powerpc.c 55.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
/*
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License, version 2, as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
 *
 * Copyright IBM Corp. 2007
 *
 * Authors: Hollis Blanchard <hollisb@us.ibm.com>
 *          Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com>
 */

#include <linux/errno.h>
#include <linux/err.h>
#include <linux/kvm_host.h>
#include <linux/vmalloc.h>
A
Alexander Graf 已提交
25
#include <linux/hrtimer.h>
26
#include <linux/sched/signal.h>
27
#include <linux/fs.h>
28
#include <linux/slab.h>
S
Scott Wood 已提交
29
#include <linux/file.h>
30
#include <linux/module.h>
31 32
#include <linux/irqbypass.h>
#include <linux/kvm_irqfd.h>
33
#include <asm/cputable.h>
34
#include <linux/uaccess.h>
35
#include <asm/kvm_ppc.h>
36
#include <asm/cputhreads.h>
37
#include <asm/irqflags.h>
38
#include <asm/iommu.h>
39
#include <asm/switch_to.h>
40
#include <asm/xive.h>
41 42 43 44
#ifdef CONFIG_PPC_PSERIES
#include <asm/hvcall.h>
#include <asm/plpar_wrappers.h>
#endif
45

46
#include "timing.h"
47
#include "irq.h"
P
Paul Mackerras 已提交
48
#include "../mm/mmu_decl.h"
49

50 51 52
#define CREATE_TRACE_POINTS
#include "trace.h"

53 54 55 56 57
struct kvmppc_ops *kvmppc_hv_ops;
EXPORT_SYMBOL_GPL(kvmppc_hv_ops);
struct kvmppc_ops *kvmppc_pr_ops;
EXPORT_SYMBOL_GPL(kvmppc_pr_ops);

58

59 60
int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
{
R
Radim Krčmář 已提交
61
	return !!(v->arch.pending_exceptions) || kvm_request_pending(v);
62 63
}

64 65 66 67 68
bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
{
	return false;
}

69 70 71 72 73
int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
{
	return 1;
}

74 75 76 77
/*
 * Common checks before entering the guest world.  Call with interrupts
 * disabled.
 *
78 79 80 81
 * returns:
 *
 * == 1 if we're ready to go into guest state
 * <= 0 if we need to go back to the host with return value
82 83 84
 */
int kvmppc_prepare_to_enter(struct kvm_vcpu *vcpu)
{
S
Scott Wood 已提交
85 86 87 88
	int r;

	WARN_ON(irqs_disabled());
	hard_irq_disable();
89 90 91 92 93

	while (true) {
		if (need_resched()) {
			local_irq_enable();
			cond_resched();
S
Scott Wood 已提交
94
			hard_irq_disable();
95 96 97 98
			continue;
		}

		if (signal_pending(current)) {
99 100 101
			kvmppc_account_exit(vcpu, SIGNAL_EXITS);
			vcpu->run->exit_reason = KVM_EXIT_INTR;
			r = -EINTR;
102 103 104
			break;
		}

105 106 107 108 109 110 111
		vcpu->mode = IN_GUEST_MODE;

		/*
		 * Reading vcpu->requests must happen after setting vcpu->mode,
		 * so we don't miss a request because the requester sees
		 * OUTSIDE_GUEST_MODE and assumes we'll be checking requests
		 * before next entering the guest (and thus doesn't IPI).
112 113 114
		 * This also orders the write to mode from any reads
		 * to the page tables done while the VCPU is running.
		 * Please see the comment in kvm_flush_remote_tlbs.
115
		 */
116
		smp_mb();
117

R
Radim Krčmář 已提交
118
		if (kvm_request_pending(vcpu)) {
119 120 121
			/* Make sure we process requests preemptable */
			local_irq_enable();
			trace_kvm_check_requests(vcpu);
122
			r = kvmppc_core_check_requests(vcpu);
S
Scott Wood 已提交
123
			hard_irq_disable();
124 125 126
			if (r > 0)
				continue;
			break;
127 128 129 130 131 132 133 134
		}

		if (kvmppc_core_prepare_to_enter(vcpu)) {
			/* interrupts got enabled in between, so we
			   are back at square 1 */
			continue;
		}

135
		guest_enter_irqoff();
S
Scott Wood 已提交
136
		return 1;
137 138
	}

S
Scott Wood 已提交
139 140
	/* return to host */
	local_irq_enable();
141 142
	return r;
}
143
EXPORT_SYMBOL_GPL(kvmppc_prepare_to_enter);
144

145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
#if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_KVM_BOOK3S_PR_POSSIBLE)
static void kvmppc_swab_shared(struct kvm_vcpu *vcpu)
{
	struct kvm_vcpu_arch_shared *shared = vcpu->arch.shared;
	int i;

	shared->sprg0 = swab64(shared->sprg0);
	shared->sprg1 = swab64(shared->sprg1);
	shared->sprg2 = swab64(shared->sprg2);
	shared->sprg3 = swab64(shared->sprg3);
	shared->srr0 = swab64(shared->srr0);
	shared->srr1 = swab64(shared->srr1);
	shared->dar = swab64(shared->dar);
	shared->msr = swab64(shared->msr);
	shared->dsisr = swab32(shared->dsisr);
	shared->int_pending = swab32(shared->int_pending);
	for (i = 0; i < ARRAY_SIZE(shared->sr); i++)
		shared->sr[i] = swab32(shared->sr[i]);
}
#endif

166 167 168 169 170 171 172 173 174 175
int kvmppc_kvm_pv(struct kvm_vcpu *vcpu)
{
	int nr = kvmppc_get_gpr(vcpu, 11);
	int r;
	unsigned long __maybe_unused param1 = kvmppc_get_gpr(vcpu, 3);
	unsigned long __maybe_unused param2 = kvmppc_get_gpr(vcpu, 4);
	unsigned long __maybe_unused param3 = kvmppc_get_gpr(vcpu, 5);
	unsigned long __maybe_unused param4 = kvmppc_get_gpr(vcpu, 6);
	unsigned long r2 = 0;

176
	if (!(kvmppc_get_msr(vcpu) & MSR_SF)) {
177 178 179 180 181 182 183 184
		/* 32 bit mode */
		param1 &= 0xffffffff;
		param2 &= 0xffffffff;
		param3 &= 0xffffffff;
		param4 &= 0xffffffff;
	}

	switch (nr) {
185
	case KVM_HCALL_TOKEN(KVM_HC_PPC_MAP_MAGIC_PAGE):
186
	{
187 188 189 190 191 192 193 194 195 196
#if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_KVM_BOOK3S_PR_POSSIBLE)
		/* Book3S can be little endian, find it out here */
		int shared_big_endian = true;
		if (vcpu->arch.intr_msr & MSR_LE)
			shared_big_endian = false;
		if (shared_big_endian != vcpu->arch.shared_big_endian)
			kvmppc_swab_shared(vcpu);
		vcpu->arch.shared_big_endian = shared_big_endian;
#endif

197 198 199 200 201 202 203 204 205 206 207 208
		if (!(param2 & MAGIC_PAGE_FLAG_NOT_MAPPED_NX)) {
			/*
			 * Older versions of the Linux magic page code had
			 * a bug where they would map their trampoline code
			 * NX. If that's the case, remove !PR NX capability.
			 */
			vcpu->arch.disable_kernel_nx = true;
			kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
		}

		vcpu->arch.magic_page_pa = param1 & ~0xfffULL;
		vcpu->arch.magic_page_ea = param2 & ~0xfffULL;
209

210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
#ifdef CONFIG_PPC_64K_PAGES
		/*
		 * Make sure our 4k magic page is in the same window of a 64k
		 * page within the guest and within the host's page.
		 */
		if ((vcpu->arch.magic_page_pa & 0xf000) !=
		    ((ulong)vcpu->arch.shared & 0xf000)) {
			void *old_shared = vcpu->arch.shared;
			ulong shared = (ulong)vcpu->arch.shared;
			void *new_shared;

			shared &= PAGE_MASK;
			shared |= vcpu->arch.magic_page_pa & 0xf000;
			new_shared = (void*)shared;
			memcpy(new_shared, old_shared, 0x1000);
			vcpu->arch.shared = new_shared;
		}
#endif

229
		r2 = KVM_MAGIC_FEAT_SR | KVM_MAGIC_FEAT_MAS0_TO_SPRG7;
230

231
		r = EV_SUCCESS;
232 233
		break;
	}
234 235
	case KVM_HCALL_TOKEN(KVM_HC_FEATURES):
		r = EV_SUCCESS;
236
#if defined(CONFIG_PPC_BOOK3S) || defined(CONFIG_KVM_E500V2)
237 238
		r2 |= (1 << KVM_FEATURE_MAGIC_PAGE);
#endif
239 240 241

		/* Second return value is in r4 */
		break;
242 243 244
	case EV_HCALL_TOKEN(EV_IDLE):
		r = EV_SUCCESS;
		kvm_vcpu_block(vcpu);
245
		kvm_clear_request(KVM_REQ_UNHALT, vcpu);
246
		break;
247
	default:
248
		r = EV_UNIMPLEMENTED;
249 250 251
		break;
	}

252 253
	kvmppc_set_gpr(vcpu, 4, r2);

254 255
	return r;
}
256
EXPORT_SYMBOL_GPL(kvmppc_kvm_pv);
257

258 259 260 261 262 263 264 265 266 267 268 269 270
int kvmppc_sanity_check(struct kvm_vcpu *vcpu)
{
	int r = false;

	/* We have to know what CPU to virtualize */
	if (!vcpu->arch.pvr)
		goto out;

	/* PAPR only works with book3s_64 */
	if ((vcpu->arch.cpu_type != KVM_CPU_3S_64) && vcpu->arch.papr_enabled)
		goto out;

	/* HV KVM can only do PAPR mode for now */
271
	if (!vcpu->arch.papr_enabled && is_kvmppc_hv_enabled(vcpu->kvm))
272 273
		goto out;

274 275 276 277 278
#ifdef CONFIG_KVM_BOOKE_HV
	if (!cpu_has_feature(CPU_FTR_EMB_HV))
		goto out;
#endif

279 280 281 282 283 284
	r = true;

out:
	vcpu->arch.sane = r;
	return r ? 0 : -EINVAL;
}
285
EXPORT_SYMBOL_GPL(kvmppc_sanity_check);
286

287 288 289 290 291
int kvmppc_emulate_mmio(struct kvm_run *run, struct kvm_vcpu *vcpu)
{
	enum emulation_result er;
	int r;

292
	er = kvmppc_emulate_loadstore(vcpu);
293 294 295 296 297 298
	switch (er) {
	case EMULATE_DONE:
		/* Future optimization: only reload non-volatiles if they were
		 * actually modified. */
		r = RESUME_GUEST_NV;
		break;
299 300 301
	case EMULATE_AGAIN:
		r = RESUME_GUEST;
		break;
302 303 304 305 306 307 308 309 310
	case EMULATE_DO_MMIO:
		run->exit_reason = KVM_EXIT_MMIO;
		/* We must reload nonvolatiles because "update" load/store
		 * instructions modify register state. */
		/* Future optimization: only reload non-volatiles if they were
		 * actually modified. */
		r = RESUME_HOST_NV;
		break;
	case EMULATE_FAIL:
311 312 313
	{
		u32 last_inst;

314
		kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst);
315
		/* XXX Deliver Program interrupt to guest. */
316
		pr_emerg("%s: emulation failed (%08x)\n", __func__, last_inst);
317 318
		r = RESUME_HOST;
		break;
319
	}
320
	default:
321 322
		WARN_ON(1);
		r = RESUME_GUEST;
323 324 325 326
	}

	return r;
}
327
EXPORT_SYMBOL_GPL(kvmppc_emulate_mmio);
328

329 330 331
int kvmppc_st(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr,
	      bool data)
{
332
	ulong mp_pa = vcpu->arch.magic_page_pa & KVM_PAM & PAGE_MASK;
333
	struct kvmppc_pte pte;
334
	int r = -EINVAL;
335 336 337

	vcpu->stat.st++;

338 339 340 341 342 343 344
	if (vcpu->kvm->arch.kvm_ops && vcpu->kvm->arch.kvm_ops->store_to_eaddr)
		r = vcpu->kvm->arch.kvm_ops->store_to_eaddr(vcpu, eaddr, ptr,
							    size);

	if ((!r) || (r == -EAGAIN))
		return r;

345 346 347 348 349 350 351 352 353 354
	r = kvmppc_xlate(vcpu, *eaddr, data ? XLATE_DATA : XLATE_INST,
			 XLATE_WRITE, &pte);
	if (r < 0)
		return r;

	*eaddr = pte.raddr;

	if (!pte.may_write)
		return -EPERM;

355 356 357 358 359 360 361 362 363 364
	/* Magic page override */
	if (kvmppc_supports_magic_page(vcpu) && mp_pa &&
	    ((pte.raddr & KVM_PAM & PAGE_MASK) == mp_pa) &&
	    !(kvmppc_get_msr(vcpu) & MSR_PR)) {
		void *magic = vcpu->arch.shared;
		magic += pte.eaddr & 0xfff;
		memcpy(magic, ptr, size);
		return EMULATE_DONE;
	}

365 366 367 368 369 370 371 372 373 374
	if (kvm_write_guest(vcpu->kvm, pte.raddr, ptr, size))
		return EMULATE_DO_MMIO;

	return EMULATE_DONE;
}
EXPORT_SYMBOL_GPL(kvmppc_st);

int kvmppc_ld(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr,
		      bool data)
{
375
	ulong mp_pa = vcpu->arch.magic_page_pa & KVM_PAM & PAGE_MASK;
376
	struct kvmppc_pte pte;
377
	int rc = -EINVAL;
378 379 380

	vcpu->stat.ld++;

381 382 383 384 385 386 387
	if (vcpu->kvm->arch.kvm_ops && vcpu->kvm->arch.kvm_ops->load_from_eaddr)
		rc = vcpu->kvm->arch.kvm_ops->load_from_eaddr(vcpu, eaddr, ptr,
							      size);

	if ((!rc) || (rc == -EAGAIN))
		return rc;

388 389 390 391 392 393 394 395 396 397 398 399 400
	rc = kvmppc_xlate(vcpu, *eaddr, data ? XLATE_DATA : XLATE_INST,
			  XLATE_READ, &pte);
	if (rc)
		return rc;

	*eaddr = pte.raddr;

	if (!pte.may_read)
		return -EPERM;

	if (!data && !pte.may_execute)
		return -ENOEXEC;

401 402 403 404 405 406 407 408 409 410
	/* Magic page override */
	if (kvmppc_supports_magic_page(vcpu) && mp_pa &&
	    ((pte.raddr & KVM_PAM & PAGE_MASK) == mp_pa) &&
	    !(kvmppc_get_msr(vcpu) & MSR_PR)) {
		void *magic = vcpu->arch.shared;
		magic += pte.eaddr & 0xfff;
		memcpy(ptr, magic, size);
		return EMULATE_DONE;
	}

411 412
	if (kvm_read_guest(vcpu->kvm, pte.raddr, ptr, size))
		return EMULATE_DO_MMIO;
413 414 415 416 417

	return EMULATE_DONE;
}
EXPORT_SYMBOL_GPL(kvmppc_ld);

418
int kvm_arch_hardware_enable(void)
419
{
420
	return 0;
421 422 423 424 425 426 427 428 429
}

int kvm_arch_hardware_setup(void)
{
	return 0;
}

void kvm_arch_check_processor_compat(void *rtn)
{
430
	*(int *)rtn = kvmppc_core_check_processor_compat();
431 432
}

433
int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
434
{
435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460
	struct kvmppc_ops *kvm_ops = NULL;
	/*
	 * if we have both HV and PR enabled, default is HV
	 */
	if (type == 0) {
		if (kvmppc_hv_ops)
			kvm_ops = kvmppc_hv_ops;
		else
			kvm_ops = kvmppc_pr_ops;
		if (!kvm_ops)
			goto err_out;
	} else	if (type == KVM_VM_PPC_HV) {
		if (!kvmppc_hv_ops)
			goto err_out;
		kvm_ops = kvmppc_hv_ops;
	} else if (type == KVM_VM_PPC_PR) {
		if (!kvmppc_pr_ops)
			goto err_out;
		kvm_ops = kvmppc_pr_ops;
	} else
		goto err_out;

	if (kvm_ops->owner && !try_module_get(kvm_ops->owner))
		return -ENOENT;

	kvm->arch.kvm_ops = kvm_ops;
461
	return kvmppc_core_init_vm(kvm);
462 463
err_out:
	return -EINVAL;
464 465
}

466 467 468 469 470 471 472 473 474 475
bool kvm_arch_has_vcpu_debugfs(void)
{
	return false;
}

int kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
{
	return 0;
}

476
void kvm_arch_destroy_vm(struct kvm *kvm)
477 478
{
	unsigned int i;
479
	struct kvm_vcpu *vcpu;
480

481 482 483 484 485 486 487 488 489 490
#ifdef CONFIG_KVM_XICS
	/*
	 * We call kick_all_cpus_sync() to ensure that all
	 * CPUs have executed any pending IPIs before we
	 * continue and free VCPUs structures below.
	 */
	if (is_kvmppc_hv_enabled(kvm))
		kick_all_cpus_sync();
#endif

491 492 493 494 495 496 497 498
	kvm_for_each_vcpu(i, vcpu, kvm)
		kvm_arch_vcpu_free(vcpu);

	mutex_lock(&kvm->lock);
	for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
		kvm->vcpus[i] = NULL;

	atomic_set(&kvm->online_vcpus, 0);
499 500 501

	kvmppc_core_destroy_vm(kvm);

502
	mutex_unlock(&kvm->lock);
503 504 505

	/* drop the module reference */
	module_put(kvm->arch.kvm_ops->owner);
506 507
}

508
int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
509 510
{
	int r;
511
	/* Assume we're using HV mode when the HV module is loaded */
512
	int hv_enabled = kvmppc_hv_ops ? 1 : 0;
513

514 515 516 517 518 519 520 521
	if (kvm) {
		/*
		 * Hooray - we know which VM type we're running on. Depend on
		 * that rather than the guess above.
		 */
		hv_enabled = is_kvmppc_hv_enabled(kvm);
	}

522
	switch (ext) {
S
Scott Wood 已提交
523 524
#ifdef CONFIG_BOOKE
	case KVM_CAP_PPC_BOOKE_SREGS:
525
	case KVM_CAP_PPC_BOOKE_WATCHDOG:
526
	case KVM_CAP_PPC_EPR:
S
Scott Wood 已提交
527
#else
528
	case KVM_CAP_PPC_SEGSTATE:
529
	case KVM_CAP_PPC_HIOR:
530
	case KVM_CAP_PPC_PAPR:
S
Scott Wood 已提交
531
#endif
532
	case KVM_CAP_PPC_UNSET_IRQ:
533
	case KVM_CAP_PPC_IRQ_LEVEL:
534
	case KVM_CAP_ENABLE_CAP:
535
	case KVM_CAP_ENABLE_CAP_VM:
536
	case KVM_CAP_ONE_REG:
A
Alexander Graf 已提交
537
	case KVM_CAP_IOEVENTFD:
538
	case KVM_CAP_DEVICE_CTRL:
539
	case KVM_CAP_IMMEDIATE_EXIT:
540 541 542
		r = 1;
		break;
	case KVM_CAP_PPC_PAIRED_SINGLES:
543
	case KVM_CAP_PPC_OSI:
544
	case KVM_CAP_PPC_GET_PVINFO:
545
#if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
S
Scott Wood 已提交
546
	case KVM_CAP_SW_TLB:
S
Scott Wood 已提交
547
#endif
548
		/* We support this only for PR */
549
		r = !hv_enabled;
550
		break;
551 552 553 554 555 556
#ifdef CONFIG_KVM_MPIC
	case KVM_CAP_IRQ_MPIC:
		r = 1;
		break;
#endif

557
#ifdef CONFIG_PPC_BOOK3S_64
558
	case KVM_CAP_SPAPR_TCE:
559
	case KVM_CAP_SPAPR_TCE_64:
560 561
		r = 1;
		break;
562
	case KVM_CAP_SPAPR_TCE_VFIO:
563 564
		r = !!cpu_has_feature(CPU_FTR_HVMODE);
		break;
565
	case KVM_CAP_PPC_RTAS:
566
	case KVM_CAP_PPC_FIXUP_HCALL:
567
	case KVM_CAP_PPC_ENABLE_HCALL:
568 569 570
#ifdef CONFIG_KVM_XICS
	case KVM_CAP_IRQ_XICS:
#endif
571
	case KVM_CAP_PPC_GET_CPU_CHAR:
572 573
		r = 1;
		break;
574 575 576 577

	case KVM_CAP_PPC_ALLOC_HTAB:
		r = hv_enabled;
		break;
578
#endif /* CONFIG_PPC_BOOK3S_64 */
579
#ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
580
	case KVM_CAP_PPC_SMT:
581
		r = 0;
582 583 584 585 586 587
		if (kvm) {
			if (kvm->arch.emul_smt_mode > 1)
				r = kvm->arch.emul_smt_mode;
			else
				r = kvm->arch.smt_mode;
		} else if (hv_enabled) {
588 589 590 591 592
			if (cpu_has_feature(CPU_FTR_ARCH_300))
				r = 1;
			else
				r = threads_per_subcore;
		}
593
		break;
594 595 596 597 598 599 600 601 602 603
	case KVM_CAP_PPC_SMT_POSSIBLE:
		r = 1;
		if (hv_enabled) {
			if (!cpu_has_feature(CPU_FTR_ARCH_300))
				r = ((threads_per_subcore << 1) - 1);
			else
				/* P9 can emulate dbells, so allow any mode */
				r = 8 | 4 | 2 | 1;
		}
		break;
604
	case KVM_CAP_PPC_RMA:
605
		r = 0;
606
		break;
607 608 609
	case KVM_CAP_PPC_HWRNG:
		r = kvmppc_hwrng_present();
		break;
610
	case KVM_CAP_PPC_MMU_RADIX:
611
		r = !!(hv_enabled && radix_enabled());
612 613
		break;
	case KVM_CAP_PPC_MMU_HASH_V3:
614 615
		r = !!(hv_enabled && cpu_has_feature(CPU_FTR_ARCH_300) &&
		       cpu_has_feature(CPU_FTR_HVMODE));
616
		break;
617 618 619 620
	case KVM_CAP_PPC_NESTED_HV:
		r = !!(hv_enabled && kvmppc_hv_ops->enable_nested &&
		       !kvmppc_hv_ops->enable_nested(NULL));
		break;
621
#endif
622
	case KVM_CAP_SYNC_MMU:
623
#ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
624
		r = hv_enabled;
625 626 627 628
#elif defined(KVM_ARCH_WANT_MMU_NOTIFIER)
		r = 1;
#else
		r = 0;
629
#endif
630 631
		break;
#ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
632
	case KVM_CAP_PPC_HTAB_FD:
633
		r = hv_enabled;
634
		break;
635
#endif
636 637 638 639 640 641 642
	case KVM_CAP_NR_VCPUS:
		/*
		 * Recommending a number of CPUs is somewhat arbitrary; we
		 * return the number of present CPUs for -HV (since a host
		 * will have secondary threads "offline"), and for other KVM
		 * implementations just count online CPUs.
		 */
643
		if (hv_enabled)
644 645 646
			r = num_present_cpus();
		else
			r = num_online_cpus();
647
		break;
648 649 650
	case KVM_CAP_NR_MEMSLOTS:
		r = KVM_USER_MEM_SLOTS;
		break;
651 652 653
	case KVM_CAP_MAX_VCPUS:
		r = KVM_MAX_VCPUS;
		break;
654 655 656 657
#ifdef CONFIG_PPC_BOOK3S_64
	case KVM_CAP_PPC_GET_SMMU_INFO:
		r = 1;
		break;
658 659 660
	case KVM_CAP_SPAPR_MULTITCE:
		r = 1;
		break;
661
	case KVM_CAP_SPAPR_RESIZE_HPT:
662
		r = !!hv_enabled;
663
		break;
664 665 666 667 668
#endif
#ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
	case KVM_CAP_PPC_FWNMI:
		r = hv_enabled;
		break;
669
#endif
670
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
671
	case KVM_CAP_PPC_HTM:
672 673
		r = !!(cur_cpu_spec->cpu_user_features2 & PPC_FEATURE2_HTM) ||
		     (hv_enabled && cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST));
674
		break;
675
#endif
676 677 678 679 680 681 682 683 684 685 686 687 688 689
	default:
		r = 0;
		break;
	}
	return r;

}

long kvm_arch_dev_ioctl(struct file *filp,
                        unsigned int ioctl, unsigned long arg)
{
	return -EINVAL;
}

690
void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
691 692
			   struct kvm_memory_slot *dont)
{
693
	kvmppc_core_free_memslot(kvm, free, dont);
694 695
}

696 697
int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
			    unsigned long npages)
698
{
699
	return kvmppc_core_create_memslot(kvm, slot, npages);
700 701
}

702
int kvm_arch_prepare_memory_region(struct kvm *kvm,
703
				   struct kvm_memory_slot *memslot,
704
				   const struct kvm_userspace_memory_region *mem,
705
				   enum kvm_mr_change change)
706
{
707
	return kvmppc_core_prepare_memory_region(kvm, memslot, mem);
708 709
}

710
void kvm_arch_commit_memory_region(struct kvm *kvm,
711
				   const struct kvm_userspace_memory_region *mem,
712
				   const struct kvm_memory_slot *old,
713
				   const struct kvm_memory_slot *new,
714
				   enum kvm_mr_change change)
715
{
716
	kvmppc_core_commit_memory_region(kvm, mem, old, new, change);
717 718
}

719 720
void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
				   struct kvm_memory_slot *slot)
721
{
722
	kvmppc_core_flush_memslot(kvm, slot);
723 724
}

725 726
struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
{
727 728
	struct kvm_vcpu *vcpu;
	vcpu = kvmppc_core_vcpu_create(kvm, id);
729 730
	if (!IS_ERR(vcpu)) {
		vcpu->arch.wqp = &vcpu->wq;
731
		kvmppc_create_vcpu_debugfs(vcpu, id);
732
	}
733
	return vcpu;
734 735
}

736
void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
737 738 739
{
}

740 741
void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
{
742 743 744
	/* Make sure we're not using the vcpu anymore */
	hrtimer_cancel(&vcpu->arch.dec_timer);

745
	kvmppc_remove_vcpu_debugfs(vcpu);
S
Scott Wood 已提交
746 747 748 749 750

	switch (vcpu->arch.irq_type) {
	case KVMPPC_IRQ_MPIC:
		kvmppc_mpic_disconnect_vcpu(vcpu->arch.mpic, vcpu);
		break;
751
	case KVMPPC_IRQ_XICS:
752 753 754 755
		if (xive_enabled())
			kvmppc_xive_cleanup_vcpu(vcpu);
		else
			kvmppc_xics_free_icp(vcpu);
756
		break;
S
Scott Wood 已提交
757 758
	}

759
	kvmppc_core_vcpu_free(vcpu);
760 761 762 763 764 765 766 767 768
}

void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
{
	kvm_arch_vcpu_free(vcpu);
}

int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
{
769
	return kvmppc_core_pending_dec(vcpu);
770 771
}

T
Thomas Huth 已提交
772
static enum hrtimer_restart kvmppc_decrementer_wakeup(struct hrtimer *timer)
A
Alexander Graf 已提交
773 774 775 776
{
	struct kvm_vcpu *vcpu;

	vcpu = container_of(timer, struct kvm_vcpu, arch.dec_timer);
777
	kvmppc_decrementer_func(vcpu);
A
Alexander Graf 已提交
778 779 780 781

	return HRTIMER_NORESTART;
}

782 783
int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
{
784 785
	int ret;

A
Alexander Graf 已提交
786 787
	hrtimer_init(&vcpu->arch.dec_timer, CLOCK_REALTIME, HRTIMER_MODE_ABS);
	vcpu->arch.dec_timer.function = kvmppc_decrementer_wakeup;
788
	vcpu->arch.dec_expires = get_tb();
789

790 791 792
#ifdef CONFIG_KVM_EXIT_TIMING
	mutex_init(&vcpu->arch.exit_timing_lock);
#endif
793 794
	ret = kvmppc_subarch_vcpu_init(vcpu);
	return ret;
795 796 797 798
}

void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
{
799
	kvmppc_mmu_destroy(vcpu);
800
	kvmppc_subarch_vcpu_uninit(vcpu);
801 802 803 804
}

void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
{
805 806 807 808 809 810 811 812 813 814
#ifdef CONFIG_BOOKE
	/*
	 * vrsave (formerly usprg0) isn't used by Linux, but may
	 * be used by the guest.
	 *
	 * On non-booke this is associated with Altivec and
	 * is handled by code in book3s.c.
	 */
	mtspr(SPRN_VRSAVE, vcpu->arch.vrsave);
#endif
815
	kvmppc_core_vcpu_load(vcpu, cpu);
816 817 818 819
}

void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
{
820
	kvmppc_core_vcpu_put(vcpu);
821 822 823
#ifdef CONFIG_BOOKE
	vcpu->arch.vrsave = mfspr(SPRN_VRSAVE);
#endif
824 825
}

826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861
/*
 * irq_bypass_add_producer and irq_bypass_del_producer are only
 * useful if the architecture supports PCI passthrough.
 * irq_bypass_stop and irq_bypass_start are not needed and so
 * kvm_ops are not defined for them.
 */
bool kvm_arch_has_irq_bypass(void)
{
	return ((kvmppc_hv_ops && kvmppc_hv_ops->irq_bypass_add_producer) ||
		(kvmppc_pr_ops && kvmppc_pr_ops->irq_bypass_add_producer));
}

int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
				     struct irq_bypass_producer *prod)
{
	struct kvm_kernel_irqfd *irqfd =
		container_of(cons, struct kvm_kernel_irqfd, consumer);
	struct kvm *kvm = irqfd->kvm;

	if (kvm->arch.kvm_ops->irq_bypass_add_producer)
		return kvm->arch.kvm_ops->irq_bypass_add_producer(cons, prod);

	return 0;
}

void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
				      struct irq_bypass_producer *prod)
{
	struct kvm_kernel_irqfd *irqfd =
		container_of(cons, struct kvm_kernel_irqfd, consumer);
	struct kvm *kvm = irqfd->kvm;

	if (kvm->arch.kvm_ops->irq_bypass_del_producer)
		kvm->arch.kvm_ops->irq_bypass_del_producer(cons, prod);
}

862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903
#ifdef CONFIG_VSX
static inline int kvmppc_get_vsr_dword_offset(int index)
{
	int offset;

	if ((index != 0) && (index != 1))
		return -1;

#ifdef __BIG_ENDIAN
	offset =  index;
#else
	offset = 1 - index;
#endif

	return offset;
}

static inline int kvmppc_get_vsr_word_offset(int index)
{
	int offset;

	if ((index > 3) || (index < 0))
		return -1;

#ifdef __BIG_ENDIAN
	offset = index;
#else
	offset = 3 - index;
#endif
	return offset;
}

static inline void kvmppc_set_vsr_dword(struct kvm_vcpu *vcpu,
	u64 gpr)
{
	union kvmppc_one_reg val;
	int offset = kvmppc_get_vsr_dword_offset(vcpu->arch.mmio_vsx_offset);
	int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;

	if (offset == -1)
		return;

904 905
	if (index >= 32) {
		val.vval = VCPU_VSX_VR(vcpu, index - 32);
906
		val.vsxval[offset] = gpr;
907
		VCPU_VSX_VR(vcpu, index - 32) = val.vval;
908 909 910 911 912 913 914 915 916 917 918
	} else {
		VCPU_VSX_FPR(vcpu, index, offset) = gpr;
	}
}

static inline void kvmppc_set_vsr_dword_dump(struct kvm_vcpu *vcpu,
	u64 gpr)
{
	union kvmppc_one_reg val;
	int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;

919 920
	if (index >= 32) {
		val.vval = VCPU_VSX_VR(vcpu, index - 32);
921 922
		val.vsxval[0] = gpr;
		val.vsxval[1] = gpr;
923
		VCPU_VSX_VR(vcpu, index - 32) = val.vval;
924 925 926 927 928 929
	} else {
		VCPU_VSX_FPR(vcpu, index, 0) = gpr;
		VCPU_VSX_FPR(vcpu, index, 1) = gpr;
	}
}

930 931 932 933 934 935
static inline void kvmppc_set_vsr_word_dump(struct kvm_vcpu *vcpu,
	u32 gpr)
{
	union kvmppc_one_reg val;
	int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;

936
	if (index >= 32) {
937 938 939 940
		val.vsx32val[0] = gpr;
		val.vsx32val[1] = gpr;
		val.vsx32val[2] = gpr;
		val.vsx32val[3] = gpr;
941
		VCPU_VSX_VR(vcpu, index - 32) = val.vval;
942 943 944 945 946 947 948 949
	} else {
		val.vsx32val[0] = gpr;
		val.vsx32val[1] = gpr;
		VCPU_VSX_FPR(vcpu, index, 0) = val.vsxval[0];
		VCPU_VSX_FPR(vcpu, index, 1) = val.vsxval[0];
	}
}

950 951 952 953 954 955 956 957 958 959 960
static inline void kvmppc_set_vsr_word(struct kvm_vcpu *vcpu,
	u32 gpr32)
{
	union kvmppc_one_reg val;
	int offset = kvmppc_get_vsr_word_offset(vcpu->arch.mmio_vsx_offset);
	int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
	int dword_offset, word_offset;

	if (offset == -1)
		return;

961 962
	if (index >= 32) {
		val.vval = VCPU_VSX_VR(vcpu, index - 32);
963
		val.vsx32val[offset] = gpr32;
964
		VCPU_VSX_VR(vcpu, index - 32) = val.vval;
965 966 967 968 969 970 971 972 973 974
	} else {
		dword_offset = offset / 2;
		word_offset = offset % 2;
		val.vsxval[0] = VCPU_VSX_FPR(vcpu, index, dword_offset);
		val.vsx32val[word_offset] = gpr32;
		VCPU_VSX_FPR(vcpu, index, dword_offset) = val.vsxval[0];
	}
}
#endif /* CONFIG_VSX */

975
#ifdef CONFIG_ALTIVEC
976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017
static inline int kvmppc_get_vmx_offset_generic(struct kvm_vcpu *vcpu,
		int index, int element_size)
{
	int offset;
	int elts = sizeof(vector128)/element_size;

	if ((index < 0) || (index >= elts))
		return -1;

	if (kvmppc_need_byteswap(vcpu))
		offset = elts - index - 1;
	else
		offset = index;

	return offset;
}

static inline int kvmppc_get_vmx_dword_offset(struct kvm_vcpu *vcpu,
		int index)
{
	return kvmppc_get_vmx_offset_generic(vcpu, index, 8);
}

static inline int kvmppc_get_vmx_word_offset(struct kvm_vcpu *vcpu,
		int index)
{
	return kvmppc_get_vmx_offset_generic(vcpu, index, 4);
}

static inline int kvmppc_get_vmx_hword_offset(struct kvm_vcpu *vcpu,
		int index)
{
	return kvmppc_get_vmx_offset_generic(vcpu, index, 2);
}

static inline int kvmppc_get_vmx_byte_offset(struct kvm_vcpu *vcpu,
		int index)
{
	return kvmppc_get_vmx_offset_generic(vcpu, index, 1);
}


1018
static inline void kvmppc_set_vmx_dword(struct kvm_vcpu *vcpu,
1019
	u64 gpr)
1020
{
1021 1022 1023
	union kvmppc_one_reg val;
	int offset = kvmppc_get_vmx_dword_offset(vcpu,
			vcpu->arch.mmio_vmx_offset);
1024 1025
	int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;

1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040
	if (offset == -1)
		return;

	val.vval = VCPU_VSX_VR(vcpu, index);
	val.vsxval[offset] = gpr;
	VCPU_VSX_VR(vcpu, index) = val.vval;
}

static inline void kvmppc_set_vmx_word(struct kvm_vcpu *vcpu,
	u32 gpr32)
{
	union kvmppc_one_reg val;
	int offset = kvmppc_get_vmx_word_offset(vcpu,
			vcpu->arch.mmio_vmx_offset);
	int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
1041

1042
	if (offset == -1)
1043 1044
		return;

1045 1046 1047 1048
	val.vval = VCPU_VSX_VR(vcpu, index);
	val.vsx32val[offset] = gpr32;
	VCPU_VSX_VR(vcpu, index) = val.vval;
}
1049

1050 1051 1052 1053 1054 1055 1056 1057 1058
static inline void kvmppc_set_vmx_hword(struct kvm_vcpu *vcpu,
	u16 gpr16)
{
	union kvmppc_one_reg val;
	int offset = kvmppc_get_vmx_hword_offset(vcpu,
			vcpu->arch.mmio_vmx_offset);
	int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;

	if (offset == -1)
1059 1060
		return;

1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072
	val.vval = VCPU_VSX_VR(vcpu, index);
	val.vsx16val[offset] = gpr16;
	VCPU_VSX_VR(vcpu, index) = val.vval;
}

static inline void kvmppc_set_vmx_byte(struct kvm_vcpu *vcpu,
	u8 gpr8)
{
	union kvmppc_one_reg val;
	int offset = kvmppc_get_vmx_byte_offset(vcpu,
			vcpu->arch.mmio_vmx_offset);
	int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
1073

1074 1075
	if (offset == -1)
		return;
1076

1077 1078 1079
	val.vval = VCPU_VSX_VR(vcpu, index);
	val.vsx8val[offset] = gpr8;
	VCPU_VSX_VR(vcpu, index) = val.vval;
1080 1081 1082
}
#endif /* CONFIG_ALTIVEC */

1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112
#ifdef CONFIG_PPC_FPU
static inline u64 sp_to_dp(u32 fprs)
{
	u64 fprd;

	preempt_disable();
	enable_kernel_fp();
	asm ("lfs%U1%X1 0,%1; stfd%U0%X0 0,%0" : "=m" (fprd) : "m" (fprs)
	     : "fr0");
	preempt_enable();
	return fprd;
}

static inline u32 dp_to_sp(u64 fprd)
{
	u32 fprs;

	preempt_disable();
	enable_kernel_fp();
	asm ("lfd%U1%X1 0,%1; stfs%U0%X0 0,%0" : "=m" (fprs) : "m" (fprd)
	     : "fr0");
	preempt_enable();
	return fprs;
}

#else
#define sp_to_dp(x)	(x)
#define dp_to_sp(x)	(x)
#endif /* CONFIG_PPC_FPU */

1113 1114 1115
static void kvmppc_complete_mmio_load(struct kvm_vcpu *vcpu,
                                      struct kvm_run *run)
{
1116
	u64 uninitialized_var(gpr);
1117

1118
	if (run->mmio.len > sizeof(gpr)) {
1119 1120 1121 1122
		printk(KERN_ERR "bad MMIO length: %d\n", run->mmio.len);
		return;
	}

1123
	if (!vcpu->arch.mmio_host_swabbed) {
1124
		switch (run->mmio.len) {
1125
		case 8: gpr = *(u64 *)run->mmio.data; break;
1126 1127 1128
		case 4: gpr = *(u32 *)run->mmio.data; break;
		case 2: gpr = *(u16 *)run->mmio.data; break;
		case 1: gpr = *(u8 *)run->mmio.data; break;
1129 1130 1131
		}
	} else {
		switch (run->mmio.len) {
1132 1133 1134
		case 8: gpr = swab64(*(u64 *)run->mmio.data); break;
		case 4: gpr = swab32(*(u32 *)run->mmio.data); break;
		case 2: gpr = swab16(*(u16 *)run->mmio.data); break;
1135
		case 1: gpr = *(u8 *)run->mmio.data; break;
1136 1137
		}
	}
1138

1139 1140 1141 1142
	/* conversion between single and double precision */
	if ((vcpu->arch.mmio_sp64_extend) && (run->mmio.len == 4))
		gpr = sp_to_dp(gpr);

A
Alexander Graf 已提交
1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158
	if (vcpu->arch.mmio_sign_extend) {
		switch (run->mmio.len) {
#ifdef CONFIG_PPC64
		case 4:
			gpr = (s64)(s32)gpr;
			break;
#endif
		case 2:
			gpr = (s64)(s16)gpr;
			break;
		case 1:
			gpr = (s64)(s8)gpr;
			break;
		}
	}

1159 1160
	switch (vcpu->arch.io_gpr & KVM_MMIO_REG_EXT_MASK) {
	case KVM_MMIO_REG_GPR:
1161 1162
		kvmppc_set_gpr(vcpu, vcpu->arch.io_gpr, gpr);
		break;
1163
	case KVM_MMIO_REG_FPR:
1164 1165 1166
		if (vcpu->kvm->arch.kvm_ops->giveup_ext)
			vcpu->kvm->arch.kvm_ops->giveup_ext(vcpu, MSR_FP);

1167
		VCPU_FPR(vcpu, vcpu->arch.io_gpr & KVM_MMIO_REG_MASK) = gpr;
1168
		break;
1169
#ifdef CONFIG_PPC_BOOK3S
1170 1171
	case KVM_MMIO_REG_QPR:
		vcpu->arch.qpr[vcpu->arch.io_gpr & KVM_MMIO_REG_MASK] = gpr;
1172
		break;
1173
	case KVM_MMIO_REG_FQPR:
1174
		VCPU_FPR(vcpu, vcpu->arch.io_gpr & KVM_MMIO_REG_MASK) = gpr;
1175
		vcpu->arch.qpr[vcpu->arch.io_gpr & KVM_MMIO_REG_MASK] = gpr;
1176
		break;
1177 1178 1179
#endif
#ifdef CONFIG_VSX
	case KVM_MMIO_REG_VSX:
1180 1181 1182
		if (vcpu->kvm->arch.kvm_ops->giveup_ext)
			vcpu->kvm->arch.kvm_ops->giveup_ext(vcpu, MSR_VSX);

1183
		if (vcpu->arch.mmio_copy_type == KVMPPC_VSX_COPY_DWORD)
1184
			kvmppc_set_vsr_dword(vcpu, gpr);
1185
		else if (vcpu->arch.mmio_copy_type == KVMPPC_VSX_COPY_WORD)
1186
			kvmppc_set_vsr_word(vcpu, gpr);
1187
		else if (vcpu->arch.mmio_copy_type ==
1188 1189
				KVMPPC_VSX_COPY_DWORD_LOAD_DUMP)
			kvmppc_set_vsr_dword_dump(vcpu, gpr);
1190
		else if (vcpu->arch.mmio_copy_type ==
1191 1192
				KVMPPC_VSX_COPY_WORD_LOAD_DUMP)
			kvmppc_set_vsr_word_dump(vcpu, gpr);
1193
		break;
1194 1195 1196
#endif
#ifdef CONFIG_ALTIVEC
	case KVM_MMIO_REG_VMX:
1197 1198 1199
		if (vcpu->kvm->arch.kvm_ops->giveup_ext)
			vcpu->kvm->arch.kvm_ops->giveup_ext(vcpu, MSR_VEC);

1200 1201 1202 1203 1204 1205 1206 1207 1208 1209
		if (vcpu->arch.mmio_copy_type == KVMPPC_VMX_COPY_DWORD)
			kvmppc_set_vmx_dword(vcpu, gpr);
		else if (vcpu->arch.mmio_copy_type == KVMPPC_VMX_COPY_WORD)
			kvmppc_set_vmx_word(vcpu, gpr);
		else if (vcpu->arch.mmio_copy_type ==
				KVMPPC_VMX_COPY_HWORD)
			kvmppc_set_vmx_hword(vcpu, gpr);
		else if (vcpu->arch.mmio_copy_type ==
				KVMPPC_VMX_COPY_BYTE)
			kvmppc_set_vmx_byte(vcpu, gpr);
1210
		break;
1211
#endif
1212 1213 1214
	default:
		BUG();
	}
1215 1216
}

1217 1218 1219
static int __kvmppc_handle_load(struct kvm_run *run, struct kvm_vcpu *vcpu,
				unsigned int rt, unsigned int bytes,
				int is_default_endian, int sign_extend)
1220
{
1221
	int idx, ret;
1222
	bool host_swabbed;
1223

1224
	/* Pity C doesn't have a logical XOR operator */
1225
	if (kvmppc_need_byteswap(vcpu)) {
1226
		host_swabbed = is_default_endian;
1227
	} else {
1228
		host_swabbed = !is_default_endian;
1229
	}
1230

1231 1232 1233 1234 1235 1236 1237 1238 1239 1240
	if (bytes > sizeof(run->mmio.data)) {
		printk(KERN_ERR "%s: bad MMIO length: %d\n", __func__,
		       run->mmio.len);
	}

	run->mmio.phys_addr = vcpu->arch.paddr_accessed;
	run->mmio.len = bytes;
	run->mmio.is_write = 0;

	vcpu->arch.io_gpr = rt;
1241
	vcpu->arch.mmio_host_swabbed = host_swabbed;
1242 1243
	vcpu->mmio_needed = 1;
	vcpu->mmio_is_write = 0;
1244
	vcpu->arch.mmio_sign_extend = sign_extend;
1245

1246 1247
	idx = srcu_read_lock(&vcpu->kvm->srcu);

1248
	ret = kvm_io_bus_read(vcpu, KVM_MMIO_BUS, run->mmio.phys_addr,
1249 1250 1251 1252 1253
			      bytes, &run->mmio.data);

	srcu_read_unlock(&vcpu->kvm->srcu, idx);

	if (!ret) {
A
Alexander Graf 已提交
1254 1255 1256 1257 1258
		kvmppc_complete_mmio_load(vcpu, run);
		vcpu->mmio_needed = 0;
		return EMULATE_DONE;
	}

1259 1260
	return EMULATE_DO_MMIO;
}
1261 1262 1263 1264 1265 1266 1267

int kvmppc_handle_load(struct kvm_run *run, struct kvm_vcpu *vcpu,
		       unsigned int rt, unsigned int bytes,
		       int is_default_endian)
{
	return __kvmppc_handle_load(run, vcpu, rt, bytes, is_default_endian, 0);
}
1268
EXPORT_SYMBOL_GPL(kvmppc_handle_load);
1269

A
Alexander Graf 已提交
1270 1271
/* Same as above, but sign extends */
int kvmppc_handle_loads(struct kvm_run *run, struct kvm_vcpu *vcpu,
1272 1273
			unsigned int rt, unsigned int bytes,
			int is_default_endian)
A
Alexander Graf 已提交
1274
{
1275
	return __kvmppc_handle_load(run, vcpu, rt, bytes, is_default_endian, 1);
A
Alexander Graf 已提交
1276 1277
}

1278 1279 1280 1281 1282 1283 1284
#ifdef CONFIG_VSX
int kvmppc_handle_vsx_load(struct kvm_run *run, struct kvm_vcpu *vcpu,
			unsigned int rt, unsigned int bytes,
			int is_default_endian, int mmio_sign_extend)
{
	enum emulation_result emulated = EMULATE_DONE;

1285 1286
	/* Currently, mmio_vsx_copy_nums only allowed to be 4 or less */
	if (vcpu->arch.mmio_vsx_copy_nums > 4)
1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304
		return EMULATE_FAIL;

	while (vcpu->arch.mmio_vsx_copy_nums) {
		emulated = __kvmppc_handle_load(run, vcpu, rt, bytes,
			is_default_endian, mmio_sign_extend);

		if (emulated != EMULATE_DONE)
			break;

		vcpu->arch.paddr_accessed += run->mmio.len;

		vcpu->arch.mmio_vsx_copy_nums--;
		vcpu->arch.mmio_vsx_offset++;
	}
	return emulated;
}
#endif /* CONFIG_VSX */

1305
int kvmppc_handle_store(struct kvm_run *run, struct kvm_vcpu *vcpu,
1306
			u64 val, unsigned int bytes, int is_default_endian)
1307 1308
{
	void *data = run->mmio.data;
1309
	int idx, ret;
1310
	bool host_swabbed;
1311

1312
	/* Pity C doesn't have a logical XOR operator */
1313
	if (kvmppc_need_byteswap(vcpu)) {
1314
		host_swabbed = is_default_endian;
1315
	} else {
1316
		host_swabbed = !is_default_endian;
1317
	}
1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329

	if (bytes > sizeof(run->mmio.data)) {
		printk(KERN_ERR "%s: bad MMIO length: %d\n", __func__,
		       run->mmio.len);
	}

	run->mmio.phys_addr = vcpu->arch.paddr_accessed;
	run->mmio.len = bytes;
	run->mmio.is_write = 1;
	vcpu->mmio_needed = 1;
	vcpu->mmio_is_write = 1;

1330 1331 1332
	if ((vcpu->arch.mmio_sp64_extend) && (bytes == 4))
		val = dp_to_sp(val);

1333
	/* Store the value at the lowest bytes in 'data'. */
1334
	if (!host_swabbed) {
1335
		switch (bytes) {
1336
		case 8: *(u64 *)data = val; break;
1337 1338 1339 1340 1341 1342
		case 4: *(u32 *)data = val; break;
		case 2: *(u16 *)data = val; break;
		case 1: *(u8  *)data = val; break;
		}
	} else {
		switch (bytes) {
1343 1344 1345 1346
		case 8: *(u64 *)data = swab64(val); break;
		case 4: *(u32 *)data = swab32(val); break;
		case 2: *(u16 *)data = swab16(val); break;
		case 1: *(u8  *)data = val; break;
1347 1348 1349
		}
	}

1350 1351
	idx = srcu_read_lock(&vcpu->kvm->srcu);

1352
	ret = kvm_io_bus_write(vcpu, KVM_MMIO_BUS, run->mmio.phys_addr,
1353 1354 1355 1356 1357
			       bytes, &run->mmio.data);

	srcu_read_unlock(&vcpu->kvm->srcu, idx);

	if (!ret) {
A
Alexander Graf 已提交
1358 1359 1360 1361
		vcpu->mmio_needed = 0;
		return EMULATE_DONE;
	}

1362 1363
	return EMULATE_DO_MMIO;
}
1364
EXPORT_SYMBOL_GPL(kvmppc_handle_store);
1365

1366 1367 1368 1369 1370 1371
#ifdef CONFIG_VSX
static inline int kvmppc_get_vsr_data(struct kvm_vcpu *vcpu, int rs, u64 *val)
{
	u32 dword_offset, word_offset;
	union kvmppc_one_reg reg;
	int vsx_offset = 0;
1372
	int copy_type = vcpu->arch.mmio_copy_type;
1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384
	int result = 0;

	switch (copy_type) {
	case KVMPPC_VSX_COPY_DWORD:
		vsx_offset =
			kvmppc_get_vsr_dword_offset(vcpu->arch.mmio_vsx_offset);

		if (vsx_offset == -1) {
			result = -1;
			break;
		}

1385
		if (rs < 32) {
1386 1387
			*val = VCPU_VSX_FPR(vcpu, rs, vsx_offset);
		} else {
1388
			reg.vval = VCPU_VSX_VR(vcpu, rs - 32);
1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401
			*val = reg.vsxval[vsx_offset];
		}
		break;

	case KVMPPC_VSX_COPY_WORD:
		vsx_offset =
			kvmppc_get_vsr_word_offset(vcpu->arch.mmio_vsx_offset);

		if (vsx_offset == -1) {
			result = -1;
			break;
		}

1402
		if (rs < 32) {
1403 1404 1405 1406 1407
			dword_offset = vsx_offset / 2;
			word_offset = vsx_offset % 2;
			reg.vsxval[0] = VCPU_VSX_FPR(vcpu, rs, dword_offset);
			*val = reg.vsx32val[word_offset];
		} else {
1408
			reg.vval = VCPU_VSX_VR(vcpu, rs - 32);
1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428
			*val = reg.vsx32val[vsx_offset];
		}
		break;

	default:
		result = -1;
		break;
	}

	return result;
}

int kvmppc_handle_vsx_store(struct kvm_run *run, struct kvm_vcpu *vcpu,
			int rs, unsigned int bytes, int is_default_endian)
{
	u64 val;
	enum emulation_result emulated = EMULATE_DONE;

	vcpu->arch.io_gpr = rs;

1429 1430
	/* Currently, mmio_vsx_copy_nums only allowed to be 4 or less */
	if (vcpu->arch.mmio_vsx_copy_nums > 4)
1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486
		return EMULATE_FAIL;

	while (vcpu->arch.mmio_vsx_copy_nums) {
		if (kvmppc_get_vsr_data(vcpu, rs, &val) == -1)
			return EMULATE_FAIL;

		emulated = kvmppc_handle_store(run, vcpu,
			 val, bytes, is_default_endian);

		if (emulated != EMULATE_DONE)
			break;

		vcpu->arch.paddr_accessed += run->mmio.len;

		vcpu->arch.mmio_vsx_copy_nums--;
		vcpu->arch.mmio_vsx_offset++;
	}

	return emulated;
}

static int kvmppc_emulate_mmio_vsx_loadstore(struct kvm_vcpu *vcpu,
			struct kvm_run *run)
{
	enum emulation_result emulated = EMULATE_FAIL;
	int r;

	vcpu->arch.paddr_accessed += run->mmio.len;

	if (!vcpu->mmio_is_write) {
		emulated = kvmppc_handle_vsx_load(run, vcpu, vcpu->arch.io_gpr,
			 run->mmio.len, 1, vcpu->arch.mmio_sign_extend);
	} else {
		emulated = kvmppc_handle_vsx_store(run, vcpu,
			 vcpu->arch.io_gpr, run->mmio.len, 1);
	}

	switch (emulated) {
	case EMULATE_DO_MMIO:
		run->exit_reason = KVM_EXIT_MMIO;
		r = RESUME_HOST;
		break;
	case EMULATE_FAIL:
		pr_info("KVM: MMIO emulation failed (VSX repeat)\n");
		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
		run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
		r = RESUME_HOST;
		break;
	default:
		r = RESUME_GUEST;
		break;
	}
	return r;
}
#endif /* CONFIG_VSX */

1487
#ifdef CONFIG_ALTIVEC
1488 1489
int kvmppc_handle_vmx_load(struct kvm_run *run, struct kvm_vcpu *vcpu,
		unsigned int rt, unsigned int bytes, int is_default_endian)
1490
{
1491
	enum emulation_result emulated = EMULATE_DONE;
1492

1493 1494 1495
	if (vcpu->arch.mmio_vsx_copy_nums > 2)
		return EMULATE_FAIL;

1496
	while (vcpu->arch.mmio_vmx_copy_nums) {
1497
		emulated = __kvmppc_handle_load(run, vcpu, rt, bytes,
1498 1499 1500 1501 1502 1503 1504
				is_default_endian, 0);

		if (emulated != EMULATE_DONE)
			break;

		vcpu->arch.paddr_accessed += run->mmio.len;
		vcpu->arch.mmio_vmx_copy_nums--;
1505
		vcpu->arch.mmio_vmx_offset++;
1506 1507 1508 1509 1510
	}

	return emulated;
}

1511
int kvmppc_get_vmx_dword(struct kvm_vcpu *vcpu, int index, u64 *val)
1512
{
1513 1514 1515
	union kvmppc_one_reg reg;
	int vmx_offset = 0;
	int result = 0;
1516

1517 1518
	vmx_offset =
		kvmppc_get_vmx_dword_offset(vcpu, vcpu->arch.mmio_vmx_offset);
1519

1520
	if (vmx_offset == -1)
1521 1522
		return -1;

1523 1524
	reg.vval = VCPU_VSX_VR(vcpu, index);
	*val = reg.vsxval[vmx_offset];
1525

1526 1527
	return result;
}
1528

1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562
int kvmppc_get_vmx_word(struct kvm_vcpu *vcpu, int index, u64 *val)
{
	union kvmppc_one_reg reg;
	int vmx_offset = 0;
	int result = 0;

	vmx_offset =
		kvmppc_get_vmx_word_offset(vcpu, vcpu->arch.mmio_vmx_offset);

	if (vmx_offset == -1)
		return -1;

	reg.vval = VCPU_VSX_VR(vcpu, index);
	*val = reg.vsx32val[vmx_offset];

	return result;
}

int kvmppc_get_vmx_hword(struct kvm_vcpu *vcpu, int index, u64 *val)
{
	union kvmppc_one_reg reg;
	int vmx_offset = 0;
	int result = 0;

	vmx_offset =
		kvmppc_get_vmx_hword_offset(vcpu, vcpu->arch.mmio_vmx_offset);

	if (vmx_offset == -1)
		return -1;

	reg.vval = VCPU_VSX_VR(vcpu, index);
	*val = reg.vsx16val[vmx_offset];

	return result;
1563 1564
}

1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580
int kvmppc_get_vmx_byte(struct kvm_vcpu *vcpu, int index, u64 *val)
{
	union kvmppc_one_reg reg;
	int vmx_offset = 0;
	int result = 0;

	vmx_offset =
		kvmppc_get_vmx_byte_offset(vcpu, vcpu->arch.mmio_vmx_offset);

	if (vmx_offset == -1)
		return -1;

	reg.vval = VCPU_VSX_VR(vcpu, index);
	*val = reg.vsx8val[vmx_offset];

	return result;
1581 1582
}

1583 1584
int kvmppc_handle_vmx_store(struct kvm_run *run, struct kvm_vcpu *vcpu,
		unsigned int rs, unsigned int bytes, int is_default_endian)
1585 1586
{
	u64 val = 0;
1587
	unsigned int index = rs & KVM_MMIO_REG_MASK;
1588 1589
	enum emulation_result emulated = EMULATE_DONE;

1590 1591 1592
	if (vcpu->arch.mmio_vsx_copy_nums > 2)
		return EMULATE_FAIL;

1593 1594 1595
	vcpu->arch.io_gpr = rs;

	while (vcpu->arch.mmio_vmx_copy_nums) {
1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614
		switch (vcpu->arch.mmio_copy_type) {
		case KVMPPC_VMX_COPY_DWORD:
			if (kvmppc_get_vmx_dword(vcpu, index, &val) == -1)
				return EMULATE_FAIL;

			break;
		case KVMPPC_VMX_COPY_WORD:
			if (kvmppc_get_vmx_word(vcpu, index, &val) == -1)
				return EMULATE_FAIL;
			break;
		case KVMPPC_VMX_COPY_HWORD:
			if (kvmppc_get_vmx_hword(vcpu, index, &val) == -1)
				return EMULATE_FAIL;
			break;
		case KVMPPC_VMX_COPY_BYTE:
			if (kvmppc_get_vmx_byte(vcpu, index, &val) == -1)
				return EMULATE_FAIL;
			break;
		default:
1615
			return EMULATE_FAIL;
1616
		}
1617

1618
		emulated = kvmppc_handle_store(run, vcpu, val, bytes,
1619 1620 1621 1622 1623 1624
				is_default_endian);
		if (emulated != EMULATE_DONE)
			break;

		vcpu->arch.paddr_accessed += run->mmio.len;
		vcpu->arch.mmio_vmx_copy_nums--;
1625
		vcpu->arch.mmio_vmx_offset++;
1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639
	}

	return emulated;
}

static int kvmppc_emulate_mmio_vmx_loadstore(struct kvm_vcpu *vcpu,
		struct kvm_run *run)
{
	enum emulation_result emulated = EMULATE_FAIL;
	int r;

	vcpu->arch.paddr_accessed += run->mmio.len;

	if (!vcpu->mmio_is_write) {
1640 1641
		emulated = kvmppc_handle_vmx_load(run, vcpu,
				vcpu->arch.io_gpr, run->mmio.len, 1);
1642
	} else {
1643 1644
		emulated = kvmppc_handle_vmx_store(run, vcpu,
				vcpu->arch.io_gpr, run->mmio.len, 1);
1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665
	}

	switch (emulated) {
	case EMULATE_DO_MMIO:
		run->exit_reason = KVM_EXIT_MMIO;
		r = RESUME_HOST;
		break;
	case EMULATE_FAIL:
		pr_info("KVM: MMIO emulation failed (VMX repeat)\n");
		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
		run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
		r = RESUME_HOST;
		break;
	default:
		r = RESUME_GUEST;
		break;
	}
	return r;
}
#endif /* CONFIG_ALTIVEC */

1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679
int kvm_vcpu_ioctl_get_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg)
{
	int r = 0;
	union kvmppc_one_reg val;
	int size;

	size = one_reg_size(reg->id);
	if (size > sizeof(val))
		return -EINVAL;

	r = kvmppc_get_one_reg(vcpu, reg->id, &val);
	if (r == -EINVAL) {
		r = 0;
		switch (reg->id) {
1680 1681 1682 1683 1684 1685
#ifdef CONFIG_ALTIVEC
		case KVM_REG_PPC_VR0 ... KVM_REG_PPC_VR31:
			if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
				r = -ENXIO;
				break;
			}
1686
			val.vval = vcpu->arch.vr.vr[reg->id - KVM_REG_PPC_VR0];
1687 1688 1689 1690 1691 1692
			break;
		case KVM_REG_PPC_VSCR:
			if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
				r = -ENXIO;
				break;
			}
1693
			val = get_reg_val(reg->id, vcpu->arch.vr.vscr.u[3]);
1694 1695
			break;
		case KVM_REG_PPC_VRSAVE:
1696
			val = get_reg_val(reg->id, vcpu->arch.vrsave);
1697 1698
			break;
#endif /* CONFIG_ALTIVEC */
1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730
		default:
			r = -EINVAL;
			break;
		}
	}

	if (r)
		return r;

	if (copy_to_user((char __user *)(unsigned long)reg->addr, &val, size))
		r = -EFAULT;

	return r;
}

int kvm_vcpu_ioctl_set_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg)
{
	int r;
	union kvmppc_one_reg val;
	int size;

	size = one_reg_size(reg->id);
	if (size > sizeof(val))
		return -EINVAL;

	if (copy_from_user(&val, (char __user *)(unsigned long)reg->addr, size))
		return -EFAULT;

	r = kvmppc_set_one_reg(vcpu, reg->id, &val);
	if (r == -EINVAL) {
		r = 0;
		switch (reg->id) {
1731 1732 1733 1734 1735 1736
#ifdef CONFIG_ALTIVEC
		case KVM_REG_PPC_VR0 ... KVM_REG_PPC_VR31:
			if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
				r = -ENXIO;
				break;
			}
1737
			vcpu->arch.vr.vr[reg->id - KVM_REG_PPC_VR0] = val.vval;
1738 1739 1740 1741 1742 1743
			break;
		case KVM_REG_PPC_VSCR:
			if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
				r = -ENXIO;
				break;
			}
1744
			vcpu->arch.vr.vscr.u[3] = set_reg_val(reg->id, val);
1745 1746
			break;
		case KVM_REG_PPC_VRSAVE:
1747 1748 1749 1750 1751
			if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
				r = -ENXIO;
				break;
			}
			vcpu->arch.vrsave = set_reg_val(reg->id, val);
1752 1753
			break;
#endif /* CONFIG_ALTIVEC */
1754 1755 1756 1757 1758 1759 1760 1761 1762
		default:
			r = -EINVAL;
			break;
		}
	}

	return r;
}

1763 1764 1765 1766
int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
{
	int r;

1767 1768
	vcpu_load(vcpu);

1769
	if (vcpu->mmio_needed) {
1770
		vcpu->mmio_needed = 0;
1771 1772
		if (!vcpu->mmio_is_write)
			kvmppc_complete_mmio_load(vcpu, run);
1773 1774 1775 1776 1777 1778 1779 1780 1781 1782
#ifdef CONFIG_VSX
		if (vcpu->arch.mmio_vsx_copy_nums > 0) {
			vcpu->arch.mmio_vsx_copy_nums--;
			vcpu->arch.mmio_vsx_offset++;
		}

		if (vcpu->arch.mmio_vsx_copy_nums > 0) {
			r = kvmppc_emulate_mmio_vsx_loadstore(vcpu, run);
			if (r == RESUME_HOST) {
				vcpu->mmio_needed = 1;
1783
				goto out;
1784 1785
			}
		}
1786 1787
#endif
#ifdef CONFIG_ALTIVEC
1788
		if (vcpu->arch.mmio_vmx_copy_nums > 0) {
1789
			vcpu->arch.mmio_vmx_copy_nums--;
1790 1791
			vcpu->arch.mmio_vmx_offset++;
		}
1792 1793 1794 1795 1796

		if (vcpu->arch.mmio_vmx_copy_nums > 0) {
			r = kvmppc_emulate_mmio_vmx_loadstore(vcpu, run);
			if (r == RESUME_HOST) {
				vcpu->mmio_needed = 1;
1797
				goto out;
1798 1799
			}
		}
1800
#endif
1801 1802 1803 1804 1805 1806 1807
	} else if (vcpu->arch.osi_needed) {
		u64 *gprs = run->osi.gprs;
		int i;

		for (i = 0; i < 32; i++)
			kvmppc_set_gpr(vcpu, i, gprs[i]);
		vcpu->arch.osi_needed = 0;
1808 1809 1810 1811 1812 1813 1814
	} else if (vcpu->arch.hcall_needed) {
		int i;

		kvmppc_set_gpr(vcpu, 3, run->papr_hcall.ret);
		for (i = 0; i < 9; ++i)
			kvmppc_set_gpr(vcpu, 4 + i, run->papr_hcall.args[i]);
		vcpu->arch.hcall_needed = 0;
1815 1816 1817 1818 1819
#ifdef CONFIG_BOOKE
	} else if (vcpu->arch.epr_needed) {
		kvmppc_set_epr(vcpu, run->epr.epr);
		vcpu->arch.epr_needed = 0;
#endif
1820 1821
	}

1822
	kvm_sigset_activate(vcpu);
1823

1824 1825 1826 1827
	if (run->immediate_exit)
		r = -EINTR;
	else
		r = kvmppc_vcpu_run(run, vcpu);
1828

1829
	kvm_sigset_deactivate(vcpu);
1830

1831
#ifdef CONFIG_ALTIVEC
1832
out:
1833
#endif
1834
	vcpu_put(vcpu);
1835 1836 1837 1838 1839
	return r;
}

int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, struct kvm_interrupt *irq)
{
1840
	if (irq->irq == KVM_INTERRUPT_UNSET) {
1841
		kvmppc_core_dequeue_external(vcpu);
1842 1843 1844 1845
		return 0;
	}

	kvmppc_core_queue_external(vcpu, irq);
1846

1847
	kvm_vcpu_kick(vcpu);
1848

1849 1850 1851
	return 0;
}

1852 1853 1854 1855 1856 1857 1858 1859 1860
static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
				     struct kvm_enable_cap *cap)
{
	int r;

	if (cap->flags)
		return -EINVAL;

	switch (cap->cap) {
1861 1862 1863 1864
	case KVM_CAP_PPC_OSI:
		r = 0;
		vcpu->arch.osi_enabled = true;
		break;
1865 1866 1867 1868
	case KVM_CAP_PPC_PAPR:
		r = 0;
		vcpu->arch.papr_enabled = true;
		break;
1869 1870
	case KVM_CAP_PPC_EPR:
		r = 0;
1871 1872 1873 1874
		if (cap->args[0])
			vcpu->arch.epr_flags |= KVMPPC_EPR_USER;
		else
			vcpu->arch.epr_flags &= ~KVMPPC_EPR_USER;
1875
		break;
1876 1877 1878 1879 1880 1881
#ifdef CONFIG_BOOKE
	case KVM_CAP_PPC_BOOKE_WATCHDOG:
		r = 0;
		vcpu->arch.watchdog_enabled = true;
		break;
#endif
1882
#if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
S
Scott Wood 已提交
1883 1884 1885 1886 1887 1888 1889 1890 1891 1892
	case KVM_CAP_SW_TLB: {
		struct kvm_config_tlb cfg;
		void __user *user_ptr = (void __user *)(uintptr_t)cap->args[0];

		r = -EFAULT;
		if (copy_from_user(&cfg, user_ptr, sizeof(cfg)))
			break;

		r = kvm_vcpu_ioctl_config_tlb(vcpu, &cfg);
		break;
S
Scott Wood 已提交
1893 1894 1895 1896
	}
#endif
#ifdef CONFIG_KVM_MPIC
	case KVM_CAP_IRQ_MPIC: {
A
Al Viro 已提交
1897
		struct fd f;
S
Scott Wood 已提交
1898 1899 1900
		struct kvm_device *dev;

		r = -EBADF;
A
Al Viro 已提交
1901 1902
		f = fdget(cap->args[0]);
		if (!f.file)
S
Scott Wood 已提交
1903 1904 1905
			break;

		r = -EPERM;
A
Al Viro 已提交
1906
		dev = kvm_device_from_filp(f.file);
S
Scott Wood 已提交
1907 1908 1909
		if (dev)
			r = kvmppc_mpic_connect_vcpu(dev, vcpu, cap->args[1]);

A
Al Viro 已提交
1910
		fdput(f);
S
Scott Wood 已提交
1911
		break;
S
Scott Wood 已提交
1912 1913
	}
#endif
1914 1915
#ifdef CONFIG_KVM_XICS
	case KVM_CAP_IRQ_XICS: {
A
Al Viro 已提交
1916
		struct fd f;
1917 1918 1919
		struct kvm_device *dev;

		r = -EBADF;
A
Al Viro 已提交
1920 1921
		f = fdget(cap->args[0]);
		if (!f.file)
1922 1923 1924
			break;

		r = -EPERM;
A
Al Viro 已提交
1925
		dev = kvm_device_from_filp(f.file);
1926 1927 1928 1929 1930 1931
		if (dev) {
			if (xive_enabled())
				r = kvmppc_xive_connect_vcpu(dev, vcpu, cap->args[1]);
			else
				r = kvmppc_xics_connect_vcpu(dev, vcpu, cap->args[1]);
		}
1932

A
Al Viro 已提交
1933
		fdput(f);
1934 1935 1936
		break;
	}
#endif /* CONFIG_KVM_XICS */
1937 1938 1939 1940 1941 1942 1943 1944 1945
#ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
	case KVM_CAP_PPC_FWNMI:
		r = -EINVAL;
		if (!is_kvmppc_hv_enabled(vcpu->kvm))
			break;
		r = 0;
		vcpu->kvm->arch.fwnmi_enabled = true;
		break;
#endif /* CONFIG_KVM_BOOK3S_HV_POSSIBLE */
1946 1947 1948 1949 1950
	default:
		r = -EINVAL;
		break;
	}

1951 1952 1953
	if (!r)
		r = kvmppc_sanity_check(vcpu);

1954 1955 1956
	return r;
}

1957 1958 1959 1960 1961 1962 1963
bool kvm_arch_intc_initialized(struct kvm *kvm)
{
#ifdef CONFIG_KVM_MPIC
	if (kvm->arch.mpic)
		return true;
#endif
#ifdef CONFIG_KVM_XICS
1964
	if (kvm->arch.xics || kvm->arch.xive)
1965 1966 1967 1968 1969
		return true;
#endif
	return false;
}

1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981
int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
                                    struct kvm_mp_state *mp_state)
{
	return -EINVAL;
}

int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
                                    struct kvm_mp_state *mp_state)
{
	return -EINVAL;
}

1982 1983
long kvm_arch_vcpu_async_ioctl(struct file *filp,
			       unsigned int ioctl, unsigned long arg)
1984 1985 1986 1987
{
	struct kvm_vcpu *vcpu = filp->private_data;
	void __user *argp = (void __user *)arg;

1988
	if (ioctl == KVM_INTERRUPT) {
1989 1990
		struct kvm_interrupt irq;
		if (copy_from_user(&irq, argp, sizeof(irq)))
1991 1992
			return -EFAULT;
		return kvm_vcpu_ioctl_interrupt(vcpu, &irq);
1993
	}
1994 1995 1996 1997 1998 1999 2000 2001 2002
	return -ENOIOCTLCMD;
}

long kvm_arch_vcpu_ioctl(struct file *filp,
                         unsigned int ioctl, unsigned long arg)
{
	struct kvm_vcpu *vcpu = filp->private_data;
	void __user *argp = (void __user *)arg;
	long r;
2003

2004
	switch (ioctl) {
2005 2006 2007 2008
	case KVM_ENABLE_CAP:
	{
		struct kvm_enable_cap cap;
		r = -EFAULT;
2009
		vcpu_load(vcpu);
2010 2011 2012
		if (copy_from_user(&cap, argp, sizeof(cap)))
			goto out;
		r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
2013
		vcpu_put(vcpu);
2014 2015
		break;
	}
S
Scott Wood 已提交
2016

2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030
	case KVM_SET_ONE_REG:
	case KVM_GET_ONE_REG:
	{
		struct kvm_one_reg reg;
		r = -EFAULT;
		if (copy_from_user(&reg, argp, sizeof(reg)))
			goto out;
		if (ioctl == KVM_SET_ONE_REG)
			r = kvm_vcpu_ioctl_set_one_reg(vcpu, &reg);
		else
			r = kvm_vcpu_ioctl_get_one_reg(vcpu, &reg);
		break;
	}

2031
#if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
S
Scott Wood 已提交
2032 2033 2034
	case KVM_DIRTY_TLB: {
		struct kvm_dirty_tlb dirty;
		r = -EFAULT;
2035
		vcpu_load(vcpu);
S
Scott Wood 已提交
2036 2037 2038
		if (copy_from_user(&dirty, argp, sizeof(dirty)))
			goto out;
		r = kvm_vcpu_ioctl_dirty_tlb(vcpu, &dirty);
2039
		vcpu_put(vcpu);
S
Scott Wood 已提交
2040 2041 2042
		break;
	}
#endif
2043 2044 2045 2046 2047 2048 2049 2050
	default:
		r = -EINVAL;
	}

out:
	return r;
}

2051
vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
2052 2053 2054 2055
{
	return VM_FAULT_SIGBUS;
}

2056 2057
static int kvm_vm_ioctl_get_pvinfo(struct kvm_ppc_pvinfo *pvinfo)
{
2058 2059 2060
	u32 inst_nop = 0x60000000;
#ifdef CONFIG_KVM_BOOKE_HV
	u32 inst_sc1 = 0x44000022;
2061 2062 2063 2064
	pvinfo->hcall[0] = cpu_to_be32(inst_sc1);
	pvinfo->hcall[1] = cpu_to_be32(inst_nop);
	pvinfo->hcall[2] = cpu_to_be32(inst_nop);
	pvinfo->hcall[3] = cpu_to_be32(inst_nop);
2065
#else
2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079
	u32 inst_lis = 0x3c000000;
	u32 inst_ori = 0x60000000;
	u32 inst_sc = 0x44000002;
	u32 inst_imm_mask = 0xffff;

	/*
	 * The hypercall to get into KVM from within guest context is as
	 * follows:
	 *
	 *    lis r0, r0, KVM_SC_MAGIC_R0@h
	 *    ori r0, KVM_SC_MAGIC_R0@l
	 *    sc
	 *    nop
	 */
2080 2081 2082 2083
	pvinfo->hcall[0] = cpu_to_be32(inst_lis | ((KVM_SC_MAGIC_R0 >> 16) & inst_imm_mask));
	pvinfo->hcall[1] = cpu_to_be32(inst_ori | (KVM_SC_MAGIC_R0 & inst_imm_mask));
	pvinfo->hcall[2] = cpu_to_be32(inst_sc);
	pvinfo->hcall[3] = cpu_to_be32(inst_nop);
2084
#endif
2085

2086 2087
	pvinfo->flags = KVM_PPC_PVINFO_FLAGS_EV_IDLE;

2088 2089 2090
	return 0;
}

2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102
int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
			  bool line_status)
{
	if (!irqchip_in_kernel(kvm))
		return -ENXIO;

	irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
					irq_event->irq, irq_event->level,
					line_status);
	return 0;
}

2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120

static int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
				   struct kvm_enable_cap *cap)
{
	int r;

	if (cap->flags)
		return -EINVAL;

	switch (cap->cap) {
#ifdef CONFIG_KVM_BOOK3S_64_HANDLER
	case KVM_CAP_PPC_ENABLE_HCALL: {
		unsigned long hcall = cap->args[0];

		r = -EINVAL;
		if (hcall > MAX_HCALL_OPCODE || (hcall & 3) ||
		    cap->args[1] > 1)
			break;
2121 2122
		if (!kvmppc_book3s_hcall_implemented(kvm, hcall))
			break;
2123 2124 2125 2126 2127 2128 2129
		if (cap->args[1])
			set_bit(hcall / 4, kvm->arch.enabled_hcalls);
		else
			clear_bit(hcall / 4, kvm->arch.enabled_hcalls);
		r = 0;
		break;
	}
2130 2131 2132 2133 2134 2135 2136 2137 2138
	case KVM_CAP_PPC_SMT: {
		unsigned long mode = cap->args[0];
		unsigned long flags = cap->args[1];

		r = -EINVAL;
		if (kvm->arch.kvm_ops->set_smt_mode)
			r = kvm->arch.kvm_ops->set_smt_mode(kvm, mode, flags);
		break;
	}
2139 2140 2141 2142 2143 2144 2145 2146

	case KVM_CAP_PPC_NESTED_HV:
		r = -EINVAL;
		if (!is_kvmppc_hv_enabled(kvm) ||
		    !kvm->arch.kvm_ops->enable_nested)
			break;
		r = kvm->arch.kvm_ops->enable_nested(kvm);
		break;
2147 2148 2149 2150 2151 2152 2153 2154 2155
#endif
	default:
		r = -EINVAL;
		break;
	}

	return r;
}

2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273
#ifdef CONFIG_PPC_BOOK3S_64
/*
 * These functions check whether the underlying hardware is safe
 * against attacks based on observing the effects of speculatively
 * executed instructions, and whether it supplies instructions for
 * use in workarounds.  The information comes from firmware, either
 * via the device tree on powernv platforms or from an hcall on
 * pseries platforms.
 */
#ifdef CONFIG_PPC_PSERIES
static int pseries_get_cpu_char(struct kvm_ppc_cpu_char *cp)
{
	struct h_cpu_char_result c;
	unsigned long rc;

	if (!machine_is(pseries))
		return -ENOTTY;

	rc = plpar_get_cpu_characteristics(&c);
	if (rc == H_SUCCESS) {
		cp->character = c.character;
		cp->behaviour = c.behaviour;
		cp->character_mask = KVM_PPC_CPU_CHAR_SPEC_BAR_ORI31 |
			KVM_PPC_CPU_CHAR_BCCTRL_SERIALISED |
			KVM_PPC_CPU_CHAR_L1D_FLUSH_ORI30 |
			KVM_PPC_CPU_CHAR_L1D_FLUSH_TRIG2 |
			KVM_PPC_CPU_CHAR_L1D_THREAD_PRIV |
			KVM_PPC_CPU_CHAR_BR_HINT_HONOURED |
			KVM_PPC_CPU_CHAR_MTTRIG_THR_RECONF |
			KVM_PPC_CPU_CHAR_COUNT_CACHE_DIS;
		cp->behaviour_mask = KVM_PPC_CPU_BEHAV_FAVOUR_SECURITY |
			KVM_PPC_CPU_BEHAV_L1D_FLUSH_PR |
			KVM_PPC_CPU_BEHAV_BNDS_CHK_SPEC_BAR;
	}
	return 0;
}
#else
static int pseries_get_cpu_char(struct kvm_ppc_cpu_char *cp)
{
	return -ENOTTY;
}
#endif

static inline bool have_fw_feat(struct device_node *fw_features,
				const char *state, const char *name)
{
	struct device_node *np;
	bool r = false;

	np = of_get_child_by_name(fw_features, name);
	if (np) {
		r = of_property_read_bool(np, state);
		of_node_put(np);
	}
	return r;
}

static int kvmppc_get_cpu_char(struct kvm_ppc_cpu_char *cp)
{
	struct device_node *np, *fw_features;
	int r;

	memset(cp, 0, sizeof(*cp));
	r = pseries_get_cpu_char(cp);
	if (r != -ENOTTY)
		return r;

	np = of_find_node_by_name(NULL, "ibm,opal");
	if (np) {
		fw_features = of_get_child_by_name(np, "fw-features");
		of_node_put(np);
		if (!fw_features)
			return 0;
		if (have_fw_feat(fw_features, "enabled",
				 "inst-spec-barrier-ori31,31,0"))
			cp->character |= KVM_PPC_CPU_CHAR_SPEC_BAR_ORI31;
		if (have_fw_feat(fw_features, "enabled",
				 "fw-bcctrl-serialized"))
			cp->character |= KVM_PPC_CPU_CHAR_BCCTRL_SERIALISED;
		if (have_fw_feat(fw_features, "enabled",
				 "inst-l1d-flush-ori30,30,0"))
			cp->character |= KVM_PPC_CPU_CHAR_L1D_FLUSH_ORI30;
		if (have_fw_feat(fw_features, "enabled",
				 "inst-l1d-flush-trig2"))
			cp->character |= KVM_PPC_CPU_CHAR_L1D_FLUSH_TRIG2;
		if (have_fw_feat(fw_features, "enabled",
				 "fw-l1d-thread-split"))
			cp->character |= KVM_PPC_CPU_CHAR_L1D_THREAD_PRIV;
		if (have_fw_feat(fw_features, "enabled",
				 "fw-count-cache-disabled"))
			cp->character |= KVM_PPC_CPU_CHAR_COUNT_CACHE_DIS;
		cp->character_mask = KVM_PPC_CPU_CHAR_SPEC_BAR_ORI31 |
			KVM_PPC_CPU_CHAR_BCCTRL_SERIALISED |
			KVM_PPC_CPU_CHAR_L1D_FLUSH_ORI30 |
			KVM_PPC_CPU_CHAR_L1D_FLUSH_TRIG2 |
			KVM_PPC_CPU_CHAR_L1D_THREAD_PRIV |
			KVM_PPC_CPU_CHAR_COUNT_CACHE_DIS;

		if (have_fw_feat(fw_features, "enabled",
				 "speculation-policy-favor-security"))
			cp->behaviour |= KVM_PPC_CPU_BEHAV_FAVOUR_SECURITY;
		if (!have_fw_feat(fw_features, "disabled",
				  "needs-l1d-flush-msr-pr-0-to-1"))
			cp->behaviour |= KVM_PPC_CPU_BEHAV_L1D_FLUSH_PR;
		if (!have_fw_feat(fw_features, "disabled",
				  "needs-spec-barrier-for-bound-checks"))
			cp->behaviour |= KVM_PPC_CPU_BEHAV_BNDS_CHK_SPEC_BAR;
		cp->behaviour_mask = KVM_PPC_CPU_BEHAV_FAVOUR_SECURITY |
			KVM_PPC_CPU_BEHAV_L1D_FLUSH_PR |
			KVM_PPC_CPU_BEHAV_BNDS_CHK_SPEC_BAR;

		of_node_put(fw_features);
	}

	return 0;
}
#endif

2274 2275 2276
long kvm_arch_vm_ioctl(struct file *filp,
                       unsigned int ioctl, unsigned long arg)
{
2277
	struct kvm *kvm __maybe_unused = filp->private_data;
2278
	void __user *argp = (void __user *)arg;
2279 2280 2281
	long r;

	switch (ioctl) {
2282 2283
	case KVM_PPC_GET_PVINFO: {
		struct kvm_ppc_pvinfo pvinfo;
2284
		memset(&pvinfo, 0, sizeof(pvinfo));
2285 2286 2287 2288 2289 2290 2291 2292
		r = kvm_vm_ioctl_get_pvinfo(&pvinfo);
		if (copy_to_user(argp, &pvinfo, sizeof(pvinfo))) {
			r = -EFAULT;
			goto out;
		}

		break;
	}
2293 2294 2295 2296 2297 2298 2299 2300 2301
	case KVM_ENABLE_CAP:
	{
		struct kvm_enable_cap cap;
		r = -EFAULT;
		if (copy_from_user(&cap, argp, sizeof(cap)))
			goto out;
		r = kvm_vm_ioctl_enable_cap(kvm, &cap);
		break;
	}
2302
#ifdef CONFIG_SPAPR_TCE_IOMMU
2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315
	case KVM_CREATE_SPAPR_TCE_64: {
		struct kvm_create_spapr_tce_64 create_tce_64;

		r = -EFAULT;
		if (copy_from_user(&create_tce_64, argp, sizeof(create_tce_64)))
			goto out;
		if (create_tce_64.flags) {
			r = -EINVAL;
			goto out;
		}
		r = kvm_vm_ioctl_create_spapr_tce(kvm, &create_tce_64);
		goto out;
	}
2316 2317
	case KVM_CREATE_SPAPR_TCE: {
		struct kvm_create_spapr_tce create_tce;
2318
		struct kvm_create_spapr_tce_64 create_tce_64;
2319 2320 2321 2322

		r = -EFAULT;
		if (copy_from_user(&create_tce, argp, sizeof(create_tce)))
			goto out;
2323 2324 2325 2326 2327 2328 2329 2330

		create_tce_64.liobn = create_tce.liobn;
		create_tce_64.page_shift = IOMMU_PAGE_SHIFT_4K;
		create_tce_64.offset = 0;
		create_tce_64.size = create_tce.window_size >>
				IOMMU_PAGE_SHIFT_4K;
		create_tce_64.flags = 0;
		r = kvm_vm_ioctl_create_spapr_tce(kvm, &create_tce_64);
2331 2332
		goto out;
	}
2333 2334
#endif
#ifdef CONFIG_PPC_BOOK3S_64
2335 2336
	case KVM_PPC_GET_SMMU_INFO: {
		struct kvm_ppc_smmu_info info;
2337
		struct kvm *kvm = filp->private_data;
2338 2339

		memset(&info, 0, sizeof(info));
2340
		r = kvm->arch.kvm_ops->get_smmu_info(kvm, &info);
2341 2342 2343 2344
		if (r >= 0 && copy_to_user(argp, &info, sizeof(info)))
			r = -EFAULT;
		break;
	}
2345 2346 2347 2348 2349 2350
	case KVM_PPC_RTAS_DEFINE_TOKEN: {
		struct kvm *kvm = filp->private_data;

		r = kvm_vm_ioctl_rtas_define_token(kvm, argp);
		break;
	}
2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375
	case KVM_PPC_CONFIGURE_V3_MMU: {
		struct kvm *kvm = filp->private_data;
		struct kvm_ppc_mmuv3_cfg cfg;

		r = -EINVAL;
		if (!kvm->arch.kvm_ops->configure_mmu)
			goto out;
		r = -EFAULT;
		if (copy_from_user(&cfg, argp, sizeof(cfg)))
			goto out;
		r = kvm->arch.kvm_ops->configure_mmu(kvm, &cfg);
		break;
	}
	case KVM_PPC_GET_RMMU_INFO: {
		struct kvm *kvm = filp->private_data;
		struct kvm_ppc_rmmu_info info;

		r = -EINVAL;
		if (!kvm->arch.kvm_ops->get_rmmu_info)
			goto out;
		r = kvm->arch.kvm_ops->get_rmmu_info(kvm, &info);
		if (r >= 0 && copy_to_user(argp, &info, sizeof(info)))
			r = -EFAULT;
		break;
	}
2376 2377 2378 2379 2380 2381 2382 2383
	case KVM_PPC_GET_CPU_CHAR: {
		struct kvm_ppc_cpu_char cpuchar;

		r = kvmppc_get_cpu_char(&cpuchar);
		if (r >= 0 && copy_to_user(argp, &cpuchar, sizeof(cpuchar)))
			r = -EFAULT;
		break;
	}
2384 2385 2386 2387
	default: {
		struct kvm *kvm = filp->private_data;
		r = kvm->arch.kvm_ops->arch_vm_ioctl(filp, ioctl, arg);
	}
2388
#else /* CONFIG_PPC_BOOK3S_64 */
2389
	default:
2390
		r = -ENOTTY;
2391
#endif
2392
	}
2393
out:
2394 2395 2396
	return r;
}

2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413
static unsigned long lpid_inuse[BITS_TO_LONGS(KVMPPC_NR_LPIDS)];
static unsigned long nr_lpids;

long kvmppc_alloc_lpid(void)
{
	long lpid;

	do {
		lpid = find_first_zero_bit(lpid_inuse, KVMPPC_NR_LPIDS);
		if (lpid >= nr_lpids) {
			pr_err("%s: No LPIDs free\n", __func__);
			return -ENOMEM;
		}
	} while (test_and_set_bit(lpid, lpid_inuse));

	return lpid;
}
2414
EXPORT_SYMBOL_GPL(kvmppc_alloc_lpid);
2415 2416 2417 2418 2419

void kvmppc_claim_lpid(long lpid)
{
	set_bit(lpid, lpid_inuse);
}
2420
EXPORT_SYMBOL_GPL(kvmppc_claim_lpid);
2421 2422 2423 2424 2425

void kvmppc_free_lpid(long lpid)
{
	clear_bit(lpid, lpid_inuse);
}
2426
EXPORT_SYMBOL_GPL(kvmppc_free_lpid);
2427 2428 2429 2430 2431 2432

void kvmppc_init_lpid(unsigned long nr_lpids_param)
{
	nr_lpids = min_t(unsigned long, KVMPPC_NR_LPIDS, nr_lpids_param);
	memset(lpid_inuse, 0, sizeof(lpid_inuse));
}
2433
EXPORT_SYMBOL_GPL(kvmppc_init_lpid);
2434

2435 2436 2437 2438 2439
int kvm_arch_init(void *opaque)
{
	return 0;
}

2440
EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ppc_instr);