powerpc.c 55.9 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
2 3 4 5 6 7 8 9 10 11 12 13
/*
 *
 * Copyright IBM Corp. 2007
 *
 * Authors: Hollis Blanchard <hollisb@us.ibm.com>
 *          Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com>
 */

#include <linux/errno.h>
#include <linux/err.h>
#include <linux/kvm_host.h>
#include <linux/vmalloc.h>
A
Alexander Graf 已提交
14
#include <linux/hrtimer.h>
15
#include <linux/sched/signal.h>
16
#include <linux/fs.h>
17
#include <linux/slab.h>
S
Scott Wood 已提交
18
#include <linux/file.h>
19
#include <linux/module.h>
20 21
#include <linux/irqbypass.h>
#include <linux/kvm_irqfd.h>
22
#include <asm/cputable.h>
23
#include <linux/uaccess.h>
24
#include <asm/kvm_ppc.h>
25
#include <asm/cputhreads.h>
26
#include <asm/irqflags.h>
27
#include <asm/iommu.h>
28
#include <asm/switch_to.h>
29
#include <asm/xive.h>
30 31 32 33
#ifdef CONFIG_PPC_PSERIES
#include <asm/hvcall.h>
#include <asm/plpar_wrappers.h>
#endif
34

35
#include "timing.h"
36
#include "irq.h"
P
Paul Mackerras 已提交
37
#include "../mm/mmu_decl.h"
38

39 40 41
#define CREATE_TRACE_POINTS
#include "trace.h"

42 43 44 45 46
struct kvmppc_ops *kvmppc_hv_ops;
EXPORT_SYMBOL_GPL(kvmppc_hv_ops);
struct kvmppc_ops *kvmppc_pr_ops;
EXPORT_SYMBOL_GPL(kvmppc_pr_ops);

47

48 49
int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
{
R
Radim Krčmář 已提交
50
	return !!(v->arch.pending_exceptions) || kvm_request_pending(v);
51 52
}

53 54 55 56 57
bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
{
	return false;
}

58 59 60 61 62
int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
{
	return 1;
}

63 64 65 66
/*
 * Common checks before entering the guest world.  Call with interrupts
 * disabled.
 *
67 68 69 70
 * returns:
 *
 * == 1 if we're ready to go into guest state
 * <= 0 if we need to go back to the host with return value
71 72 73
 */
int kvmppc_prepare_to_enter(struct kvm_vcpu *vcpu)
{
S
Scott Wood 已提交
74 75 76 77
	int r;

	WARN_ON(irqs_disabled());
	hard_irq_disable();
78 79 80 81 82

	while (true) {
		if (need_resched()) {
			local_irq_enable();
			cond_resched();
S
Scott Wood 已提交
83
			hard_irq_disable();
84 85 86 87
			continue;
		}

		if (signal_pending(current)) {
88 89 90
			kvmppc_account_exit(vcpu, SIGNAL_EXITS);
			vcpu->run->exit_reason = KVM_EXIT_INTR;
			r = -EINTR;
91 92 93
			break;
		}

94 95 96 97 98 99 100
		vcpu->mode = IN_GUEST_MODE;

		/*
		 * Reading vcpu->requests must happen after setting vcpu->mode,
		 * so we don't miss a request because the requester sees
		 * OUTSIDE_GUEST_MODE and assumes we'll be checking requests
		 * before next entering the guest (and thus doesn't IPI).
101 102 103
		 * This also orders the write to mode from any reads
		 * to the page tables done while the VCPU is running.
		 * Please see the comment in kvm_flush_remote_tlbs.
104
		 */
105
		smp_mb();
106

R
Radim Krčmář 已提交
107
		if (kvm_request_pending(vcpu)) {
108 109 110
			/* Make sure we process requests preemptable */
			local_irq_enable();
			trace_kvm_check_requests(vcpu);
111
			r = kvmppc_core_check_requests(vcpu);
S
Scott Wood 已提交
112
			hard_irq_disable();
113 114 115
			if (r > 0)
				continue;
			break;
116 117 118 119 120 121 122 123
		}

		if (kvmppc_core_prepare_to_enter(vcpu)) {
			/* interrupts got enabled in between, so we
			   are back at square 1 */
			continue;
		}

124
		guest_enter_irqoff();
S
Scott Wood 已提交
125
		return 1;
126 127
	}

S
Scott Wood 已提交
128 129
	/* return to host */
	local_irq_enable();
130 131
	return r;
}
132
EXPORT_SYMBOL_GPL(kvmppc_prepare_to_enter);
133

134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
#if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_KVM_BOOK3S_PR_POSSIBLE)
static void kvmppc_swab_shared(struct kvm_vcpu *vcpu)
{
	struct kvm_vcpu_arch_shared *shared = vcpu->arch.shared;
	int i;

	shared->sprg0 = swab64(shared->sprg0);
	shared->sprg1 = swab64(shared->sprg1);
	shared->sprg2 = swab64(shared->sprg2);
	shared->sprg3 = swab64(shared->sprg3);
	shared->srr0 = swab64(shared->srr0);
	shared->srr1 = swab64(shared->srr1);
	shared->dar = swab64(shared->dar);
	shared->msr = swab64(shared->msr);
	shared->dsisr = swab32(shared->dsisr);
	shared->int_pending = swab32(shared->int_pending);
	for (i = 0; i < ARRAY_SIZE(shared->sr); i++)
		shared->sr[i] = swab32(shared->sr[i]);
}
#endif

155 156 157 158 159 160 161 162 163 164
int kvmppc_kvm_pv(struct kvm_vcpu *vcpu)
{
	int nr = kvmppc_get_gpr(vcpu, 11);
	int r;
	unsigned long __maybe_unused param1 = kvmppc_get_gpr(vcpu, 3);
	unsigned long __maybe_unused param2 = kvmppc_get_gpr(vcpu, 4);
	unsigned long __maybe_unused param3 = kvmppc_get_gpr(vcpu, 5);
	unsigned long __maybe_unused param4 = kvmppc_get_gpr(vcpu, 6);
	unsigned long r2 = 0;

165
	if (!(kvmppc_get_msr(vcpu) & MSR_SF)) {
166 167 168 169 170 171 172 173
		/* 32 bit mode */
		param1 &= 0xffffffff;
		param2 &= 0xffffffff;
		param3 &= 0xffffffff;
		param4 &= 0xffffffff;
	}

	switch (nr) {
174
	case KVM_HCALL_TOKEN(KVM_HC_PPC_MAP_MAGIC_PAGE):
175
	{
176 177 178 179 180 181 182 183 184 185
#if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_KVM_BOOK3S_PR_POSSIBLE)
		/* Book3S can be little endian, find it out here */
		int shared_big_endian = true;
		if (vcpu->arch.intr_msr & MSR_LE)
			shared_big_endian = false;
		if (shared_big_endian != vcpu->arch.shared_big_endian)
			kvmppc_swab_shared(vcpu);
		vcpu->arch.shared_big_endian = shared_big_endian;
#endif

186 187 188 189 190 191 192 193 194 195 196 197
		if (!(param2 & MAGIC_PAGE_FLAG_NOT_MAPPED_NX)) {
			/*
			 * Older versions of the Linux magic page code had
			 * a bug where they would map their trampoline code
			 * NX. If that's the case, remove !PR NX capability.
			 */
			vcpu->arch.disable_kernel_nx = true;
			kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
		}

		vcpu->arch.magic_page_pa = param1 & ~0xfffULL;
		vcpu->arch.magic_page_ea = param2 & ~0xfffULL;
198

199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
#ifdef CONFIG_PPC_64K_PAGES
		/*
		 * Make sure our 4k magic page is in the same window of a 64k
		 * page within the guest and within the host's page.
		 */
		if ((vcpu->arch.magic_page_pa & 0xf000) !=
		    ((ulong)vcpu->arch.shared & 0xf000)) {
			void *old_shared = vcpu->arch.shared;
			ulong shared = (ulong)vcpu->arch.shared;
			void *new_shared;

			shared &= PAGE_MASK;
			shared |= vcpu->arch.magic_page_pa & 0xf000;
			new_shared = (void*)shared;
			memcpy(new_shared, old_shared, 0x1000);
			vcpu->arch.shared = new_shared;
		}
#endif

218
		r2 = KVM_MAGIC_FEAT_SR | KVM_MAGIC_FEAT_MAS0_TO_SPRG7;
219

220
		r = EV_SUCCESS;
221 222
		break;
	}
223 224
	case KVM_HCALL_TOKEN(KVM_HC_FEATURES):
		r = EV_SUCCESS;
225
#if defined(CONFIG_PPC_BOOK3S) || defined(CONFIG_KVM_E500V2)
226 227
		r2 |= (1 << KVM_FEATURE_MAGIC_PAGE);
#endif
228 229 230

		/* Second return value is in r4 */
		break;
231 232 233
	case EV_HCALL_TOKEN(EV_IDLE):
		r = EV_SUCCESS;
		kvm_vcpu_block(vcpu);
234
		kvm_clear_request(KVM_REQ_UNHALT, vcpu);
235
		break;
236
	default:
237
		r = EV_UNIMPLEMENTED;
238 239 240
		break;
	}

241 242
	kvmppc_set_gpr(vcpu, 4, r2);

243 244
	return r;
}
245
EXPORT_SYMBOL_GPL(kvmppc_kvm_pv);
246

247 248 249 250 251 252 253 254 255 256 257 258 259
int kvmppc_sanity_check(struct kvm_vcpu *vcpu)
{
	int r = false;

	/* We have to know what CPU to virtualize */
	if (!vcpu->arch.pvr)
		goto out;

	/* PAPR only works with book3s_64 */
	if ((vcpu->arch.cpu_type != KVM_CPU_3S_64) && vcpu->arch.papr_enabled)
		goto out;

	/* HV KVM can only do PAPR mode for now */
260
	if (!vcpu->arch.papr_enabled && is_kvmppc_hv_enabled(vcpu->kvm))
261 262
		goto out;

263 264 265 266 267
#ifdef CONFIG_KVM_BOOKE_HV
	if (!cpu_has_feature(CPU_FTR_EMB_HV))
		goto out;
#endif

268 269 270 271 272 273
	r = true;

out:
	vcpu->arch.sane = r;
	return r ? 0 : -EINVAL;
}
274
EXPORT_SYMBOL_GPL(kvmppc_sanity_check);
275

276 277 278 279 280
int kvmppc_emulate_mmio(struct kvm_run *run, struct kvm_vcpu *vcpu)
{
	enum emulation_result er;
	int r;

281
	er = kvmppc_emulate_loadstore(vcpu);
282 283 284 285 286 287
	switch (er) {
	case EMULATE_DONE:
		/* Future optimization: only reload non-volatiles if they were
		 * actually modified. */
		r = RESUME_GUEST_NV;
		break;
288 289 290
	case EMULATE_AGAIN:
		r = RESUME_GUEST;
		break;
291 292 293 294 295 296 297 298 299
	case EMULATE_DO_MMIO:
		run->exit_reason = KVM_EXIT_MMIO;
		/* We must reload nonvolatiles because "update" load/store
		 * instructions modify register state. */
		/* Future optimization: only reload non-volatiles if they were
		 * actually modified. */
		r = RESUME_HOST_NV;
		break;
	case EMULATE_FAIL:
300 301 302
	{
		u32 last_inst;

303
		kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst);
304
		/* XXX Deliver Program interrupt to guest. */
305
		pr_emerg("%s: emulation failed (%08x)\n", __func__, last_inst);
306 307
		r = RESUME_HOST;
		break;
308
	}
309
	default:
310 311
		WARN_ON(1);
		r = RESUME_GUEST;
312 313 314 315
	}

	return r;
}
316
EXPORT_SYMBOL_GPL(kvmppc_emulate_mmio);
317

318 319 320
int kvmppc_st(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr,
	      bool data)
{
321
	ulong mp_pa = vcpu->arch.magic_page_pa & KVM_PAM & PAGE_MASK;
322
	struct kvmppc_pte pte;
323
	int r = -EINVAL;
324 325 326

	vcpu->stat.st++;

327 328 329 330 331 332 333
	if (vcpu->kvm->arch.kvm_ops && vcpu->kvm->arch.kvm_ops->store_to_eaddr)
		r = vcpu->kvm->arch.kvm_ops->store_to_eaddr(vcpu, eaddr, ptr,
							    size);

	if ((!r) || (r == -EAGAIN))
		return r;

334 335 336 337 338 339 340 341 342 343
	r = kvmppc_xlate(vcpu, *eaddr, data ? XLATE_DATA : XLATE_INST,
			 XLATE_WRITE, &pte);
	if (r < 0)
		return r;

	*eaddr = pte.raddr;

	if (!pte.may_write)
		return -EPERM;

344 345 346 347 348 349 350 351 352 353
	/* Magic page override */
	if (kvmppc_supports_magic_page(vcpu) && mp_pa &&
	    ((pte.raddr & KVM_PAM & PAGE_MASK) == mp_pa) &&
	    !(kvmppc_get_msr(vcpu) & MSR_PR)) {
		void *magic = vcpu->arch.shared;
		magic += pte.eaddr & 0xfff;
		memcpy(magic, ptr, size);
		return EMULATE_DONE;
	}

354 355 356 357 358 359 360 361 362 363
	if (kvm_write_guest(vcpu->kvm, pte.raddr, ptr, size))
		return EMULATE_DO_MMIO;

	return EMULATE_DONE;
}
EXPORT_SYMBOL_GPL(kvmppc_st);

int kvmppc_ld(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr,
		      bool data)
{
364
	ulong mp_pa = vcpu->arch.magic_page_pa & KVM_PAM & PAGE_MASK;
365
	struct kvmppc_pte pte;
366
	int rc = -EINVAL;
367 368 369

	vcpu->stat.ld++;

370 371 372 373 374 375 376
	if (vcpu->kvm->arch.kvm_ops && vcpu->kvm->arch.kvm_ops->load_from_eaddr)
		rc = vcpu->kvm->arch.kvm_ops->load_from_eaddr(vcpu, eaddr, ptr,
							      size);

	if ((!rc) || (rc == -EAGAIN))
		return rc;

377 378 379 380 381 382 383 384 385 386 387 388 389
	rc = kvmppc_xlate(vcpu, *eaddr, data ? XLATE_DATA : XLATE_INST,
			  XLATE_READ, &pte);
	if (rc)
		return rc;

	*eaddr = pte.raddr;

	if (!pte.may_read)
		return -EPERM;

	if (!data && !pte.may_execute)
		return -ENOEXEC;

390 391 392 393 394 395 396 397 398 399
	/* Magic page override */
	if (kvmppc_supports_magic_page(vcpu) && mp_pa &&
	    ((pte.raddr & KVM_PAM & PAGE_MASK) == mp_pa) &&
	    !(kvmppc_get_msr(vcpu) & MSR_PR)) {
		void *magic = vcpu->arch.shared;
		magic += pte.eaddr & 0xfff;
		memcpy(ptr, magic, size);
		return EMULATE_DONE;
	}

400 401
	if (kvm_read_guest(vcpu->kvm, pte.raddr, ptr, size))
		return EMULATE_DO_MMIO;
402 403 404 405 406

	return EMULATE_DONE;
}
EXPORT_SYMBOL_GPL(kvmppc_ld);

407
int kvm_arch_hardware_enable(void)
408
{
409
	return 0;
410 411 412 413 414 415 416
}

int kvm_arch_hardware_setup(void)
{
	return 0;
}

417
int kvm_arch_check_processor_compat(void)
418
{
419
	return kvmppc_core_check_processor_compat();
420 421
}

422
int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
423
{
424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449
	struct kvmppc_ops *kvm_ops = NULL;
	/*
	 * if we have both HV and PR enabled, default is HV
	 */
	if (type == 0) {
		if (kvmppc_hv_ops)
			kvm_ops = kvmppc_hv_ops;
		else
			kvm_ops = kvmppc_pr_ops;
		if (!kvm_ops)
			goto err_out;
	} else	if (type == KVM_VM_PPC_HV) {
		if (!kvmppc_hv_ops)
			goto err_out;
		kvm_ops = kvmppc_hv_ops;
	} else if (type == KVM_VM_PPC_PR) {
		if (!kvmppc_pr_ops)
			goto err_out;
		kvm_ops = kvmppc_pr_ops;
	} else
		goto err_out;

	if (kvm_ops->owner && !try_module_get(kvm_ops->owner))
		return -ENOENT;

	kvm->arch.kvm_ops = kvm_ops;
450
	return kvmppc_core_init_vm(kvm);
451 452
err_out:
	return -EINVAL;
453 454
}

455 456 457 458 459 460 461 462 463 464
bool kvm_arch_has_vcpu_debugfs(void)
{
	return false;
}

int kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
{
	return 0;
}

465
void kvm_arch_destroy_vm(struct kvm *kvm)
466 467
{
	unsigned int i;
468
	struct kvm_vcpu *vcpu;
469

470 471 472 473 474 475 476 477 478 479
#ifdef CONFIG_KVM_XICS
	/*
	 * We call kick_all_cpus_sync() to ensure that all
	 * CPUs have executed any pending IPIs before we
	 * continue and free VCPUs structures below.
	 */
	if (is_kvmppc_hv_enabled(kvm))
		kick_all_cpus_sync();
#endif

480 481 482 483 484 485 486 487
	kvm_for_each_vcpu(i, vcpu, kvm)
		kvm_arch_vcpu_free(vcpu);

	mutex_lock(&kvm->lock);
	for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
		kvm->vcpus[i] = NULL;

	atomic_set(&kvm->online_vcpus, 0);
488 489 490

	kvmppc_core_destroy_vm(kvm);

491
	mutex_unlock(&kvm->lock);
492 493 494

	/* drop the module reference */
	module_put(kvm->arch.kvm_ops->owner);
495 496
}

497
int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
498 499
{
	int r;
500
	/* Assume we're using HV mode when the HV module is loaded */
501
	int hv_enabled = kvmppc_hv_ops ? 1 : 0;
502

503 504 505 506 507 508 509 510
	if (kvm) {
		/*
		 * Hooray - we know which VM type we're running on. Depend on
		 * that rather than the guess above.
		 */
		hv_enabled = is_kvmppc_hv_enabled(kvm);
	}

511
	switch (ext) {
S
Scott Wood 已提交
512 513
#ifdef CONFIG_BOOKE
	case KVM_CAP_PPC_BOOKE_SREGS:
514
	case KVM_CAP_PPC_BOOKE_WATCHDOG:
515
	case KVM_CAP_PPC_EPR:
S
Scott Wood 已提交
516
#else
517
	case KVM_CAP_PPC_SEGSTATE:
518
	case KVM_CAP_PPC_HIOR:
519
	case KVM_CAP_PPC_PAPR:
S
Scott Wood 已提交
520
#endif
521
	case KVM_CAP_PPC_UNSET_IRQ:
522
	case KVM_CAP_PPC_IRQ_LEVEL:
523
	case KVM_CAP_ENABLE_CAP:
524
	case KVM_CAP_ONE_REG:
A
Alexander Graf 已提交
525
	case KVM_CAP_IOEVENTFD:
526
	case KVM_CAP_DEVICE_CTRL:
527
	case KVM_CAP_IMMEDIATE_EXIT:
528 529 530
		r = 1;
		break;
	case KVM_CAP_PPC_PAIRED_SINGLES:
531
	case KVM_CAP_PPC_OSI:
532
	case KVM_CAP_PPC_GET_PVINFO:
533
#if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
S
Scott Wood 已提交
534
	case KVM_CAP_SW_TLB:
S
Scott Wood 已提交
535
#endif
536
		/* We support this only for PR */
537
		r = !hv_enabled;
538
		break;
539 540 541 542 543 544
#ifdef CONFIG_KVM_MPIC
	case KVM_CAP_IRQ_MPIC:
		r = 1;
		break;
#endif

545
#ifdef CONFIG_PPC_BOOK3S_64
546
	case KVM_CAP_SPAPR_TCE:
547
	case KVM_CAP_SPAPR_TCE_64:
548 549
		r = 1;
		break;
550
	case KVM_CAP_SPAPR_TCE_VFIO:
551 552
		r = !!cpu_has_feature(CPU_FTR_HVMODE);
		break;
553
	case KVM_CAP_PPC_RTAS:
554
	case KVM_CAP_PPC_FIXUP_HCALL:
555
	case KVM_CAP_PPC_ENABLE_HCALL:
556 557 558
#ifdef CONFIG_KVM_XICS
	case KVM_CAP_IRQ_XICS:
#endif
559
	case KVM_CAP_PPC_GET_CPU_CHAR:
560 561
		r = 1;
		break;
562 563 564
#ifdef CONFIG_KVM_XIVE
	case KVM_CAP_PPC_IRQ_XIVE:
		/*
565 566 567
		 * We need XIVE to be enabled on the platform (implies
		 * a POWER9 processor) and the PowerNV platform, as
		 * nested is not yet supported.
568
		 */
569
		r = xive_enabled() && !!cpu_has_feature(CPU_FTR_HVMODE);
570 571
		break;
#endif
572 573 574 575

	case KVM_CAP_PPC_ALLOC_HTAB:
		r = hv_enabled;
		break;
576
#endif /* CONFIG_PPC_BOOK3S_64 */
577
#ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
578
	case KVM_CAP_PPC_SMT:
579
		r = 0;
580 581 582 583 584 585
		if (kvm) {
			if (kvm->arch.emul_smt_mode > 1)
				r = kvm->arch.emul_smt_mode;
			else
				r = kvm->arch.smt_mode;
		} else if (hv_enabled) {
586 587 588 589 590
			if (cpu_has_feature(CPU_FTR_ARCH_300))
				r = 1;
			else
				r = threads_per_subcore;
		}
591
		break;
592 593 594 595 596 597 598 599 600 601
	case KVM_CAP_PPC_SMT_POSSIBLE:
		r = 1;
		if (hv_enabled) {
			if (!cpu_has_feature(CPU_FTR_ARCH_300))
				r = ((threads_per_subcore << 1) - 1);
			else
				/* P9 can emulate dbells, so allow any mode */
				r = 8 | 4 | 2 | 1;
		}
		break;
602
	case KVM_CAP_PPC_RMA:
603
		r = 0;
604
		break;
605 606 607
	case KVM_CAP_PPC_HWRNG:
		r = kvmppc_hwrng_present();
		break;
608
	case KVM_CAP_PPC_MMU_RADIX:
609
		r = !!(hv_enabled && radix_enabled());
610 611
		break;
	case KVM_CAP_PPC_MMU_HASH_V3:
612 613
		r = !!(hv_enabled && cpu_has_feature(CPU_FTR_ARCH_300) &&
		       cpu_has_feature(CPU_FTR_HVMODE));
614
		break;
615 616 617 618
	case KVM_CAP_PPC_NESTED_HV:
		r = !!(hv_enabled && kvmppc_hv_ops->enable_nested &&
		       !kvmppc_hv_ops->enable_nested(NULL));
		break;
619
#endif
620
	case KVM_CAP_SYNC_MMU:
621
#ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
622
		r = hv_enabled;
623 624 625 626
#elif defined(KVM_ARCH_WANT_MMU_NOTIFIER)
		r = 1;
#else
		r = 0;
627
#endif
628 629
		break;
#ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
630
	case KVM_CAP_PPC_HTAB_FD:
631
		r = hv_enabled;
632
		break;
633
#endif
634 635 636 637 638 639 640
	case KVM_CAP_NR_VCPUS:
		/*
		 * Recommending a number of CPUs is somewhat arbitrary; we
		 * return the number of present CPUs for -HV (since a host
		 * will have secondary threads "offline"), and for other KVM
		 * implementations just count online CPUs.
		 */
641
		if (hv_enabled)
642 643 644
			r = num_present_cpus();
		else
			r = num_online_cpus();
645 646 647 648
		break;
	case KVM_CAP_MAX_VCPUS:
		r = KVM_MAX_VCPUS;
		break;
649 650 651
	case KVM_CAP_MAX_VCPU_ID:
		r = KVM_MAX_VCPU_ID;
		break;
652 653 654 655
#ifdef CONFIG_PPC_BOOK3S_64
	case KVM_CAP_PPC_GET_SMMU_INFO:
		r = 1;
		break;
656 657 658
	case KVM_CAP_SPAPR_MULTITCE:
		r = 1;
		break;
659
	case KVM_CAP_SPAPR_RESIZE_HPT:
660
		r = !!hv_enabled;
661
		break;
662 663 664 665 666
#endif
#ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
	case KVM_CAP_PPC_FWNMI:
		r = hv_enabled;
		break;
667
#endif
668
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
669
	case KVM_CAP_PPC_HTM:
670 671
		r = !!(cur_cpu_spec->cpu_user_features2 & PPC_FEATURE2_HTM) ||
		     (hv_enabled && cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST));
672
		break;
673
#endif
674 675 676 677 678 679 680 681 682 683 684 685 686 687
	default:
		r = 0;
		break;
	}
	return r;

}

long kvm_arch_dev_ioctl(struct file *filp,
                        unsigned int ioctl, unsigned long arg)
{
	return -EINVAL;
}

688
void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
689 690
			   struct kvm_memory_slot *dont)
{
691
	kvmppc_core_free_memslot(kvm, free, dont);
692 693
}

694 695
int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
			    unsigned long npages)
696
{
697
	return kvmppc_core_create_memslot(kvm, slot, npages);
698 699
}

700
int kvm_arch_prepare_memory_region(struct kvm *kvm,
701
				   struct kvm_memory_slot *memslot,
702
				   const struct kvm_userspace_memory_region *mem,
703
				   enum kvm_mr_change change)
704
{
705
	return kvmppc_core_prepare_memory_region(kvm, memslot, mem);
706 707
}

708
void kvm_arch_commit_memory_region(struct kvm *kvm,
709
				   const struct kvm_userspace_memory_region *mem,
710
				   const struct kvm_memory_slot *old,
711
				   const struct kvm_memory_slot *new,
712
				   enum kvm_mr_change change)
713
{
714
	kvmppc_core_commit_memory_region(kvm, mem, old, new, change);
715 716
}

717 718
void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
				   struct kvm_memory_slot *slot)
719
{
720
	kvmppc_core_flush_memslot(kvm, slot);
721 722
}

723 724
struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
{
725 726
	struct kvm_vcpu *vcpu;
	vcpu = kvmppc_core_vcpu_create(kvm, id);
727 728
	if (!IS_ERR(vcpu)) {
		vcpu->arch.wqp = &vcpu->wq;
729
		kvmppc_create_vcpu_debugfs(vcpu, id);
730
	}
731
	return vcpu;
732 733
}

734
void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
735 736 737
{
}

738 739
void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
{
740 741 742
	/* Make sure we're not using the vcpu anymore */
	hrtimer_cancel(&vcpu->arch.dec_timer);

743
	kvmppc_remove_vcpu_debugfs(vcpu);
S
Scott Wood 已提交
744 745 746 747 748

	switch (vcpu->arch.irq_type) {
	case KVMPPC_IRQ_MPIC:
		kvmppc_mpic_disconnect_vcpu(vcpu->arch.mpic, vcpu);
		break;
749
	case KVMPPC_IRQ_XICS:
750
		if (xics_on_xive())
751 752 753
			kvmppc_xive_cleanup_vcpu(vcpu);
		else
			kvmppc_xics_free_icp(vcpu);
754
		break;
755 756 757
	case KVMPPC_IRQ_XIVE:
		kvmppc_xive_native_cleanup_vcpu(vcpu);
		break;
S
Scott Wood 已提交
758 759
	}

760
	kvmppc_core_vcpu_free(vcpu);
761 762 763 764 765 766 767 768 769
}

void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
{
	kvm_arch_vcpu_free(vcpu);
}

int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
{
770
	return kvmppc_core_pending_dec(vcpu);
771 772
}

T
Thomas Huth 已提交
773
static enum hrtimer_restart kvmppc_decrementer_wakeup(struct hrtimer *timer)
A
Alexander Graf 已提交
774 775 776 777
{
	struct kvm_vcpu *vcpu;

	vcpu = container_of(timer, struct kvm_vcpu, arch.dec_timer);
778
	kvmppc_decrementer_func(vcpu);
A
Alexander Graf 已提交
779 780 781 782

	return HRTIMER_NORESTART;
}

783 784
int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
{
785 786
	int ret;

A
Alexander Graf 已提交
787 788
	hrtimer_init(&vcpu->arch.dec_timer, CLOCK_REALTIME, HRTIMER_MODE_ABS);
	vcpu->arch.dec_timer.function = kvmppc_decrementer_wakeup;
789
	vcpu->arch.dec_expires = get_tb();
790

791 792 793
#ifdef CONFIG_KVM_EXIT_TIMING
	mutex_init(&vcpu->arch.exit_timing_lock);
#endif
794 795
	ret = kvmppc_subarch_vcpu_init(vcpu);
	return ret;
796 797 798 799
}

void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
{
800
	kvmppc_mmu_destroy(vcpu);
801
	kvmppc_subarch_vcpu_uninit(vcpu);
802 803 804 805
}

void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
{
806 807 808 809 810 811 812 813 814 815
#ifdef CONFIG_BOOKE
	/*
	 * vrsave (formerly usprg0) isn't used by Linux, but may
	 * be used by the guest.
	 *
	 * On non-booke this is associated with Altivec and
	 * is handled by code in book3s.c.
	 */
	mtspr(SPRN_VRSAVE, vcpu->arch.vrsave);
#endif
816
	kvmppc_core_vcpu_load(vcpu, cpu);
817 818 819 820
}

void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
{
821
	kvmppc_core_vcpu_put(vcpu);
822 823 824
#ifdef CONFIG_BOOKE
	vcpu->arch.vrsave = mfspr(SPRN_VRSAVE);
#endif
825 826
}

827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862
/*
 * irq_bypass_add_producer and irq_bypass_del_producer are only
 * useful if the architecture supports PCI passthrough.
 * irq_bypass_stop and irq_bypass_start are not needed and so
 * kvm_ops are not defined for them.
 */
bool kvm_arch_has_irq_bypass(void)
{
	return ((kvmppc_hv_ops && kvmppc_hv_ops->irq_bypass_add_producer) ||
		(kvmppc_pr_ops && kvmppc_pr_ops->irq_bypass_add_producer));
}

int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
				     struct irq_bypass_producer *prod)
{
	struct kvm_kernel_irqfd *irqfd =
		container_of(cons, struct kvm_kernel_irqfd, consumer);
	struct kvm *kvm = irqfd->kvm;

	if (kvm->arch.kvm_ops->irq_bypass_add_producer)
		return kvm->arch.kvm_ops->irq_bypass_add_producer(cons, prod);

	return 0;
}

void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
				      struct irq_bypass_producer *prod)
{
	struct kvm_kernel_irqfd *irqfd =
		container_of(cons, struct kvm_kernel_irqfd, consumer);
	struct kvm *kvm = irqfd->kvm;

	if (kvm->arch.kvm_ops->irq_bypass_del_producer)
		kvm->arch.kvm_ops->irq_bypass_del_producer(cons, prod);
}

863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904
#ifdef CONFIG_VSX
static inline int kvmppc_get_vsr_dword_offset(int index)
{
	int offset;

	if ((index != 0) && (index != 1))
		return -1;

#ifdef __BIG_ENDIAN
	offset =  index;
#else
	offset = 1 - index;
#endif

	return offset;
}

static inline int kvmppc_get_vsr_word_offset(int index)
{
	int offset;

	if ((index > 3) || (index < 0))
		return -1;

#ifdef __BIG_ENDIAN
	offset = index;
#else
	offset = 3 - index;
#endif
	return offset;
}

static inline void kvmppc_set_vsr_dword(struct kvm_vcpu *vcpu,
	u64 gpr)
{
	union kvmppc_one_reg val;
	int offset = kvmppc_get_vsr_dword_offset(vcpu->arch.mmio_vsx_offset);
	int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;

	if (offset == -1)
		return;

905 906
	if (index >= 32) {
		val.vval = VCPU_VSX_VR(vcpu, index - 32);
907
		val.vsxval[offset] = gpr;
908
		VCPU_VSX_VR(vcpu, index - 32) = val.vval;
909 910 911 912 913 914 915 916 917 918 919
	} else {
		VCPU_VSX_FPR(vcpu, index, offset) = gpr;
	}
}

static inline void kvmppc_set_vsr_dword_dump(struct kvm_vcpu *vcpu,
	u64 gpr)
{
	union kvmppc_one_reg val;
	int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;

920 921
	if (index >= 32) {
		val.vval = VCPU_VSX_VR(vcpu, index - 32);
922 923
		val.vsxval[0] = gpr;
		val.vsxval[1] = gpr;
924
		VCPU_VSX_VR(vcpu, index - 32) = val.vval;
925 926 927 928 929 930
	} else {
		VCPU_VSX_FPR(vcpu, index, 0) = gpr;
		VCPU_VSX_FPR(vcpu, index, 1) = gpr;
	}
}

931 932 933 934 935 936
static inline void kvmppc_set_vsr_word_dump(struct kvm_vcpu *vcpu,
	u32 gpr)
{
	union kvmppc_one_reg val;
	int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;

937
	if (index >= 32) {
938 939 940 941
		val.vsx32val[0] = gpr;
		val.vsx32val[1] = gpr;
		val.vsx32val[2] = gpr;
		val.vsx32val[3] = gpr;
942
		VCPU_VSX_VR(vcpu, index - 32) = val.vval;
943 944 945 946 947 948 949 950
	} else {
		val.vsx32val[0] = gpr;
		val.vsx32val[1] = gpr;
		VCPU_VSX_FPR(vcpu, index, 0) = val.vsxval[0];
		VCPU_VSX_FPR(vcpu, index, 1) = val.vsxval[0];
	}
}

951 952 953 954 955 956 957 958 959 960 961
static inline void kvmppc_set_vsr_word(struct kvm_vcpu *vcpu,
	u32 gpr32)
{
	union kvmppc_one_reg val;
	int offset = kvmppc_get_vsr_word_offset(vcpu->arch.mmio_vsx_offset);
	int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
	int dword_offset, word_offset;

	if (offset == -1)
		return;

962 963
	if (index >= 32) {
		val.vval = VCPU_VSX_VR(vcpu, index - 32);
964
		val.vsx32val[offset] = gpr32;
965
		VCPU_VSX_VR(vcpu, index - 32) = val.vval;
966 967 968 969 970 971 972 973 974 975
	} else {
		dword_offset = offset / 2;
		word_offset = offset % 2;
		val.vsxval[0] = VCPU_VSX_FPR(vcpu, index, dword_offset);
		val.vsx32val[word_offset] = gpr32;
		VCPU_VSX_FPR(vcpu, index, dword_offset) = val.vsxval[0];
	}
}
#endif /* CONFIG_VSX */

976
#ifdef CONFIG_ALTIVEC
977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018
static inline int kvmppc_get_vmx_offset_generic(struct kvm_vcpu *vcpu,
		int index, int element_size)
{
	int offset;
	int elts = sizeof(vector128)/element_size;

	if ((index < 0) || (index >= elts))
		return -1;

	if (kvmppc_need_byteswap(vcpu))
		offset = elts - index - 1;
	else
		offset = index;

	return offset;
}

static inline int kvmppc_get_vmx_dword_offset(struct kvm_vcpu *vcpu,
		int index)
{
	return kvmppc_get_vmx_offset_generic(vcpu, index, 8);
}

static inline int kvmppc_get_vmx_word_offset(struct kvm_vcpu *vcpu,
		int index)
{
	return kvmppc_get_vmx_offset_generic(vcpu, index, 4);
}

static inline int kvmppc_get_vmx_hword_offset(struct kvm_vcpu *vcpu,
		int index)
{
	return kvmppc_get_vmx_offset_generic(vcpu, index, 2);
}

static inline int kvmppc_get_vmx_byte_offset(struct kvm_vcpu *vcpu,
		int index)
{
	return kvmppc_get_vmx_offset_generic(vcpu, index, 1);
}


1019
static inline void kvmppc_set_vmx_dword(struct kvm_vcpu *vcpu,
1020
	u64 gpr)
1021
{
1022 1023 1024
	union kvmppc_one_reg val;
	int offset = kvmppc_get_vmx_dword_offset(vcpu,
			vcpu->arch.mmio_vmx_offset);
1025 1026
	int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;

1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041
	if (offset == -1)
		return;

	val.vval = VCPU_VSX_VR(vcpu, index);
	val.vsxval[offset] = gpr;
	VCPU_VSX_VR(vcpu, index) = val.vval;
}

static inline void kvmppc_set_vmx_word(struct kvm_vcpu *vcpu,
	u32 gpr32)
{
	union kvmppc_one_reg val;
	int offset = kvmppc_get_vmx_word_offset(vcpu,
			vcpu->arch.mmio_vmx_offset);
	int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
1042

1043
	if (offset == -1)
1044 1045
		return;

1046 1047 1048 1049
	val.vval = VCPU_VSX_VR(vcpu, index);
	val.vsx32val[offset] = gpr32;
	VCPU_VSX_VR(vcpu, index) = val.vval;
}
1050

1051 1052 1053 1054 1055 1056 1057 1058 1059
static inline void kvmppc_set_vmx_hword(struct kvm_vcpu *vcpu,
	u16 gpr16)
{
	union kvmppc_one_reg val;
	int offset = kvmppc_get_vmx_hword_offset(vcpu,
			vcpu->arch.mmio_vmx_offset);
	int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;

	if (offset == -1)
1060 1061
		return;

1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073
	val.vval = VCPU_VSX_VR(vcpu, index);
	val.vsx16val[offset] = gpr16;
	VCPU_VSX_VR(vcpu, index) = val.vval;
}

static inline void kvmppc_set_vmx_byte(struct kvm_vcpu *vcpu,
	u8 gpr8)
{
	union kvmppc_one_reg val;
	int offset = kvmppc_get_vmx_byte_offset(vcpu,
			vcpu->arch.mmio_vmx_offset);
	int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
1074

1075 1076
	if (offset == -1)
		return;
1077

1078 1079 1080
	val.vval = VCPU_VSX_VR(vcpu, index);
	val.vsx8val[offset] = gpr8;
	VCPU_VSX_VR(vcpu, index) = val.vval;
1081 1082 1083
}
#endif /* CONFIG_ALTIVEC */

1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113
#ifdef CONFIG_PPC_FPU
static inline u64 sp_to_dp(u32 fprs)
{
	u64 fprd;

	preempt_disable();
	enable_kernel_fp();
	asm ("lfs%U1%X1 0,%1; stfd%U0%X0 0,%0" : "=m" (fprd) : "m" (fprs)
	     : "fr0");
	preempt_enable();
	return fprd;
}

static inline u32 dp_to_sp(u64 fprd)
{
	u32 fprs;

	preempt_disable();
	enable_kernel_fp();
	asm ("lfd%U1%X1 0,%1; stfs%U0%X0 0,%0" : "=m" (fprs) : "m" (fprd)
	     : "fr0");
	preempt_enable();
	return fprs;
}

#else
#define sp_to_dp(x)	(x)
#define dp_to_sp(x)	(x)
#endif /* CONFIG_PPC_FPU */

1114 1115 1116
static void kvmppc_complete_mmio_load(struct kvm_vcpu *vcpu,
                                      struct kvm_run *run)
{
1117
	u64 uninitialized_var(gpr);
1118

1119
	if (run->mmio.len > sizeof(gpr)) {
1120 1121 1122 1123
		printk(KERN_ERR "bad MMIO length: %d\n", run->mmio.len);
		return;
	}

1124
	if (!vcpu->arch.mmio_host_swabbed) {
1125
		switch (run->mmio.len) {
1126
		case 8: gpr = *(u64 *)run->mmio.data; break;
1127 1128 1129
		case 4: gpr = *(u32 *)run->mmio.data; break;
		case 2: gpr = *(u16 *)run->mmio.data; break;
		case 1: gpr = *(u8 *)run->mmio.data; break;
1130 1131 1132
		}
	} else {
		switch (run->mmio.len) {
1133 1134 1135
		case 8: gpr = swab64(*(u64 *)run->mmio.data); break;
		case 4: gpr = swab32(*(u32 *)run->mmio.data); break;
		case 2: gpr = swab16(*(u16 *)run->mmio.data); break;
1136
		case 1: gpr = *(u8 *)run->mmio.data; break;
1137 1138
		}
	}
1139

1140 1141 1142 1143
	/* conversion between single and double precision */
	if ((vcpu->arch.mmio_sp64_extend) && (run->mmio.len == 4))
		gpr = sp_to_dp(gpr);

A
Alexander Graf 已提交
1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159
	if (vcpu->arch.mmio_sign_extend) {
		switch (run->mmio.len) {
#ifdef CONFIG_PPC64
		case 4:
			gpr = (s64)(s32)gpr;
			break;
#endif
		case 2:
			gpr = (s64)(s16)gpr;
			break;
		case 1:
			gpr = (s64)(s8)gpr;
			break;
		}
	}

1160 1161
	switch (vcpu->arch.io_gpr & KVM_MMIO_REG_EXT_MASK) {
	case KVM_MMIO_REG_GPR:
1162 1163
		kvmppc_set_gpr(vcpu, vcpu->arch.io_gpr, gpr);
		break;
1164
	case KVM_MMIO_REG_FPR:
1165 1166 1167
		if (vcpu->kvm->arch.kvm_ops->giveup_ext)
			vcpu->kvm->arch.kvm_ops->giveup_ext(vcpu, MSR_FP);

1168
		VCPU_FPR(vcpu, vcpu->arch.io_gpr & KVM_MMIO_REG_MASK) = gpr;
1169
		break;
1170
#ifdef CONFIG_PPC_BOOK3S
1171 1172
	case KVM_MMIO_REG_QPR:
		vcpu->arch.qpr[vcpu->arch.io_gpr & KVM_MMIO_REG_MASK] = gpr;
1173
		break;
1174
	case KVM_MMIO_REG_FQPR:
1175
		VCPU_FPR(vcpu, vcpu->arch.io_gpr & KVM_MMIO_REG_MASK) = gpr;
1176
		vcpu->arch.qpr[vcpu->arch.io_gpr & KVM_MMIO_REG_MASK] = gpr;
1177
		break;
1178 1179 1180
#endif
#ifdef CONFIG_VSX
	case KVM_MMIO_REG_VSX:
1181 1182 1183
		if (vcpu->kvm->arch.kvm_ops->giveup_ext)
			vcpu->kvm->arch.kvm_ops->giveup_ext(vcpu, MSR_VSX);

1184
		if (vcpu->arch.mmio_copy_type == KVMPPC_VSX_COPY_DWORD)
1185
			kvmppc_set_vsr_dword(vcpu, gpr);
1186
		else if (vcpu->arch.mmio_copy_type == KVMPPC_VSX_COPY_WORD)
1187
			kvmppc_set_vsr_word(vcpu, gpr);
1188
		else if (vcpu->arch.mmio_copy_type ==
1189 1190
				KVMPPC_VSX_COPY_DWORD_LOAD_DUMP)
			kvmppc_set_vsr_dword_dump(vcpu, gpr);
1191
		else if (vcpu->arch.mmio_copy_type ==
1192 1193
				KVMPPC_VSX_COPY_WORD_LOAD_DUMP)
			kvmppc_set_vsr_word_dump(vcpu, gpr);
1194
		break;
1195 1196 1197
#endif
#ifdef CONFIG_ALTIVEC
	case KVM_MMIO_REG_VMX:
1198 1199 1200
		if (vcpu->kvm->arch.kvm_ops->giveup_ext)
			vcpu->kvm->arch.kvm_ops->giveup_ext(vcpu, MSR_VEC);

1201 1202 1203 1204 1205 1206 1207 1208 1209 1210
		if (vcpu->arch.mmio_copy_type == KVMPPC_VMX_COPY_DWORD)
			kvmppc_set_vmx_dword(vcpu, gpr);
		else if (vcpu->arch.mmio_copy_type == KVMPPC_VMX_COPY_WORD)
			kvmppc_set_vmx_word(vcpu, gpr);
		else if (vcpu->arch.mmio_copy_type ==
				KVMPPC_VMX_COPY_HWORD)
			kvmppc_set_vmx_hword(vcpu, gpr);
		else if (vcpu->arch.mmio_copy_type ==
				KVMPPC_VMX_COPY_BYTE)
			kvmppc_set_vmx_byte(vcpu, gpr);
1211
		break;
1212 1213 1214 1215 1216 1217 1218 1219
#endif
#ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
	case KVM_MMIO_REG_NESTED_GPR:
		if (kvmppc_need_byteswap(vcpu))
			gpr = swab64(gpr);
		kvm_vcpu_write_guest(vcpu, vcpu->arch.nested_io_gpr, &gpr,
				     sizeof(gpr));
		break;
1220
#endif
1221 1222 1223
	default:
		BUG();
	}
1224 1225
}

1226 1227 1228
static int __kvmppc_handle_load(struct kvm_run *run, struct kvm_vcpu *vcpu,
				unsigned int rt, unsigned int bytes,
				int is_default_endian, int sign_extend)
1229
{
1230
	int idx, ret;
1231
	bool host_swabbed;
1232

1233
	/* Pity C doesn't have a logical XOR operator */
1234
	if (kvmppc_need_byteswap(vcpu)) {
1235
		host_swabbed = is_default_endian;
1236
	} else {
1237
		host_swabbed = !is_default_endian;
1238
	}
1239

1240 1241 1242 1243 1244 1245 1246 1247 1248 1249
	if (bytes > sizeof(run->mmio.data)) {
		printk(KERN_ERR "%s: bad MMIO length: %d\n", __func__,
		       run->mmio.len);
	}

	run->mmio.phys_addr = vcpu->arch.paddr_accessed;
	run->mmio.len = bytes;
	run->mmio.is_write = 0;

	vcpu->arch.io_gpr = rt;
1250
	vcpu->arch.mmio_host_swabbed = host_swabbed;
1251 1252
	vcpu->mmio_needed = 1;
	vcpu->mmio_is_write = 0;
1253
	vcpu->arch.mmio_sign_extend = sign_extend;
1254

1255 1256
	idx = srcu_read_lock(&vcpu->kvm->srcu);

1257
	ret = kvm_io_bus_read(vcpu, KVM_MMIO_BUS, run->mmio.phys_addr,
1258 1259 1260 1261 1262
			      bytes, &run->mmio.data);

	srcu_read_unlock(&vcpu->kvm->srcu, idx);

	if (!ret) {
A
Alexander Graf 已提交
1263 1264 1265 1266 1267
		kvmppc_complete_mmio_load(vcpu, run);
		vcpu->mmio_needed = 0;
		return EMULATE_DONE;
	}

1268 1269
	return EMULATE_DO_MMIO;
}
1270 1271 1272 1273 1274 1275 1276

int kvmppc_handle_load(struct kvm_run *run, struct kvm_vcpu *vcpu,
		       unsigned int rt, unsigned int bytes,
		       int is_default_endian)
{
	return __kvmppc_handle_load(run, vcpu, rt, bytes, is_default_endian, 0);
}
1277
EXPORT_SYMBOL_GPL(kvmppc_handle_load);
1278

A
Alexander Graf 已提交
1279 1280
/* Same as above, but sign extends */
int kvmppc_handle_loads(struct kvm_run *run, struct kvm_vcpu *vcpu,
1281 1282
			unsigned int rt, unsigned int bytes,
			int is_default_endian)
A
Alexander Graf 已提交
1283
{
1284
	return __kvmppc_handle_load(run, vcpu, rt, bytes, is_default_endian, 1);
A
Alexander Graf 已提交
1285 1286
}

1287 1288 1289 1290 1291 1292 1293
#ifdef CONFIG_VSX
int kvmppc_handle_vsx_load(struct kvm_run *run, struct kvm_vcpu *vcpu,
			unsigned int rt, unsigned int bytes,
			int is_default_endian, int mmio_sign_extend)
{
	enum emulation_result emulated = EMULATE_DONE;

1294 1295
	/* Currently, mmio_vsx_copy_nums only allowed to be 4 or less */
	if (vcpu->arch.mmio_vsx_copy_nums > 4)
1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313
		return EMULATE_FAIL;

	while (vcpu->arch.mmio_vsx_copy_nums) {
		emulated = __kvmppc_handle_load(run, vcpu, rt, bytes,
			is_default_endian, mmio_sign_extend);

		if (emulated != EMULATE_DONE)
			break;

		vcpu->arch.paddr_accessed += run->mmio.len;

		vcpu->arch.mmio_vsx_copy_nums--;
		vcpu->arch.mmio_vsx_offset++;
	}
	return emulated;
}
#endif /* CONFIG_VSX */

1314
int kvmppc_handle_store(struct kvm_run *run, struct kvm_vcpu *vcpu,
1315
			u64 val, unsigned int bytes, int is_default_endian)
1316 1317
{
	void *data = run->mmio.data;
1318
	int idx, ret;
1319
	bool host_swabbed;
1320

1321
	/* Pity C doesn't have a logical XOR operator */
1322
	if (kvmppc_need_byteswap(vcpu)) {
1323
		host_swabbed = is_default_endian;
1324
	} else {
1325
		host_swabbed = !is_default_endian;
1326
	}
1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338

	if (bytes > sizeof(run->mmio.data)) {
		printk(KERN_ERR "%s: bad MMIO length: %d\n", __func__,
		       run->mmio.len);
	}

	run->mmio.phys_addr = vcpu->arch.paddr_accessed;
	run->mmio.len = bytes;
	run->mmio.is_write = 1;
	vcpu->mmio_needed = 1;
	vcpu->mmio_is_write = 1;

1339 1340 1341
	if ((vcpu->arch.mmio_sp64_extend) && (bytes == 4))
		val = dp_to_sp(val);

1342
	/* Store the value at the lowest bytes in 'data'. */
1343
	if (!host_swabbed) {
1344
		switch (bytes) {
1345
		case 8: *(u64 *)data = val; break;
1346 1347 1348 1349 1350 1351
		case 4: *(u32 *)data = val; break;
		case 2: *(u16 *)data = val; break;
		case 1: *(u8  *)data = val; break;
		}
	} else {
		switch (bytes) {
1352 1353 1354 1355
		case 8: *(u64 *)data = swab64(val); break;
		case 4: *(u32 *)data = swab32(val); break;
		case 2: *(u16 *)data = swab16(val); break;
		case 1: *(u8  *)data = val; break;
1356 1357 1358
		}
	}

1359 1360
	idx = srcu_read_lock(&vcpu->kvm->srcu);

1361
	ret = kvm_io_bus_write(vcpu, KVM_MMIO_BUS, run->mmio.phys_addr,
1362 1363 1364 1365 1366
			       bytes, &run->mmio.data);

	srcu_read_unlock(&vcpu->kvm->srcu, idx);

	if (!ret) {
A
Alexander Graf 已提交
1367 1368 1369 1370
		vcpu->mmio_needed = 0;
		return EMULATE_DONE;
	}

1371 1372
	return EMULATE_DO_MMIO;
}
1373
EXPORT_SYMBOL_GPL(kvmppc_handle_store);
1374

1375 1376 1377 1378 1379 1380
#ifdef CONFIG_VSX
static inline int kvmppc_get_vsr_data(struct kvm_vcpu *vcpu, int rs, u64 *val)
{
	u32 dword_offset, word_offset;
	union kvmppc_one_reg reg;
	int vsx_offset = 0;
1381
	int copy_type = vcpu->arch.mmio_copy_type;
1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393
	int result = 0;

	switch (copy_type) {
	case KVMPPC_VSX_COPY_DWORD:
		vsx_offset =
			kvmppc_get_vsr_dword_offset(vcpu->arch.mmio_vsx_offset);

		if (vsx_offset == -1) {
			result = -1;
			break;
		}

1394
		if (rs < 32) {
1395 1396
			*val = VCPU_VSX_FPR(vcpu, rs, vsx_offset);
		} else {
1397
			reg.vval = VCPU_VSX_VR(vcpu, rs - 32);
1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410
			*val = reg.vsxval[vsx_offset];
		}
		break;

	case KVMPPC_VSX_COPY_WORD:
		vsx_offset =
			kvmppc_get_vsr_word_offset(vcpu->arch.mmio_vsx_offset);

		if (vsx_offset == -1) {
			result = -1;
			break;
		}

1411
		if (rs < 32) {
1412 1413 1414 1415 1416
			dword_offset = vsx_offset / 2;
			word_offset = vsx_offset % 2;
			reg.vsxval[0] = VCPU_VSX_FPR(vcpu, rs, dword_offset);
			*val = reg.vsx32val[word_offset];
		} else {
1417
			reg.vval = VCPU_VSX_VR(vcpu, rs - 32);
1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437
			*val = reg.vsx32val[vsx_offset];
		}
		break;

	default:
		result = -1;
		break;
	}

	return result;
}

int kvmppc_handle_vsx_store(struct kvm_run *run, struct kvm_vcpu *vcpu,
			int rs, unsigned int bytes, int is_default_endian)
{
	u64 val;
	enum emulation_result emulated = EMULATE_DONE;

	vcpu->arch.io_gpr = rs;

1438 1439
	/* Currently, mmio_vsx_copy_nums only allowed to be 4 or less */
	if (vcpu->arch.mmio_vsx_copy_nums > 4)
1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495
		return EMULATE_FAIL;

	while (vcpu->arch.mmio_vsx_copy_nums) {
		if (kvmppc_get_vsr_data(vcpu, rs, &val) == -1)
			return EMULATE_FAIL;

		emulated = kvmppc_handle_store(run, vcpu,
			 val, bytes, is_default_endian);

		if (emulated != EMULATE_DONE)
			break;

		vcpu->arch.paddr_accessed += run->mmio.len;

		vcpu->arch.mmio_vsx_copy_nums--;
		vcpu->arch.mmio_vsx_offset++;
	}

	return emulated;
}

static int kvmppc_emulate_mmio_vsx_loadstore(struct kvm_vcpu *vcpu,
			struct kvm_run *run)
{
	enum emulation_result emulated = EMULATE_FAIL;
	int r;

	vcpu->arch.paddr_accessed += run->mmio.len;

	if (!vcpu->mmio_is_write) {
		emulated = kvmppc_handle_vsx_load(run, vcpu, vcpu->arch.io_gpr,
			 run->mmio.len, 1, vcpu->arch.mmio_sign_extend);
	} else {
		emulated = kvmppc_handle_vsx_store(run, vcpu,
			 vcpu->arch.io_gpr, run->mmio.len, 1);
	}

	switch (emulated) {
	case EMULATE_DO_MMIO:
		run->exit_reason = KVM_EXIT_MMIO;
		r = RESUME_HOST;
		break;
	case EMULATE_FAIL:
		pr_info("KVM: MMIO emulation failed (VSX repeat)\n");
		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
		run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
		r = RESUME_HOST;
		break;
	default:
		r = RESUME_GUEST;
		break;
	}
	return r;
}
#endif /* CONFIG_VSX */

1496
#ifdef CONFIG_ALTIVEC
1497 1498
int kvmppc_handle_vmx_load(struct kvm_run *run, struct kvm_vcpu *vcpu,
		unsigned int rt, unsigned int bytes, int is_default_endian)
1499
{
1500
	enum emulation_result emulated = EMULATE_DONE;
1501

1502 1503 1504
	if (vcpu->arch.mmio_vsx_copy_nums > 2)
		return EMULATE_FAIL;

1505
	while (vcpu->arch.mmio_vmx_copy_nums) {
1506
		emulated = __kvmppc_handle_load(run, vcpu, rt, bytes,
1507 1508 1509 1510 1511 1512 1513
				is_default_endian, 0);

		if (emulated != EMULATE_DONE)
			break;

		vcpu->arch.paddr_accessed += run->mmio.len;
		vcpu->arch.mmio_vmx_copy_nums--;
1514
		vcpu->arch.mmio_vmx_offset++;
1515 1516 1517 1518 1519
	}

	return emulated;
}

1520
int kvmppc_get_vmx_dword(struct kvm_vcpu *vcpu, int index, u64 *val)
1521
{
1522 1523 1524
	union kvmppc_one_reg reg;
	int vmx_offset = 0;
	int result = 0;
1525

1526 1527
	vmx_offset =
		kvmppc_get_vmx_dword_offset(vcpu, vcpu->arch.mmio_vmx_offset);
1528

1529
	if (vmx_offset == -1)
1530 1531
		return -1;

1532 1533
	reg.vval = VCPU_VSX_VR(vcpu, index);
	*val = reg.vsxval[vmx_offset];
1534

1535 1536
	return result;
}
1537

1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571
int kvmppc_get_vmx_word(struct kvm_vcpu *vcpu, int index, u64 *val)
{
	union kvmppc_one_reg reg;
	int vmx_offset = 0;
	int result = 0;

	vmx_offset =
		kvmppc_get_vmx_word_offset(vcpu, vcpu->arch.mmio_vmx_offset);

	if (vmx_offset == -1)
		return -1;

	reg.vval = VCPU_VSX_VR(vcpu, index);
	*val = reg.vsx32val[vmx_offset];

	return result;
}

int kvmppc_get_vmx_hword(struct kvm_vcpu *vcpu, int index, u64 *val)
{
	union kvmppc_one_reg reg;
	int vmx_offset = 0;
	int result = 0;

	vmx_offset =
		kvmppc_get_vmx_hword_offset(vcpu, vcpu->arch.mmio_vmx_offset);

	if (vmx_offset == -1)
		return -1;

	reg.vval = VCPU_VSX_VR(vcpu, index);
	*val = reg.vsx16val[vmx_offset];

	return result;
1572 1573
}

1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589
int kvmppc_get_vmx_byte(struct kvm_vcpu *vcpu, int index, u64 *val)
{
	union kvmppc_one_reg reg;
	int vmx_offset = 0;
	int result = 0;

	vmx_offset =
		kvmppc_get_vmx_byte_offset(vcpu, vcpu->arch.mmio_vmx_offset);

	if (vmx_offset == -1)
		return -1;

	reg.vval = VCPU_VSX_VR(vcpu, index);
	*val = reg.vsx8val[vmx_offset];

	return result;
1590 1591
}

1592 1593
int kvmppc_handle_vmx_store(struct kvm_run *run, struct kvm_vcpu *vcpu,
		unsigned int rs, unsigned int bytes, int is_default_endian)
1594 1595
{
	u64 val = 0;
1596
	unsigned int index = rs & KVM_MMIO_REG_MASK;
1597 1598
	enum emulation_result emulated = EMULATE_DONE;

1599 1600 1601
	if (vcpu->arch.mmio_vsx_copy_nums > 2)
		return EMULATE_FAIL;

1602 1603 1604
	vcpu->arch.io_gpr = rs;

	while (vcpu->arch.mmio_vmx_copy_nums) {
1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623
		switch (vcpu->arch.mmio_copy_type) {
		case KVMPPC_VMX_COPY_DWORD:
			if (kvmppc_get_vmx_dword(vcpu, index, &val) == -1)
				return EMULATE_FAIL;

			break;
		case KVMPPC_VMX_COPY_WORD:
			if (kvmppc_get_vmx_word(vcpu, index, &val) == -1)
				return EMULATE_FAIL;
			break;
		case KVMPPC_VMX_COPY_HWORD:
			if (kvmppc_get_vmx_hword(vcpu, index, &val) == -1)
				return EMULATE_FAIL;
			break;
		case KVMPPC_VMX_COPY_BYTE:
			if (kvmppc_get_vmx_byte(vcpu, index, &val) == -1)
				return EMULATE_FAIL;
			break;
		default:
1624
			return EMULATE_FAIL;
1625
		}
1626

1627
		emulated = kvmppc_handle_store(run, vcpu, val, bytes,
1628 1629 1630 1631 1632 1633
				is_default_endian);
		if (emulated != EMULATE_DONE)
			break;

		vcpu->arch.paddr_accessed += run->mmio.len;
		vcpu->arch.mmio_vmx_copy_nums--;
1634
		vcpu->arch.mmio_vmx_offset++;
1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648
	}

	return emulated;
}

static int kvmppc_emulate_mmio_vmx_loadstore(struct kvm_vcpu *vcpu,
		struct kvm_run *run)
{
	enum emulation_result emulated = EMULATE_FAIL;
	int r;

	vcpu->arch.paddr_accessed += run->mmio.len;

	if (!vcpu->mmio_is_write) {
1649 1650
		emulated = kvmppc_handle_vmx_load(run, vcpu,
				vcpu->arch.io_gpr, run->mmio.len, 1);
1651
	} else {
1652 1653
		emulated = kvmppc_handle_vmx_store(run, vcpu,
				vcpu->arch.io_gpr, run->mmio.len, 1);
1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674
	}

	switch (emulated) {
	case EMULATE_DO_MMIO:
		run->exit_reason = KVM_EXIT_MMIO;
		r = RESUME_HOST;
		break;
	case EMULATE_FAIL:
		pr_info("KVM: MMIO emulation failed (VMX repeat)\n");
		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
		run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
		r = RESUME_HOST;
		break;
	default:
		r = RESUME_GUEST;
		break;
	}
	return r;
}
#endif /* CONFIG_ALTIVEC */

1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688
int kvm_vcpu_ioctl_get_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg)
{
	int r = 0;
	union kvmppc_one_reg val;
	int size;

	size = one_reg_size(reg->id);
	if (size > sizeof(val))
		return -EINVAL;

	r = kvmppc_get_one_reg(vcpu, reg->id, &val);
	if (r == -EINVAL) {
		r = 0;
		switch (reg->id) {
1689 1690 1691 1692 1693 1694
#ifdef CONFIG_ALTIVEC
		case KVM_REG_PPC_VR0 ... KVM_REG_PPC_VR31:
			if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
				r = -ENXIO;
				break;
			}
1695
			val.vval = vcpu->arch.vr.vr[reg->id - KVM_REG_PPC_VR0];
1696 1697 1698 1699 1700 1701
			break;
		case KVM_REG_PPC_VSCR:
			if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
				r = -ENXIO;
				break;
			}
1702
			val = get_reg_val(reg->id, vcpu->arch.vr.vscr.u[3]);
1703 1704
			break;
		case KVM_REG_PPC_VRSAVE:
1705
			val = get_reg_val(reg->id, vcpu->arch.vrsave);
1706 1707
			break;
#endif /* CONFIG_ALTIVEC */
1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739
		default:
			r = -EINVAL;
			break;
		}
	}

	if (r)
		return r;

	if (copy_to_user((char __user *)(unsigned long)reg->addr, &val, size))
		r = -EFAULT;

	return r;
}

int kvm_vcpu_ioctl_set_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg)
{
	int r;
	union kvmppc_one_reg val;
	int size;

	size = one_reg_size(reg->id);
	if (size > sizeof(val))
		return -EINVAL;

	if (copy_from_user(&val, (char __user *)(unsigned long)reg->addr, size))
		return -EFAULT;

	r = kvmppc_set_one_reg(vcpu, reg->id, &val);
	if (r == -EINVAL) {
		r = 0;
		switch (reg->id) {
1740 1741 1742 1743 1744 1745
#ifdef CONFIG_ALTIVEC
		case KVM_REG_PPC_VR0 ... KVM_REG_PPC_VR31:
			if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
				r = -ENXIO;
				break;
			}
1746
			vcpu->arch.vr.vr[reg->id - KVM_REG_PPC_VR0] = val.vval;
1747 1748 1749 1750 1751 1752
			break;
		case KVM_REG_PPC_VSCR:
			if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
				r = -ENXIO;
				break;
			}
1753
			vcpu->arch.vr.vscr.u[3] = set_reg_val(reg->id, val);
1754 1755
			break;
		case KVM_REG_PPC_VRSAVE:
1756 1757 1758 1759 1760
			if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
				r = -ENXIO;
				break;
			}
			vcpu->arch.vrsave = set_reg_val(reg->id, val);
1761 1762
			break;
#endif /* CONFIG_ALTIVEC */
1763 1764 1765 1766 1767 1768 1769 1770 1771
		default:
			r = -EINVAL;
			break;
		}
	}

	return r;
}

1772 1773 1774 1775
int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
{
	int r;

1776 1777
	vcpu_load(vcpu);

1778
	if (vcpu->mmio_needed) {
1779
		vcpu->mmio_needed = 0;
1780 1781
		if (!vcpu->mmio_is_write)
			kvmppc_complete_mmio_load(vcpu, run);
1782 1783 1784 1785 1786 1787 1788 1789 1790 1791
#ifdef CONFIG_VSX
		if (vcpu->arch.mmio_vsx_copy_nums > 0) {
			vcpu->arch.mmio_vsx_copy_nums--;
			vcpu->arch.mmio_vsx_offset++;
		}

		if (vcpu->arch.mmio_vsx_copy_nums > 0) {
			r = kvmppc_emulate_mmio_vsx_loadstore(vcpu, run);
			if (r == RESUME_HOST) {
				vcpu->mmio_needed = 1;
1792
				goto out;
1793 1794
			}
		}
1795 1796
#endif
#ifdef CONFIG_ALTIVEC
1797
		if (vcpu->arch.mmio_vmx_copy_nums > 0) {
1798
			vcpu->arch.mmio_vmx_copy_nums--;
1799 1800
			vcpu->arch.mmio_vmx_offset++;
		}
1801 1802 1803 1804 1805

		if (vcpu->arch.mmio_vmx_copy_nums > 0) {
			r = kvmppc_emulate_mmio_vmx_loadstore(vcpu, run);
			if (r == RESUME_HOST) {
				vcpu->mmio_needed = 1;
1806
				goto out;
1807 1808
			}
		}
1809
#endif
1810 1811 1812 1813 1814 1815 1816
	} else if (vcpu->arch.osi_needed) {
		u64 *gprs = run->osi.gprs;
		int i;

		for (i = 0; i < 32; i++)
			kvmppc_set_gpr(vcpu, i, gprs[i]);
		vcpu->arch.osi_needed = 0;
1817 1818 1819 1820 1821 1822 1823
	} else if (vcpu->arch.hcall_needed) {
		int i;

		kvmppc_set_gpr(vcpu, 3, run->papr_hcall.ret);
		for (i = 0; i < 9; ++i)
			kvmppc_set_gpr(vcpu, 4 + i, run->papr_hcall.args[i]);
		vcpu->arch.hcall_needed = 0;
1824 1825 1826 1827 1828
#ifdef CONFIG_BOOKE
	} else if (vcpu->arch.epr_needed) {
		kvmppc_set_epr(vcpu, run->epr.epr);
		vcpu->arch.epr_needed = 0;
#endif
1829 1830
	}

1831
	kvm_sigset_activate(vcpu);
1832

1833 1834 1835 1836
	if (run->immediate_exit)
		r = -EINTR;
	else
		r = kvmppc_vcpu_run(run, vcpu);
1837

1838
	kvm_sigset_deactivate(vcpu);
1839

1840
#ifdef CONFIG_ALTIVEC
1841
out:
1842
#endif
1843
	vcpu_put(vcpu);
1844 1845 1846 1847 1848
	return r;
}

int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, struct kvm_interrupt *irq)
{
1849
	if (irq->irq == KVM_INTERRUPT_UNSET) {
1850
		kvmppc_core_dequeue_external(vcpu);
1851 1852 1853 1854
		return 0;
	}

	kvmppc_core_queue_external(vcpu, irq);
1855

1856
	kvm_vcpu_kick(vcpu);
1857

1858 1859 1860
	return 0;
}

1861 1862 1863 1864 1865 1866 1867 1868 1869
static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
				     struct kvm_enable_cap *cap)
{
	int r;

	if (cap->flags)
		return -EINVAL;

	switch (cap->cap) {
1870 1871 1872 1873
	case KVM_CAP_PPC_OSI:
		r = 0;
		vcpu->arch.osi_enabled = true;
		break;
1874 1875 1876 1877
	case KVM_CAP_PPC_PAPR:
		r = 0;
		vcpu->arch.papr_enabled = true;
		break;
1878 1879
	case KVM_CAP_PPC_EPR:
		r = 0;
1880 1881 1882 1883
		if (cap->args[0])
			vcpu->arch.epr_flags |= KVMPPC_EPR_USER;
		else
			vcpu->arch.epr_flags &= ~KVMPPC_EPR_USER;
1884
		break;
1885 1886 1887 1888 1889 1890
#ifdef CONFIG_BOOKE
	case KVM_CAP_PPC_BOOKE_WATCHDOG:
		r = 0;
		vcpu->arch.watchdog_enabled = true;
		break;
#endif
1891
#if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
S
Scott Wood 已提交
1892 1893 1894 1895 1896 1897 1898 1899 1900 1901
	case KVM_CAP_SW_TLB: {
		struct kvm_config_tlb cfg;
		void __user *user_ptr = (void __user *)(uintptr_t)cap->args[0];

		r = -EFAULT;
		if (copy_from_user(&cfg, user_ptr, sizeof(cfg)))
			break;

		r = kvm_vcpu_ioctl_config_tlb(vcpu, &cfg);
		break;
S
Scott Wood 已提交
1902 1903 1904 1905
	}
#endif
#ifdef CONFIG_KVM_MPIC
	case KVM_CAP_IRQ_MPIC: {
A
Al Viro 已提交
1906
		struct fd f;
S
Scott Wood 已提交
1907 1908 1909
		struct kvm_device *dev;

		r = -EBADF;
A
Al Viro 已提交
1910 1911
		f = fdget(cap->args[0]);
		if (!f.file)
S
Scott Wood 已提交
1912 1913 1914
			break;

		r = -EPERM;
A
Al Viro 已提交
1915
		dev = kvm_device_from_filp(f.file);
S
Scott Wood 已提交
1916 1917 1918
		if (dev)
			r = kvmppc_mpic_connect_vcpu(dev, vcpu, cap->args[1]);

A
Al Viro 已提交
1919
		fdput(f);
S
Scott Wood 已提交
1920
		break;
S
Scott Wood 已提交
1921 1922
	}
#endif
1923 1924
#ifdef CONFIG_KVM_XICS
	case KVM_CAP_IRQ_XICS: {
A
Al Viro 已提交
1925
		struct fd f;
1926 1927 1928
		struct kvm_device *dev;

		r = -EBADF;
A
Al Viro 已提交
1929 1930
		f = fdget(cap->args[0]);
		if (!f.file)
1931 1932 1933
			break;

		r = -EPERM;
A
Al Viro 已提交
1934
		dev = kvm_device_from_filp(f.file);
1935
		if (dev) {
1936
			if (xics_on_xive())
1937 1938 1939 1940
				r = kvmppc_xive_connect_vcpu(dev, vcpu, cap->args[1]);
			else
				r = kvmppc_xics_connect_vcpu(dev, vcpu, cap->args[1]);
		}
1941

A
Al Viro 已提交
1942
		fdput(f);
1943 1944 1945
		break;
	}
#endif /* CONFIG_KVM_XICS */
1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969
#ifdef CONFIG_KVM_XIVE
	case KVM_CAP_PPC_IRQ_XIVE: {
		struct fd f;
		struct kvm_device *dev;

		r = -EBADF;
		f = fdget(cap->args[0]);
		if (!f.file)
			break;

		r = -ENXIO;
		if (!xive_enabled())
			break;

		r = -EPERM;
		dev = kvm_device_from_filp(f.file);
		if (dev)
			r = kvmppc_xive_native_connect_vcpu(dev, vcpu,
							    cap->args[1]);

		fdput(f);
		break;
	}
#endif /* CONFIG_KVM_XIVE */
1970 1971 1972 1973 1974 1975 1976 1977 1978
#ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
	case KVM_CAP_PPC_FWNMI:
		r = -EINVAL;
		if (!is_kvmppc_hv_enabled(vcpu->kvm))
			break;
		r = 0;
		vcpu->kvm->arch.fwnmi_enabled = true;
		break;
#endif /* CONFIG_KVM_BOOK3S_HV_POSSIBLE */
1979 1980 1981 1982 1983
	default:
		r = -EINVAL;
		break;
	}

1984 1985 1986
	if (!r)
		r = kvmppc_sanity_check(vcpu);

1987 1988 1989
	return r;
}

1990 1991 1992 1993 1994 1995 1996
bool kvm_arch_intc_initialized(struct kvm *kvm)
{
#ifdef CONFIG_KVM_MPIC
	if (kvm->arch.mpic)
		return true;
#endif
#ifdef CONFIG_KVM_XICS
1997
	if (kvm->arch.xics || kvm->arch.xive)
1998 1999 2000 2001 2002
		return true;
#endif
	return false;
}

2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014
int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
                                    struct kvm_mp_state *mp_state)
{
	return -EINVAL;
}

int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
                                    struct kvm_mp_state *mp_state)
{
	return -EINVAL;
}

2015 2016
long kvm_arch_vcpu_async_ioctl(struct file *filp,
			       unsigned int ioctl, unsigned long arg)
2017 2018 2019 2020
{
	struct kvm_vcpu *vcpu = filp->private_data;
	void __user *argp = (void __user *)arg;

2021
	if (ioctl == KVM_INTERRUPT) {
2022 2023
		struct kvm_interrupt irq;
		if (copy_from_user(&irq, argp, sizeof(irq)))
2024 2025
			return -EFAULT;
		return kvm_vcpu_ioctl_interrupt(vcpu, &irq);
2026
	}
2027 2028 2029 2030 2031 2032 2033 2034 2035
	return -ENOIOCTLCMD;
}

long kvm_arch_vcpu_ioctl(struct file *filp,
                         unsigned int ioctl, unsigned long arg)
{
	struct kvm_vcpu *vcpu = filp->private_data;
	void __user *argp = (void __user *)arg;
	long r;
2036

2037
	switch (ioctl) {
2038 2039 2040 2041
	case KVM_ENABLE_CAP:
	{
		struct kvm_enable_cap cap;
		r = -EFAULT;
2042
		vcpu_load(vcpu);
2043 2044 2045
		if (copy_from_user(&cap, argp, sizeof(cap)))
			goto out;
		r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
2046
		vcpu_put(vcpu);
2047 2048
		break;
	}
S
Scott Wood 已提交
2049

2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063
	case KVM_SET_ONE_REG:
	case KVM_GET_ONE_REG:
	{
		struct kvm_one_reg reg;
		r = -EFAULT;
		if (copy_from_user(&reg, argp, sizeof(reg)))
			goto out;
		if (ioctl == KVM_SET_ONE_REG)
			r = kvm_vcpu_ioctl_set_one_reg(vcpu, &reg);
		else
			r = kvm_vcpu_ioctl_get_one_reg(vcpu, &reg);
		break;
	}

2064
#if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
S
Scott Wood 已提交
2065 2066 2067
	case KVM_DIRTY_TLB: {
		struct kvm_dirty_tlb dirty;
		r = -EFAULT;
2068
		vcpu_load(vcpu);
S
Scott Wood 已提交
2069 2070 2071
		if (copy_from_user(&dirty, argp, sizeof(dirty)))
			goto out;
		r = kvm_vcpu_ioctl_dirty_tlb(vcpu, &dirty);
2072
		vcpu_put(vcpu);
S
Scott Wood 已提交
2073 2074 2075
		break;
	}
#endif
2076 2077 2078 2079 2080 2081 2082 2083
	default:
		r = -EINVAL;
	}

out:
	return r;
}

2084
vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
2085 2086 2087 2088
{
	return VM_FAULT_SIGBUS;
}

2089 2090
static int kvm_vm_ioctl_get_pvinfo(struct kvm_ppc_pvinfo *pvinfo)
{
2091 2092 2093
	u32 inst_nop = 0x60000000;
#ifdef CONFIG_KVM_BOOKE_HV
	u32 inst_sc1 = 0x44000022;
2094 2095 2096 2097
	pvinfo->hcall[0] = cpu_to_be32(inst_sc1);
	pvinfo->hcall[1] = cpu_to_be32(inst_nop);
	pvinfo->hcall[2] = cpu_to_be32(inst_nop);
	pvinfo->hcall[3] = cpu_to_be32(inst_nop);
2098
#else
2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112
	u32 inst_lis = 0x3c000000;
	u32 inst_ori = 0x60000000;
	u32 inst_sc = 0x44000002;
	u32 inst_imm_mask = 0xffff;

	/*
	 * The hypercall to get into KVM from within guest context is as
	 * follows:
	 *
	 *    lis r0, r0, KVM_SC_MAGIC_R0@h
	 *    ori r0, KVM_SC_MAGIC_R0@l
	 *    sc
	 *    nop
	 */
2113 2114 2115 2116
	pvinfo->hcall[0] = cpu_to_be32(inst_lis | ((KVM_SC_MAGIC_R0 >> 16) & inst_imm_mask));
	pvinfo->hcall[1] = cpu_to_be32(inst_ori | (KVM_SC_MAGIC_R0 & inst_imm_mask));
	pvinfo->hcall[2] = cpu_to_be32(inst_sc);
	pvinfo->hcall[3] = cpu_to_be32(inst_nop);
2117
#endif
2118

2119 2120
	pvinfo->flags = KVM_PPC_PVINFO_FLAGS_EV_IDLE;

2121 2122 2123
	return 0;
}

2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135
int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
			  bool line_status)
{
	if (!irqchip_in_kernel(kvm))
		return -ENXIO;

	irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
					irq_event->irq, irq_event->level,
					line_status);
	return 0;
}

2136

2137 2138
int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
			    struct kvm_enable_cap *cap)
2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153
{
	int r;

	if (cap->flags)
		return -EINVAL;

	switch (cap->cap) {
#ifdef CONFIG_KVM_BOOK3S_64_HANDLER
	case KVM_CAP_PPC_ENABLE_HCALL: {
		unsigned long hcall = cap->args[0];

		r = -EINVAL;
		if (hcall > MAX_HCALL_OPCODE || (hcall & 3) ||
		    cap->args[1] > 1)
			break;
2154 2155
		if (!kvmppc_book3s_hcall_implemented(kvm, hcall))
			break;
2156 2157 2158 2159 2160 2161 2162
		if (cap->args[1])
			set_bit(hcall / 4, kvm->arch.enabled_hcalls);
		else
			clear_bit(hcall / 4, kvm->arch.enabled_hcalls);
		r = 0;
		break;
	}
2163 2164 2165 2166 2167 2168 2169 2170 2171
	case KVM_CAP_PPC_SMT: {
		unsigned long mode = cap->args[0];
		unsigned long flags = cap->args[1];

		r = -EINVAL;
		if (kvm->arch.kvm_ops->set_smt_mode)
			r = kvm->arch.kvm_ops->set_smt_mode(kvm, mode, flags);
		break;
	}
2172 2173 2174 2175 2176 2177 2178 2179

	case KVM_CAP_PPC_NESTED_HV:
		r = -EINVAL;
		if (!is_kvmppc_hv_enabled(kvm) ||
		    !kvm->arch.kvm_ops->enable_nested)
			break;
		r = kvm->arch.kvm_ops->enable_nested(kvm);
		break;
2180 2181 2182 2183 2184 2185 2186 2187 2188
#endif
	default:
		r = -EINVAL;
		break;
	}

	return r;
}

2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217
#ifdef CONFIG_PPC_BOOK3S_64
/*
 * These functions check whether the underlying hardware is safe
 * against attacks based on observing the effects of speculatively
 * executed instructions, and whether it supplies instructions for
 * use in workarounds.  The information comes from firmware, either
 * via the device tree on powernv platforms or from an hcall on
 * pseries platforms.
 */
#ifdef CONFIG_PPC_PSERIES
static int pseries_get_cpu_char(struct kvm_ppc_cpu_char *cp)
{
	struct h_cpu_char_result c;
	unsigned long rc;

	if (!machine_is(pseries))
		return -ENOTTY;

	rc = plpar_get_cpu_characteristics(&c);
	if (rc == H_SUCCESS) {
		cp->character = c.character;
		cp->behaviour = c.behaviour;
		cp->character_mask = KVM_PPC_CPU_CHAR_SPEC_BAR_ORI31 |
			KVM_PPC_CPU_CHAR_BCCTRL_SERIALISED |
			KVM_PPC_CPU_CHAR_L1D_FLUSH_ORI30 |
			KVM_PPC_CPU_CHAR_L1D_FLUSH_TRIG2 |
			KVM_PPC_CPU_CHAR_L1D_THREAD_PRIV |
			KVM_PPC_CPU_CHAR_BR_HINT_HONOURED |
			KVM_PPC_CPU_CHAR_MTTRIG_THR_RECONF |
2218 2219
			KVM_PPC_CPU_CHAR_COUNT_CACHE_DIS |
			KVM_PPC_CPU_CHAR_BCCTR_FLUSH_ASSIST;
2220 2221
		cp->behaviour_mask = KVM_PPC_CPU_BEHAV_FAVOUR_SECURITY |
			KVM_PPC_CPU_BEHAV_L1D_FLUSH_PR |
2222 2223
			KVM_PPC_CPU_BEHAV_BNDS_CHK_SPEC_BAR |
			KVM_PPC_CPU_BEHAV_FLUSH_COUNT_CACHE;
2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281
	}
	return 0;
}
#else
static int pseries_get_cpu_char(struct kvm_ppc_cpu_char *cp)
{
	return -ENOTTY;
}
#endif

static inline bool have_fw_feat(struct device_node *fw_features,
				const char *state, const char *name)
{
	struct device_node *np;
	bool r = false;

	np = of_get_child_by_name(fw_features, name);
	if (np) {
		r = of_property_read_bool(np, state);
		of_node_put(np);
	}
	return r;
}

static int kvmppc_get_cpu_char(struct kvm_ppc_cpu_char *cp)
{
	struct device_node *np, *fw_features;
	int r;

	memset(cp, 0, sizeof(*cp));
	r = pseries_get_cpu_char(cp);
	if (r != -ENOTTY)
		return r;

	np = of_find_node_by_name(NULL, "ibm,opal");
	if (np) {
		fw_features = of_get_child_by_name(np, "fw-features");
		of_node_put(np);
		if (!fw_features)
			return 0;
		if (have_fw_feat(fw_features, "enabled",
				 "inst-spec-barrier-ori31,31,0"))
			cp->character |= KVM_PPC_CPU_CHAR_SPEC_BAR_ORI31;
		if (have_fw_feat(fw_features, "enabled",
				 "fw-bcctrl-serialized"))
			cp->character |= KVM_PPC_CPU_CHAR_BCCTRL_SERIALISED;
		if (have_fw_feat(fw_features, "enabled",
				 "inst-l1d-flush-ori30,30,0"))
			cp->character |= KVM_PPC_CPU_CHAR_L1D_FLUSH_ORI30;
		if (have_fw_feat(fw_features, "enabled",
				 "inst-l1d-flush-trig2"))
			cp->character |= KVM_PPC_CPU_CHAR_L1D_FLUSH_TRIG2;
		if (have_fw_feat(fw_features, "enabled",
				 "fw-l1d-thread-split"))
			cp->character |= KVM_PPC_CPU_CHAR_L1D_THREAD_PRIV;
		if (have_fw_feat(fw_features, "enabled",
				 "fw-count-cache-disabled"))
			cp->character |= KVM_PPC_CPU_CHAR_COUNT_CACHE_DIS;
2282 2283 2284
		if (have_fw_feat(fw_features, "enabled",
				 "fw-count-cache-flush-bcctr2,0,0"))
			cp->character |= KVM_PPC_CPU_CHAR_BCCTR_FLUSH_ASSIST;
2285 2286 2287 2288 2289
		cp->character_mask = KVM_PPC_CPU_CHAR_SPEC_BAR_ORI31 |
			KVM_PPC_CPU_CHAR_BCCTRL_SERIALISED |
			KVM_PPC_CPU_CHAR_L1D_FLUSH_ORI30 |
			KVM_PPC_CPU_CHAR_L1D_FLUSH_TRIG2 |
			KVM_PPC_CPU_CHAR_L1D_THREAD_PRIV |
2290 2291
			KVM_PPC_CPU_CHAR_COUNT_CACHE_DIS |
			KVM_PPC_CPU_CHAR_BCCTR_FLUSH_ASSIST;
2292 2293 2294 2295 2296 2297 2298 2299 2300 2301

		if (have_fw_feat(fw_features, "enabled",
				 "speculation-policy-favor-security"))
			cp->behaviour |= KVM_PPC_CPU_BEHAV_FAVOUR_SECURITY;
		if (!have_fw_feat(fw_features, "disabled",
				  "needs-l1d-flush-msr-pr-0-to-1"))
			cp->behaviour |= KVM_PPC_CPU_BEHAV_L1D_FLUSH_PR;
		if (!have_fw_feat(fw_features, "disabled",
				  "needs-spec-barrier-for-bound-checks"))
			cp->behaviour |= KVM_PPC_CPU_BEHAV_BNDS_CHK_SPEC_BAR;
2302 2303 2304
		if (have_fw_feat(fw_features, "enabled",
				 "needs-count-cache-flush-on-context-switch"))
			cp->behaviour |= KVM_PPC_CPU_BEHAV_FLUSH_COUNT_CACHE;
2305 2306
		cp->behaviour_mask = KVM_PPC_CPU_BEHAV_FAVOUR_SECURITY |
			KVM_PPC_CPU_BEHAV_L1D_FLUSH_PR |
2307 2308
			KVM_PPC_CPU_BEHAV_BNDS_CHK_SPEC_BAR |
			KVM_PPC_CPU_BEHAV_FLUSH_COUNT_CACHE;
2309 2310 2311 2312 2313 2314 2315 2316

		of_node_put(fw_features);
	}

	return 0;
}
#endif

2317 2318 2319
long kvm_arch_vm_ioctl(struct file *filp,
                       unsigned int ioctl, unsigned long arg)
{
2320
	struct kvm *kvm __maybe_unused = filp->private_data;
2321
	void __user *argp = (void __user *)arg;
2322 2323 2324
	long r;

	switch (ioctl) {
2325 2326
	case KVM_PPC_GET_PVINFO: {
		struct kvm_ppc_pvinfo pvinfo;
2327
		memset(&pvinfo, 0, sizeof(pvinfo));
2328 2329 2330 2331 2332 2333 2334 2335
		r = kvm_vm_ioctl_get_pvinfo(&pvinfo);
		if (copy_to_user(argp, &pvinfo, sizeof(pvinfo))) {
			r = -EFAULT;
			goto out;
		}

		break;
	}
2336
#ifdef CONFIG_SPAPR_TCE_IOMMU
2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349
	case KVM_CREATE_SPAPR_TCE_64: {
		struct kvm_create_spapr_tce_64 create_tce_64;

		r = -EFAULT;
		if (copy_from_user(&create_tce_64, argp, sizeof(create_tce_64)))
			goto out;
		if (create_tce_64.flags) {
			r = -EINVAL;
			goto out;
		}
		r = kvm_vm_ioctl_create_spapr_tce(kvm, &create_tce_64);
		goto out;
	}
2350 2351
	case KVM_CREATE_SPAPR_TCE: {
		struct kvm_create_spapr_tce create_tce;
2352
		struct kvm_create_spapr_tce_64 create_tce_64;
2353 2354 2355 2356

		r = -EFAULT;
		if (copy_from_user(&create_tce, argp, sizeof(create_tce)))
			goto out;
2357 2358 2359 2360 2361 2362 2363 2364

		create_tce_64.liobn = create_tce.liobn;
		create_tce_64.page_shift = IOMMU_PAGE_SHIFT_4K;
		create_tce_64.offset = 0;
		create_tce_64.size = create_tce.window_size >>
				IOMMU_PAGE_SHIFT_4K;
		create_tce_64.flags = 0;
		r = kvm_vm_ioctl_create_spapr_tce(kvm, &create_tce_64);
2365 2366
		goto out;
	}
2367 2368
#endif
#ifdef CONFIG_PPC_BOOK3S_64
2369 2370
	case KVM_PPC_GET_SMMU_INFO: {
		struct kvm_ppc_smmu_info info;
2371
		struct kvm *kvm = filp->private_data;
2372 2373

		memset(&info, 0, sizeof(info));
2374
		r = kvm->arch.kvm_ops->get_smmu_info(kvm, &info);
2375 2376 2377 2378
		if (r >= 0 && copy_to_user(argp, &info, sizeof(info)))
			r = -EFAULT;
		break;
	}
2379 2380 2381 2382 2383 2384
	case KVM_PPC_RTAS_DEFINE_TOKEN: {
		struct kvm *kvm = filp->private_data;

		r = kvm_vm_ioctl_rtas_define_token(kvm, argp);
		break;
	}
2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409
	case KVM_PPC_CONFIGURE_V3_MMU: {
		struct kvm *kvm = filp->private_data;
		struct kvm_ppc_mmuv3_cfg cfg;

		r = -EINVAL;
		if (!kvm->arch.kvm_ops->configure_mmu)
			goto out;
		r = -EFAULT;
		if (copy_from_user(&cfg, argp, sizeof(cfg)))
			goto out;
		r = kvm->arch.kvm_ops->configure_mmu(kvm, &cfg);
		break;
	}
	case KVM_PPC_GET_RMMU_INFO: {
		struct kvm *kvm = filp->private_data;
		struct kvm_ppc_rmmu_info info;

		r = -EINVAL;
		if (!kvm->arch.kvm_ops->get_rmmu_info)
			goto out;
		r = kvm->arch.kvm_ops->get_rmmu_info(kvm, &info);
		if (r >= 0 && copy_to_user(argp, &info, sizeof(info)))
			r = -EFAULT;
		break;
	}
2410 2411 2412 2413 2414 2415 2416 2417
	case KVM_PPC_GET_CPU_CHAR: {
		struct kvm_ppc_cpu_char cpuchar;

		r = kvmppc_get_cpu_char(&cpuchar);
		if (r >= 0 && copy_to_user(argp, &cpuchar, sizeof(cpuchar)))
			r = -EFAULT;
		break;
	}
2418 2419 2420 2421
	default: {
		struct kvm *kvm = filp->private_data;
		r = kvm->arch.kvm_ops->arch_vm_ioctl(filp, ioctl, arg);
	}
2422
#else /* CONFIG_PPC_BOOK3S_64 */
2423
	default:
2424
		r = -ENOTTY;
2425
#endif
2426
	}
2427
out:
2428 2429 2430
	return r;
}

2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447
static unsigned long lpid_inuse[BITS_TO_LONGS(KVMPPC_NR_LPIDS)];
static unsigned long nr_lpids;

long kvmppc_alloc_lpid(void)
{
	long lpid;

	do {
		lpid = find_first_zero_bit(lpid_inuse, KVMPPC_NR_LPIDS);
		if (lpid >= nr_lpids) {
			pr_err("%s: No LPIDs free\n", __func__);
			return -ENOMEM;
		}
	} while (test_and_set_bit(lpid, lpid_inuse));

	return lpid;
}
2448
EXPORT_SYMBOL_GPL(kvmppc_alloc_lpid);
2449 2450 2451 2452 2453

void kvmppc_claim_lpid(long lpid)
{
	set_bit(lpid, lpid_inuse);
}
2454
EXPORT_SYMBOL_GPL(kvmppc_claim_lpid);
2455 2456 2457 2458 2459

void kvmppc_free_lpid(long lpid)
{
	clear_bit(lpid, lpid_inuse);
}
2460
EXPORT_SYMBOL_GPL(kvmppc_free_lpid);
2461 2462 2463 2464 2465 2466

void kvmppc_init_lpid(unsigned long nr_lpids_param)
{
	nr_lpids = min_t(unsigned long, KVMPPC_NR_LPIDS, nr_lpids_param);
	memset(lpid_inuse, 0, sizeof(lpid_inuse));
}
2467
EXPORT_SYMBOL_GPL(kvmppc_init_lpid);
2468

2469 2470 2471 2472 2473
int kvm_arch_init(void *opaque)
{
	return 0;
}

2474
EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ppc_instr);