492 493 494 495 496 497 498
	kvm_for_each_vcpu(i, vcpu, kvm)
		kvm_arch_vcpu_free(vcpu);

	mutex_lock(&kvm->lock);
	for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
		kvm->vcpus[i] = NULL;

	atomic_set(&kvm->online_vcpus, 0);
499 500 501

	kvmppc_core_destroy_vm(kvm);

502
	mutex_unlock(&kvm->lock);
503 504 505

	/* drop the module reference */
	module_put(kvm->arch.kvm_ops->owner);
506 507
}

508
int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
509 510
{
	int r;
511
	/* Assume we're using HV mode when the HV module is loaded */
512
	int hv_enabled = kvmppc_hv_ops ? 1 : 0;
513

514 515 516 517 518 519 520 521
	if (kvm) {
		/*
		 * Hooray - we know which VM type we're running on. Depend on
		 * that rather than the guess above.
		 */
		hv_enabled = is_kvmppc_hv_enabled(kvm);
	}

522
	switch (ext) {
S
Scott Wood 已提交
523 524
#ifdef CONFIG_BOOKE
	case KVM_CAP_PPC_BOOKE_SREGS:
525
	case KVM_CAP_PPC_BOOKE_WATCHDOG:
526
	case KVM_CAP_PPC_EPR:
S
Scott Wood 已提交
527
#else
528
	case KVM_CAP_PPC_SEGSTATE:
529
	case KVM_CAP_PPC_HIOR:
530
	case KVM_CAP_PPC_PAPR:
S
Scott Wood 已提交
531
#endif
532
	case KVM_CAP_PPC_UNSET_IRQ:
533
	case KVM_CAP_PPC_IRQ_LEVEL:
534
	case KVM_CAP_ENABLE_CAP:
535
	case KVM_CAP_ONE_REG:
A
Alexander Graf 已提交
536
	case KVM_CAP_IOEVENTFD:
537
	case KVM_CAP_DEVICE_CTRL:
538
	case KVM_CAP_IMMEDIATE_EXIT:
539 540 541
		r = 1;
		break;
	case KVM_CAP_PPC_PAIRED_SINGLES:
542
	case KVM_CAP_PPC_OSI:
543
	case KVM_CAP_PPC_GET_PVINFO:
544
#if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
S
Scott Wood 已提交
545
	case KVM_CAP_SW_TLB:
S
Scott Wood 已提交
546
#endif
547
		/* We support this only for PR */
548
		r = !hv_enabled;
549
		break;
550 551 552 553 554 555
#ifdef CONFIG_KVM_MPIC
	case KVM_CAP_IRQ_MPIC:
		r = 1;
		break;
#endif

556
#ifdef CONFIG_PPC_BOOK3S_64
557
	case KVM_CAP_SPAPR_TCE:
558
	case KVM_CAP_SPAPR_TCE_64:
559 560
		r = 1;
		break;
561
	case KVM_CAP_SPAPR_TCE_VFIO:
562 563
		r = !!cpu_has_feature(CPU_FTR_HVMODE);
		break;
564
	case KVM_CAP_PPC_RTAS:
565
	case KVM_CAP_PPC_FIXUP_HCALL:
566
	case KVM_CAP_PPC_ENABLE_HCALL:
567 568 569
#ifdef CONFIG_KVM_XICS
	case KVM_CAP_IRQ_XICS:
#endif
570
	case KVM_CAP_PPC_GET_CPU_CHAR:
571 572
		r = 1;
		break;
573 574 575
#ifdef CONFIG_KVM_XIVE
	case KVM_CAP_PPC_IRQ_XIVE:
		/*
576 577 578
		 * We need XIVE to be enabled on the platform (implies
		 * a POWER9 processor) and the PowerNV platform, as
		 * nested is not yet supported.
579
		 */
580
		r = xive_enabled() && !!cpu_has_feature(CPU_FTR_HVMODE);
581 582
		break;
#endif
583 584 585 586

	case KVM_CAP_PPC_ALLOC_HTAB:
		r = hv_enabled;
		break;
587
#endif /* CONFIG_PPC_BOOK3S_64 */
588
#ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
589
	case KVM_CAP_PPC_SMT:
590
		r = 0;
591 592 593 594 595 596
		if (kvm) {
			if (kvm->arch.emul_smt_mode > 1)
				r = kvm->arch.emul_smt_mode;
			else
				r = kvm->arch.smt_mode;
		} else if (hv_enabled) {
597 598 599 600 601
			if (cpu_has_feature(CPU_FTR_ARCH_300))
				r = 1;
			else
				r = threads_per_subcore;
		}
602
		break;
603 604 605 606 607 608 609 610 611 612
	case KVM_CAP_PPC_SMT_POSSIBLE:
		r = 1;
		if (hv_enabled) {
			if (!cpu_has_feature(CPU_FTR_ARCH_300))
				r = ((threads_per_subcore << 1) - 1);
			else
				/* P9 can emulate dbells, so allow any mode */
				r = 8 | 4 | 2 | 1;
		}
		break;
613
	case KVM_CAP_PPC_RMA:
614
		r = 0;
615
		break;
616 617 618
	case KVM_CAP_PPC_HWRNG:
		r = kvmppc_hwrng_present();
		break;
619
	case KVM_CAP_PPC_MMU_RADIX:
620
		r = !!(hv_enabled && radix_enabled());
621 622
		break;
	case KVM_CAP_PPC_MMU_HASH_V3:
623 624
		r = !!(hv_enabled && cpu_has_feature(CPU_FTR_ARCH_300) &&
		       cpu_has_feature(CPU_FTR_HVMODE));
625
		break;
626 627 628 629
	case KVM_CAP_PPC_NESTED_HV:
		r = !!(hv_enabled && kvmppc_hv_ops->enable_nested &&
		       !kvmppc_hv_ops->enable_nested(NULL));
		break;
630
#endif
631
	case KVM_CAP_SYNC_MMU:
632
#ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
633
		r = hv_enabled;
634 635 636 637
#elif defined(KVM_ARCH_WANT_MMU_NOTIFIER)
		r = 1;
#else
		r = 0;
638
#endif
639 640
		break;
#ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
641
	case KVM_CAP_PPC_HTAB_FD:
642
		r = hv_enabled;
643
		break;
644
#endif
645 646 647 648 649 650 651
	case KVM_CAP_NR_VCPUS:
		/*
		 * Recommending a number of CPUs is somewhat arbitrary; we
		 * return the number of present CPUs for -HV (since a host
		 * will have secondary threads "offline"), and for other KVM
		 * implementations just count online CPUs.
		 */
652
		if (hv_enabled)
653 654 655
			r = num_present_cpus();
		else
			r = num_online_cpus();
656 657 658 659
		break;
	case KVM_CAP_MAX_VCPUS:
		r = KVM_MAX_VCPUS;
		break;
660 661 662 663
#ifdef CONFIG_PPC_BOOK3S_64
	case KVM_CAP_PPC_GET_SMMU_INFO:
		r = 1;
		break;
664 665 666
	case KVM_CAP_SPAPR_MULTITCE:
		r = 1;
		break;
667
	case KVM_CAP_SPAPR_RESIZE_HPT:
668
		r = !!hv_enabled;
669
		break;
670 671 672 673 674
#endif
#ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
	case KVM_CAP_PPC_FWNMI:
		r = hv_enabled;
		break;
675
#endif
676
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
677
	case KVM_CAP_PPC_HTM:
678 679
		r = !!(cur_cpu_spec->cpu_user_features2 & PPC_FEATURE2_HTM) ||
		     (hv_enabled && cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST));
680
		break;
681
#endif
682 683 684 685 686 687 688 689 690 691 692 693 694 695
	default:
		r = 0;
		break;
	}
	return r;

}

long kvm_arch_dev_ioctl(struct file *filp,
                        unsigned int ioctl, unsigned long arg)
{
	return -EINVAL;
}

696
void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
697 698
			   struct kvm_memory_slot *dont)
{
699
	kvmppc_core_free_memslot(kvm, free, dont);
700 701
}

702 703
int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
			    unsigned long npages)
704
{
705
	return kvmppc_core_create_memslot(kvm, slot, npages);
706 707
}

708
int kvm_arch_prepare_memory_region(struct kvm *kvm,
709
				   struct kvm_memory_slot *memslot,
710
				   const struct kvm_userspace_memory_region *mem,
711
				   enum kvm_mr_change change)
712
{
713
	return kvmppc_core_prepare_memory_region(kvm, memslot, mem);
714 715
}

716
void kvm_arch_commit_memory_region(struct kvm *kvm,
717
				   const struct kvm_userspace_memory_region *mem,
718
				   const struct kvm_memory_slot *old,
719
				   const struct kvm_memory_slot *new,
720
				   enum kvm_mr_change change)
721
{
722
	kvmppc_core_commit_memory_region(kvm, mem, old, new, change);
723 724
}

725 726
void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
				   struct kvm_memory_slot *slot)
727
{
728
	kvmppc_core_flush_memslot(kvm, slot);
729 730
}

731 732
struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
{
733 734
	struct kvm_vcpu *vcpu;
	vcpu = kvmppc_core_vcpu_create(kvm, id);
735 736
	if (!IS_ERR(vcpu)) {
		vcpu->arch.wqp = &vcpu->wq;
737
		kvmppc_create_vcpu_debugfs(vcpu, id);
738
	}
739
	return vcpu;
740 741
}

742
void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
743 744 745
{
}

746 747
void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
{
748 749 750
	/* Make sure we're not using the vcpu anymore */
	hrtimer_cancel(&vcpu->arch.dec_timer);

751
	kvmppc_remove_vcpu_debugfs(vcpu);
S
Scott Wood 已提交
752 753 754 755 756

	switch (vcpu->arch.irq_type) {
	case KVMPPC_IRQ_MPIC:
		kvmppc_mpic_disconnect_vcpu(vcpu->arch.mpic, vcpu);
		break;
757
	case KVMPPC_IRQ_XICS:
758
		if (xics_on_xive())
759 760 761
			kvmppc_xive_cleanup_vcpu(vcpu);
		else
			kvmppc_xics_free_icp(vcpu);
762
		break;
763 764 765
	case KVMPPC_IRQ_XIVE:
		kvmppc_xive_native_cleanup_vcpu(vcpu);
		break;
S
Scott Wood 已提交
766 767
	}

768
	kvmppc_core_vcpu_free(vcpu);
769 770 771 772 773 774 775 776 777
}

void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
{
	kvm_arch_vcpu_free(vcpu);
}

int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
{
778
	return kvmppc_core_pending_dec(vcpu);
779 780
}

T
Thomas Huth 已提交
781
static enum hrtimer_restart kvmppc_decrementer_wakeup(struct hrtimer *timer)
A
Alexander Graf 已提交
782 783 784 785
{
	struct kvm_vcpu *vcpu;

	vcpu = container_of(timer, struct kvm_vcpu, arch.dec_timer);
786
	kvmppc_decrementer_func(vcpu);
A
Alexander Graf 已提交
787 788 789 790

	return HRTIMER_NORESTART;
}

791 792
int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
{
793 794
	int ret;

A
Alexander Graf 已提交
795 796
	hrtimer_init(&vcpu->arch.dec_timer, CLOCK_REALTIME, HRTIMER_MODE_ABS);
	vcpu->arch.dec_timer.function = kvmppc_decrementer_wakeup;
797
	vcpu->arch.dec_expires = get_tb();
798

799 800 801
#ifdef CONFIG_KVM_EXIT_TIMING
	mutex_init(&vcpu->arch.exit_timing_lock);
#endif
802 803
	ret = kvmppc_subarch_vcpu_init(vcpu);
	return ret;
804 805 806 807
}

void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
{
808
	kvmppc_mmu_destroy(vcpu);
809
	kvmppc_subarch_vcpu_uninit(vcpu);
810 811 812 813
}

void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
{
814 815 816 817 818 819 820 821 822 823
#ifdef CONFIG_BOOKE
	/*
	 * vrsave (formerly usprg0) isn't used by Linux, but may
	 * be used by the guest.
	 *
	 * On non-booke this is associated with Altivec and
	 * is handled by code in book3s.c.
	 */
	mtspr(SPRN_VRSAVE, vcpu->arch.vrsave);
#endif
824
	kvmppc_core_vcpu_load(vcpu, cpu);
825 826 827 828
}

void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
{
829
	kvmppc_core_vcpu_put(vcpu);
830 831 832
#ifdef CONFIG_BOOKE
	vcpu->arch.vrsave = mfspr(SPRN_VRSAVE);
#endif
833 834
}

835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870
/*
 * irq_bypass_add_producer and irq_bypass_del_producer are only
 * useful if the architecture supports PCI passthrough.
 * irq_bypass_stop and irq_bypass_start are not needed and so
 * kvm_ops are not defined for them.
 */
bool kvm_arch_has_irq_bypass(void)
{
	return ((kvmppc_hv_ops && kvmppc_hv_ops->irq_bypass_add_producer) ||
		(kvmppc_pr_ops && kvmppc_pr_ops->irq_bypass_add_producer));
}

int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
				     struct irq_bypass_producer *prod)
{
	struct kvm_kernel_irqfd *irqfd =
		container_of(cons, struct kvm_kernel_irqfd, consumer);
	struct kvm *kvm = irqfd->kvm;

	if (kvm->arch.kvm_ops->irq_bypass_add_producer)
		return kvm->arch.kvm_ops->irq_bypass_add_producer(cons, prod);

	return 0;
}

void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
				      struct irq_bypass_producer *prod)
{
	struct kvm_kernel_irqfd *irqfd =
		container_of(cons, struct kvm_kernel_irqfd, consumer);
	struct kvm *kvm = irqfd->kvm;

	if (kvm->arch.kvm_ops->irq_bypass_del_producer)
		kvm->arch.kvm_ops->irq_bypass_del_producer(cons, prod);
}

871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912
#ifdef CONFIG_VSX
static inline int kvmppc_get_vsr_dword_offset(int index)
{
	int offset;

	if ((index != 0) && (index != 1))
		return -1;

#ifdef __BIG_ENDIAN
	offset =  index;
#else
	offset = 1 - index;
#endif

	return offset;
}

static inline int kvmppc_get_vsr_word_offset(int index)
{
	int offset;

	if ((index > 3) || (index < 0))
		return -1;

#ifdef __BIG_ENDIAN
	offset = index;
#else
	offset = 3 - index;
#endif
	return offset;
}

static inline void kvmppc_set_vsr_dword(struct kvm_vcpu *vcpu,
	u64 gpr)
{
	union kvmppc_one_reg val;
	int offset = kvmppc_get_vsr_dword_offset(vcpu->arch.mmio_vsx_offset);
	int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;

	if (offset == -1)
		return;

913 914
	if (index >= 32) {
		val.vval = VCPU_VSX_VR(vcpu, index - 32);
915
		val.vsxval[offset] = gpr;
916
		VCPU_VSX_VR(vcpu, index - 32) = val.vval;
917 918 919 920 921 922 923 924 925 926 927
	} else {
		VCPU_VSX_FPR(vcpu, index, offset) = gpr;
	}
}

static inline void kvmppc_set_vsr_dword_dump(struct kvm_vcpu *vcpu,
	u64 gpr)
{
	union kvmppc_one_reg val;
	int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;

928 929
	if (index >= 32) {
		val.vval = VCPU_VSX_VR(vcpu, index - 32);
930 931
		val.vsxval[0] = gpr;
		val.vsxval[1] = gpr;
932
		VCPU_VSX_VR(vcpu, index - 32) = val.vval;
933 934 935 936 937 938
	} else {
		VCPU_VSX_FPR(vcpu, index, 0) = gpr;
		VCPU_VSX_FPR(vcpu, index, 1) = gpr;
	}
}

939 940 941 942 943 944
static inline void kvmppc_set_vsr_word_dump(struct kvm_vcpu *vcpu,
	u32 gpr)
{
	union kvmppc_one_reg val;
	int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;

945
	if (index >= 32) {
946 947 948 949
		val.vsx32val[0] = gpr;
		val.vsx32val[1] = gpr;
		val.vsx32val[2] = gpr;
		val.vsx32val[3] = gpr;
950
		VCPU_VSX_VR(vcpu, index - 32) = val.vval;
951 952 953 954 955 956 957 958
	} else {
		val.vsx32val[0] = gpr;
		val.vsx32val[1] = gpr;
		VCPU_VSX_FPR(vcpu, index, 0) = val.vsxval[0];
		VCPU_VSX_FPR(vcpu, index, 1) = val.vsxval[0];
	}
}

959 960 961 962 963 964 965 966 967 968 969
static inline void kvmppc_set_vsr_word(struct kvm_vcpu *vcpu,
	u32 gpr32)
{
	union kvmppc_one_reg val;
	int offset = kvmppc_get_vsr_word_offset(vcpu->arch.mmio_vsx_offset);
	int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
	int dword_offset, word_offset;

	if (offset == -1)
		return;

970 971
	if (index >= 32) {
		val.vval = VCPU_VSX_VR(vcpu, index - 32);
972
		val.vsx32val[offset] = gpr32;
973
		VCPU_VSX_VR(vcpu, index - 32) = val.vval;
974 975 976 977 978 979 980 981 982 983
	} else {
		dword_offset = offset / 2;
		word_offset = offset % 2;
		val.vsxval[0] = VCPU_VSX_FPR(vcpu, index, dword_offset);
		val.vsx32val[word_offset] = gpr32;
		VCPU_VSX_FPR(vcpu, index, dword_offset) = val.vsxval[0];
	}
}
#endif /* CONFIG_VSX */

984
#ifdef CONFIG_ALTIVEC
985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026
static inline int kvmppc_get_vmx_offset_generic(struct kvm_vcpu *vcpu,
		int index, int element_size)
{
	int offset;
	int elts = sizeof(vector128)/element_size;

	if ((index < 0) || (index >= elts))
		return -1;

	if (kvmppc_need_byteswap(vcpu))
		offset = elts - index - 1;
	else
		offset = index;

	return offset;
}

static inline int kvmppc_get_vmx_dword_offset(struct kvm_vcpu *vcpu,
		int index)
{
	return kvmppc_get_vmx_offset_generic(vcpu, index, 8);
}

static inline int kvmppc_get_vmx_word_offset(struct kvm_vcpu *vcpu,
		int index)
{
	return kvmppc_get_vmx_offset_generic(vcpu, index, 4);
}

static inline int kvmppc_get_vmx_hword_offset(struct kvm_vcpu *vcpu,
		int index)
{
	return kvmppc_get_vmx_offset_generic(vcpu, index, 2);
}

static inline int kvmppc_get_vmx_byte_offset(struct kvm_vcpu *vcpu,
		int index)
{
	return kvmppc_get_vmx_offset_generic(vcpu, index, 1);
}


1027
static inline void kvmppc_set_vmx_dword(struct kvm_vcpu *vcpu,
1028
	u64 gpr)
1029
{
1030 1031 1032
	union kvmppc_one_reg val;
	int offset = kvmppc_get_vmx_dword_offset(vcpu,
			vcpu->arch.mmio_vmx_offset);
1033 1034
	int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;

1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049
	if (offset == -1)
		return;

	val.vval = VCPU_VSX_VR(vcpu, index);
	val.vsxval[offset] = gpr;
	VCPU_VSX_VR(vcpu, index) = val.vval;
}

static inline void kvmppc_set_vmx_word(struct kvm_vcpu *vcpu,
	u32 gpr32)
{
	union kvmppc_one_reg val;
	int offset = kvmppc_get_vmx_word_offset(vcpu,
			vcpu->arch.mmio_vmx_offset);
	int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
1050

1051
	if (offset == -1)
1052 1053
		return;

1054 1055 1056 1057
	val.vval = VCPU_VSX_VR(vcpu, index);
	val.vsx32val[offset] = gpr32;
	VCPU_VSX_VR(vcpu, index) = val.vval;
}
1058

1059 1060 1061 1062 1063 1064 1065 1066 1067
static inline void kvmppc_set_vmx_hword(struct kvm_vcpu *vcpu,
	u16 gpr16)
{
	union kvmppc_one_reg val;
	int offset = kvmppc_get_vmx_hword_offset(vcpu,
			vcpu->arch.mmio_vmx_offset);
	int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;

	if (offset == -1)
1068 1069
		return;

1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081
	val.vval = VCPU_VSX_VR(vcpu, index);
	val.vsx16val[offset] = gpr16;
	VCPU_VSX_VR(vcpu, index) = val.vval;
}

static inline void kvmppc_set_vmx_byte(struct kvm_vcpu *vcpu,
	u8 gpr8)
{
	union kvmppc_one_reg val;
	int offset = kvmppc_get_vmx_byte_offset(vcpu,
			vcpu->arch.mmio_vmx_offset);
	int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
1082

1083 1084
	if (offset == -1)
		return;
1085

1086 1087 1088
	val.vval = VCPU_VSX_VR(vcpu, index);
	val.vsx8val[offset] = gpr8;
	VCPU_VSX_VR(vcpu, index) = val.vval;
1089 1090 1091
}
#endif /* CONFIG_ALTIVEC */

1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121
#ifdef CONFIG_PPC_FPU
static inline u64 sp_to_dp(u32 fprs)
{
	u64 fprd;

	preempt_disable();
	enable_kernel_fp();
	asm ("lfs%U1%X1 0,%1; stfd%U0%X0 0,%0" : "=m" (fprd) : "m" (fprs)
	     : "fr0");
	preempt_enable();
	return fprd;
}

static inline u32 dp_to_sp(u64 fprd)
{
	u32 fprs;

	preempt_disable();
	enable_kernel_fp();
	asm ("lfd%U1%X1 0,%1; stfs%U0%X0 0,%0" : "=m" (fprs) : "m" (fprd)
	     : "fr0");
	preempt_enable();
	return fprs;
}

#else
#define sp_to_dp(x)	(x)
#define dp_to_sp(x)	(x)
#endif /* CONFIG_PPC_FPU */

1122 1123 1124
static void kvmppc_complete_mmio_load(struct kvm_vcpu *vcpu,
                                      struct kvm_run *run)
{
1125
	u64 uninitialized_var(gpr);
1126

1127
	if (run->mmio.len > sizeof(gpr)) {
1128 1129 1130 1131
		printk(KERN_ERR "bad MMIO length: %d\n", run->mmio.len);
		return;
	}

1132
	if (!vcpu->arch.mmio_host_swabbed) {
1133
		switch (run->mmio.len) {
1134
		case 8: gpr = *(u64 *)run->mmio.data; break;
1135 1136 1137
		case 4: gpr = *(u32 *)run->mmio.data; break;
		case 2: gpr = *(u16 *)run->mmio.data; break;
		case 1: gpr = *(u8 *)run->mmio.data; break;
1138 1139 1140
		}
	} else {
		switch (run->mmio.len) {
1141 1142 1143
		case 8: gpr = swab64(*(u64 *)run->mmio.data); break;
		case 4: gpr = swab32(*(u32 *)run->mmio.data); break;
		case 2: gpr = swab16(*(u16 *)run->mmio.data); break;
1144
		case 1: gpr = *(u8 *)run->mmio.data; break;
1145 1146
		}
	}
1147

1148 1149 1150 1151
	/* conversion between single and double precision */
	if ((vcpu->arch.mmio_sp64_extend) && (run->mmio.len == 4))
		gpr = sp_to_dp(gpr);

A
Alexander Graf 已提交
1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167
	if (vcpu->arch.mmio_sign_extend) {
		switch (run->mmio.len) {
#ifdef CONFIG_PPC64
		case 4:
			gpr = (s64)(s32)gpr;
			break;
#endif
		case 2:
			gpr = (s64)(s16)gpr;
			break;
		case 1:
			gpr = (s64)(s8)gpr;
			break;
		}
	}

1168 1169
	switch (vcpu->arch.io_gpr & KVM_MMIO_REG_EXT_MASK) {
	case KVM_MMIO_REG_GPR:
1170 1171
		kvmppc_set_gpr(vcpu, vcpu->arch.io_gpr, gpr);
		break;
1172
	case KVM_MMIO_REG_FPR:
1173 1174 1175
		if (vcpu->kvm->arch.kvm_ops->giveup_ext)
			vcpu->kvm->arch.kvm_ops->giveup_ext(vcpu, MSR_FP);

1176
		VCPU_FPR(vcpu, vcpu->arch.io_gpr & KVM_MMIO_REG_MASK) = gpr;
1177
		break;
1178
#ifdef CONFIG_PPC_BOOK3S
1179 1180
	case KVM_MMIO_REG_QPR:
		vcpu->arch.qpr[vcpu->arch.io_gpr & KVM_MMIO_REG_MASK] = gpr;
1181
		break;
1182
	case KVM_MMIO_REG_FQPR:
1183
		VCPU_FPR(vcpu, vcpu->arch.io_gpr & KVM_MMIO_REG_MASK) = gpr;
1184
		vcpu->arch.qpr[vcpu->arch.io_gpr & KVM_MMIO_REG_MASK] = gpr;
1185
		break;
1186 1187 1188
#endif
#ifdef CONFIG_VSX
	case KVM_MMIO_REG_VSX:
1189 1190 1191
		if (vcpu->kvm->arch.kvm_ops->giveup_ext)
			vcpu->kvm->arch.kvm_ops->giveup_ext(vcpu, MSR_VSX);

1192
		if (vcpu->arch.mmio_copy_type == KVMPPC_VSX_COPY_DWORD)
1193
			kvmppc_set_vsr_dword(vcpu, gpr);
1194
		else if (vcpu->arch.mmio_copy_type == KVMPPC_VSX_COPY_WORD)
1195
			kvmppc_set_vsr_word(vcpu, gpr);
1196
		else if (vcpu->arch.mmio_copy_type ==
1197 1198
				KVMPPC_VSX_COPY_DWORD_LOAD_DUMP)
			kvmppc_set_vsr_dword_dump(vcpu, gpr);
1199
		else if (vcpu->arch.mmio_copy_type ==
1200 1201
				KVMPPC_VSX_COPY_WORD_LOAD_DUMP)
			kvmppc_set_vsr_word_dump(vcpu, gpr);
1202
		break;
1203 1204 1205
#endif
#ifdef CONFIG_ALTIVEC
	case KVM_MMIO_REG_VMX:
1206 1207 1208
		if (vcpu->kvm->arch.kvm_ops->giveup_ext)
			vcpu->kvm->arch.kvm_ops->giveup_ext(vcpu, MSR_VEC);

1209 1210 1211 1212 1213 1214 1215 1216 1217 1218
		if (vcpu->arch.mmio_copy_type == KVMPPC_VMX_COPY_DWORD)
			kvmppc_set_vmx_dword(vcpu, gpr);
		else if (vcpu->arch.mmio_copy_type == KVMPPC_VMX_COPY_WORD)
			kvmppc_set_vmx_word(vcpu, gpr);
		else if (vcpu->arch.mmio_copy_type ==
				KVMPPC_VMX_COPY_HWORD)
			kvmppc_set_vmx_hword(vcpu, gpr);
		else if (vcpu->arch.mmio_copy_type ==
				KVMPPC_VMX_COPY_BYTE)
			kvmppc_set_vmx_byte(vcpu, gpr);
1219
		break;
1220 1221 1222 1223 1224 1225 1226 1227
#endif
#ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
	case KVM_MMIO_REG_NESTED_GPR:
		if (kvmppc_need_byteswap(vcpu))
			gpr = swab64(gpr);
		kvm_vcpu_write_guest(vcpu, vcpu->arch.nested_io_gpr, &gpr,
				     sizeof(gpr));
		break;
1228
#endif
1229 1230 1231
	default:
		BUG();
	}
1232 1233
}

1234 1235 1236
static int __kvmppc_handle_load(struct kvm_run *run, struct kvm_vcpu *vcpu,
				unsigned int rt, unsigned int bytes,
				int is_default_endian, int sign_extend)
1237
{
1238
	int idx, ret;
1239
	bool host_swabbed;
1240

1241
	/* Pity C doesn't have a logical XOR operator */
1242
	if (kvmppc_need_byteswap(vcpu)) {
1243
		host_swabbed = is_default_endian;
1244
	} else {
1245
		host_swabbed = !is_default_endian;
1246
	}
1247

1248 1249 1250 1251 1252 1253 1254 1255 1256 1257
	if (bytes > sizeof(run->mmio.data)) {
		printk(KERN_ERR "%s: bad MMIO length: %d\n", __func__,
		       run->mmio.len);
	}

	run->mmio.phys_addr = vcpu->arch.paddr_accessed;
	run->mmio.len = bytes;
	run->mmio.is_write = 0;

	vcpu->arch.io_gpr = rt;
1258
	vcpu->arch.mmio_host_swabbed = host_swabbed;
1259 1260
	vcpu->mmio_needed = 1;
	vcpu->mmio_is_write = 0;
1261
	vcpu->arch.mmio_sign_extend = sign_extend;
1262

1263 1264
	idx = srcu_read_lock(&vcpu->kvm->srcu);

1265
	ret = kvm_io_bus_read(vcpu, KVM_MMIO_BUS, run->mmio.phys_addr,
1266 1267 1268 1269 1270
			      bytes, &run->mmio.data);

	srcu_read_unlock(&vcpu->kvm->srcu, idx);

	if (!ret) {
A
Alexander Graf 已提交
1271 1272 1273 1274 1275
		kvmppc_complete_mmio_load(vcpu, run);
		vcpu->mmio_needed = 0;
		return EMULATE_DONE;
	}

1276 1277
	return EMULATE_DO_MMIO;
}
1278 1279 1280 1281 1282 1283 1284

int kvmppc_handle_load(struct kvm_run *run, struct kvm_vcpu *vcpu,
		       unsigned int rt, unsigned int bytes,
		       int is_default_endian)
{
	return __kvmppc_handle_load(run, vcpu, rt, bytes, is_default_endian, 0);
}
1285
EXPORT_SYMBOL_GPL(kvmppc_handle_load);
1286

A
Alexander Graf 已提交
1287 1288
/* Same as above, but sign extends */
int kvmppc_handle_loads(struct kvm_run *run, struct kvm_vcpu *vcpu,
1289 1290
			unsigned int rt, unsigned int bytes,
			int is_default_endian)
A
Alexander Graf 已提交
1291
{
1292
	return __kvmppc_handle_load(run, vcpu, rt, bytes, is_default_endian, 1);
A
Alexander Graf 已提交
1293 1294
}

1295 1296 1297 1298 1299 1300 1301
#ifdef CONFIG_VSX
int kvmppc_handle_vsx_load(struct kvm_run *run, struct kvm_vcpu *vcpu,
			unsigned int rt, unsigned int bytes,
			int is_default_endian, int mmio_sign_extend)
{
	enum emulation_result emulated = EMULATE_DONE;

1302 1303
	/* Currently, mmio_vsx_copy_nums only allowed to be 4 or less */
	if (vcpu->arch.mmio_vsx_copy_nums > 4)
1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321
		return EMULATE_FAIL;

	while (vcpu->arch.mmio_vsx_copy_nums) {
		emulated = __kvmppc_handle_load(run, vcpu, rt, bytes,
			is_default_endian, mmio_sign_extend);

		if (emulated != EMULATE_DONE)
			break;

		vcpu->arch.paddr_accessed += run->mmio.len;

		vcpu->arch.mmio_vsx_copy_nums--;
		vcpu->arch.mmio_vsx_offset++;
	}
	return emulated;
}
#endif /* CONFIG_VSX */

1322
int kvmppc_handle_store(struct kvm_run *run, struct kvm_vcpu *vcpu,
1323
			u64 val, unsigned int bytes, int is_default_endian)
1324 1325
{
	void *data = run->mmio.data;
1326
	int idx, ret;
1327
	bool host_swabbed;
1328

1329
	/* Pity C doesn't have a logical XOR operator */
1330
	if (kvmppc_need_byteswap(vcpu)) {
1331
		host_swabbed = is_default_endian;
1332
	} else {
1333
		host_swabbed = !is_default_endian;
1334
	}
1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346

	if (bytes > sizeof(run->mmio.data)) {
		printk(KERN_ERR "%s: bad MMIO length: %d\n", __func__,
		       run->mmio.len);
	}

	run->mmio.phys_addr = vcpu->arch.paddr_accessed;
	run->mmio.len = bytes;
	run->mmio.is_write = 1;
	vcpu->mmio_needed = 1;
	vcpu->mmio_is_write = 1;

1347 1348 1349
	if ((vcpu->arch.mmio_sp64_extend) && (bytes == 4))
		val = dp_to_sp(val);

1350
	/* Store the value at the lowest bytes in 'data'. */
1351
	if (!host_swabbed) {
1352
		switch (bytes) {
1353
		case 8: *(u64 *)data = val; break;
1354 1355 1356 1357 1358 1359
		case 4: *(u32 *)data = val; break;
		case 2: *(u16 *)data = val; break;
		case 1: *(u8  *)data = val; break;
		}
	} else {
		switch (bytes) {
1360 1361 1362 1363
		case 8: *(u64 *)data = swab64(val); break;
		case 4: *(u32 *)data = swab32(val); break;
		case 2: *(u16 *)data = swab16(val); break;
		case 1: *(u8  *)data = val; break;
1364 1365 1366
		}
	}

1367 1368
	idx = srcu_read_lock(&vcpu->kvm->srcu);

1369
	ret = kvm_io_bus_write(vcpu, KVM_MMIO_BUS, run->mmio.phys_addr,
1370 1371 1372 1373 1374
			       bytes, &run->mmio.data);

	srcu_read_unlock(&vcpu->kvm->srcu, idx);

	if (!ret) {
A
Alexander Graf 已提交
1375 1376 1377 1378
		vcpu->mmio_needed = 0;
		return EMULATE_DONE;
	}

1379 1380
	return EMULATE_DO_MMIO;
}
1381
EXPORT_SYMBOL_GPL(kvmppc_handle_store);
1382

1383 1384 1385 1386 1387 1388
#ifdef CONFIG_VSX
static inline int kvmppc_get_vsr_data(struct kvm_vcpu *vcpu, int rs, u64 *val)
{
	u32 dword_offset, word_offset;
	union kvmppc_one_reg reg;
	int vsx_offset = 0;
1389
	int copy_type = vcpu->arch.mmio_copy_type;
1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401
	int result = 0;

	switch (copy_type) {
	case KVMPPC_VSX_COPY_DWORD:
		vsx_offset =
			kvmppc_get_vsr_dword_offset(vcpu->arch.mmio_vsx_offset);

		if (vsx_offset == -1) {
			result = -1;
			break;
		}

1402
		if (rs < 32) {
1403 1404
			*val = VCPU_VSX_FPR(vcpu, rs, vsx_offset);
		} else {
1405
			reg.vval = VCPU_VSX_VR(vcpu, rs - 32);
1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418
			*val = reg.vsxval[vsx_offset];
		}
		break;

	case KVMPPC_VSX_COPY_WORD:
		vsx_offset =
			kvmppc_get_vsr_word_offset(vcpu->arch.mmio_vsx_offset);

		if (vsx_offset == -1) {
			result = -1;
			break;
		}

1419
		if (rs < 32) {
1420 1421 1422 1423 1424
			dword_offset = vsx_offset / 2;
			word_offset = vsx_offset % 2;
			reg.vsxval[0] = VCPU_VSX_FPR(vcpu, rs, dword_offset);
			*val = reg.vsx32val[word_offset];
		} else {
1425
			reg.vval = VCPU_VSX_VR(vcpu, rs - 32);
1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445
			*val = reg.vsx32val[vsx_offset];
		}
		break;

	default:
		result = -1;
		break;
	}

	return result;
}

int kvmppc_handle_vsx_store(struct kvm_run *run, struct kvm_vcpu *vcpu,
			int rs, unsigned int bytes, int is_default_endian)
{
	u64 val;
	enum emulation_result emulated = EMULATE_DONE;

	vcpu->arch.io_gpr = rs;

1446 1447
	/* Currently, mmio_vsx_copy_nums only allowed to be 4 or less */
	if (vcpu->arch.mmio_vsx_copy_nums > 4)
1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503
		return EMULATE_FAIL;

	while (vcpu->arch.mmio_vsx_copy_nums) {
		if (kvmppc_get_vsr_data(vcpu, rs, &val) == -1)
			return EMULATE_FAIL;

		emulated = kvmppc_handle_store(run, vcpu,
			 val, bytes, is_default_endian);

		if (emulated != EMULATE_DONE)
			break;

		vcpu->arch.paddr_accessed += run->mmio.len;

		vcpu->arch.mmio_vsx_copy_nums--;
		vcpu->arch.mmio_vsx_offset++;
	}

	return emulated;
}

static int kvmppc_emulate_mmio_vsx_loadstore(struct kvm_vcpu *vcpu,
			struct kvm_run *run)
{
	enum emulation_result emulated = EMULATE_FAIL;
	int r;

	vcpu->arch.paddr_accessed += run->mmio.len;

	if (!vcpu->mmio_is_write) {
		emulated = kvmppc_handle_vsx_load(run, vcpu, vcpu->arch.io_gpr,
			 run->mmio.len, 1, vcpu->arch.mmio_sign_extend);
	} else {
		emulated = kvmppc_handle_vsx_store(run, vcpu,
			 vcpu->arch.io_gpr, run->mmio.len, 1);
	}

	switch (emulated) {
	case EMULATE_DO_MMIO:
		run->exit_reason = KVM_EXIT_MMIO;
		r = RESUME_HOST;
		break;
	case EMULATE_FAIL:
		pr_info("KVM: MMIO emulation failed (VSX repeat)\n");
		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
		run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
		r = RESUME_HOST;
		break;
	default:
		r = RESUME_GUEST;
		break;
	}
	return r;
}
#endif /* CONFIG_VSX */

1504
#ifdef CONFIG_ALTIVEC
1505 1506
int kvmppc_handle_vmx_load(struct kvm_run *run, struct kvm_vcpu *vcpu,
		unsigned int rt, unsigned int bytes, int is_default_endian)
1507
{
1508
	enum emulation_result emulated = EMULATE_DONE;
1509

1510 1511 1512
	if (vcpu->arch.mmio_vsx_copy_nums > 2)
		return EMULATE_FAIL;

1513
	while (vcpu->arch.mmio_vmx_copy_nums) {
1514
		emulated = __kvmppc_handle_load(run, vcpu, rt, bytes,
1515 1516 1517 1518 1519 1520 1521
				is_default_endian, 0);

		if (emulated != EMULATE_DONE)
			break;

		vcpu->arch.paddr_accessed += run->mmio.len;
		vcpu->arch.mmio_vmx_copy_nums--;
1522
		vcpu->arch.mmio_vmx_offset++;
1523 1524 1525 1526 1527
	}

	return emulated;
}

1528
int kvmppc_get_vmx_dword(struct kvm_vcpu *vcpu, int index, u64 *val)
1529
{
1530 1531 1532
	union kvmppc_one_reg reg;
	int vmx_offset = 0;
	int result = 0;
1533

1534 1535
	vmx_offset =
		kvmppc_get_vmx_dword_offset(vcpu, vcpu->arch.mmio_vmx_offset);
1536

1537
	if (vmx_offset == -1)
1538 1539
		return -1;

1540 1541
	reg.vval = VCPU_VSX_VR(vcpu, index);
	*val = reg.vsxval[vmx_offset];
1542

1543 1544
	return result;
}
1545

1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579
int kvmppc_get_vmx_word(struct kvm_vcpu *vcpu, int index, u64 *val)
{
	union kvmppc_one_reg reg;
	int vmx_offset = 0;
	int result = 0;

	vmx_offset =
		kvmppc_get_vmx_word_offset(vcpu, vcpu->arch.mmio_vmx_offset);

	if (vmx_offset == -1)
		return -1;

	reg.vval = VCPU_VSX_VR(vcpu, index);
	*val = reg.vsx32val[vmx_offset];

	return result;
}

int kvmppc_get_vmx_hword(struct kvm_vcpu *vcpu, int index, u64 *val)
{
	union kvmppc_one_reg reg;
	int vmx_offset = 0;
	int result = 0;

	vmx_offset =
		kvmppc_get_vmx_hword_offset(vcpu, vcpu->arch.mmio_vmx_offset);

	if (vmx_offset == -1)
		return -1;

	reg.vval = VCPU_VSX_VR(vcpu, index);
	*val = reg.vsx16val[vmx_offset];

	return result;
1580 1581
}

1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597
int kvmppc_get_vmx_byte(struct kvm_vcpu *vcpu, int index, u64 *val)
{
	union kvmppc_one_reg reg;
	int vmx_offset = 0;
	int result = 0;

	vmx_offset =
		kvmppc_get_vmx_byte_offset(vcpu, vcpu->arch.mmio_vmx_offset);

	if (vmx_offset == -1)
		return -1;

	reg.vval = VCPU_VSX_VR(vcpu, index);
	*val = reg.vsx8val[vmx_offset];

	return result;
1598 1599
}

1600 1601
int kvmppc_handle_vmx_store(struct kvm_run *run, struct kvm_vcpu *vcpu,
		unsigned int rs, unsigned int bytes, int is_default_endian)
1602 1603
{
	u64 val = 0;
1604
	unsigned int index = rs & KVM_MMIO_REG_MASK;
1605 1606
	enum emulation_result emulated = EMULATE_DONE;

1607 1608 1609
	if (vcpu->arch.mmio_vsx_copy_nums > 2)
		return EMULATE_FAIL;

1610 1611 1612
	vcpu->arch.io_gpr = rs;

	while (vcpu->arch.mmio_vmx_copy_nums) {
1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631
		switch (vcpu->arch.mmio_copy_type) {
		case KVMPPC_VMX_COPY_DWORD:
			if (kvmppc_get_vmx_dword(vcpu, index, &val) == -1)
				return EMULATE_FAIL;

			break;
		case KVMPPC_VMX_COPY_WORD:
			if (kvmppc_get_vmx_word(vcpu, index, &val) == -1)
				return EMULATE_FAIL;
			break;
		case KVMPPC_VMX_COPY_HWORD:
			if (kvmppc_get_vmx_hword(vcpu, index, &val) == -1)
				return EMULATE_FAIL;
			break;
		case KVMPPC_VMX_COPY_BYTE:
			if (kvmppc_get_vmx_byte(vcpu, index, &val) == -1)
				return EMULATE_FAIL;
			break;
		default:
1632
			return EMULATE_FAIL;
1633
		}
1634

1635
		emulated = kvmppc_handle_store(run, vcpu, val, bytes,
1636 1637 1638 1639 1640 1641
				is_default_endian);
		if (emulated != EMULATE_DONE)
			break;

		vcpu->arch.paddr_accessed += run->mmio.len;
		vcpu->arch.mmio_vmx_copy_nums--;
1642
		vcpu->arch.mmio_vmx_offset++;
1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656
	}

	return emulated;
}

static int kvmppc_emulate_mmio_vmx_loadstore(struct kvm_vcpu *vcpu,
		struct kvm_run *run)
{
	enum emulation_result emulated = EMULATE_FAIL;
	int r;

	vcpu->arch.paddr_accessed += run->mmio.len;

	if (!vcpu->mmio_is_write) {
1657 1658
		emulated = kvmppc_handle_vmx_load(run, vcpu,
				vcpu->arch.io_gpr, run->mmio.len, 1);
1659
	} else {
1660 1661
		emulated = kvmppc_handle_vmx_store(run, vcpu,
				vcpu->arch.io_gpr, run->mmio.len, 1);
1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682
	}

	switch (emulated) {
	case EMULATE_DO_MMIO:
		run->exit_reason = KVM_EXIT_MMIO;
		r = RESUME_HOST;
		break;
	case EMULATE_FAIL:
		pr_info("KVM: MMIO emulation failed (VMX repeat)\n");
		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
		run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
		r = RESUME_HOST;
		break;
	default:
		r = RESUME_GUEST;
		break;
	}
	return r;
}
#endif /* CONFIG_ALTIVEC */

1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696
int kvm_vcpu_ioctl_get_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg)
{
	int r = 0;
	union kvmppc_one_reg val;
	int size;

	size = one_reg_size(reg->id);
	if (size > sizeof(val))
		return -EINVAL;

	r = kvmppc_get_one_reg(vcpu, reg->id, &val);
	if (r == -EINVAL) {
		r = 0;
		switch (reg->id) {
1697 1698 1699 1700 1701 1702
#ifdef CONFIG_ALTIVEC
		case KVM_REG_PPC_VR0 ... KVM_REG_PPC_VR31:
			if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
				r = -ENXIO;
				break;
			}
1703
			val.vval = vcpu->arch.vr.vr[reg->id - KVM_REG_PPC_VR0];
1704 1705 1706 1707 1708 1709
			break;
		case KVM_REG_PPC_VSCR:
			if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
				r = -ENXIO;
				break;
			}
1710
			val = get_reg_val(reg->id, vcpu->arch.vr.vscr.u[3]);
1711 1712
			break;
		case KVM_REG_PPC_VRSAVE:
1713
			val = get_reg_val(reg->id, vcpu->arch.vrsave);
1714 1715
			break;
#endif /* CONFIG_ALTIVEC */
1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747
		default:
			r = -EINVAL;
			break;
		}
	}

	if (r)
		return r;

	if (copy_to_user((char __user *)(unsigned long)reg->addr, &val, size))
		r = -EFAULT;

	return r;
}

int kvm_vcpu_ioctl_set_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg)
{
	int r;
	union kvmppc_one_reg val;
	int size;

	size = one_reg_size(reg->id);
	if (size > sizeof(val))
		return -EINVAL;

	if (copy_from_user(&val, (char __user *)(unsigned long)reg->addr, size))
		return -EFAULT;

	r = kvmppc_set_one_reg(vcpu, reg->id, &val);
	if (r == -EINVAL) {
		r = 0;
		switch (reg->id) {
1748 1749 1750 1751 1752 1753
#ifdef CONFIG_ALTIVEC
		case KVM_REG_PPC_VR0 ... KVM_REG_PPC_VR31:
			if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
				r = -ENXIO;
				break;
			}
1754
			vcpu->arch.vr.vr[reg->id - KVM_REG_PPC_VR0] = val.vval;
1755 1756 1757 1758 1759 1760
			break;
		case KVM_REG_PPC_VSCR:
			if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
				r = -ENXIO;
				break;
			}
1761
			vcpu->arch.vr.vscr.u[3] = set_reg_val(reg->id, val);
1762 1763
			break;
		case KVM_REG_PPC_VRSAVE:
1764 1765 1766 1767 1768
			if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
				r = -ENXIO;
				break;
			}
			vcpu->arch.vrsave = set_reg_val(reg->id, val);
1769 1770
			break;
#endif /* CONFIG_ALTIVEC */
1771 1772 1773 1774 1775 1776 1777 1778 1779
		default:
			r = -EINVAL;
			break;
		}
	}

	return r;
}

1780 1781 1782 1783
int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
{
	int r;

1784 1785
	vcpu_load(vcpu);

1786
	if (vcpu->mmio_needed) {
1787
		vcpu->mmio_needed = 0;
1788 1789
		if (!vcpu->mmio_is_write)
			kvmppc_complete_mmio_load(vcpu, run);
1790 1791 1792 1793 1794 1795 1796 1797 1798 1799
#ifdef CONFIG_VSX
		if (vcpu->arch.mmio_vsx_copy_nums > 0) {
			vcpu->arch.mmio_vsx_copy_nums--;
			vcpu->arch.mmio_vsx_offset++;
		}

		if (vcpu->arch.mmio_vsx_copy_nums > 0) {
			r = kvmppc_emulate_mmio_vsx_loadstore(vcpu, run);
			if (r == RESUME_HOST) {
				vcpu->mmio_needed = 1;
1800
				goto out;
1801 1802
			}
		}
1803 1804
#endif
#ifdef CONFIG_ALTIVEC
1805
		if (vcpu->arch.mmio_vmx_copy_nums > 0) {
1806
			vcpu->arch.mmio_vmx_copy_nums--;
1807 1808
			vcpu->arch.mmio_vmx_offset++;
		}
1809 1810 1811 1812 1813

		if (vcpu->arch.mmio_vmx_copy_nums > 0) {
			r = kvmppc_emulate_mmio_vmx_loadstore(vcpu, run);
			if (r == RESUME_HOST) {
				vcpu->mmio_needed = 1;
1814
				goto out;
1815 1816
			}
		}
1817
#endif
1818 1819 1820 1821 1822 1823 1824
	} else if (vcpu->arch.osi_needed) {
		u64 *gprs = run->osi.gprs;
		int i;

		for (i = 0; i < 32; i++)
			kvmppc_set_gpr(vcpu, i, gprs[i]);
		vcpu->arch.osi_needed = 0;
1825 1826 1827 1828 1829 1830 1831
	} else if (vcpu->arch.hcall_needed) {
		int i;

		kvmppc_set_gpr(vcpu, 3, run->papr_hcall.ret);
		for (i = 0; i < 9; ++i)
			kvmppc_set_gpr(vcpu, 4 + i, run->papr_hcall.args[i]);
		vcpu->arch.hcall_needed = 0;
1832 1833 1834 1835 1836
#ifdef CONFIG_BOOKE
	} else if (vcpu->arch.epr_needed) {
		kvmppc_set_epr(vcpu, run->epr.epr);
		vcpu->arch.epr_needed = 0;
#endif
1837 1838
	}

1839
	kvm_sigset_activate(vcpu);
1840

1841 1842 1843 1844
	if (run->immediate_exit)
		r = -EINTR;
	else
		r = kvmppc_vcpu_run(run, vcpu);
1845

1846
	kvm_sigset_deactivate(vcpu);
1847

1848
#ifdef CONFIG_ALTIVEC
1849
out:
1850
#endif
1851
	vcpu_put(vcpu);
1852 1853 1854 1855 1856
	return r;
}

int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, struct kvm_interrupt *irq)
{
1857
	if (irq->irq == KVM_INTERRUPT_UNSET) {
1858
		kvmppc_core_dequeue_external(vcpu);
1859 1860 1861 1862
		return 0;
	}

	kvmppc_core_queue_external(vcpu, irq);
1863

1864
	kvm_vcpu_kick(vcpu);
1865

1866 1867 1868
	return 0;
}

1869 1870 1871 1872 1873 1874 1875 1876 1877
static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
				     struct kvm_enable_cap *cap)
{
	int r;

	if (cap->flags)
		return -EINVAL;

	switch (cap->cap) {
1878 1879 1880 1881
	case KVM_CAP_PPC_OSI:
		r = 0;
		vcpu->arch.osi_enabled = true;
		break;
1882 1883 1884 1885
	case KVM_CAP_PPC_PAPR:
		r = 0;
		vcpu->arch.papr_enabled = true;
		break;
1886 1887
	case KVM_CAP_PPC_EPR:
		r = 0;
1888 1889 1890 1891
		if (cap->args[0])
			vcpu->arch.epr_flags |= KVMPPC_EPR_USER;
		else
			vcpu->arch.epr_flags &= ~KVMPPC_EPR_USER;
1892
		break;
1893 1894 1895 1896 1897 1898
#ifdef CONFIG_BOOKE
	case KVM_CAP_PPC_BOOKE_WATCHDOG:
		r = 0;
		vcpu->arch.watchdog_enabled = true;
		break;
#endif
1899
#if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
S
Scott Wood 已提交
1900 1901 1902 1903 1904 1905 1906 1907 1908 1909
	case KVM_CAP_SW_TLB: {
		struct kvm_config_tlb cfg;
		void __user *user_ptr = (void __user *)(uintptr_t)cap->args[0];

		r = -EFAULT;
		if (copy_from_user(&cfg, user_ptr, sizeof(cfg)))
			break;

		r = kvm_vcpu_ioctl_config_tlb(vcpu, &cfg);
		break;
S
Scott Wood 已提交
1910 1911 1912 1913
	}
#endif
#ifdef CONFIG_KVM_MPIC
	case KVM_CAP_IRQ_MPIC: {
A
Al Viro 已提交
1914
		struct fd f;
S
Scott Wood 已提交
1915 1916 1917
		struct kvm_device *dev;

		r = -EBADF;
A
Al Viro 已提交
1918 1919
		f = fdget(cap->args[0]);
		if (!f.file)
S
Scott Wood 已提交
1920 1921 1922
			break;

		r = -EPERM;
A
Al Viro 已提交
1923
		dev = kvm_device_from_filp(f.file);
S
Scott Wood 已提交
1924 1925 1926
		if (dev)
			r = kvmppc_mpic_connect_vcpu(dev, vcpu, cap->args[1]);

A
Al Viro 已提交
1927
		fdput(f);
S
Scott Wood 已提交
1928
		break;
S
Scott Wood 已提交
1929 1930
	}
#endif
1931 1932
#ifdef CONFIG_KVM_XICS
	case KVM_CAP_IRQ_XICS: {
A
Al Viro 已提交
1933
		struct fd f;
1934 1935 1936
		struct kvm_device *dev;

		r = -EBADF;
A
Al Viro 已提交
1937 1938
		f = fdget(cap->args[0]);
		if (!f.file)
1939 1940 1941
			break;

		r = -EPERM;
A
Al Viro 已提交
1942
		dev = kvm_device_from_filp(f.file);
1943
		if (dev) {
1944
			if (xics_on_xive())
1945 1946 1947 1948
				r = kvmppc_xive_connect_vcpu(dev, vcpu, cap->args[1]);
			else
				r = kvmppc_xics_connect_vcpu(dev, vcpu, cap->args[1]);
		}
1949

A
Al Viro 已提交
1950
		fdput(f);
1951 1952 1953
		break;
	}
#endif /* CONFIG_KVM_XICS */
1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977
#ifdef CONFIG_KVM_XIVE
	case KVM_CAP_PPC_IRQ_XIVE: {
		struct fd f;
		struct kvm_device *dev;

		r = -EBADF;
		f = fdget(cap->args[0]);
		if (!f.file)
			break;

		r = -ENXIO;
		if (!xive_enabled())
			break;

		r = -EPERM;
		dev = kvm_device_from_filp(f.file);
		if (dev)
			r = kvmppc_xive_native_connect_vcpu(dev, vcpu,
							    cap->args[1]);

		fdput(f);
		break;
	}
#endif /* CONFIG_KVM_XIVE */
1978 1979 1980 1981 1982 1983 1984 1985 1986
#ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
	case KVM_CAP_PPC_FWNMI:
		r = -EINVAL;
		if (!is_kvmppc_hv_enabled(vcpu->kvm))
			break;
		r = 0;
		vcpu->kvm->arch.fwnmi_enabled = true;
		break;
#endif /* CONFIG_KVM_BOOK3S_HV_POSSIBLE */
1987 1988 1989 1990 1991
	default:
		r = -EINVAL;
		break;
	}

1992 1993 1994
	if (!r)
		r = kvmppc_sanity_check(vcpu);

1995 1996 1997
	return r;
}

1998 1999 2000 2001 2002 2003 2004
bool kvm_arch_intc_initialized(struct kvm *kvm)
{
#ifdef CONFIG_KVM_MPIC
	if (kvm->arch.mpic)
		return true;
#endif
#ifdef CONFIG_KVM_XICS
2005
	if (kvm->arch.xics || kvm->arch.xive)
2006 2007 2008 2009 2010
		return true;
#endif
	return false;
}

2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022
int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
                                    struct kvm_mp_state *mp_state)
{
	return -EINVAL;
}

int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
                                    struct kvm_mp_state *mp_state)
{
	return -EINVAL;
}

2023 2024
long kvm_arch_vcpu_async_ioctl(struct file *filp,
			       unsigned int ioctl, unsigned long arg)
2025 2026 2027 2028
{
	struct kvm_vcpu *vcpu = filp->private_data;
	void __user *argp = (void __user *)arg;

2029
	if (ioctl == KVM_INTERRUPT) {
2030 2031
		struct kvm_interrupt irq;
		if (copy_from_user(&irq, argp, sizeof(irq)))
2032 2033
			return -EFAULT;
		return kvm_vcpu_ioctl_interrupt(vcpu, &irq);
2034
	}
2035 2036 2037 2038 2039 2040 2041 2042 2043
	return -ENOIOCTLCMD;
}

long kvm_arch_vcpu_ioctl(struct file *filp,
                         unsigned int ioctl, unsigned long arg)
{
	struct kvm_vcpu *vcpu = filp->private_data;
	void __user *argp = (void __user *)arg;
	long r;
2044

2045
	switch (ioctl) {
2046 2047 2048 2049
	case KVM_ENABLE_CAP:
	{
		struct kvm_enable_cap cap;
		r = -EFAULT;
2050
		vcpu_load(vcpu);
2051 2052 2053
		if (copy_from_user(&cap, argp, sizeof(cap)))
			goto out;
		r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
2054
		vcpu_put(vcpu);
2055 2056
		break;
	}
S
Scott Wood 已提交
2057

2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071
	case KVM_SET_ONE_REG:
	case KVM_GET_ONE_REG:
	{
		struct kvm_one_reg reg;
		r = -EFAULT;
		if (copy_from_user(&reg, argp, sizeof(reg)))
			goto out;
		if (ioctl == KVM_SET_ONE_REG)
			r = kvm_vcpu_ioctl_set_one_reg(vcpu, &reg);
		else
			r = kvm_vcpu_ioctl_get_one_reg(vcpu, &reg);
		break;
	}

2072
#if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
S
Scott Wood 已提交
2073 2074 2075
	case KVM_DIRTY_TLB: {
		struct kvm_dirty_tlb dirty;
		r = -EFAULT;
2076
		vcpu_load(vcpu);
S
Scott Wood 已提交
2077 2078 2079
		if (copy_from_user(&dirty, argp, sizeof(dirty)))
			goto out;
		r = kvm_vcpu_ioctl_dirty_tlb(vcpu, &dirty);
2080
		vcpu_put(vcpu);
S
Scott Wood 已提交
2081 2082 2083
		break;
	}
#endif
2084 2085 2086 2087 2088 2089 2090 2091
	default:
		r = -EINVAL;
	}

out:
	return r;
}

2092
vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
2093 2094 2095 2096
{
	return VM_FAULT_SIGBUS;
}

2097 2098
static int kvm_vm_ioctl_get_pvinfo(struct kvm_ppc_pvinfo *pvinfo)
{
2099 2100 2101
	u32 inst_nop = 0x60000000;
#ifdef CONFIG_KVM_BOOKE_HV
	u32 inst_sc1 = 0x44000022;
2102 2103 2104 2105
	pvinfo->hcall[0] = cpu_to_be32(inst_sc1);
	pvinfo->hcall[1] = cpu_to_be32(inst_nop);
	pvinfo->hcall[2] = cpu_to_be32(inst_nop);
	pvinfo->hcall[3] = cpu_to_be32(inst_nop);
2106
#else
2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120
	u32 inst_lis = 0x3c000000;
	u32 inst_ori = 0x60000000;
	u32 inst_sc = 0x44000002;
	u32 inst_imm_mask = 0xffff;

	/*
	 * The hypercall to get into KVM from within guest context is as
	 * follows:
	 *
	 *    lis r0, r0, KVM_SC_MAGIC_R0@h
	 *    ori r0, KVM_SC_MAGIC_R0@l
	 *    sc
	 *    nop
	 */
2121 2122 2123 2124
	pvinfo->hcall[0] = cpu_to_be32(inst_lis | ((KVM_SC_MAGIC_R0 >> 16) & inst_imm_mask));
	pvinfo->hcall[1] = cpu_to_be32(inst_ori | (KVM_SC_MAGIC_R0 & inst_imm_mask));
	pvinfo->hcall[2] = cpu_to_be32(inst_sc);
	pvinfo->hcall[3] = cpu_to_be32(inst_nop);
2125
#endif
2126

2127 2128
	pvinfo->flags = KVM_PPC_PVINFO_FLAGS_EV_IDLE;

2129 2130 2131
	return 0;
}

2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143
int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
			  bool line_status)
{
	if (!irqchip_in_kernel(kvm))
		return -ENXIO;

	irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
					irq_event->irq, irq_event->level,
					line_status);
	return 0;
}

2144

2145 2146
int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
			    struct kvm_enable_cap *cap)
2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161
{
	int r;

	if (cap->flags)
		return -EINVAL;

	switch (cap->cap) {
#ifdef CONFIG_KVM_BOOK3S_64_HANDLER
	case KVM_CAP_PPC_ENABLE_HCALL: {
		unsigned long hcall = cap->args[0];

		r = -EINVAL;
		if (hcall > MAX_HCALL_OPCODE || (hcall & 3) ||
		    cap->args[1] > 1)
			break;
2162 2163
		if (!kvmppc_book3s_hcall_implemented(kvm, hcall))
			break;
2164 2165 2166 2167 2168 2169 2170
		if (cap->args[1])
			set_bit(hcall / 4, kvm->arch.enabled_hcalls);
		else
			clear_bit(hcall / 4, kvm->arch.enabled_hcalls);
		r = 0;
		break;
	}
2171 2172 2173 2174 2175 2176 2177 2178 2179
	case KVM_CAP_PPC_SMT: {
		unsigned long mode = cap->args[0];
		unsigned long flags = cap->args[1];

		r = -EINVAL;
		if (kvm->arch.kvm_ops->set_smt_mode)
			r = kvm->arch.kvm_ops->set_smt_mode(kvm, mode, flags);
		break;
	}
2180 2181 2182 2183 2184 2185 2186 2187

	case KVM_CAP_PPC_NESTED_HV:
		r = -EINVAL;
		if (!is_kvmppc_hv_enabled(kvm) ||
		    !kvm->arch.kvm_ops->enable_nested)
			break;
		r = kvm->arch.kvm_ops->enable_nested(kvm);
		break;
2188 2189 2190 2191 2192 2193 2194 2195 2196
#endif
	default:
		r = -EINVAL;
		break;
	}

	return r;
}

2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225
#ifdef CONFIG_PPC_BOOK3S_64
/*
 * These functions check whether the underlying hardware is safe
 * against attacks based on observing the effects of speculatively
 * executed instructions, and whether it supplies instructions for
 * use in workarounds.  The information comes from firmware, either
 * via the device tree on powernv platforms or from an hcall on
 * pseries platforms.
 */
#ifdef CONFIG_PPC_PSERIES
static int pseries_get_cpu_char(struct kvm_ppc_cpu_char *cp)
{
	struct h_cpu_char_result c;
	unsigned long rc;

	if (!machine_is(pseries))
		return -ENOTTY;

	rc = plpar_get_cpu_characteristics(&c);
	if (rc == H_SUCCESS) {
		cp->character = c.character;
		cp->behaviour = c.behaviour;
		cp->character_mask = KVM_PPC_CPU_CHAR_SPEC_BAR_ORI31 |
			KVM_PPC_CPU_CHAR_BCCTRL_SERIALISED |
			KVM_PPC_CPU_CHAR_L1D_FLUSH_ORI30 |
			KVM_PPC_CPU_CHAR_L1D_FLUSH_TRIG2 |
			KVM_PPC_CPU_CHAR_L1D_THREAD_PRIV |
			KVM_PPC_CPU_CHAR_BR_HINT_HONOURED |
			KVM_PPC_CPU_CHAR_MTTRIG_THR_RECONF |
2226 2227
			KVM_PPC_CPU_CHAR_COUNT_CACHE_DIS |
			KVM_PPC_CPU_CHAR_BCCTR_FLUSH_ASSIST;
2228 2229
		cp->behaviour_mask = KVM_PPC_CPU_BEHAV_FAVOUR_SECURITY |
			KVM_PPC_CPU_BEHAV_L1D_FLUSH_PR |
2230 2231
			KVM_PPC_CPU_BEHAV_BNDS_CHK_SPEC_BAR |
			KVM_PPC_CPU_BEHAV_FLUSH_COUNT_CACHE;
2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289
	}
	return 0;
}
#else
static int pseries_get_cpu_char(struct kvm_ppc_cpu_char *cp)
{
	return -ENOTTY;
}
#endif

static inline bool have_fw_feat(struct device_node *fw_features,
				const char *state, const char *name)
{
	struct device_node *np;
	bool r = false;

	np = of_get_child_by_name(fw_features, name);
	if (np) {
		r = of_property_read_bool(np, state);
		of_node_put(np);
	}
	return r;
}

static int kvmppc_get_cpu_char(struct kvm_ppc_cpu_char *cp)
{
	struct device_node *np, *fw_features;
	int r;

	memset(cp, 0, sizeof(*cp));
	r = pseries_get_cpu_char(cp);
	if (r != -ENOTTY)
		return r;

	np = of_find_node_by_name(NULL, "ibm,opal");
	if (np) {
		fw_features = of_get_child_by_name(np, "fw-features");
		of_node_put(np);
		if (!fw_features)
			return 0;
		if (have_fw_feat(fw_features, "enabled",
				 "inst-spec-barrier-ori31,31,0"))
			cp->character |= KVM_PPC_CPU_CHAR_SPEC_BAR_ORI31;
		if (have_fw_feat(fw_features, "enabled",
				 "fw-bcctrl-serialized"))
			cp->character |= KVM_PPC_CPU_CHAR_BCCTRL_SERIALISED;
		if (have_fw_feat(fw_features, "enabled",
				 "inst-l1d-flush-ori30,30,0"))
			cp->character |= KVM_PPC_CPU_CHAR_L1D_FLUSH_ORI30;
		if (have_fw_feat(fw_features, "enabled",
				 "inst-l1d-flush-trig2"))
			cp->character |= KVM_PPC_CPU_CHAR_L1D_FLUSH_TRIG2;
		if (have_fw_feat(fw_features, "enabled",
				 "fw-l1d-thread-split"))
			cp->character |= KVM_PPC_CPU_CHAR_L1D_THREAD_PRIV;
		if (have_fw_feat(fw_features, "enabled",
				 "fw-count-cache-disabled"))
			cp->character |= KVM_PPC_CPU_CHAR_COUNT_CACHE_DIS;
2290 2291 2292
		if (have_fw_feat(fw_features, "enabled",
				 "fw-count-cache-flush-bcctr2,0,0"))
			cp->character |= KVM_PPC_CPU_CHAR_BCCTR_FLUSH_ASSIST;
2293 2294 2295 2296 2297
		cp->character_mask = KVM_PPC_CPU_CHAR_SPEC_BAR_ORI31 |
			KVM_PPC_CPU_CHAR_BCCTRL_SERIALISED |
			KVM_PPC_CPU_CHAR_L1D_FLUSH_ORI30 |
			KVM_PPC_CPU_CHAR_L1D_FLUSH_TRIG2 |
			KVM_PPC_CPU_CHAR_L1D_THREAD_PRIV |
2298 2299
			KVM_PPC_CPU_CHAR_COUNT_CACHE_DIS |
			KVM_PPC_CPU_CHAR_BCCTR_FLUSH_ASSIST;
2300 2301 2302 2303 2304 2305 2306 2307 2308 2309

		if (have_fw_feat(fw_features, "enabled",
				 "speculation-policy-favor-security"))
			cp->behaviour |= KVM_PPC_CPU_BEHAV_FAVOUR_SECURITY;
		if (!have_fw_feat(fw_features, "disabled",
				  "needs-l1d-flush-msr-pr-0-to-1"))
			cp->behaviour |= KVM_PPC_CPU_BEHAV_L1D_FLUSH_PR;
		if (!have_fw_feat(fw_features, "disabled",
				  "needs-spec-barrier-for-bound-checks"))
			cp->behaviour |= KVM_PPC_CPU_BEHAV_BNDS_CHK_SPEC_BAR;
2310 2311 2312
		if (have_fw_feat(fw_features, "enabled",
				 "needs-count-cache-flush-on-context-switch"))
			cp->behaviour |= KVM_PPC_CPU_BEHAV_FLUSH_COUNT_CACHE;
2313 2314
		cp->behaviour_mask = KVM_PPC_CPU_BEHAV_FAVOUR_SECURITY |
			KVM_PPC_CPU_BEHAV_L1D_FLUSH_PR |
2315 2316
			KVM_PPC_CPU_BEHAV_BNDS_CHK_SPEC_BAR |
			KVM_PPC_CPU_BEHAV_FLUSH_COUNT_CACHE;
2317 2318 2319 2320 2321 2322 2323 2324

		of_node_put(fw_features);
	}

	return 0;
}
#endif

2325 2326 2327
long kvm_arch_vm_ioctl(struct file *filp,
                       unsigned int ioctl, unsigned long arg)
{
2328
	struct kvm *kvm __maybe_unused = filp->private_data;
2329
	void __user *argp = (void __user *)arg;
2330 2331 2332
	long r;

	switch (ioctl) {
2333 2334
	case KVM_PPC_GET_PVINFO: {
		struct kvm_ppc_pvinfo pvinfo;
2335
		memset(&pvinfo, 0, sizeof(pvinfo));
2336 2337 2338 2339 2340 2341 2342 2343
		r = kvm_vm_ioctl_get_pvinfo(&pvinfo);
		if (copy_to_user(argp, &pvinfo, sizeof(pvinfo))) {
			r = -EFAULT;
			goto out;
		}

		break;
	}
2344
#ifdef CONFIG_SPAPR_TCE_IOMMU
2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357
	case KVM_CREATE_SPAPR_TCE_64: {
		struct kvm_create_spapr_tce_64 create_tce_64;

		r = -EFAULT;
		if (copy_from_user(&create_tce_64, argp, sizeof(create_tce_64)))
			goto out;
		if (create_tce_64.flags) {
			r = -EINVAL;
			goto out;
		}
		r = kvm_vm_ioctl_create_spapr_tce(kvm, &create_tce_64);
		goto out;
	}
2358 2359
	case KVM_CREATE_SPAPR_TCE: {
		struct kvm_create_spapr_tce create_tce;
2360
		struct kvm_create_spapr_tce_64 create_tce_64;
2361 2362 2363 2364

		r = -EFAULT;
		if (copy_from_user(&create_tce, argp, sizeof(create_tce)))
			goto out;
2365 2366 2367 2368 2369 2370 2371 2372

		create_tce_64.liobn = create_tce.liobn;
		create_tce_64.page_shift = IOMMU_PAGE_SHIFT_4K;
		create_tce_64.offset = 0;
		create_tce_64.size = create_tce.window_size >>
				IOMMU_PAGE_SHIFT_4K;
		create_tce_64.flags = 0;
		r = kvm_vm_ioctl_create_spapr_tce(kvm, &create_tce_64);
2373 2374
		goto out;
	}
2375 2376
#endif
#ifdef CONFIG_PPC_BOOK3S_64
2377 2378
	case KVM_PPC_GET_SMMU_INFO: {
		struct kvm_ppc_smmu_info info;
2379
		struct kvm *kvm = filp->private_data;
2380 2381

		memset(&info, 0, sizeof(info));
2382
		r = kvm->arch.kvm_ops->get_smmu_info(kvm, &info);
2383 2384 2385 2386
		if (r >= 0 && copy_to_user(argp, &info, sizeof(info)))
			r = -EFAULT;
		break;
	}
2387 2388 2389 2390 2391 2392
	case KVM_PPC_RTAS_DEFINE_TOKEN: {
		struct kvm *kvm = filp->private_data;

		r = kvm_vm_ioctl_rtas_define_token(kvm, argp);
		break;
	}
2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417
	case KVM_PPC_CONFIGURE_V3_MMU: {
		struct kvm *kvm = filp->private_data;
		struct kvm_ppc_mmuv3_cfg cfg;

		r = -EINVAL;
		if (!kvm->arch.kvm_ops->configure_mmu)
			goto out;
		r = -EFAULT;
		if (copy_from_user(&cfg, argp, sizeof(cfg)))
			goto out;
		r = kvm->arch.kvm_ops->configure_mmu(kvm, &cfg);
		break;
	}
	case KVM_PPC_GET_RMMU_INFO: {
		struct kvm *kvm = filp->private_data;
		struct kvm_ppc_rmmu_info info;

		r = -EINVAL;
		if (!kvm->arch.kvm_ops->get_rmmu_info)
			goto out;
		r = kvm->arch.kvm_ops->get_rmmu_info(kvm, &info);
		if (r >= 0 && copy_to_user(argp, &info, sizeof(info)))
			r = -EFAULT;
		break;
	}
2418 2419 2420 2421 2422 2423 2424 2425
	case KVM_PPC_GET_CPU_CHAR: {
		struct kvm_ppc_cpu_char cpuchar;

		r = kvmppc_get_cpu_char(&cpuchar);
		if (r >= 0 && copy_to_user(argp, &cpuchar, sizeof(cpuchar)))
			r = -EFAULT;
		break;
	}
2426 2427 2428 2429
	default: {
		struct kvm *kvm = filp->private_data;
		r = kvm->arch.kvm_ops->arch_vm_ioctl(filp, ioctl, arg);
	}
2430
#else /* CONFIG_PPC_BOOK3S_64 */
2431
	default:
2432
		r = -ENOTTY;
2433
#endif
2434
	}
2435
out:
2436 2437 2438
	return r;
}

2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455
static unsigned long lpid_inuse[BITS_TO_LONGS(KVMPPC_NR_LPIDS)];
static unsigned long nr_lpids;

long kvmppc_alloc_lpid(void)
{
	long lpid;

	do {
		lpid = find_first_zero_bit(lpid_inuse, KVMPPC_NR_LPIDS);
		if (lpid >= nr_lpids) {
			pr_err("%s: No LPIDs free\n", __func__);
			return -ENOMEM;
		}
	} while (test_and_set_bit(lpid, lpid_inuse));

	return lpid;
}
2456
EXPORT_SYMBOL_GPL(kvmppc_alloc_lpid);
2457 2458 2459 2460 2461

void kvmppc_claim_lpid(long lpid)
{
	set_bit(lpid, lpid_inuse);
}
2462
EXPORT_SYMBOL_GPL(kvmppc_claim_lpid);
2463 2464 2465 2466 2467

void kvmppc_free_lpid(long lpid)
{
	clear_bit(lpid, lpid_inuse);
}
2468
EXPORT_SYMBOL_GPL(kvmppc_free_lpid);
2469 2470 2471 2472 2473 2474

void kvmppc_init_lpid(unsigned long nr_lpids_param)
{
	nr_lpids = min_t(unsigned long, KVMPPC_NR_LPIDS, nr_lpids_param);
	memset(lpid_inuse, 0, sizeof(lpid_inuse));
}
2475
EXPORT_SYMBOL_GPL(kvmppc_init_lpid);
2476

2477 2478 2479 2480 2481
int kvm_arch_init(void *opaque)
{
	return 0;
}

2482
EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ppc_instr);