mmu.c 170.8 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
A
Avi Kivity 已提交
2 3 4 5 6 7 8 9 10
/*
 * Kernel-based Virtual Machine driver for Linux
 *
 * This module enables machines with Intel VT-x extensions to run virtual
 * machines without emulation or binary translation.
 *
 * MMU support
 *
 * Copyright (C) 2006 Qumranet, Inc.
N
Nicolas Kaiser 已提交
11
 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
A
Avi Kivity 已提交
12 13 14 15 16
 *
 * Authors:
 *   Yaniv Kamay  <yaniv@qumranet.com>
 *   Avi Kivity   <avi@qumranet.com>
 */
A
Avi Kivity 已提交
17

18
#include "irq.h"
19
#include "ioapic.h"
20
#include "mmu.h"
21
#include "mmu_internal.h"
22
#include "x86.h"
A
Avi Kivity 已提交
23
#include "kvm_cache_regs.h"
24
#include "kvm_emulate.h"
25
#include "cpuid.h"
A
Avi Kivity 已提交
26

27
#include <linux/kvm_host.h>
A
Avi Kivity 已提交
28 29 30 31
#include <linux/types.h>
#include <linux/string.h>
#include <linux/mm.h>
#include <linux/highmem.h>
32 33
#include <linux/moduleparam.h>
#include <linux/export.h>
34
#include <linux/swap.h>
M
Marcelo Tosatti 已提交
35
#include <linux/hugetlb.h>
36
#include <linux/compiler.h>
37
#include <linux/srcu.h>
38
#include <linux/slab.h>
39
#include <linux/sched/signal.h>
40
#include <linux/uaccess.h>
41
#include <linux/hash.h>
42
#include <linux/kern_levels.h>
43
#include <linux/kthread.h>
A
Avi Kivity 已提交
44

A
Avi Kivity 已提交
45
#include <asm/page.h>
46
#include <asm/memtype.h>
A
Avi Kivity 已提交
47
#include <asm/cmpxchg.h>
48
#include <asm/e820/api.h>
49
#include <asm/io.h>
50
#include <asm/vmx.h>
51
#include <asm/kvm_page_track.h>
52
#include "trace.h"
A
Avi Kivity 已提交
53

P
Paolo Bonzini 已提交
54 55 56
extern bool itlb_multihit_kvm_mitigation;

static int __read_mostly nx_huge_pages = -1;
57 58 59 60
#ifdef CONFIG_PREEMPT_RT
/* Recovery can cause latency spikes, disable it for PREEMPT_RT.  */
static uint __read_mostly nx_huge_pages_recovery_ratio = 0;
#else
61
static uint __read_mostly nx_huge_pages_recovery_ratio = 60;
62
#endif
P
Paolo Bonzini 已提交
63 64

static int set_nx_huge_pages(const char *val, const struct kernel_param *kp);
65
static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp);
P
Paolo Bonzini 已提交
66 67 68 69 70 71

static struct kernel_param_ops nx_huge_pages_ops = {
	.set = set_nx_huge_pages,
	.get = param_get_bool,
};

72 73 74 75 76
static struct kernel_param_ops nx_huge_pages_recovery_ratio_ops = {
	.set = set_nx_huge_pages_recovery_ratio,
	.get = param_get_uint,
};

P
Paolo Bonzini 已提交
77 78
module_param_cb(nx_huge_pages, &nx_huge_pages_ops, &nx_huge_pages, 0644);
__MODULE_PARM_TYPE(nx_huge_pages, "bool");
79 80 81
module_param_cb(nx_huge_pages_recovery_ratio, &nx_huge_pages_recovery_ratio_ops,
		&nx_huge_pages_recovery_ratio, 0644);
__MODULE_PARM_TYPE(nx_huge_pages_recovery_ratio, "uint");
P
Paolo Bonzini 已提交
82

83 84 85
static bool __read_mostly force_flush_and_sync_on_reuse;
module_param_named(flush_on_reuse, force_flush_and_sync_on_reuse, bool, 0644);

86 87 88 89 90 91 92
/*
 * When setting this variable to true it enables Two-Dimensional-Paging
 * where the hardware walks 2 page tables:
 * 1. the guest-virtual to guest-physical
 * 2. while doing 1. it walks guest-physical to host-physical
 * If the hardware supports that we don't need to do shadow paging.
 */
93
bool tdp_enabled = false;
94

95
static int max_huge_page_level __read_mostly;
96
static int max_tdp_level __read_mostly;
97

98 99 100 101
enum {
	AUDIT_PRE_PAGE_FAULT,
	AUDIT_POST_PAGE_FAULT,
	AUDIT_PRE_PTE_WRITE,
102 103 104
	AUDIT_POST_PTE_WRITE,
	AUDIT_PRE_SYNC,
	AUDIT_POST_SYNC
105
};
106

107
#undef MMU_DEBUG
108 109

#ifdef MMU_DEBUG
110 111
static bool dbg = 0;
module_param(dbg, bool, 0644);
112 113 114

#define pgprintk(x...) do { if (dbg) printk(x); } while (0)
#define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
115
#define MMU_WARN_ON(x) WARN_ON(x)
116 117 118
#else
#define pgprintk(x...) do { } while (0)
#define rmap_printk(x...) do { } while (0)
119
#define MMU_WARN_ON(x) do { } while (0)
120
#endif
A
Avi Kivity 已提交
121

122 123
#define PTE_PREFETCH_NUM		8

124
#define PT_FIRST_AVAIL_BITS_SHIFT 10
125 126 127 128 129 130 131 132 133
#define PT64_SECOND_AVAIL_BITS_SHIFT 54

/*
 * The mask used to denote special SPTEs, which can be either MMIO SPTEs or
 * Access Tracking SPTEs.
 */
#define SPTE_SPECIAL_MASK (3ULL << 52)
#define SPTE_AD_ENABLED_MASK (0ULL << 52)
#define SPTE_AD_DISABLED_MASK (1ULL << 52)
134
#define SPTE_AD_WRPROT_ONLY_MASK (2ULL << 52)
135
#define SPTE_MMIO_MASK (3ULL << 52)
A
Avi Kivity 已提交
136 137 138 139

#define PT64_LEVEL_BITS 9

#define PT64_LEVEL_SHIFT(level) \
M
Mike Day 已提交
140
		(PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
A
Avi Kivity 已提交
141 142 143 144 145 146 147 148

#define PT64_INDEX(address, level)\
	(((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))


#define PT32_LEVEL_BITS 10

#define PT32_LEVEL_SHIFT(level) \
M
Mike Day 已提交
149
		(PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
A
Avi Kivity 已提交
150

151 152 153
#define PT32_LVL_OFFSET_MASK(level) \
	(PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
						* PT32_LEVEL_BITS))) - 1))
A
Avi Kivity 已提交
154 155 156 157 158

#define PT32_INDEX(address, level)\
	(((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))


159 160 161 162 163
#ifdef CONFIG_DYNAMIC_PHYSICAL_MASK
#define PT64_BASE_ADDR_MASK (physical_mask & ~(u64)(PAGE_SIZE-1))
#else
#define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
#endif
164 165 166 167 168 169
#define PT64_LVL_ADDR_MASK(level) \
	(PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
						* PT64_LEVEL_BITS))) - 1))
#define PT64_LVL_OFFSET_MASK(level) \
	(PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
						* PT64_LEVEL_BITS))) - 1))
A
Avi Kivity 已提交
170 171 172 173

#define PT32_BASE_ADDR_MASK PAGE_MASK
#define PT32_DIR_BASE_ADDR_MASK \
	(PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
174 175 176
#define PT32_LVL_ADDR_MASK(level) \
	(PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
					    * PT32_LEVEL_BITS))) - 1))
A
Avi Kivity 已提交
177

178
#define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \
179
			| shadow_x_mask | shadow_nx_mask | shadow_me_mask)
A
Avi Kivity 已提交
180

181 182 183 184 185
#define ACC_EXEC_MASK    1
#define ACC_WRITE_MASK   PT_WRITABLE_MASK
#define ACC_USER_MASK    PT_USER_MASK
#define ACC_ALL          (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)

186 187 188 189
/* The mask for the R/X bits in EPT PTEs */
#define PT64_EPT_READABLE_MASK			0x1ull
#define PT64_EPT_EXECUTABLE_MASK		0x4ull

190 191
#include <trace/events/kvm.h>

192 193
#define SPTE_HOST_WRITEABLE	(1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
#define SPTE_MMU_WRITEABLE	(1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
194

195 196
#define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)

197 198 199
/* make pte_list_desc fit well in cache line */
#define PTE_LIST_EXT 3

200
/*
201 202
 * Return values of handle_mmio_page_fault, mmu.page_fault, and fast_page_fault().
 *
203 204 205
 * RET_PF_RETRY: let CPU fault again on the address.
 * RET_PF_EMULATE: mmio page fault, emulate the instruction directly.
 * RET_PF_INVALID: the spte is invalid, let the real page fault path update it.
206 207
 * RET_PF_FIXED: The faulting entry has been fixed.
 * RET_PF_SPURIOUS: The faulting entry was already fixed, e.g. by another vCPU.
208 209 210
 */
enum {
	RET_PF_RETRY = 0,
211 212 213 214
	RET_PF_EMULATE,
	RET_PF_INVALID,
	RET_PF_FIXED,
	RET_PF_SPURIOUS,
215 216
};

217 218 219
struct pte_list_desc {
	u64 *sptes[PTE_LIST_EXT];
	struct pte_list_desc *more;
220 221
};

222 223 224 225
struct kvm_shadow_walk_iterator {
	u64 addr;
	hpa_t shadow_addr;
	u64 *sptep;
226
	int level;
227 228 229
	unsigned index;
};

230 231 232 233 234 235 236
#define for_each_shadow_entry_using_root(_vcpu, _root, _addr, _walker)     \
	for (shadow_walk_init_using_root(&(_walker), (_vcpu),              \
					 (_root), (_addr));                \
	     shadow_walk_okay(&(_walker));			           \
	     shadow_walk_next(&(_walker)))

#define for_each_shadow_entry(_vcpu, _addr, _walker)            \
237 238 239 240
	for (shadow_walk_init(&(_walker), _vcpu, _addr);	\
	     shadow_walk_okay(&(_walker));			\
	     shadow_walk_next(&(_walker)))

241 242 243 244 245 246
#define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte)	\
	for (shadow_walk_init(&(_walker), _vcpu, _addr);		\
	     shadow_walk_okay(&(_walker)) &&				\
		({ spte = mmu_spte_get_lockless(_walker.sptep); 1; });	\
	     __shadow_walk_next(&(_walker), spte))

247
static struct kmem_cache *pte_list_desc_cache;
248
static struct kmem_cache *mmu_page_header_cache;
249
static struct percpu_counter kvm_total_used_mmu_pages;
250

S
Sheng Yang 已提交
251 252 253 254 255
static u64 __read_mostly shadow_nx_mask;
static u64 __read_mostly shadow_x_mask;	/* mutual exclusive with nx_mask */
static u64 __read_mostly shadow_user_mask;
static u64 __read_mostly shadow_accessed_mask;
static u64 __read_mostly shadow_dirty_mask;
256
static u64 __read_mostly shadow_mmio_value;
257
static u64 __read_mostly shadow_mmio_access_mask;
258
static u64 __read_mostly shadow_present_mask;
259
static u64 __read_mostly shadow_me_mask;
260

261
/*
262 263 264
 * SPTEs used by MMUs without A/D bits are marked with SPTE_AD_DISABLED_MASK;
 * shadow_acc_track_mask is the set of bits to be cleared in non-accessed
 * pages.
265 266 267 268 269 270 271 272 273 274 275 276 277
 */
static u64 __read_mostly shadow_acc_track_mask;

/*
 * The mask/shift to use for saving the original R/X bits when marking the PTE
 * as not-present for access tracking purposes. We do not save the W bit as the
 * PTEs being access tracked also need to be dirty tracked, so the W bit will be
 * restored only when a write is attempted to the page.
 */
static const u64 shadow_acc_track_saved_bits_mask = PT64_EPT_READABLE_MASK |
						    PT64_EPT_EXECUTABLE_MASK;
static const u64 shadow_acc_track_saved_bits_shift = PT64_SECOND_AVAIL_BITS_SHIFT;

278 279 280 281 282 283 284 285 286 287 288
/*
 * This mask must be set on all non-zero Non-Present or Reserved SPTEs in order
 * to guard against L1TF attacks.
 */
static u64 __read_mostly shadow_nonpresent_or_rsvd_mask;

/*
 * The number of high-order 1 bits to use in the mask above.
 */
static const u64 shadow_nonpresent_or_rsvd_mask_len = 5;

289 290 291 292 293 294 295 296 297 298
/*
 * In some cases, we need to preserve the GFN of a non-present or reserved
 * SPTE when we usurp the upper five bits of the physical address space to
 * defend against L1TF, e.g. for MMIO SPTEs.  To preserve the GFN, we'll
 * shift bits of the GFN that overlap with shadow_nonpresent_or_rsvd_mask
 * left into the reserved bits, i.e. the GFN in the SPTE will be split into
 * high and low parts.  This mask covers the lower bits of the GFN.
 */
static u64 __read_mostly shadow_nonpresent_or_rsvd_lower_gfn_mask;

299 300 301 302 303
/*
 * The number of non-reserved physical address bits irrespective of features
 * that repurpose legal bits, e.g. MKTME.
 */
static u8 __read_mostly shadow_phys_bits;
304

305
static void mmu_spte_set(u64 *sptep, u64 spte);
306
static bool is_executable_pte(u64 spte);
307 308
static union kvm_mmu_page_role
kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu);
309

310 311 312
#define CREATE_TRACE_POINTS
#include "mmutrace.h"

313 314 315

static inline bool kvm_available_flush_tlb_with_range(void)
{
316
	return kvm_x86_ops.tlb_remote_flush_with_range;
317 318 319 320 321 322 323
}

static void kvm_flush_remote_tlbs_with_range(struct kvm *kvm,
		struct kvm_tlb_range *range)
{
	int ret = -ENOTSUPP;

324 325
	if (range && kvm_x86_ops.tlb_remote_flush_with_range)
		ret = kvm_x86_ops.tlb_remote_flush_with_range(kvm, range);
326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341

	if (ret)
		kvm_flush_remote_tlbs(kvm);
}

static void kvm_flush_remote_tlbs_with_address(struct kvm *kvm,
		u64 start_gfn, u64 pages)
{
	struct kvm_tlb_range range;

	range.start_gfn = start_gfn;
	range.pages = pages;

	kvm_flush_remote_tlbs_with_range(kvm, &range);
}

P
Paolo Bonzini 已提交
342
void kvm_mmu_set_mmio_spte_mask(u64 mmio_value, u64 access_mask)
343
{
344
	BUG_ON((u64)(unsigned)access_mask != access_mask);
345 346
	WARN_ON(mmio_value & (shadow_nonpresent_or_rsvd_mask << shadow_nonpresent_or_rsvd_mask_len));
	WARN_ON(mmio_value & shadow_nonpresent_or_rsvd_lower_gfn_mask);
347
	shadow_mmio_value = mmio_value | SPTE_MMIO_MASK;
348
	shadow_mmio_access_mask = access_mask;
349 350 351
}
EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);

352 353
static bool is_mmio_spte(u64 spte)
{
P
Paolo Bonzini 已提交
354
	return (spte & SPTE_SPECIAL_MASK) == SPTE_MMIO_MASK;
355 356
}

357 358 359 360 361
static inline bool sp_ad_disabled(struct kvm_mmu_page *sp)
{
	return sp->role.ad_disabled;
}

362 363 364 365 366 367 368 369 370 371 372
static inline bool kvm_vcpu_ad_need_write_protect(struct kvm_vcpu *vcpu)
{
	/*
	 * When using the EPT page-modification log, the GPAs in the log
	 * would come from L2 rather than L1.  Therefore, we need to rely
	 * on write protection to record dirty pages.  This also bypasses
	 * PML, since writes now result in a vmexit.
	 */
	return vcpu->arch.mmu == &vcpu->arch.guest_mmu;
}

373 374
static inline bool spte_ad_enabled(u64 spte)
{
375
	MMU_WARN_ON(is_mmio_spte(spte));
376 377 378 379 380 381 382
	return (spte & SPTE_SPECIAL_MASK) != SPTE_AD_DISABLED_MASK;
}

static inline bool spte_ad_need_write_protect(u64 spte)
{
	MMU_WARN_ON(is_mmio_spte(spte));
	return (spte & SPTE_SPECIAL_MASK) != SPTE_AD_ENABLED_MASK;
383 384
}

P
Paolo Bonzini 已提交
385 386 387 388 389
static bool is_nx_huge_page_enabled(void)
{
	return READ_ONCE(nx_huge_pages);
}

390 391
static inline u64 spte_shadow_accessed_mask(u64 spte)
{
392
	MMU_WARN_ON(is_mmio_spte(spte));
393 394 395 396 397
	return spte_ad_enabled(spte) ? shadow_accessed_mask : 0;
}

static inline u64 spte_shadow_dirty_mask(u64 spte)
{
398
	MMU_WARN_ON(is_mmio_spte(spte));
399 400 401
	return spte_ad_enabled(spte) ? shadow_dirty_mask : 0;
}

402 403
static inline bool is_access_track_spte(u64 spte)
{
404
	return !spte_ad_enabled(spte) && (spte & shadow_acc_track_mask) == 0;
405 406
}

407
/*
408 409
 * Due to limited space in PTEs, the MMIO generation is a 19 bit subset of
 * the memslots generation and is derived as follows:
410
 *
411 412
 * Bits 0-8 of the MMIO generation are propagated to spte bits 3-11
 * Bits 9-18 of the MMIO generation are propagated to spte bits 52-61
413
 *
414 415 416 417 418 419
 * The KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS flag is intentionally not included in
 * the MMIO generation number, as doing so would require stealing a bit from
 * the "real" generation number and thus effectively halve the maximum number
 * of MMIO generations that can be handled before encountering a wrap (which
 * requires a full MMU zap).  The flag is instead explicitly queried when
 * checking for MMIO spte cache hits.
420
 */
421
#define MMIO_SPTE_GEN_MASK		GENMASK_ULL(17, 0)
422

423 424 425 426
#define MMIO_SPTE_GEN_LOW_START		3
#define MMIO_SPTE_GEN_LOW_END		11
#define MMIO_SPTE_GEN_LOW_MASK		GENMASK_ULL(MMIO_SPTE_GEN_LOW_END, \
						    MMIO_SPTE_GEN_LOW_START)
427

428 429
#define MMIO_SPTE_GEN_HIGH_START	PT64_SECOND_AVAIL_BITS_SHIFT
#define MMIO_SPTE_GEN_HIGH_END		62
430 431
#define MMIO_SPTE_GEN_HIGH_MASK		GENMASK_ULL(MMIO_SPTE_GEN_HIGH_END, \
						    MMIO_SPTE_GEN_HIGH_START)
432

433
static u64 generation_mmio_spte_mask(u64 gen)
434 435 436
{
	u64 mask;

437
	WARN_ON(gen & ~MMIO_SPTE_GEN_MASK);
438
	BUILD_BUG_ON((MMIO_SPTE_GEN_HIGH_MASK | MMIO_SPTE_GEN_LOW_MASK) & SPTE_SPECIAL_MASK);
439

440 441
	mask = (gen << MMIO_SPTE_GEN_LOW_START) & MMIO_SPTE_GEN_LOW_MASK;
	mask |= (gen << MMIO_SPTE_GEN_HIGH_START) & MMIO_SPTE_GEN_HIGH_MASK;
442 443 444
	return mask;
}

445
static u64 get_mmio_spte_generation(u64 spte)
446
{
447
	u64 gen;
448

449 450
	gen = (spte & MMIO_SPTE_GEN_LOW_MASK) >> MMIO_SPTE_GEN_LOW_START;
	gen |= (spte & MMIO_SPTE_GEN_HIGH_MASK) >> MMIO_SPTE_GEN_HIGH_START;
451 452 453
	return gen;
}

454
static u64 make_mmio_spte(struct kvm_vcpu *vcpu, u64 gfn, unsigned int access)
455
{
456

457
	u64 gen = kvm_vcpu_memslots(vcpu)->generation & MMIO_SPTE_GEN_MASK;
458
	u64 mask = generation_mmio_spte_mask(gen);
459
	u64 gpa = gfn << PAGE_SHIFT;
460

461
	access &= shadow_mmio_access_mask;
462 463 464 465
	mask |= shadow_mmio_value | access;
	mask |= gpa | shadow_nonpresent_or_rsvd_mask;
	mask |= (gpa & shadow_nonpresent_or_rsvd_mask)
		<< shadow_nonpresent_or_rsvd_mask_len;
466

467 468 469 470 471 472 473 474 475 476 477
	return mask;
}

static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
			   unsigned int access)
{
	u64 mask = make_mmio_spte(vcpu, gfn, access);
	unsigned int gen = get_mmio_spte_generation(mask);

	access = mask & ACC_ALL;

478
	trace_mark_mmio_spte(sptep, gfn, access, gen);
479
	mmu_spte_set(sptep, mask);
480 481 482 483
}

static gfn_t get_mmio_spte_gfn(u64 spte)
{
484
	u64 gpa = spte & shadow_nonpresent_or_rsvd_lower_gfn_mask;
485 486 487 488 489

	gpa |= (spte >> shadow_nonpresent_or_rsvd_mask_len)
	       & shadow_nonpresent_or_rsvd_mask;

	return gpa >> PAGE_SHIFT;
490 491 492 493
}

static unsigned get_mmio_spte_access(u64 spte)
{
494
	return spte & shadow_mmio_access_mask;
495 496
}

497
static bool set_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
498
			  kvm_pfn_t pfn, unsigned int access)
499 500
{
	if (unlikely(is_noslot_pfn(pfn))) {
501
		mark_mmio_spte(vcpu, sptep, gfn, access);
502 503 504 505 506
		return true;
	}

	return false;
}
507

508
static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
509
{
510
	u64 kvm_gen, spte_gen, gen;
511

512 513 514
	gen = kvm_vcpu_memslots(vcpu)->generation;
	if (unlikely(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS))
		return false;
515

516
	kvm_gen = gen & MMIO_SPTE_GEN_MASK;
517 518 519 520
	spte_gen = get_mmio_spte_generation(spte);

	trace_check_mmio_spte(spte, kvm_gen, spte_gen);
	return likely(kvm_gen == spte_gen);
521 522
}

523 524 525
static gpa_t translate_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
                                  struct x86_exception *exception)
{
526
	/* Check if guest physical address doesn't exceed guest maximum */
527
	if (kvm_vcpu_is_illegal_gpa(vcpu, gpa)) {
528 529 530 531
		exception->error_code |= PFERR_RSVD_MASK;
		return UNMAPPED_GVA;
	}

532 533 534
        return gpa;
}

535 536 537 538 539 540 541
/*
 * Sets the shadow PTE masks used by the MMU.
 *
 * Assumptions:
 *  - Setting either @accessed_mask or @dirty_mask requires setting both
 *  - At least one of @accessed_mask or @acc_track_mask must be set
 */
S
Sheng Yang 已提交
542
void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
543
		u64 dirty_mask, u64 nx_mask, u64 x_mask, u64 p_mask,
544
		u64 acc_track_mask, u64 me_mask)
S
Sheng Yang 已提交
545
{
546 547
	BUG_ON(!dirty_mask != !accessed_mask);
	BUG_ON(!accessed_mask && !acc_track_mask);
548
	BUG_ON(acc_track_mask & SPTE_SPECIAL_MASK);
549

S
Sheng Yang 已提交
550 551 552 553 554
	shadow_user_mask = user_mask;
	shadow_accessed_mask = accessed_mask;
	shadow_dirty_mask = dirty_mask;
	shadow_nx_mask = nx_mask;
	shadow_x_mask = x_mask;
555
	shadow_present_mask = p_mask;
556
	shadow_acc_track_mask = acc_track_mask;
557
	shadow_me_mask = me_mask;
S
Sheng Yang 已提交
558 559 560
}
EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);

561 562 563
static u8 kvm_get_shadow_phys_bits(void)
{
	/*
564 565 566 567
	 * boot_cpu_data.x86_phys_bits is reduced when MKTME or SME are detected
	 * in CPU detection code, but the processor treats those reduced bits as
	 * 'keyID' thus they are not reserved bits. Therefore KVM needs to look at
	 * the physical address bits reported by CPUID.
568
	 */
569 570
	if (likely(boot_cpu_data.extended_cpuid_level >= 0x80000008))
		return cpuid_eax(0x80000008) & 0xff;
571

572 573 574 575 576 577
	/*
	 * Quite weird to have VMX or SVM but not MAXPHYADDR; probably a VM with
	 * custom CPUID.  Proceed with whatever the kernel found since these features
	 * aren't virtualizable (SME/SEV also require CPUIDs higher than 0x80000008).
	 */
	return boot_cpu_data.x86_phys_bits;
578 579
}

580
static void kvm_mmu_reset_all_pte_masks(void)
581
{
582 583
	u8 low_phys_bits;

584 585 586 587 588 589 590
	shadow_user_mask = 0;
	shadow_accessed_mask = 0;
	shadow_dirty_mask = 0;
	shadow_nx_mask = 0;
	shadow_x_mask = 0;
	shadow_present_mask = 0;
	shadow_acc_track_mask = 0;
591

592 593
	shadow_phys_bits = kvm_get_shadow_phys_bits();

594 595 596 597
	/*
	 * If the CPU has 46 or less physical address bits, then set an
	 * appropriate mask to guard against L1TF attacks. Otherwise, it is
	 * assumed that the CPU is not vulnerable to L1TF.
598 599 600 601 602
	 *
	 * Some Intel CPUs address the L1 cache using more PA bits than are
	 * reported by CPUID. Use the PA width of the L1 cache when possible
	 * to achieve more effective mitigation, e.g. if system RAM overlaps
	 * the most significant bits of legal physical address space.
603
	 */
604
	shadow_nonpresent_or_rsvd_mask = 0;
605 606 607 608 609 610
	low_phys_bits = boot_cpu_data.x86_phys_bits;
	if (boot_cpu_has_bug(X86_BUG_L1TF) &&
	    !WARN_ON_ONCE(boot_cpu_data.x86_cache_bits >=
			  52 - shadow_nonpresent_or_rsvd_mask_len)) {
		low_phys_bits = boot_cpu_data.x86_cache_bits
			- shadow_nonpresent_or_rsvd_mask_len;
611
		shadow_nonpresent_or_rsvd_mask =
612 613
			rsvd_bits(low_phys_bits, boot_cpu_data.x86_cache_bits - 1);
	}
614

615 616
	shadow_nonpresent_or_rsvd_lower_gfn_mask =
		GENMASK_ULL(low_phys_bits - 1, PAGE_SHIFT);
617 618
}

A
Avi Kivity 已提交
619 620 621 622 623
static int is_cpuid_PSE36(void)
{
	return 1;
}

624 625
static int is_nx(struct kvm_vcpu *vcpu)
{
626
	return vcpu->arch.efer & EFER_NX;
627 628
}

629 630
static int is_shadow_present_pte(u64 pte)
{
631
	return (pte != 0) && !is_mmio_spte(pte);
632 633
}

M
Marcelo Tosatti 已提交
634 635 636 637 638
static int is_large_pte(u64 pte)
{
	return pte & PT_PAGE_SIZE_MASK;
}

639 640
static int is_last_spte(u64 pte, int level)
{
641
	if (level == PG_LEVEL_4K)
642
		return 1;
643
	if (is_large_pte(pte))
644 645 646 647
		return 1;
	return 0;
}

648 649 650 651 652
static bool is_executable_pte(u64 spte)
{
	return (spte & (shadow_x_mask | shadow_nx_mask)) == shadow_x_mask;
}

D
Dan Williams 已提交
653
static kvm_pfn_t spte_to_pfn(u64 pte)
654
{
655
	return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
656 657
}

658 659 660 661 662 663 664
static gfn_t pse36_gfn_delta(u32 gpte)
{
	int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;

	return (gpte & PT32_DIR_PSE36_MASK) << shift;
}

665
#ifdef CONFIG_X86_64
A
Avi Kivity 已提交
666
static void __set_spte(u64 *sptep, u64 spte)
667
{
668
	WRITE_ONCE(*sptep, spte);
669 670
}

671
static void __update_clear_spte_fast(u64 *sptep, u64 spte)
672
{
673
	WRITE_ONCE(*sptep, spte);
674 675 676 677 678 679
}

static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
{
	return xchg(sptep, spte);
}
680 681 682

static u64 __get_spte_lockless(u64 *sptep)
{
683
	return READ_ONCE(*sptep);
684
}
685
#else
686 687 688 689 690 691 692
union split_spte {
	struct {
		u32 spte_low;
		u32 spte_high;
	};
	u64 spte;
};
693

694 695
static void count_spte_clear(u64 *sptep, u64 spte)
{
696
	struct kvm_mmu_page *sp =  sptep_to_sp(sptep);
697 698 699 700 701 702 703 704 705

	if (is_shadow_present_pte(spte))
		return;

	/* Ensure the spte is completely set before we increase the count */
	smp_wmb();
	sp->clear_spte_count++;
}

706 707 708
static void __set_spte(u64 *sptep, u64 spte)
{
	union split_spte *ssptep, sspte;
709

710 711 712 713 714 715 716 717 718 719 720 721
	ssptep = (union split_spte *)sptep;
	sspte = (union split_spte)spte;

	ssptep->spte_high = sspte.spte_high;

	/*
	 * If we map the spte from nonpresent to present, We should store
	 * the high bits firstly, then set present bit, so cpu can not
	 * fetch this spte while we are setting the spte.
	 */
	smp_wmb();

722
	WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
723 724
}

725 726 727 728 729 730 731
static void __update_clear_spte_fast(u64 *sptep, u64 spte)
{
	union split_spte *ssptep, sspte;

	ssptep = (union split_spte *)sptep;
	sspte = (union split_spte)spte;

732
	WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
733 734 735 736 737 738 739 740

	/*
	 * If we map the spte from present to nonpresent, we should clear
	 * present bit firstly to avoid vcpu fetch the old high bits.
	 */
	smp_wmb();

	ssptep->spte_high = sspte.spte_high;
741
	count_spte_clear(sptep, spte);
742 743 744 745 746 747 748 749 750 751 752
}

static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
{
	union split_spte *ssptep, sspte, orig;

	ssptep = (union split_spte *)sptep;
	sspte = (union split_spte)spte;

	/* xchg acts as a barrier before the setting of the high bits */
	orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
753 754
	orig.spte_high = ssptep->spte_high;
	ssptep->spte_high = sspte.spte_high;
755
	count_spte_clear(sptep, spte);
756 757 758

	return orig.spte;
}
759 760 761

/*
 * The idea using the light way get the spte on x86_32 guest is from
762
 * gup_get_pte (mm/gup.c).
763 764 765 766 767 768 769 770 771 772 773 774 775 776
 *
 * An spte tlb flush may be pending, because kvm_set_pte_rmapp
 * coalesces them and we are running out of the MMU lock.  Therefore
 * we need to protect against in-progress updates of the spte.
 *
 * Reading the spte while an update is in progress may get the old value
 * for the high part of the spte.  The race is fine for a present->non-present
 * change (because the high part of the spte is ignored for non-present spte),
 * but for a present->present change we must reread the spte.
 *
 * All such changes are done in two steps (present->non-present and
 * non-present->present), hence it is enough to count the number of
 * present->non-present updates: if it changed while reading the spte,
 * we might have hit the race.  This is done using clear_spte_count.
777 778 779
 */
static u64 __get_spte_lockless(u64 *sptep)
{
780
	struct kvm_mmu_page *sp =  sptep_to_sp(sptep);
781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799
	union split_spte spte, *orig = (union split_spte *)sptep;
	int count;

retry:
	count = sp->clear_spte_count;
	smp_rmb();

	spte.spte_low = orig->spte_low;
	smp_rmb();

	spte.spte_high = orig->spte_high;
	smp_rmb();

	if (unlikely(spte.spte_low != orig->spte_low ||
	      count != sp->clear_spte_count))
		goto retry;

	return spte.spte;
}
800 801
#endif

802
static bool spte_can_locklessly_be_made_writable(u64 spte)
803
{
804 805
	return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) ==
		(SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);
806 807
}

808 809
static bool spte_has_volatile_bits(u64 spte)
{
810 811 812
	if (!is_shadow_present_pte(spte))
		return false;

813
	/*
814
	 * Always atomically update spte if it can be updated
815 816 817 818
	 * out of mmu-lock, it can ensure dirty bit is not lost,
	 * also, it can help us to get a stable is_writable_pte()
	 * to ensure tlb flush is not missed.
	 */
819 820
	if (spte_can_locklessly_be_made_writable(spte) ||
	    is_access_track_spte(spte))
821 822
		return true;

823
	if (spte_ad_enabled(spte)) {
824 825 826 827
		if ((spte & shadow_accessed_mask) == 0 ||
	    	    (is_writable_pte(spte) && (spte & shadow_dirty_mask) == 0))
			return true;
	}
828

829
	return false;
830 831
}

832
static bool is_accessed_spte(u64 spte)
833
{
834 835 836 837
	u64 accessed_mask = spte_shadow_accessed_mask(spte);

	return accessed_mask ? spte & accessed_mask
			     : !is_access_track_spte(spte);
838 839
}

840
static bool is_dirty_spte(u64 spte)
841
{
842 843 844
	u64 dirty_mask = spte_shadow_dirty_mask(spte);

	return dirty_mask ? spte & dirty_mask : spte & PT_WRITABLE_MASK;
845 846
}

847 848 849 850 851 852 853 854 855 856 857 858
/* Rules for using mmu_spte_set:
 * Set the sptep from nonpresent to present.
 * Note: the sptep being assigned *must* be either not present
 * or in a state where the hardware will not attempt to update
 * the spte.
 */
static void mmu_spte_set(u64 *sptep, u64 new_spte)
{
	WARN_ON(is_shadow_present_pte(*sptep));
	__set_spte(sptep, new_spte);
}

859 860 861
/*
 * Update the SPTE (excluding the PFN), but do not track changes in its
 * accessed/dirty status.
862
 */
863
static u64 mmu_spte_update_no_track(u64 *sptep, u64 new_spte)
864
{
865
	u64 old_spte = *sptep;
866

867
	WARN_ON(!is_shadow_present_pte(new_spte));
868

869 870
	if (!is_shadow_present_pte(old_spte)) {
		mmu_spte_set(sptep, new_spte);
871
		return old_spte;
872
	}
873

874
	if (!spte_has_volatile_bits(old_spte))
875
		__update_clear_spte_fast(sptep, new_spte);
876
	else
877
		old_spte = __update_clear_spte_slow(sptep, new_spte);
878

879 880
	WARN_ON(spte_to_pfn(old_spte) != spte_to_pfn(new_spte));

881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902
	return old_spte;
}

/* Rules for using mmu_spte_update:
 * Update the state bits, it means the mapped pfn is not changed.
 *
 * Whenever we overwrite a writable spte with a read-only one we
 * should flush remote TLBs. Otherwise rmap_write_protect
 * will find a read-only spte, even though the writable spte
 * might be cached on a CPU's TLB, the return value indicates this
 * case.
 *
 * Returns true if the TLB needs to be flushed
 */
static bool mmu_spte_update(u64 *sptep, u64 new_spte)
{
	bool flush = false;
	u64 old_spte = mmu_spte_update_no_track(sptep, new_spte);

	if (!is_shadow_present_pte(old_spte))
		return false;

903 904
	/*
	 * For the spte updated out of mmu-lock is safe, since
905
	 * we always atomically update it, see the comments in
906 907
	 * spte_has_volatile_bits().
	 */
908
	if (spte_can_locklessly_be_made_writable(old_spte) &&
909
	      !is_writable_pte(new_spte))
910
		flush = true;
911

912
	/*
913
	 * Flush TLB when accessed/dirty states are changed in the page tables,
914 915 916
	 * to guarantee consistency between TLB and page tables.
	 */

917 918
	if (is_accessed_spte(old_spte) && !is_accessed_spte(new_spte)) {
		flush = true;
919
		kvm_set_pfn_accessed(spte_to_pfn(old_spte));
920 921 922 923
	}

	if (is_dirty_spte(old_spte) && !is_dirty_spte(new_spte)) {
		flush = true;
924
		kvm_set_pfn_dirty(spte_to_pfn(old_spte));
925
	}
926

927
	return flush;
928 929
}

930 931 932 933
/*
 * Rules for using mmu_spte_clear_track_bits:
 * It sets the sptep from present to nonpresent, and track the
 * state bits, it is used to clear the last level sptep.
934
 * Returns non-zero if the PTE was previously valid.
935 936 937
 */
static int mmu_spte_clear_track_bits(u64 *sptep)
{
D
Dan Williams 已提交
938
	kvm_pfn_t pfn;
939 940 941
	u64 old_spte = *sptep;

	if (!spte_has_volatile_bits(old_spte))
942
		__update_clear_spte_fast(sptep, 0ull);
943
	else
944
		old_spte = __update_clear_spte_slow(sptep, 0ull);
945

946
	if (!is_shadow_present_pte(old_spte))
947 948 949
		return 0;

	pfn = spte_to_pfn(old_spte);
950 951 952 953 954 955

	/*
	 * KVM does not hold the refcount of the page used by
	 * kvm mmu, before reclaiming the page, we should
	 * unmap it from mmu first.
	 */
956
	WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
957

958
	if (is_accessed_spte(old_spte))
959
		kvm_set_pfn_accessed(pfn);
960 961

	if (is_dirty_spte(old_spte))
962
		kvm_set_pfn_dirty(pfn);
963

964 965 966 967 968 969 970 971 972 973
	return 1;
}

/*
 * Rules for using mmu_spte_clear_no_track:
 * Directly clear spte without caring the state bits of sptep,
 * it is used to set the upper level spte.
 */
static void mmu_spte_clear_no_track(u64 *sptep)
{
974
	__update_clear_spte_fast(sptep, 0ull);
975 976
}

977 978 979 980 981
static u64 mmu_spte_get_lockless(u64 *sptep)
{
	return __get_spte_lockless(sptep);
}

982 983
static u64 mark_spte_for_access_track(u64 spte)
{
984
	if (spte_ad_enabled(spte))
985 986
		return spte & ~shadow_accessed_mask;

987
	if (is_access_track_spte(spte))
988 989 990
		return spte;

	/*
991 992 993
	 * Making an Access Tracking PTE will result in removal of write access
	 * from the PTE. So, verify that we will be able to restore the write
	 * access in the fast page fault path later on.
994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009
	 */
	WARN_ONCE((spte & PT_WRITABLE_MASK) &&
		  !spte_can_locklessly_be_made_writable(spte),
		  "kvm: Writable SPTE is not locklessly dirty-trackable\n");

	WARN_ONCE(spte & (shadow_acc_track_saved_bits_mask <<
			  shadow_acc_track_saved_bits_shift),
		  "kvm: Access Tracking saved bit locations are not zero\n");

	spte |= (spte & shadow_acc_track_saved_bits_mask) <<
		shadow_acc_track_saved_bits_shift;
	spte &= ~shadow_acc_track_mask;

	return spte;
}

1010 1011 1012 1013 1014 1015 1016
/* Restore an acc-track PTE back to a regular PTE */
static u64 restore_acc_track_spte(u64 spte)
{
	u64 new_spte = spte;
	u64 saved_bits = (spte >> shadow_acc_track_saved_bits_shift)
			 & shadow_acc_track_saved_bits_mask;

1017
	WARN_ON_ONCE(spte_ad_enabled(spte));
1018 1019 1020 1021 1022 1023 1024 1025 1026 1027
	WARN_ON_ONCE(!is_access_track_spte(spte));

	new_spte &= ~shadow_acc_track_mask;
	new_spte &= ~(shadow_acc_track_saved_bits_mask <<
		      shadow_acc_track_saved_bits_shift);
	new_spte |= saved_bits;

	return new_spte;
}

1028 1029 1030 1031 1032 1033 1034 1035
/* Returns the Accessed status of the PTE and resets it at the same time. */
static bool mmu_spte_age(u64 *sptep)
{
	u64 spte = mmu_spte_get_lockless(sptep);

	if (!is_accessed_spte(spte))
		return false;

1036
	if (spte_ad_enabled(spte)) {
1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053
		clear_bit((ffs(shadow_accessed_mask) - 1),
			  (unsigned long *)sptep);
	} else {
		/*
		 * Capture the dirty status of the page, so that it doesn't get
		 * lost when the SPTE is marked for access tracking.
		 */
		if (is_writable_pte(spte))
			kvm_set_pfn_dirty(spte_to_pfn(spte));

		spte = mark_spte_for_access_track(spte);
		mmu_spte_update_no_track(sptep, spte);
	}

	return true;
}

1054 1055
static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
{
1056 1057 1058 1059 1060
	/*
	 * Prevent page table teardown by making any free-er wait during
	 * kvm_flush_remote_tlbs() IPI to all active vcpus.
	 */
	local_irq_disable();
1061

1062 1063 1064 1065
	/*
	 * Make sure a following spte read is not reordered ahead of the write
	 * to vcpu->mode.
	 */
1066
	smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES);
1067 1068 1069 1070
}

static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
{
1071 1072
	/*
	 * Make sure the write to vcpu->mode is not reordered in front of
1073
	 * reads to sptes.  If it does, kvm_mmu_commit_zap_page() can see us
1074 1075
	 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
	 */
1076
	smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE);
1077
	local_irq_enable();
1078 1079
}

1080
static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu, bool maybe_indirect)
1081
{
1082 1083
	int r;

1084
	/* 1 rmap, 1 parent PTE per level, and the prefetched rmaps. */
1085 1086
	r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
				       1 + PT64_ROOT_MAX_LEVEL + PTE_PREFETCH_NUM);
1087
	if (r)
1088
		return r;
1089 1090
	r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_shadow_page_cache,
				       PT64_ROOT_MAX_LEVEL);
1091
	if (r)
1092
		return r;
1093
	if (maybe_indirect) {
1094 1095
		r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_gfn_array_cache,
					       PT64_ROOT_MAX_LEVEL);
1096 1097 1098
		if (r)
			return r;
	}
1099 1100
	return kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
					  PT64_ROOT_MAX_LEVEL);
1101 1102 1103 1104
}

static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
{
1105 1106 1107 1108
	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache);
	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_shadow_page_cache);
	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_gfn_array_cache);
	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache);
1109 1110
}

1111
static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
1112
{
1113
	return kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
1114 1115
}

1116
static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
1117
{
1118
	kmem_cache_free(pte_list_desc_cache, pte_list_desc);
1119 1120
}

1121 1122 1123 1124 1125 1126 1127 1128 1129 1130
static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
{
	if (!sp->role.direct)
		return sp->gfns[index];

	return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
}

static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
{
1131
	if (!sp->role.direct) {
1132
		sp->gfns[index] = gfn;
1133 1134 1135 1136 1137 1138 1139 1140
		return;
	}

	if (WARN_ON(gfn != kvm_mmu_page_get_gfn(sp, index)))
		pr_err_ratelimited("gfn mismatch under direct page %llx "
				   "(expected %llx, got %llx)\n",
				   sp->gfn,
				   kvm_mmu_page_get_gfn(sp, index), gfn);
1141 1142
}

M
Marcelo Tosatti 已提交
1143
/*
1144 1145
 * Return the pointer to the large page information for a given gfn,
 * handling slots that are not large page aligned.
M
Marcelo Tosatti 已提交
1146
 */
1147 1148 1149
static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
					      struct kvm_memory_slot *slot,
					      int level)
M
Marcelo Tosatti 已提交
1150 1151 1152
{
	unsigned long idx;

1153
	idx = gfn_to_index(gfn, slot->base_gfn, level);
1154
	return &slot->arch.lpage_info[level - 2][idx];
M
Marcelo Tosatti 已提交
1155 1156
}

1157 1158 1159 1160 1161 1162
static void update_gfn_disallow_lpage_count(struct kvm_memory_slot *slot,
					    gfn_t gfn, int count)
{
	struct kvm_lpage_info *linfo;
	int i;

1163
	for (i = PG_LEVEL_2M; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) {
1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179
		linfo = lpage_info_slot(gfn, slot, i);
		linfo->disallow_lpage += count;
		WARN_ON(linfo->disallow_lpage < 0);
	}
}

void kvm_mmu_gfn_disallow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
{
	update_gfn_disallow_lpage_count(slot, gfn, 1);
}

void kvm_mmu_gfn_allow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
{
	update_gfn_disallow_lpage_count(slot, gfn, -1);
}

1180
static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
M
Marcelo Tosatti 已提交
1181
{
1182
	struct kvm_memslots *slots;
1183
	struct kvm_memory_slot *slot;
1184
	gfn_t gfn;
M
Marcelo Tosatti 已提交
1185

1186
	kvm->arch.indirect_shadow_pages++;
1187
	gfn = sp->gfn;
1188 1189
	slots = kvm_memslots_for_spte_role(kvm, sp->role);
	slot = __gfn_to_memslot(slots, gfn);
1190 1191

	/* the non-leaf shadow pages are keeping readonly. */
1192
	if (sp->role.level > PG_LEVEL_4K)
1193 1194 1195
		return kvm_slot_page_track_add_page(kvm, slot, gfn,
						    KVM_PAGE_TRACK_WRITE);

1196
	kvm_mmu_gfn_disallow_lpage(slot, gfn);
M
Marcelo Tosatti 已提交
1197 1198
}

P
Paolo Bonzini 已提交
1199 1200 1201 1202 1203 1204
static void account_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
{
	if (sp->lpage_disallowed)
		return;

	++kvm->stat.nx_lpage_splits;
1205 1206
	list_add_tail(&sp->lpage_disallowed_link,
		      &kvm->arch.lpage_disallowed_mmu_pages);
P
Paolo Bonzini 已提交
1207 1208 1209
	sp->lpage_disallowed = true;
}

1210
static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
M
Marcelo Tosatti 已提交
1211
{
1212
	struct kvm_memslots *slots;
1213
	struct kvm_memory_slot *slot;
1214
	gfn_t gfn;
M
Marcelo Tosatti 已提交
1215

1216
	kvm->arch.indirect_shadow_pages--;
1217
	gfn = sp->gfn;
1218 1219
	slots = kvm_memslots_for_spte_role(kvm, sp->role);
	slot = __gfn_to_memslot(slots, gfn);
1220
	if (sp->role.level > PG_LEVEL_4K)
1221 1222 1223
		return kvm_slot_page_track_remove_page(kvm, slot, gfn,
						       KVM_PAGE_TRACK_WRITE);

1224
	kvm_mmu_gfn_allow_lpage(slot, gfn);
M
Marcelo Tosatti 已提交
1225 1226
}

P
Paolo Bonzini 已提交
1227 1228 1229 1230
static void unaccount_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
{
	--kvm->stat.nx_lpage_splits;
	sp->lpage_disallowed = false;
1231
	list_del(&sp->lpage_disallowed_link);
P
Paolo Bonzini 已提交
1232 1233
}

1234 1235 1236
static struct kvm_memory_slot *
gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
			    bool no_dirty_log)
M
Marcelo Tosatti 已提交
1237 1238
{
	struct kvm_memory_slot *slot;
1239

1240
	slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1241 1242 1243 1244
	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
		return NULL;
	if (no_dirty_log && slot->dirty_bitmap)
		return NULL;
1245 1246 1247 1248

	return slot;
}

1249
/*
1250
 * About rmap_head encoding:
1251
 *
1252 1253
 * If the bit zero of rmap_head->val is clear, then it points to the only spte
 * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct
1254
 * pte_list_desc containing more mappings.
1255 1256 1257 1258
 */

/*
 * Returns the number of pointers in the rmap chain, not counting the new one.
1259
 */
1260
static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
1261
			struct kvm_rmap_head *rmap_head)
1262
{
1263
	struct pte_list_desc *desc;
1264
	int i, count = 0;
1265

1266
	if (!rmap_head->val) {
1267
		rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
1268 1269
		rmap_head->val = (unsigned long)spte;
	} else if (!(rmap_head->val & 1)) {
1270 1271
		rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
		desc = mmu_alloc_pte_list_desc(vcpu);
1272
		desc->sptes[0] = (u64 *)rmap_head->val;
A
Avi Kivity 已提交
1273
		desc->sptes[1] = spte;
1274
		rmap_head->val = (unsigned long)desc | 1;
1275
		++count;
1276
	} else {
1277
		rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
1278
		desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1279
		while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
1280
			desc = desc->more;
1281
			count += PTE_LIST_EXT;
1282
		}
1283 1284
		if (desc->sptes[PTE_LIST_EXT-1]) {
			desc->more = mmu_alloc_pte_list_desc(vcpu);
1285 1286
			desc = desc->more;
		}
A
Avi Kivity 已提交
1287
		for (i = 0; desc->sptes[i]; ++i)
1288
			++count;
A
Avi Kivity 已提交
1289
		desc->sptes[i] = spte;
1290
	}
1291
	return count;
1292 1293
}

1294
static void
1295 1296 1297
pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head,
			   struct pte_list_desc *desc, int i,
			   struct pte_list_desc *prev_desc)
1298 1299 1300
{
	int j;

1301
	for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
1302
		;
A
Avi Kivity 已提交
1303 1304
	desc->sptes[i] = desc->sptes[j];
	desc->sptes[j] = NULL;
1305 1306 1307
	if (j != 0)
		return;
	if (!prev_desc && !desc->more)
1308
		rmap_head->val = 0;
1309 1310 1311 1312
	else
		if (prev_desc)
			prev_desc->more = desc->more;
		else
1313
			rmap_head->val = (unsigned long)desc->more | 1;
1314
	mmu_free_pte_list_desc(desc);
1315 1316
}

1317
static void __pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head)
1318
{
1319 1320
	struct pte_list_desc *desc;
	struct pte_list_desc *prev_desc;
1321 1322
	int i;

1323
	if (!rmap_head->val) {
1324
		pr_err("%s: %p 0->BUG\n", __func__, spte);
1325
		BUG();
1326
	} else if (!(rmap_head->val & 1)) {
1327
		rmap_printk("%s:  %p 1->0\n", __func__, spte);
1328
		if ((u64 *)rmap_head->val != spte) {
1329
			pr_err("%s:  %p 1->BUG\n", __func__, spte);
1330 1331
			BUG();
		}
1332
		rmap_head->val = 0;
1333
	} else {
1334
		rmap_printk("%s:  %p many->many\n", __func__, spte);
1335
		desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1336 1337
		prev_desc = NULL;
		while (desc) {
1338
			for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i) {
A
Avi Kivity 已提交
1339
				if (desc->sptes[i] == spte) {
1340 1341
					pte_list_desc_remove_entry(rmap_head,
							desc, i, prev_desc);
1342 1343
					return;
				}
1344
			}
1345 1346 1347
			prev_desc = desc;
			desc = desc->more;
		}
1348
		pr_err("%s: %p many->many\n", __func__, spte);
1349 1350 1351 1352
		BUG();
	}
}

1353 1354 1355 1356 1357 1358
static void pte_list_remove(struct kvm_rmap_head *rmap_head, u64 *sptep)
{
	mmu_spte_clear_track_bits(sptep);
	__pte_list_remove(sptep, rmap_head);
}

1359 1360
static struct kvm_rmap_head *__gfn_to_rmap(gfn_t gfn, int level,
					   struct kvm_memory_slot *slot)
1361
{
1362
	unsigned long idx;
1363

1364
	idx = gfn_to_index(gfn, slot->base_gfn, level);
1365
	return &slot->arch.rmap[level - PG_LEVEL_4K][idx];
1366 1367
}

1368 1369
static struct kvm_rmap_head *gfn_to_rmap(struct kvm *kvm, gfn_t gfn,
					 struct kvm_mmu_page *sp)
1370
{
1371
	struct kvm_memslots *slots;
1372 1373
	struct kvm_memory_slot *slot;

1374 1375
	slots = kvm_memslots_for_spte_role(kvm, sp->role);
	slot = __gfn_to_memslot(slots, gfn);
1376
	return __gfn_to_rmap(gfn, sp->role.level, slot);
1377 1378
}

1379 1380
static bool rmap_can_add(struct kvm_vcpu *vcpu)
{
1381
	struct kvm_mmu_memory_cache *mc;
1382

1383
	mc = &vcpu->arch.mmu_pte_list_desc_cache;
1384
	return kvm_mmu_memory_cache_nr_free_objects(mc);
1385 1386
}

1387 1388 1389
static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
{
	struct kvm_mmu_page *sp;
1390
	struct kvm_rmap_head *rmap_head;
1391

1392
	sp = sptep_to_sp(spte);
1393
	kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
1394 1395
	rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
	return pte_list_add(vcpu, spte, rmap_head);
1396 1397 1398 1399 1400 1401
}

static void rmap_remove(struct kvm *kvm, u64 *spte)
{
	struct kvm_mmu_page *sp;
	gfn_t gfn;
1402
	struct kvm_rmap_head *rmap_head;
1403

1404
	sp = sptep_to_sp(spte);
1405
	gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
1406
	rmap_head = gfn_to_rmap(kvm, gfn, sp);
1407
	__pte_list_remove(spte, rmap_head);
1408 1409
}

1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422
/*
 * Used by the following functions to iterate through the sptes linked by a
 * rmap.  All fields are private and not assumed to be used outside.
 */
struct rmap_iterator {
	/* private fields */
	struct pte_list_desc *desc;	/* holds the sptep if not NULL */
	int pos;			/* index of the sptep */
};

/*
 * Iteration must be started by this function.  This should also be used after
 * removing/dropping sptes from the rmap link because in such cases the
M
Miaohe Lin 已提交
1423
 * information in the iterator may not be valid.
1424 1425 1426
 *
 * Returns sptep if found, NULL otherwise.
 */
1427 1428
static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head,
			   struct rmap_iterator *iter)
1429
{
1430 1431
	u64 *sptep;

1432
	if (!rmap_head->val)
1433 1434
		return NULL;

1435
	if (!(rmap_head->val & 1)) {
1436
		iter->desc = NULL;
1437 1438
		sptep = (u64 *)rmap_head->val;
		goto out;
1439 1440
	}

1441
	iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1442
	iter->pos = 0;
1443 1444 1445 1446
	sptep = iter->desc->sptes[iter->pos];
out:
	BUG_ON(!is_shadow_present_pte(*sptep));
	return sptep;
1447 1448 1449 1450 1451 1452 1453 1454 1455
}

/*
 * Must be used with a valid iterator: e.g. after rmap_get_first().
 *
 * Returns sptep if found, NULL otherwise.
 */
static u64 *rmap_get_next(struct rmap_iterator *iter)
{
1456 1457
	u64 *sptep;

1458 1459 1460 1461 1462
	if (iter->desc) {
		if (iter->pos < PTE_LIST_EXT - 1) {
			++iter->pos;
			sptep = iter->desc->sptes[iter->pos];
			if (sptep)
1463
				goto out;
1464 1465 1466 1467 1468 1469 1470
		}

		iter->desc = iter->desc->more;

		if (iter->desc) {
			iter->pos = 0;
			/* desc->sptes[0] cannot be NULL */
1471 1472
			sptep = iter->desc->sptes[iter->pos];
			goto out;
1473 1474 1475 1476
		}
	}

	return NULL;
1477 1478 1479
out:
	BUG_ON(!is_shadow_present_pte(*sptep));
	return sptep;
1480 1481
}

1482 1483
#define for_each_rmap_spte(_rmap_head_, _iter_, _spte_)			\
	for (_spte_ = rmap_get_first(_rmap_head_, _iter_);		\
1484
	     _spte_; _spte_ = rmap_get_next(_iter_))
1485

1486
static void drop_spte(struct kvm *kvm, u64 *sptep)
1487
{
1488
	if (mmu_spte_clear_track_bits(sptep))
1489
		rmap_remove(kvm, sptep);
A
Avi Kivity 已提交
1490 1491
}

1492 1493 1494 1495

static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
{
	if (is_large_pte(*sptep)) {
1496
		WARN_ON(sptep_to_sp(sptep)->role.level == PG_LEVEL_4K);
1497 1498 1499 1500 1501 1502 1503 1504 1505 1506
		drop_spte(kvm, sptep);
		--kvm->stat.lpages;
		return true;
	}

	return false;
}

static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
{
1507
	if (__drop_large_spte(vcpu->kvm, sptep)) {
1508
		struct kvm_mmu_page *sp = sptep_to_sp(sptep);
1509 1510 1511 1512

		kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
			KVM_PAGES_PER_HPAGE(sp->role.level));
	}
1513 1514 1515
}

/*
1516
 * Write-protect on the specified @sptep, @pt_protect indicates whether
1517
 * spte write-protection is caused by protecting shadow page table.
1518
 *
T
Tiejun Chen 已提交
1519
 * Note: write protection is difference between dirty logging and spte
1520 1521 1522 1523 1524
 * protection:
 * - for dirty logging, the spte can be set to writable at anytime if
 *   its dirty bitmap is properly set.
 * - for spte protection, the spte can be writable only after unsync-ing
 *   shadow page.
1525
 *
1526
 * Return true if tlb need be flushed.
1527
 */
1528
static bool spte_write_protect(u64 *sptep, bool pt_protect)
1529 1530 1531
{
	u64 spte = *sptep;

1532
	if (!is_writable_pte(spte) &&
1533
	      !(pt_protect && spte_can_locklessly_be_made_writable(spte)))
1534 1535 1536 1537
		return false;

	rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);

1538 1539
	if (pt_protect)
		spte &= ~SPTE_MMU_WRITEABLE;
1540
	spte = spte & ~PT_WRITABLE_MASK;
1541

1542
	return mmu_spte_update(sptep, spte);
1543 1544
}

1545 1546
static bool __rmap_write_protect(struct kvm *kvm,
				 struct kvm_rmap_head *rmap_head,
1547
				 bool pt_protect)
1548
{
1549 1550
	u64 *sptep;
	struct rmap_iterator iter;
1551
	bool flush = false;
1552

1553
	for_each_rmap_spte(rmap_head, &iter, sptep)
1554
		flush |= spte_write_protect(sptep, pt_protect);
1555

1556
	return flush;
1557 1558
}

1559
static bool spte_clear_dirty(u64 *sptep)
1560 1561 1562 1563 1564
{
	u64 spte = *sptep;

	rmap_printk("rmap_clear_dirty: spte %p %llx\n", sptep, *sptep);

1565
	MMU_WARN_ON(!spte_ad_enabled(spte));
1566 1567 1568 1569
	spte &= ~shadow_dirty_mask;
	return mmu_spte_update(sptep, spte);
}

1570
static bool spte_wrprot_for_clear_dirty(u64 *sptep)
1571 1572 1573
{
	bool was_writable = test_and_clear_bit(PT_WRITABLE_SHIFT,
					       (unsigned long *)sptep);
1574
	if (was_writable && !spte_ad_enabled(*sptep))
1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585
		kvm_set_pfn_dirty(spte_to_pfn(*sptep));

	return was_writable;
}

/*
 * Gets the GFN ready for another round of dirty logging by clearing the
 *	- D bit on ad-enabled SPTEs, and
 *	- W bit on ad-disabled SPTEs.
 * Returns true iff any D or W bits were cleared.
 */
1586
static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1587 1588 1589 1590 1591
{
	u64 *sptep;
	struct rmap_iterator iter;
	bool flush = false;

1592
	for_each_rmap_spte(rmap_head, &iter, sptep)
1593 1594
		if (spte_ad_need_write_protect(*sptep))
			flush |= spte_wrprot_for_clear_dirty(sptep);
1595
		else
1596
			flush |= spte_clear_dirty(sptep);
1597 1598 1599 1600

	return flush;
}

1601
static bool spte_set_dirty(u64 *sptep)
1602 1603 1604 1605 1606
{
	u64 spte = *sptep;

	rmap_printk("rmap_set_dirty: spte %p %llx\n", sptep, *sptep);

1607
	/*
1608
	 * Similar to the !kvm_x86_ops.slot_disable_log_dirty case,
1609 1610 1611
	 * do not bother adding back write access to pages marked
	 * SPTE_AD_WRPROT_ONLY_MASK.
	 */
1612 1613 1614 1615 1616
	spte |= shadow_dirty_mask;

	return mmu_spte_update(sptep, spte);
}

1617
static bool __rmap_set_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1618 1619 1620 1621 1622
{
	u64 *sptep;
	struct rmap_iterator iter;
	bool flush = false;

1623
	for_each_rmap_spte(rmap_head, &iter, sptep)
1624 1625
		if (spte_ad_enabled(*sptep))
			flush |= spte_set_dirty(sptep);
1626 1627 1628 1629

	return flush;
}

1630
/**
1631
 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1632 1633 1634 1635 1636 1637 1638 1639
 * @kvm: kvm instance
 * @slot: slot to protect
 * @gfn_offset: start of the BITS_PER_LONG pages we care about
 * @mask: indicates which pages we should protect
 *
 * Used when we do not need to care about huge page mappings: e.g. during dirty
 * logging we do not have any such mappings.
 */
1640
static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1641 1642
				     struct kvm_memory_slot *slot,
				     gfn_t gfn_offset, unsigned long mask)
1643
{
1644
	struct kvm_rmap_head *rmap_head;
1645

1646
	while (mask) {
1647
		rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1648
					  PG_LEVEL_4K, slot);
1649
		__rmap_write_protect(kvm, rmap_head, false);
M
Marcelo Tosatti 已提交
1650

1651 1652 1653
		/* clear the first set bit */
		mask &= mask - 1;
	}
1654 1655
}

1656
/**
1657 1658
 * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages, or write
 * protect the page if the D-bit isn't supported.
1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669
 * @kvm: kvm instance
 * @slot: slot to clear D-bit
 * @gfn_offset: start of the BITS_PER_LONG pages we care about
 * @mask: indicates which pages we should clear D-bit
 *
 * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
 */
void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
				     struct kvm_memory_slot *slot,
				     gfn_t gfn_offset, unsigned long mask)
{
1670
	struct kvm_rmap_head *rmap_head;
1671 1672

	while (mask) {
1673
		rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1674
					  PG_LEVEL_4K, slot);
1675
		__rmap_clear_dirty(kvm, rmap_head);
1676 1677 1678 1679 1680 1681 1682

		/* clear the first set bit */
		mask &= mask - 1;
	}
}
EXPORT_SYMBOL_GPL(kvm_mmu_clear_dirty_pt_masked);

1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696
/**
 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
 * PT level pages.
 *
 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
 * enable dirty logging for them.
 *
 * Used when we do not need to care about huge page mappings: e.g. during dirty
 * logging we do not have any such mappings.
 */
void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
				struct kvm_memory_slot *slot,
				gfn_t gfn_offset, unsigned long mask)
{
1697 1698
	if (kvm_x86_ops.enable_log_dirty_pt_masked)
		kvm_x86_ops.enable_log_dirty_pt_masked(kvm, slot, gfn_offset,
1699 1700 1701
				mask);
	else
		kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1702 1703
}

1704 1705
bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
				    struct kvm_memory_slot *slot, u64 gfn)
1706
{
1707
	struct kvm_rmap_head *rmap_head;
1708
	int i;
1709
	bool write_protected = false;
1710

1711
	for (i = PG_LEVEL_4K; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) {
1712
		rmap_head = __gfn_to_rmap(gfn, i, slot);
1713
		write_protected |= __rmap_write_protect(kvm, rmap_head, true);
1714 1715 1716
	}

	return write_protected;
1717 1718
}

1719 1720 1721 1722 1723 1724 1725 1726
static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
{
	struct kvm_memory_slot *slot;

	slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
	return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn);
}

1727
static bool kvm_zap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1728
{
1729 1730
	u64 *sptep;
	struct rmap_iterator iter;
1731
	bool flush = false;
1732

1733
	while ((sptep = rmap_get_first(rmap_head, &iter))) {
1734
		rmap_printk("%s: spte %p %llx.\n", __func__, sptep, *sptep);
1735

1736
		pte_list_remove(rmap_head, sptep);
1737
		flush = true;
1738
	}
1739

1740 1741 1742
	return flush;
}

1743
static int kvm_unmap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1744 1745 1746
			   struct kvm_memory_slot *slot, gfn_t gfn, int level,
			   unsigned long data)
{
1747
	return kvm_zap_rmapp(kvm, rmap_head);
1748 1749
}

1750
static int kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1751 1752
			     struct kvm_memory_slot *slot, gfn_t gfn, int level,
			     unsigned long data)
1753
{
1754 1755
	u64 *sptep;
	struct rmap_iterator iter;
1756
	int need_flush = 0;
1757
	u64 new_spte;
1758
	pte_t *ptep = (pte_t *)data;
D
Dan Williams 已提交
1759
	kvm_pfn_t new_pfn;
1760 1761 1762

	WARN_ON(pte_huge(*ptep));
	new_pfn = pte_pfn(*ptep);
1763

1764
restart:
1765
	for_each_rmap_spte(rmap_head, &iter, sptep) {
1766
		rmap_printk("kvm_set_pte_rmapp: spte %p %llx gfn %llx (%d)\n",
1767
			    sptep, *sptep, gfn, level);
1768

1769
		need_flush = 1;
1770

1771
		if (pte_write(*ptep)) {
1772
			pte_list_remove(rmap_head, sptep);
1773
			goto restart;
1774
		} else {
1775
			new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
1776 1777 1778 1779
			new_spte |= (u64)new_pfn << PAGE_SHIFT;

			new_spte &= ~PT_WRITABLE_MASK;
			new_spte &= ~SPTE_HOST_WRITEABLE;
1780 1781

			new_spte = mark_spte_for_access_track(new_spte);
1782 1783 1784

			mmu_spte_clear_track_bits(sptep);
			mmu_spte_set(sptep, new_spte);
1785 1786
		}
	}
1787

1788 1789 1790 1791 1792
	if (need_flush && kvm_available_flush_tlb_with_range()) {
		kvm_flush_remote_tlbs_with_address(kvm, gfn, 1);
		return 0;
	}

1793
	return need_flush;
1794 1795
}

1796 1797 1798 1799 1800 1801 1802 1803 1804 1805
struct slot_rmap_walk_iterator {
	/* input fields. */
	struct kvm_memory_slot *slot;
	gfn_t start_gfn;
	gfn_t end_gfn;
	int start_level;
	int end_level;

	/* output fields. */
	gfn_t gfn;
1806
	struct kvm_rmap_head *rmap;
1807 1808 1809
	int level;

	/* private field. */
1810
	struct kvm_rmap_head *end_rmap;
1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863
};

static void
rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
{
	iterator->level = level;
	iterator->gfn = iterator->start_gfn;
	iterator->rmap = __gfn_to_rmap(iterator->gfn, level, iterator->slot);
	iterator->end_rmap = __gfn_to_rmap(iterator->end_gfn, level,
					   iterator->slot);
}

static void
slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
		    struct kvm_memory_slot *slot, int start_level,
		    int end_level, gfn_t start_gfn, gfn_t end_gfn)
{
	iterator->slot = slot;
	iterator->start_level = start_level;
	iterator->end_level = end_level;
	iterator->start_gfn = start_gfn;
	iterator->end_gfn = end_gfn;

	rmap_walk_init_level(iterator, iterator->start_level);
}

static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
{
	return !!iterator->rmap;
}

static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
{
	if (++iterator->rmap <= iterator->end_rmap) {
		iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
		return;
	}

	if (++iterator->level > iterator->end_level) {
		iterator->rmap = NULL;
		return;
	}

	rmap_walk_init_level(iterator, iterator->level);
}

#define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_,	\
	   _start_gfn, _end_gfn, _iter_)				\
	for (slot_rmap_walk_init(_iter_, _slot_, _start_level_,		\
				 _end_level_, _start_gfn, _end_gfn);	\
	     slot_rmap_walk_okay(_iter_);				\
	     slot_rmap_walk_next(_iter_))

1864 1865 1866 1867 1868
static int kvm_handle_hva_range(struct kvm *kvm,
				unsigned long start,
				unsigned long end,
				unsigned long data,
				int (*handler)(struct kvm *kvm,
1869
					       struct kvm_rmap_head *rmap_head,
1870
					       struct kvm_memory_slot *slot,
1871 1872
					       gfn_t gfn,
					       int level,
1873
					       unsigned long data))
1874
{
1875
	struct kvm_memslots *slots;
1876
	struct kvm_memory_slot *memslot;
1877 1878
	struct slot_rmap_walk_iterator iterator;
	int ret = 0;
1879
	int i;
1880

1881 1882 1883 1884 1885
	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
		slots = __kvm_memslots(kvm, i);
		kvm_for_each_memslot(memslot, slots) {
			unsigned long hva_start, hva_end;
			gfn_t gfn_start, gfn_end;
1886

1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898
			hva_start = max(start, memslot->userspace_addr);
			hva_end = min(end, memslot->userspace_addr +
				      (memslot->npages << PAGE_SHIFT));
			if (hva_start >= hva_end)
				continue;
			/*
			 * {gfn(page) | page intersects with [hva_start, hva_end)} =
			 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
			 */
			gfn_start = hva_to_gfn_memslot(hva_start, memslot);
			gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);

1899
			for_each_slot_rmap_range(memslot, PG_LEVEL_4K,
1900
						 KVM_MAX_HUGEPAGE_LEVEL,
1901 1902 1903 1904 1905
						 gfn_start, gfn_end - 1,
						 &iterator)
				ret |= handler(kvm, iterator.rmap, memslot,
					       iterator.gfn, iterator.level, data);
		}
1906 1907
	}

1908
	return ret;
1909 1910
}

1911 1912
static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
			  unsigned long data,
1913 1914
			  int (*handler)(struct kvm *kvm,
					 struct kvm_rmap_head *rmap_head,
1915
					 struct kvm_memory_slot *slot,
1916
					 gfn_t gfn, int level,
1917 1918 1919
					 unsigned long data))
{
	return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
1920 1921
}

1922 1923
int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end,
			unsigned flags)
1924 1925 1926 1927
{
	return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
}

1928
int kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1929
{
1930
	return kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
1931 1932
}

1933
static int kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1934 1935
			 struct kvm_memory_slot *slot, gfn_t gfn, int level,
			 unsigned long data)
1936
{
1937
	u64 *sptep;
1938
	struct rmap_iterator iter;
1939 1940
	int young = 0;

1941 1942
	for_each_rmap_spte(rmap_head, &iter, sptep)
		young |= mmu_spte_age(sptep);
1943

1944
	trace_kvm_age_page(gfn, level, slot, young);
1945 1946 1947
	return young;
}

1948
static int kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1949 1950
			      struct kvm_memory_slot *slot, gfn_t gfn,
			      int level, unsigned long data)
A
Andrea Arcangeli 已提交
1951
{
1952 1953
	u64 *sptep;
	struct rmap_iterator iter;
A
Andrea Arcangeli 已提交
1954

1955 1956 1957 1958
	for_each_rmap_spte(rmap_head, &iter, sptep)
		if (is_accessed_spte(*sptep))
			return 1;
	return 0;
A
Andrea Arcangeli 已提交
1959 1960
}

1961 1962
#define RMAP_RECYCLE_THRESHOLD 1000

1963
static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1964
{
1965
	struct kvm_rmap_head *rmap_head;
1966 1967
	struct kvm_mmu_page *sp;

1968
	sp = sptep_to_sp(spte);
1969

1970
	rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
1971

1972
	kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, 0);
1973 1974
	kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
			KVM_PAGES_PER_HPAGE(sp->role.level));
1975 1976
}

A
Andres Lagar-Cavilla 已提交
1977
int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
1978
{
A
Andres Lagar-Cavilla 已提交
1979
	return kvm_handle_hva_range(kvm, start, end, 0, kvm_age_rmapp);
1980 1981
}

A
Andrea Arcangeli 已提交
1982 1983 1984 1985 1986
int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
{
	return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
}

1987
#ifdef MMU_DEBUG
1988
static int is_empty_shadow_page(u64 *spt)
A
Avi Kivity 已提交
1989
{
1990 1991 1992
	u64 *pos;
	u64 *end;

1993
	for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
1994
		if (is_shadow_present_pte(*pos)) {
1995
			printk(KERN_ERR "%s: %p %llx\n", __func__,
1996
			       pos, *pos);
A
Avi Kivity 已提交
1997
			return 0;
1998
		}
A
Avi Kivity 已提交
1999 2000
	return 1;
}
2001
#endif
A
Avi Kivity 已提交
2002

2003 2004 2005 2006 2007 2008
/*
 * This value is the sum of all of the kvm instances's
 * kvm->arch.n_used_mmu_pages values.  We need a global,
 * aggregate version in order to make the slab shrinker
 * faster
 */
2009
static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, unsigned long nr)
2010 2011 2012 2013 2014
{
	kvm->arch.n_used_mmu_pages += nr;
	percpu_counter_add(&kvm_total_used_mmu_pages, nr);
}

2015
static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
2016
{
2017
	MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
2018
	hlist_del(&sp->hash_link);
2019 2020
	list_del(&sp->link);
	free_page((unsigned long)sp->spt);
2021 2022
	if (!sp->role.direct)
		free_page((unsigned long)sp->gfns);
2023
	kmem_cache_free(mmu_page_header_cache, sp);
2024 2025
}

2026 2027
static unsigned kvm_page_table_hashfn(gfn_t gfn)
{
2028
	return hash_64(gfn, KVM_MMU_HASH_SHIFT);
2029 2030
}

2031
static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
2032
				    struct kvm_mmu_page *sp, u64 *parent_pte)
2033 2034 2035 2036
{
	if (!parent_pte)
		return;

2037
	pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
2038 2039
}

2040
static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
2041 2042
				       u64 *parent_pte)
{
2043
	__pte_list_remove(parent_pte, &sp->parent_ptes);
2044 2045
}

2046 2047 2048 2049
static void drop_parent_pte(struct kvm_mmu_page *sp,
			    u64 *parent_pte)
{
	mmu_page_remove_parent_pte(sp, parent_pte);
2050
	mmu_spte_clear_no_track(parent_pte);
2051 2052
}

2053
static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, int direct)
M
Marcelo Tosatti 已提交
2054
{
2055
	struct kvm_mmu_page *sp;
2056

2057 2058
	sp = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
	sp->spt = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_shadow_page_cache);
2059
	if (!direct)
2060
		sp->gfns = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_gfn_array_cache);
2061
	set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
2062 2063 2064 2065 2066 2067

	/*
	 * active_mmu_pages must be a FIFO list, as kvm_zap_obsolete_pages()
	 * depends on valid pages being added to the head of the list.  See
	 * comments in kvm_zap_obsolete_pages().
	 */
2068
	sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
2069 2070 2071
	list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
	kvm_mod_used_mmu_pages(vcpu->kvm, +1);
	return sp;
M
Marcelo Tosatti 已提交
2072 2073
}

2074
static void mark_unsync(u64 *spte);
2075
static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
2076
{
2077 2078 2079 2080 2081 2082
	u64 *sptep;
	struct rmap_iterator iter;

	for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) {
		mark_unsync(sptep);
	}
2083 2084
}

2085
static void mark_unsync(u64 *spte)
2086
{
2087
	struct kvm_mmu_page *sp;
2088
	unsigned int index;
2089

2090
	sp = sptep_to_sp(spte);
2091 2092
	index = spte - sp->spt;
	if (__test_and_set_bit(index, sp->unsync_child_bitmap))
2093
		return;
2094
	if (sp->unsync_children++)
2095
		return;
2096
	kvm_mmu_mark_parents_unsync(sp);
2097 2098
}

2099
static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
2100
			       struct kvm_mmu_page *sp)
2101
{
2102
	return 0;
2103 2104
}

2105 2106
static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
				 struct kvm_mmu_page *sp, u64 *spte,
2107
				 const void *pte)
2108 2109 2110 2111
{
	WARN_ON(1);
}

2112 2113 2114 2115 2116 2117 2118 2119 2120 2121
#define KVM_PAGE_ARRAY_NR 16

struct kvm_mmu_pages {
	struct mmu_page_and_offset {
		struct kvm_mmu_page *sp;
		unsigned int idx;
	} page[KVM_PAGE_ARRAY_NR];
	unsigned int nr;
};

2122 2123
static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
			 int idx)
2124
{
2125
	int i;
2126

2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137
	if (sp->unsync)
		for (i=0; i < pvec->nr; i++)
			if (pvec->page[i].sp == sp)
				return 0;

	pvec->page[pvec->nr].sp = sp;
	pvec->page[pvec->nr].idx = idx;
	pvec->nr++;
	return (pvec->nr == KVM_PAGE_ARRAY_NR);
}

2138 2139 2140 2141 2142 2143 2144
static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx)
{
	--sp->unsync_children;
	WARN_ON((int)sp->unsync_children < 0);
	__clear_bit(idx, sp->unsync_child_bitmap);
}

2145 2146 2147 2148
static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
			   struct kvm_mmu_pages *pvec)
{
	int i, ret, nr_unsync_leaf = 0;
2149

2150
	for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
2151
		struct kvm_mmu_page *child;
2152 2153
		u64 ent = sp->spt[i];

2154 2155 2156 2157
		if (!is_shadow_present_pte(ent) || is_large_pte(ent)) {
			clear_unsync_child_bit(sp, i);
			continue;
		}
2158

2159
		child = to_shadow_page(ent & PT64_BASE_ADDR_MASK);
2160 2161 2162 2163 2164 2165

		if (child->unsync_children) {
			if (mmu_pages_add(pvec, child, i))
				return -ENOSPC;

			ret = __mmu_unsync_walk(child, pvec);
2166 2167 2168 2169
			if (!ret) {
				clear_unsync_child_bit(sp, i);
				continue;
			} else if (ret > 0) {
2170
				nr_unsync_leaf += ret;
2171
			} else
2172 2173 2174 2175 2176 2177
				return ret;
		} else if (child->unsync) {
			nr_unsync_leaf++;
			if (mmu_pages_add(pvec, child, i))
				return -ENOSPC;
		} else
2178
			clear_unsync_child_bit(sp, i);
2179 2180
	}

2181 2182 2183
	return nr_unsync_leaf;
}

2184 2185
#define INVALID_INDEX (-1)

2186 2187 2188
static int mmu_unsync_walk(struct kvm_mmu_page *sp,
			   struct kvm_mmu_pages *pvec)
{
P
Paolo Bonzini 已提交
2189
	pvec->nr = 0;
2190 2191 2192
	if (!sp->unsync_children)
		return 0;

2193
	mmu_pages_add(pvec, sp, INVALID_INDEX);
2194
	return __mmu_unsync_walk(sp, pvec);
2195 2196 2197 2198 2199
}

static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
{
	WARN_ON(!sp->unsync);
2200
	trace_kvm_mmu_sync_page(sp);
2201 2202 2203 2204
	sp->unsync = 0;
	--kvm->stat.mmu_unsync;
}

2205 2206
static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
				     struct list_head *invalid_list);
2207 2208
static void kvm_mmu_commit_zap_page(struct kvm *kvm,
				    struct list_head *invalid_list);
2209

2210 2211
#define for_each_valid_sp(_kvm, _sp, _list)				\
	hlist_for_each_entry(_sp, _list, hash_link)			\
2212
		if (is_obsolete_sp((_kvm), (_sp))) {			\
2213
		} else
2214 2215

#define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn)			\
2216 2217
	for_each_valid_sp(_kvm, _sp,					\
	  &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)])	\
2218
		if ((_sp)->gfn != (_gfn) || (_sp)->role.direct) {} else
2219

2220 2221 2222 2223 2224
static inline bool is_ept_sp(struct kvm_mmu_page *sp)
{
	return sp->role.cr0_wp && sp->role.smap_andnot_wp;
}

2225
/* @sp->gfn should be write-protected at the call site */
2226 2227
static bool __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
			    struct list_head *invalid_list)
2228
{
2229 2230
	if ((!is_ept_sp(sp) && sp->role.gpte_is_8_bytes != !!is_pae(vcpu)) ||
	    vcpu->arch.mmu->sync_page(vcpu, sp) == 0) {
2231
		kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
2232
		return false;
2233 2234
	}

2235
	return true;
2236 2237
}

2238 2239 2240 2241
static bool kvm_mmu_remote_flush_or_zap(struct kvm *kvm,
					struct list_head *invalid_list,
					bool remote_flush)
{
2242
	if (!remote_flush && list_empty(invalid_list))
2243 2244 2245 2246 2247 2248 2249 2250 2251
		return false;

	if (!list_empty(invalid_list))
		kvm_mmu_commit_zap_page(kvm, invalid_list);
	else
		kvm_flush_remote_tlbs(kvm);
	return true;
}

2252 2253 2254
static void kvm_mmu_flush_or_zap(struct kvm_vcpu *vcpu,
				 struct list_head *invalid_list,
				 bool remote_flush, bool local_flush)
2255
{
2256
	if (kvm_mmu_remote_flush_or_zap(vcpu->kvm, invalid_list, remote_flush))
2257
		return;
2258

2259
	if (local_flush)
2260
		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
2261 2262
}

2263 2264 2265 2266 2267 2268 2269
#ifdef CONFIG_KVM_MMU_AUDIT
#include "mmu_audit.c"
#else
static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
static void mmu_audit_disable(void) { }
#endif

2270 2271
static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
{
2272 2273
	return sp->role.invalid ||
	       unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
2274 2275
}

2276
static bool kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
2277
			 struct list_head *invalid_list)
2278
{
2279 2280
	kvm_unlink_unsync_page(vcpu->kvm, sp);
	return __kvm_sync_page(vcpu, sp, invalid_list);
2281 2282
}

2283
/* @gfn should be write-protected at the call site */
2284 2285
static bool kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn,
			   struct list_head *invalid_list)
2286 2287
{
	struct kvm_mmu_page *s;
2288
	bool ret = false;
2289

2290
	for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
2291
		if (!s->unsync)
2292 2293
			continue;

2294
		WARN_ON(s->role.level != PG_LEVEL_4K);
2295
		ret |= kvm_sync_page(vcpu, s, invalid_list);
2296 2297
	}

2298
	return ret;
2299 2300
}

2301
struct mmu_page_path {
2302 2303
	struct kvm_mmu_page *parent[PT64_ROOT_MAX_LEVEL];
	unsigned int idx[PT64_ROOT_MAX_LEVEL];
2304 2305
};

2306
#define for_each_sp(pvec, sp, parents, i)			\
P
Paolo Bonzini 已提交
2307
		for (i = mmu_pages_first(&pvec, &parents);	\
2308 2309 2310
			i < pvec.nr && ({ sp = pvec.page[i].sp; 1;});	\
			i = mmu_pages_next(&pvec, &parents, i))

2311 2312 2313
static int mmu_pages_next(struct kvm_mmu_pages *pvec,
			  struct mmu_page_path *parents,
			  int i)
2314 2315 2316 2317 2318
{
	int n;

	for (n = i+1; n < pvec->nr; n++) {
		struct kvm_mmu_page *sp = pvec->page[n].sp;
P
Paolo Bonzini 已提交
2319 2320
		unsigned idx = pvec->page[n].idx;
		int level = sp->role.level;
2321

P
Paolo Bonzini 已提交
2322
		parents->idx[level-1] = idx;
2323
		if (level == PG_LEVEL_4K)
P
Paolo Bonzini 已提交
2324
			break;
2325

P
Paolo Bonzini 已提交
2326
		parents->parent[level-2] = sp;
2327 2328 2329 2330 2331
	}

	return n;
}

P
Paolo Bonzini 已提交
2332 2333 2334 2335 2336 2337 2338 2339 2340
static int mmu_pages_first(struct kvm_mmu_pages *pvec,
			   struct mmu_page_path *parents)
{
	struct kvm_mmu_page *sp;
	int level;

	if (pvec->nr == 0)
		return 0;

2341 2342
	WARN_ON(pvec->page[0].idx != INVALID_INDEX);

P
Paolo Bonzini 已提交
2343 2344
	sp = pvec->page[0].sp;
	level = sp->role.level;
2345
	WARN_ON(level == PG_LEVEL_4K);
P
Paolo Bonzini 已提交
2346 2347 2348 2349 2350 2351 2352 2353 2354 2355

	parents->parent[level-2] = sp;

	/* Also set up a sentinel.  Further entries in pvec are all
	 * children of sp, so this element is never overwritten.
	 */
	parents->parent[level-1] = NULL;
	return mmu_pages_next(pvec, parents, 0);
}

2356
static void mmu_pages_clear_parents(struct mmu_page_path *parents)
2357
{
2358 2359 2360 2361 2362 2363 2364 2365 2366
	struct kvm_mmu_page *sp;
	unsigned int level = 0;

	do {
		unsigned int idx = parents->idx[level];
		sp = parents->parent[level];
		if (!sp)
			return;

2367
		WARN_ON(idx == INVALID_INDEX);
2368
		clear_unsync_child_bit(sp, idx);
2369
		level++;
P
Paolo Bonzini 已提交
2370
	} while (!sp->unsync_children);
2371
}
2372

2373 2374 2375 2376 2377 2378 2379
static void mmu_sync_children(struct kvm_vcpu *vcpu,
			      struct kvm_mmu_page *parent)
{
	int i;
	struct kvm_mmu_page *sp;
	struct mmu_page_path parents;
	struct kvm_mmu_pages pages;
2380
	LIST_HEAD(invalid_list);
2381
	bool flush = false;
2382 2383

	while (mmu_unsync_walk(parent, &pages)) {
2384
		bool protected = false;
2385 2386

		for_each_sp(pages, sp, parents, i)
2387
			protected |= rmap_write_protect(vcpu, sp->gfn);
2388

2389
		if (protected) {
2390
			kvm_flush_remote_tlbs(vcpu->kvm);
2391 2392
			flush = false;
		}
2393

2394
		for_each_sp(pages, sp, parents, i) {
2395
			flush |= kvm_sync_page(vcpu, sp, &invalid_list);
2396 2397
			mmu_pages_clear_parents(&parents);
		}
2398 2399 2400 2401 2402
		if (need_resched() || spin_needbreak(&vcpu->kvm->mmu_lock)) {
			kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
			cond_resched_lock(&vcpu->kvm->mmu_lock);
			flush = false;
		}
2403
	}
2404 2405

	kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2406 2407
}

2408 2409
static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
{
2410
	atomic_set(&sp->write_flooding_count,  0);
2411 2412 2413 2414
}

static void clear_sp_write_flooding_count(u64 *spte)
{
2415
	__clear_sp_write_flooding_count(sptep_to_sp(spte));
2416 2417
}

2418 2419 2420 2421
static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
					     gfn_t gfn,
					     gva_t gaddr,
					     unsigned level,
2422
					     int direct,
2423
					     unsigned int access)
2424
{
2425
	bool direct_mmu = vcpu->arch.mmu->direct_map;
2426
	union kvm_mmu_page_role role;
2427
	struct hlist_head *sp_list;
2428
	unsigned quadrant;
2429 2430
	struct kvm_mmu_page *sp;
	bool need_sync = false;
2431
	bool flush = false;
2432
	int collisions = 0;
2433
	LIST_HEAD(invalid_list);
2434

2435
	role = vcpu->arch.mmu->mmu_role.base;
2436
	role.level = level;
2437
	role.direct = direct;
2438
	if (role.direct)
2439
		role.gpte_is_8_bytes = true;
2440
	role.access = access;
2441
	if (!direct_mmu && vcpu->arch.mmu->root_level <= PT32_ROOT_LEVEL) {
2442 2443 2444 2445
		quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
		quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
		role.quadrant = quadrant;
	}
2446 2447 2448

	sp_list = &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)];
	for_each_valid_sp(vcpu->kvm, sp, sp_list) {
2449 2450 2451 2452 2453
		if (sp->gfn != gfn) {
			collisions++;
			continue;
		}

2454 2455
		if (!need_sync && sp->unsync)
			need_sync = true;
2456

2457 2458
		if (sp->role.word != role.word)
			continue;
2459

2460 2461 2462
		if (direct_mmu)
			goto trace_get_page;

2463 2464 2465 2466 2467 2468 2469 2470
		if (sp->unsync) {
			/* The page is good, but __kvm_sync_page might still end
			 * up zapping it.  If so, break in order to rebuild it.
			 */
			if (!__kvm_sync_page(vcpu, sp, &invalid_list))
				break;

			WARN_ON(!list_empty(&invalid_list));
2471
			kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
2472
		}
2473

2474
		if (sp->unsync_children)
2475
			kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
2476

2477
		__clear_sp_write_flooding_count(sp);
2478 2479

trace_get_page:
2480
		trace_kvm_mmu_get_page(sp, false);
2481
		goto out;
2482
	}
2483

A
Avi Kivity 已提交
2484
	++vcpu->kvm->stat.mmu_cache_miss;
2485 2486 2487

	sp = kvm_mmu_alloc_page(vcpu, direct);

2488 2489
	sp->gfn = gfn;
	sp->role = role;
2490
	hlist_add_head(&sp->hash_link, sp_list);
2491
	if (!direct) {
2492 2493 2494 2495 2496 2497
		/*
		 * we should do write protection before syncing pages
		 * otherwise the content of the synced shadow page may
		 * be inconsistent with guest page table.
		 */
		account_shadowed(vcpu->kvm, sp);
2498
		if (level == PG_LEVEL_4K && rmap_write_protect(vcpu, gfn))
2499
			kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn, 1);
2500

2501
		if (level > PG_LEVEL_4K && need_sync)
2502
			flush |= kvm_sync_pages(vcpu, gfn, &invalid_list);
2503
	}
A
Avi Kivity 已提交
2504
	trace_kvm_mmu_get_page(sp, true);
2505 2506

	kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2507 2508 2509
out:
	if (collisions > vcpu->kvm->stat.max_mmu_page_hash_collisions)
		vcpu->kvm->stat.max_mmu_page_hash_collisions = collisions;
2510
	return sp;
2511 2512
}

2513 2514 2515
static void shadow_walk_init_using_root(struct kvm_shadow_walk_iterator *iterator,
					struct kvm_vcpu *vcpu, hpa_t root,
					u64 addr)
2516 2517
{
	iterator->addr = addr;
2518
	iterator->shadow_addr = root;
2519
	iterator->level = vcpu->arch.mmu->shadow_root_level;
2520

2521
	if (iterator->level == PT64_ROOT_4LEVEL &&
2522 2523
	    vcpu->arch.mmu->root_level < PT64_ROOT_4LEVEL &&
	    !vcpu->arch.mmu->direct_map)
2524 2525
		--iterator->level;

2526
	if (iterator->level == PT32E_ROOT_LEVEL) {
2527 2528 2529 2530
		/*
		 * prev_root is currently only used for 64-bit hosts. So only
		 * the active root_hpa is valid here.
		 */
2531
		BUG_ON(root != vcpu->arch.mmu->root_hpa);
2532

2533
		iterator->shadow_addr
2534
			= vcpu->arch.mmu->pae_root[(addr >> 30) & 3];
2535 2536 2537 2538 2539 2540 2541
		iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
		--iterator->level;
		if (!iterator->shadow_addr)
			iterator->level = 0;
	}
}

2542 2543 2544
static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
			     struct kvm_vcpu *vcpu, u64 addr)
{
2545
	shadow_walk_init_using_root(iterator, vcpu, vcpu->arch.mmu->root_hpa,
2546 2547 2548
				    addr);
}

2549 2550
static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
{
2551
	if (iterator->level < PG_LEVEL_4K)
2552
		return false;
2553

2554 2555 2556 2557 2558
	iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
	iterator->sptep	= ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
	return true;
}

2559 2560
static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
			       u64 spte)
2561
{
2562
	if (is_last_spte(spte, iterator->level)) {
2563 2564 2565 2566
		iterator->level = 0;
		return;
	}

2567
	iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2568 2569 2570
	--iterator->level;
}

2571 2572
static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
{
2573
	__shadow_walk_next(iterator, *iterator->sptep);
2574 2575
}

2576 2577
static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep,
			     struct kvm_mmu_page *sp)
2578 2579 2580
{
	u64 spte;

2581
	BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
2582

2583
	spte = __pa(sp->spt) | shadow_present_mask | PT_WRITABLE_MASK |
2584
	       shadow_user_mask | shadow_x_mask | shadow_me_mask;
2585 2586

	if (sp_ad_disabled(sp))
2587
		spte |= SPTE_AD_DISABLED_MASK;
2588 2589
	else
		spte |= shadow_accessed_mask;
X
Xiao Guangrong 已提交
2590

2591
	mmu_spte_set(sptep, spte);
2592 2593 2594 2595 2596

	mmu_page_add_parent_pte(vcpu, sp, sptep);

	if (sp->unsync_children || sp->unsync)
		mark_unsync(sptep);
2597 2598
}

2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611
static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
				   unsigned direct_access)
{
	if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
		struct kvm_mmu_page *child;

		/*
		 * For the direct sp, if the guest pte's dirty bit
		 * changed form clean to dirty, it will corrupt the
		 * sp's access: allow writable in the read-only sp,
		 * so we should update the spte at this point to get
		 * a new sp with the correct access.
		 */
2612
		child = to_shadow_page(*sptep & PT64_BASE_ADDR_MASK);
2613 2614 2615
		if (child->role.access == direct_access)
			return;

2616
		drop_parent_pte(child, sptep);
2617
		kvm_flush_remote_tlbs_with_address(vcpu->kvm, child->gfn, 1);
2618 2619 2620
	}
}

2621 2622 2623
/* Returns the number of zapped non-leaf child shadow pages. */
static int mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
			    u64 *spte, struct list_head *invalid_list)
2624 2625 2626 2627 2628 2629
{
	u64 pte;
	struct kvm_mmu_page *child;

	pte = *spte;
	if (is_shadow_present_pte(pte)) {
X
Xiao Guangrong 已提交
2630
		if (is_last_spte(pte, sp->role.level)) {
2631
			drop_spte(kvm, spte);
X
Xiao Guangrong 已提交
2632 2633 2634
			if (is_large_pte(pte))
				--kvm->stat.lpages;
		} else {
2635
			child = to_shadow_page(pte & PT64_BASE_ADDR_MASK);
2636
			drop_parent_pte(child, spte);
2637 2638 2639 2640 2641 2642 2643 2644 2645 2646

			/*
			 * Recursively zap nested TDP SPs, parentless SPs are
			 * unlikely to be used again in the near future.  This
			 * avoids retaining a large number of stale nested SPs.
			 */
			if (tdp_enabled && invalid_list &&
			    child->role.guest_mode && !child->parent_ptes.val)
				return kvm_mmu_prepare_zap_page(kvm, child,
								invalid_list);
2647
		}
2648
	} else if (is_mmio_spte(pte)) {
2649
		mmu_spte_clear_no_track(spte);
2650
	}
2651
	return 0;
2652 2653
}

2654 2655 2656
static int kvm_mmu_page_unlink_children(struct kvm *kvm,
					struct kvm_mmu_page *sp,
					struct list_head *invalid_list)
2657
{
2658
	int zapped = 0;
2659 2660
	unsigned i;

2661
	for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2662 2663 2664
		zapped += mmu_page_zap_pte(kvm, sp, sp->spt + i, invalid_list);

	return zapped;
2665 2666
}

2667
static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
2668
{
2669 2670
	u64 *sptep;
	struct rmap_iterator iter;
2671

2672
	while ((sptep = rmap_get_first(&sp->parent_ptes, &iter)))
2673
		drop_parent_pte(sp, sptep);
2674 2675
}

2676
static int mmu_zap_unsync_children(struct kvm *kvm,
2677 2678
				   struct kvm_mmu_page *parent,
				   struct list_head *invalid_list)
2679
{
2680 2681 2682
	int i, zapped = 0;
	struct mmu_page_path parents;
	struct kvm_mmu_pages pages;
2683

2684
	if (parent->role.level == PG_LEVEL_4K)
2685
		return 0;
2686 2687 2688 2689 2690

	while (mmu_unsync_walk(parent, &pages)) {
		struct kvm_mmu_page *sp;

		for_each_sp(pages, sp, parents, i) {
2691
			kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2692
			mmu_pages_clear_parents(&parents);
2693
			zapped++;
2694 2695 2696 2697
		}
	}

	return zapped;
2698 2699
}

2700 2701 2702 2703
static bool __kvm_mmu_prepare_zap_page(struct kvm *kvm,
				       struct kvm_mmu_page *sp,
				       struct list_head *invalid_list,
				       int *nr_zapped)
2704
{
2705
	bool list_unstable;
A
Avi Kivity 已提交
2706

2707
	trace_kvm_mmu_prepare_zap_page(sp);
2708
	++kvm->stat.mmu_shadow_zapped;
2709
	*nr_zapped = mmu_zap_unsync_children(kvm, sp, invalid_list);
2710
	*nr_zapped += kvm_mmu_page_unlink_children(kvm, sp, invalid_list);
2711
	kvm_mmu_unlink_parents(kvm, sp);
2712

2713 2714 2715
	/* Zapping children means active_mmu_pages has become unstable. */
	list_unstable = *nr_zapped;

2716
	if (!sp->role.invalid && !sp->role.direct)
2717
		unaccount_shadowed(kvm, sp);
2718

2719 2720
	if (sp->unsync)
		kvm_unlink_unsync_page(kvm, sp);
2721
	if (!sp->root_count) {
2722
		/* Count self */
2723
		(*nr_zapped)++;
2724 2725 2726 2727 2728 2729 2730 2731 2732 2733

		/*
		 * Already invalid pages (previously active roots) are not on
		 * the active page list.  See list_del() in the "else" case of
		 * !sp->root_count.
		 */
		if (sp->role.invalid)
			list_add(&sp->link, invalid_list);
		else
			list_move(&sp->link, invalid_list);
2734
		kvm_mod_used_mmu_pages(kvm, -1);
2735
	} else {
2736 2737 2738 2739 2740
		/*
		 * Remove the active root from the active page list, the root
		 * will be explicitly freed when the root_count hits zero.
		 */
		list_del(&sp->link);
2741

2742 2743 2744 2745 2746 2747
		/*
		 * Obsolete pages cannot be used on any vCPUs, see the comment
		 * in kvm_mmu_zap_all_fast().  Note, is_obsolete_sp() also
		 * treats invalid shadow pages as being obsolete.
		 */
		if (!is_obsolete_sp(kvm, sp))
2748
			kvm_reload_remote_mmus(kvm);
2749
	}
2750

P
Paolo Bonzini 已提交
2751 2752 2753
	if (sp->lpage_disallowed)
		unaccount_huge_nx_page(kvm, sp);

2754
	sp->role.invalid = 1;
2755 2756 2757 2758 2759 2760 2761 2762 2763 2764
	return list_unstable;
}

static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
				     struct list_head *invalid_list)
{
	int nr_zapped;

	__kvm_mmu_prepare_zap_page(kvm, sp, invalid_list, &nr_zapped);
	return nr_zapped;
2765 2766
}

2767 2768 2769
static void kvm_mmu_commit_zap_page(struct kvm *kvm,
				    struct list_head *invalid_list)
{
2770
	struct kvm_mmu_page *sp, *nsp;
2771 2772 2773 2774

	if (list_empty(invalid_list))
		return;

2775
	/*
2776 2777 2778 2779 2780 2781 2782
	 * We need to make sure everyone sees our modifications to
	 * the page tables and see changes to vcpu->mode here. The barrier
	 * in the kvm_flush_remote_tlbs() achieves this. This pairs
	 * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end.
	 *
	 * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit
	 * guest mode and/or lockless shadow page table walks.
2783 2784
	 */
	kvm_flush_remote_tlbs(kvm);
2785

2786
	list_for_each_entry_safe(sp, nsp, invalid_list, link) {
2787
		WARN_ON(!sp->role.invalid || sp->root_count);
2788
		kvm_mmu_free_page(sp);
2789
	}
2790 2791
}

2792 2793
static unsigned long kvm_mmu_zap_oldest_mmu_pages(struct kvm *kvm,
						  unsigned long nr_to_zap)
2794
{
2795 2796
	unsigned long total_zapped = 0;
	struct kvm_mmu_page *sp, *tmp;
2797
	LIST_HEAD(invalid_list);
2798 2799
	bool unstable;
	int nr_zapped;
2800 2801

	if (list_empty(&kvm->arch.active_mmu_pages))
2802 2803
		return 0;

2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816
restart:
	list_for_each_entry_safe(sp, tmp, &kvm->arch.active_mmu_pages, link) {
		/*
		 * Don't zap active root pages, the page itself can't be freed
		 * and zapping it will just force vCPUs to realloc and reload.
		 */
		if (sp->root_count)
			continue;

		unstable = __kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list,
						      &nr_zapped);
		total_zapped += nr_zapped;
		if (total_zapped >= nr_to_zap)
2817 2818
			break;

2819 2820
		if (unstable)
			goto restart;
2821
	}
2822

2823 2824 2825 2826 2827 2828
	kvm_mmu_commit_zap_page(kvm, &invalid_list);

	kvm->stat.mmu_recycled += total_zapped;
	return total_zapped;
}

2829 2830 2831 2832 2833 2834 2835
static inline unsigned long kvm_mmu_available_pages(struct kvm *kvm)
{
	if (kvm->arch.n_max_mmu_pages > kvm->arch.n_used_mmu_pages)
		return kvm->arch.n_max_mmu_pages -
			kvm->arch.n_used_mmu_pages;

	return 0;
2836 2837
}

2838 2839
static int make_mmu_pages_available(struct kvm_vcpu *vcpu)
{
2840
	unsigned long avail = kvm_mmu_available_pages(vcpu->kvm);
2841

2842
	if (likely(avail >= KVM_MIN_FREE_MMU_PAGES))
2843 2844
		return 0;

2845
	kvm_mmu_zap_oldest_mmu_pages(vcpu->kvm, KVM_REFILL_PAGES - avail);
2846 2847 2848 2849 2850 2851

	if (!kvm_mmu_available_pages(vcpu->kvm))
		return -ENOSPC;
	return 0;
}

2852 2853
/*
 * Changing the number of mmu pages allocated to the vm
2854
 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2855
 */
2856
void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long goal_nr_mmu_pages)
2857
{
2858 2859
	spin_lock(&kvm->mmu_lock);

2860
	if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2861 2862
		kvm_mmu_zap_oldest_mmu_pages(kvm, kvm->arch.n_used_mmu_pages -
						  goal_nr_mmu_pages);
2863

2864
		goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2865 2866
	}

2867
	kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2868 2869

	spin_unlock(&kvm->mmu_lock);
2870 2871
}

2872
int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2873
{
2874
	struct kvm_mmu_page *sp;
2875
	LIST_HEAD(invalid_list);
2876 2877
	int r;

2878
	pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2879
	r = 0;
2880
	spin_lock(&kvm->mmu_lock);
2881
	for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
2882
		pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2883 2884
			 sp->role.word);
		r = 1;
2885
		kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2886
	}
2887
	kvm_mmu_commit_zap_page(kvm, &invalid_list);
2888 2889
	spin_unlock(&kvm->mmu_lock);

2890
	return r;
2891
}
2892
EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
2893

2894
static void kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2895 2896 2897 2898 2899 2900 2901 2902
{
	trace_kvm_mmu_unsync_page(sp);
	++vcpu->kvm->stat.mmu_unsync;
	sp->unsync = 1;

	kvm_mmu_mark_parents_unsync(sp);
}

2903 2904
static bool mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
				   bool can_unsync)
2905
{
2906
	struct kvm_mmu_page *sp;
2907

2908 2909
	if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
		return true;
2910

2911
	for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
2912
		if (!can_unsync)
2913
			return true;
2914

2915 2916
		if (sp->unsync)
			continue;
2917

2918
		WARN_ON(sp->role.level != PG_LEVEL_4K);
2919
		kvm_unsync_page(vcpu, sp);
2920
	}
2921

2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960
	/*
	 * We need to ensure that the marking of unsync pages is visible
	 * before the SPTE is updated to allow writes because
	 * kvm_mmu_sync_roots() checks the unsync flags without holding
	 * the MMU lock and so can race with this. If the SPTE was updated
	 * before the page had been marked as unsync-ed, something like the
	 * following could happen:
	 *
	 * CPU 1                    CPU 2
	 * ---------------------------------------------------------------------
	 * 1.2 Host updates SPTE
	 *     to be writable
	 *                      2.1 Guest writes a GPTE for GVA X.
	 *                          (GPTE being in the guest page table shadowed
	 *                           by the SP from CPU 1.)
	 *                          This reads SPTE during the page table walk.
	 *                          Since SPTE.W is read as 1, there is no
	 *                          fault.
	 *
	 *                      2.2 Guest issues TLB flush.
	 *                          That causes a VM Exit.
	 *
	 *                      2.3 kvm_mmu_sync_pages() reads sp->unsync.
	 *                          Since it is false, so it just returns.
	 *
	 *                      2.4 Guest accesses GVA X.
	 *                          Since the mapping in the SP was not updated,
	 *                          so the old mapping for GVA X incorrectly
	 *                          gets used.
	 * 1.1 Host marks SP
	 *     as unsync
	 *     (sp->unsync = true)
	 *
	 * The write barrier below ensures that 1.1 happens before 1.2 and thus
	 * the situation in 2.4 does not arise. The implicit barrier in 2.2
	 * pairs with this write barrier.
	 */
	smp_wmb();

2961
	return false;
2962 2963
}

D
Dan Williams 已提交
2964
static bool kvm_is_mmio_pfn(kvm_pfn_t pfn)
2965 2966
{
	if (pfn_valid(pfn))
2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978
		return !is_zero_pfn(pfn) && PageReserved(pfn_to_page(pfn)) &&
			/*
			 * Some reserved pages, such as those from NVDIMM
			 * DAX devices, are not for MMIO, and can be mapped
			 * with cached memory type for better performance.
			 * However, the above check misconceives those pages
			 * as MMIO, and results in KVM mapping them with UC
			 * memory type, which would hurt the performance.
			 * Therefore, we check the host memory type in addition
			 * and only treat UC/UC-/WC pages as MMIO.
			 */
			(!pat_enabled() || pat_pfn_immune_to_uc_mtrr(pfn));
2979

2980 2981 2982
	return !e820__mapped_raw_any(pfn_to_hpa(pfn),
				     pfn_to_hpa(pfn + 1) - 1,
				     E820_TYPE_RAM);
2983 2984
}

2985 2986 2987
/* Bits which may be returned by set_spte() */
#define SET_SPTE_WRITE_PROTECTED_PT	BIT(0)
#define SET_SPTE_NEED_REMOTE_TLB_FLUSH	BIT(1)
2988
#define SET_SPTE_SPURIOUS		BIT(2)
2989

A
Avi Kivity 已提交
2990
static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2991
		    unsigned int pte_access, int level,
D
Dan Williams 已提交
2992
		    gfn_t gfn, kvm_pfn_t pfn, bool speculative,
2993
		    bool can_unsync, bool host_writable)
2994
{
2995
	u64 spte = 0;
M
Marcelo Tosatti 已提交
2996
	int ret = 0;
2997
	struct kvm_mmu_page *sp;
S
Sheng Yang 已提交
2998

2999
	if (set_mmio_spte(vcpu, sptep, gfn, pfn, pte_access))
3000 3001
		return 0;

3002
	sp = sptep_to_sp(sptep);
3003
	if (sp_ad_disabled(sp))
3004
		spte |= SPTE_AD_DISABLED_MASK;
3005 3006
	else if (kvm_vcpu_ad_need_write_protect(vcpu))
		spte |= SPTE_AD_WRPROT_ONLY_MASK;
3007

3008 3009 3010 3011 3012 3013
	/*
	 * For the EPT case, shadow_present_mask is 0 if hardware
	 * supports exec-only page table entries.  In that case,
	 * ACC_USER_MASK and shadow_user_mask are used to represent
	 * read access.  See FNAME(gpte_access) in paging_tmpl.h.
	 */
3014
	spte |= shadow_present_mask;
3015
	if (!speculative)
3016
		spte |= spte_shadow_accessed_mask(spte);
3017

3018
	if (level > PG_LEVEL_4K && (pte_access & ACC_EXEC_MASK) &&
P
Paolo Bonzini 已提交
3019 3020 3021 3022
	    is_nx_huge_page_enabled()) {
		pte_access &= ~ACC_EXEC_MASK;
	}

S
Sheng Yang 已提交
3023 3024 3025 3026
	if (pte_access & ACC_EXEC_MASK)
		spte |= shadow_x_mask;
	else
		spte |= shadow_nx_mask;
3027

3028
	if (pte_access & ACC_USER_MASK)
S
Sheng Yang 已提交
3029
		spte |= shadow_user_mask;
3030

3031
	if (level > PG_LEVEL_4K)
M
Marcelo Tosatti 已提交
3032
		spte |= PT_PAGE_SIZE_MASK;
3033
	if (tdp_enabled)
3034
		spte |= kvm_x86_ops.get_mt_mask(vcpu, gfn,
3035
			kvm_is_mmio_pfn(pfn));
3036

3037
	if (host_writable)
3038
		spte |= SPTE_HOST_WRITEABLE;
3039 3040
	else
		pte_access &= ~ACC_WRITE_MASK;
3041

3042 3043 3044
	if (!kvm_is_mmio_pfn(pfn))
		spte |= shadow_me_mask;

3045
	spte |= (u64)pfn << PAGE_SHIFT;
3046

3047
	if (pte_access & ACC_WRITE_MASK) {
3048
		spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
3049

3050 3051 3052 3053 3054 3055
		/*
		 * Optimization: for pte sync, if spte was writable the hash
		 * lookup is unnecessary (and expensive). Write protection
		 * is responsibility of mmu_get_page / kvm_sync_page.
		 * Same reasoning can be applied to dirty page accounting.
		 */
3056
		if (!can_unsync && is_writable_pte(*sptep))
3057 3058
			goto set_pte;

3059
		if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
3060
			pgprintk("%s: found shadow page for %llx, marking ro\n",
3061
				 __func__, gfn);
3062
			ret |= SET_SPTE_WRITE_PROTECTED_PT;
3063
			pte_access &= ~ACC_WRITE_MASK;
3064
			spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
3065 3066 3067
		}
	}

3068
	if (pte_access & ACC_WRITE_MASK) {
3069
		kvm_vcpu_mark_page_dirty(vcpu, gfn);
3070
		spte |= spte_shadow_dirty_mask(spte);
3071
	}
3072

3073 3074 3075
	if (speculative)
		spte = mark_spte_for_access_track(spte);

3076
set_pte:
3077 3078 3079
	if (*sptep == spte)
		ret |= SET_SPTE_SPURIOUS;
	else if (mmu_spte_update(sptep, spte))
3080
		ret |= SET_SPTE_NEED_REMOTE_TLB_FLUSH;
M
Marcelo Tosatti 已提交
3081 3082 3083
	return ret;
}

3084 3085 3086 3087
static int mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
			unsigned int pte_access, int write_fault, int level,
			gfn_t gfn, kvm_pfn_t pfn, bool speculative,
			bool host_writable)
M
Marcelo Tosatti 已提交
3088 3089
{
	int was_rmapped = 0;
3090
	int rmap_count;
3091
	int set_spte_ret;
3092
	int ret = RET_PF_FIXED;
3093
	bool flush = false;
M
Marcelo Tosatti 已提交
3094

3095 3096
	pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
		 *sptep, write_fault, gfn);
M
Marcelo Tosatti 已提交
3097

3098
	if (is_shadow_present_pte(*sptep)) {
M
Marcelo Tosatti 已提交
3099 3100 3101 3102
		/*
		 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
		 * the parent of the now unreachable PTE.
		 */
3103
		if (level > PG_LEVEL_4K && !is_large_pte(*sptep)) {
M
Marcelo Tosatti 已提交
3104
			struct kvm_mmu_page *child;
A
Avi Kivity 已提交
3105
			u64 pte = *sptep;
M
Marcelo Tosatti 已提交
3106

3107
			child = to_shadow_page(pte & PT64_BASE_ADDR_MASK);
3108
			drop_parent_pte(child, sptep);
3109
			flush = true;
A
Avi Kivity 已提交
3110
		} else if (pfn != spte_to_pfn(*sptep)) {
3111
			pgprintk("hfn old %llx new %llx\n",
A
Avi Kivity 已提交
3112
				 spte_to_pfn(*sptep), pfn);
3113
			drop_spte(vcpu->kvm, sptep);
3114
			flush = true;
3115 3116
		} else
			was_rmapped = 1;
M
Marcelo Tosatti 已提交
3117
	}
3118

3119 3120 3121
	set_spte_ret = set_spte(vcpu, sptep, pte_access, level, gfn, pfn,
				speculative, true, host_writable);
	if (set_spte_ret & SET_SPTE_WRITE_PROTECTED_PT) {
M
Marcelo Tosatti 已提交
3122
		if (write_fault)
3123
			ret = RET_PF_EMULATE;
3124
		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
3125
	}
3126

3127
	if (set_spte_ret & SET_SPTE_NEED_REMOTE_TLB_FLUSH || flush)
3128 3129
		kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn,
				KVM_PAGES_PER_HPAGE(level));
M
Marcelo Tosatti 已提交
3130

3131
	if (unlikely(is_mmio_spte(*sptep)))
3132
		ret = RET_PF_EMULATE;
3133

3134 3135 3136 3137 3138 3139 3140 3141 3142
	/*
	 * The fault is fully spurious if and only if the new SPTE and old SPTE
	 * are identical, and emulation is not required.
	 */
	if ((set_spte_ret & SET_SPTE_SPURIOUS) && ret == RET_PF_FIXED) {
		WARN_ON_ONCE(!was_rmapped);
		return RET_PF_SPURIOUS;
	}

A
Avi Kivity 已提交
3143
	pgprintk("%s: setting spte %llx\n", __func__, *sptep);
3144
	trace_kvm_mmu_set_spte(level, gfn, sptep);
A
Avi Kivity 已提交
3145
	if (!was_rmapped && is_large_pte(*sptep))
M
Marcelo Tosatti 已提交
3146 3147
		++vcpu->kvm->stat.lpages;

3148 3149 3150 3151 3152 3153
	if (is_shadow_present_pte(*sptep)) {
		if (!was_rmapped) {
			rmap_count = rmap_add(vcpu, sptep, gfn);
			if (rmap_count > RMAP_RECYCLE_THRESHOLD)
				rmap_recycle(vcpu, sptep, gfn);
		}
3154
	}
3155

3156
	return ret;
3157 3158
}

D
Dan Williams 已提交
3159
static kvm_pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
3160 3161 3162 3163
				     bool no_dirty_log)
{
	struct kvm_memory_slot *slot;

3164
	slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
3165
	if (!slot)
3166
		return KVM_PFN_ERR_FAULT;
3167

3168
	return gfn_to_pfn_memslot_atomic(slot, gfn);
3169 3170 3171 3172 3173 3174 3175
}

static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
				    struct kvm_mmu_page *sp,
				    u64 *start, u64 *end)
{
	struct page *pages[PTE_PREFETCH_NUM];
3176
	struct kvm_memory_slot *slot;
3177
	unsigned int access = sp->role.access;
3178 3179 3180 3181
	int i, ret;
	gfn_t gfn;

	gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
3182 3183
	slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
	if (!slot)
3184 3185
		return -1;

3186
	ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
3187 3188 3189
	if (ret <= 0)
		return -1;

3190
	for (i = 0; i < ret; i++, gfn++, start++) {
3191 3192
		mmu_set_spte(vcpu, start, access, 0, sp->role.level, gfn,
			     page_to_pfn(pages[i]), true, true);
3193 3194
		put_page(pages[i]);
	}
3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210

	return 0;
}

static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
				  struct kvm_mmu_page *sp, u64 *sptep)
{
	u64 *spte, *start = NULL;
	int i;

	WARN_ON(!sp->role.direct);

	i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
	spte = sp->spt + i;

	for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
3211
		if (is_shadow_present_pte(*spte) || spte == sptep) {
3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225
			if (!start)
				continue;
			if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
				break;
			start = NULL;
		} else if (!start)
			start = spte;
	}
}

static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
{
	struct kvm_mmu_page *sp;

3226
	sp = sptep_to_sp(sptep);
3227

3228
	/*
3229 3230 3231
	 * Without accessed bits, there's no way to distinguish between
	 * actually accessed translations and prefetched, so disable pte
	 * prefetch if accessed bits aren't available.
3232
	 */
3233
	if (sp_ad_disabled(sp))
3234 3235
		return;

3236
	if (sp->role.level > PG_LEVEL_4K)
3237 3238 3239 3240 3241
		return;

	__direct_pte_prefetch(vcpu, sp, sptep);
}

3242
static int host_pfn_mapping_level(struct kvm_vcpu *vcpu, gfn_t gfn,
3243
				  kvm_pfn_t pfn, struct kvm_memory_slot *slot)
3244 3245 3246 3247 3248
{
	unsigned long hva;
	pte_t *pte;
	int level;

3249
	if (!PageCompound(pfn_to_page(pfn)) && !kvm_is_zone_device_pfn(pfn))
3250
		return PG_LEVEL_4K;
3251

3252 3253 3254 3255 3256 3257 3258 3259
	/*
	 * Note, using the already-retrieved memslot and __gfn_to_hva_memslot()
	 * is not solely for performance, it's also necessary to avoid the
	 * "writable" check in __gfn_to_hva_many(), which will always fail on
	 * read-only memslots due to gfn_to_hva() assuming writes.  Earlier
	 * page fault steps have already verified the guest isn't writing a
	 * read-only memslot.
	 */
3260 3261 3262 3263
	hva = __gfn_to_hva_memslot(slot, gfn);

	pte = lookup_address_in_mm(vcpu->kvm->mm, hva, &level);
	if (unlikely(!pte))
3264
		return PG_LEVEL_4K;
3265 3266 3267 3268

	return level;
}

3269 3270
static int kvm_mmu_hugepage_adjust(struct kvm_vcpu *vcpu, gfn_t gfn,
				   int max_level, kvm_pfn_t *pfnp)
3271
{
3272
	struct kvm_memory_slot *slot;
3273
	struct kvm_lpage_info *linfo;
3274
	kvm_pfn_t pfn = *pfnp;
3275
	kvm_pfn_t mask;
3276
	int level;
3277

3278 3279
	if (unlikely(max_level == PG_LEVEL_4K))
		return PG_LEVEL_4K;
3280

3281
	if (is_error_noslot_pfn(pfn) || kvm_is_reserved_pfn(pfn))
3282
		return PG_LEVEL_4K;
3283

3284 3285
	slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, true);
	if (!slot)
3286
		return PG_LEVEL_4K;
3287

3288
	max_level = min(max_level, max_huge_page_level);
3289
	for ( ; max_level > PG_LEVEL_4K; max_level--) {
3290 3291
		linfo = lpage_info_slot(gfn, slot, max_level);
		if (!linfo->disallow_lpage)
3292 3293 3294
			break;
	}

3295 3296
	if (max_level == PG_LEVEL_4K)
		return PG_LEVEL_4K;
3297 3298

	level = host_pfn_mapping_level(vcpu, gfn, pfn, slot);
3299
	if (level == PG_LEVEL_4K)
3300
		return level;
3301

3302
	level = min(level, max_level);
3303 3304

	/*
3305 3306
	 * mmu_notifier_retry() was successful and mmu_lock is held, so
	 * the pmd can't be split from under us.
3307
	 */
3308 3309 3310
	mask = KVM_PAGES_PER_HPAGE(level) - 1;
	VM_BUG_ON((gfn & mask) != (pfn & mask));
	*pfnp = pfn & ~mask;
3311 3312

	return level;
3313 3314
}

P
Paolo Bonzini 已提交
3315 3316 3317 3318 3319 3320
static void disallowed_hugepage_adjust(struct kvm_shadow_walk_iterator it,
				       gfn_t gfn, kvm_pfn_t *pfnp, int *levelp)
{
	int level = *levelp;
	u64 spte = *it.sptep;

3321
	if (it.level == level && level > PG_LEVEL_4K &&
P
Paolo Bonzini 已提交
3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337
	    is_nx_huge_page_enabled() &&
	    is_shadow_present_pte(spte) &&
	    !is_large_pte(spte)) {
		/*
		 * A small SPTE exists for this pfn, but FNAME(fetch)
		 * and __direct_map would like to create a large PTE
		 * instead: just force them to go down another level,
		 * patching back for them into pfn the next 9 bits of
		 * the address.
		 */
		u64 page_mask = KVM_PAGES_PER_HPAGE(level) - KVM_PAGES_PER_HPAGE(level - 1);
		*pfnp |= gfn & page_mask;
		(*levelp)--;
	}
}

3338
static int __direct_map(struct kvm_vcpu *vcpu, gpa_t gpa, int write,
3339 3340
			int map_writable, int max_level, kvm_pfn_t pfn,
			bool prefault, bool account_disallowed_nx_lpage)
3341
{
3342
	struct kvm_shadow_walk_iterator it;
3343
	struct kvm_mmu_page *sp;
3344
	int level, ret;
3345 3346
	gfn_t gfn = gpa >> PAGE_SHIFT;
	gfn_t base_gfn = gfn;
A
Avi Kivity 已提交
3347

3348
	if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa)))
3349
		return RET_PF_RETRY;
3350

3351
	level = kvm_mmu_hugepage_adjust(vcpu, gfn, max_level, &pfn);
3352

3353
	trace_kvm_mmu_spte_requested(gpa, level, pfn);
3354
	for_each_shadow_entry(vcpu, gpa, it) {
P
Paolo Bonzini 已提交
3355 3356 3357 3358 3359 3360
		/*
		 * We cannot overwrite existing page tables with an NX
		 * large page, as the leaf could be executable.
		 */
		disallowed_hugepage_adjust(it, gfn, &pfn, &level);

3361 3362
		base_gfn = gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1);
		if (it.level == level)
3363
			break;
A
Avi Kivity 已提交
3364

3365 3366 3367 3368
		drop_large_spte(vcpu, it.sptep);
		if (!is_shadow_present_pte(*it.sptep)) {
			sp = kvm_mmu_get_page(vcpu, base_gfn, it.addr,
					      it.level - 1, true, ACC_ALL);
3369

3370
			link_shadow_page(vcpu, it.sptep, sp);
3371
			if (account_disallowed_nx_lpage)
P
Paolo Bonzini 已提交
3372
				account_huge_nx_page(vcpu->kvm, sp);
3373 3374
		}
	}
3375 3376 3377 3378

	ret = mmu_set_spte(vcpu, it.sptep, ACC_ALL,
			   write, level, base_gfn, pfn, prefault,
			   map_writable);
3379 3380 3381
	if (ret == RET_PF_SPURIOUS)
		return ret;

3382 3383 3384
	direct_pte_prefetch(vcpu, it.sptep);
	++vcpu->stat.pf_fixed;
	return ret;
A
Avi Kivity 已提交
3385 3386
}

H
Huang Ying 已提交
3387
static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
3388
{
3389
	send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, PAGE_SHIFT, tsk);
3390 3391
}

D
Dan Williams 已提交
3392
static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn)
3393
{
X
Xiao Guangrong 已提交
3394 3395 3396 3397 3398 3399
	/*
	 * Do not cache the mmio info caused by writing the readonly gfn
	 * into the spte otherwise read access on readonly gfn also can
	 * caused mmio page fault and treat it as mmio access.
	 */
	if (pfn == KVM_PFN_ERR_RO_FAULT)
3400
		return RET_PF_EMULATE;
X
Xiao Guangrong 已提交
3401

3402
	if (pfn == KVM_PFN_ERR_HWPOISON) {
3403
		kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current);
3404
		return RET_PF_RETRY;
3405
	}
3406

3407
	return -EFAULT;
3408 3409
}

3410
static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
3411 3412
				kvm_pfn_t pfn, unsigned int access,
				int *ret_val)
3413 3414
{
	/* The pfn is invalid, report the error! */
3415
	if (unlikely(is_error_pfn(pfn))) {
3416
		*ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
3417
		return true;
3418 3419
	}

3420
	if (unlikely(is_noslot_pfn(pfn)))
3421 3422
		vcpu_cache_mmio_info(vcpu, gva, gfn,
				     access & shadow_mmio_access_mask);
3423

3424
	return false;
3425 3426
}

3427
static bool page_fault_can_be_fast(u32 error_code)
3428
{
3429 3430 3431 3432 3433 3434 3435
	/*
	 * Do not fix the mmio spte with invalid generation number which
	 * need to be updated by slow page fault path.
	 */
	if (unlikely(error_code & PFERR_RSVD_MASK))
		return false;

3436 3437 3438 3439 3440
	/* See if the page fault is due to an NX violation */
	if (unlikely(((error_code & (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))
		      == (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))))
		return false;

3441
	/*
3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452
	 * #PF can be fast if:
	 * 1. The shadow page table entry is not present, which could mean that
	 *    the fault is potentially caused by access tracking (if enabled).
	 * 2. The shadow page table entry is present and the fault
	 *    is caused by write-protect, that means we just need change the W
	 *    bit of the spte which can be done out of mmu-lock.
	 *
	 * However, if access tracking is disabled we know that a non-present
	 * page must be a genuine page fault where we have to create a new SPTE.
	 * So, if access tracking is disabled, we return true only for write
	 * accesses to a present page.
3453 3454
	 */

3455 3456 3457
	return shadow_acc_track_mask != 0 ||
	       ((error_code & (PFERR_WRITE_MASK | PFERR_PRESENT_MASK))
		== (PFERR_WRITE_MASK | PFERR_PRESENT_MASK));
3458 3459
}

3460 3461 3462 3463
/*
 * Returns true if the SPTE was fixed successfully. Otherwise,
 * someone else modified the SPTE from its original value.
 */
3464
static bool
3465
fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
3466
			u64 *sptep, u64 old_spte, u64 new_spte)
3467 3468 3469 3470 3471
{
	gfn_t gfn;

	WARN_ON(!sp->role.direct);

3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483
	/*
	 * Theoretically we could also set dirty bit (and flush TLB) here in
	 * order to eliminate unnecessary PML logging. See comments in
	 * set_spte. But fast_page_fault is very unlikely to happen with PML
	 * enabled, so we do not do this. This might result in the same GPA
	 * to be logged in PML buffer again when the write really happens, and
	 * eventually to be called by mark_page_dirty twice. But it's also no
	 * harm. This also avoids the TLB flush needed after setting dirty bit
	 * so non-PML cases won't be impacted.
	 *
	 * Compare with set_spte where instead shadow_dirty_mask is set.
	 */
3484
	if (cmpxchg64(sptep, old_spte, new_spte) != old_spte)
3485 3486
		return false;

3487
	if (is_writable_pte(new_spte) && !is_writable_pte(old_spte)) {
3488 3489 3490 3491 3492 3493 3494
		/*
		 * The gfn of direct spte is stable since it is
		 * calculated by sp->gfn.
		 */
		gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
		kvm_vcpu_mark_page_dirty(vcpu, gfn);
	}
3495 3496 3497 3498

	return true;
}

3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510
static bool is_access_allowed(u32 fault_err_code, u64 spte)
{
	if (fault_err_code & PFERR_FETCH_MASK)
		return is_executable_pte(spte);

	if (fault_err_code & PFERR_WRITE_MASK)
		return is_writable_pte(spte);

	/* Fault was on Read access */
	return spte & PT_PRESENT_MASK;
}

3511
/*
3512
 * Returns one of RET_PF_INVALID, RET_PF_FIXED or RET_PF_SPURIOUS.
3513
 */
3514 3515
static int fast_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
			   u32 error_code)
3516 3517
{
	struct kvm_shadow_walk_iterator iterator;
3518
	struct kvm_mmu_page *sp;
3519
	int ret = RET_PF_INVALID;
3520
	u64 spte = 0ull;
3521
	uint retry_count = 0;
3522

3523
	if (!page_fault_can_be_fast(error_code))
3524
		return ret;
3525 3526 3527

	walk_shadow_page_lockless_begin(vcpu);

3528
	do {
3529
		u64 new_spte;
3530

3531
		for_each_shadow_entry_lockless(vcpu, cr2_or_gpa, iterator, spte)
3532
			if (!is_shadow_present_pte(spte))
3533 3534
				break;

3535
		sp = sptep_to_sp(iterator.sptep);
3536 3537
		if (!is_last_spte(spte, sp->role.level))
			break;
3538

3539
		/*
3540 3541 3542 3543 3544
		 * Check whether the memory access that caused the fault would
		 * still cause it if it were to be performed right now. If not,
		 * then this is a spurious fault caused by TLB lazily flushed,
		 * or some other CPU has already fixed the PTE after the
		 * current CPU took the fault.
3545 3546 3547 3548
		 *
		 * Need not check the access of upper level table entries since
		 * they are always ACC_ALL.
		 */
3549
		if (is_access_allowed(error_code, spte)) {
3550
			ret = RET_PF_SPURIOUS;
3551 3552
			break;
		}
3553

3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564
		new_spte = spte;

		if (is_access_track_spte(spte))
			new_spte = restore_acc_track_spte(new_spte);

		/*
		 * Currently, to simplify the code, write-protection can
		 * be removed in the fast path only if the SPTE was
		 * write-protected for dirty-logging or access tracking.
		 */
		if ((error_code & PFERR_WRITE_MASK) &&
3565
		    spte_can_locklessly_be_made_writable(spte)) {
3566
			new_spte |= PT_WRITABLE_MASK;
3567 3568

			/*
3569 3570 3571 3572 3573 3574 3575 3576 3577
			 * Do not fix write-permission on the large spte.  Since
			 * we only dirty the first page into the dirty-bitmap in
			 * fast_pf_fix_direct_spte(), other pages are missed
			 * if its slot has dirty logging enabled.
			 *
			 * Instead, we let the slow page fault path create a
			 * normal spte to fix the access.
			 *
			 * See the comments in kvm_arch_commit_memory_region().
3578
			 */
3579
			if (sp->role.level > PG_LEVEL_4K)
3580
				break;
3581
		}
3582

3583
		/* Verify that the fault can be handled in the fast path */
3584 3585
		if (new_spte == spte ||
		    !is_access_allowed(error_code, new_spte))
3586 3587 3588 3589 3590
			break;

		/*
		 * Currently, fast page fault only works for direct mapping
		 * since the gfn is not stable for indirect shadow page. See
3591
		 * Documentation/virt/kvm/locking.rst to get more detail.
3592
		 */
3593 3594 3595
		if (fast_pf_fix_direct_spte(vcpu, sp, iterator.sptep, spte,
					    new_spte)) {
			ret = RET_PF_FIXED;
3596
			break;
3597
		}
3598 3599 3600 3601 3602 3603 3604 3605

		if (++retry_count > 4) {
			printk_once(KERN_WARNING
				"kvm: Fast #PF retrying more than 4 times.\n");
			break;
		}

	} while (true);
3606

3607
	trace_fast_page_fault(vcpu, cr2_or_gpa, error_code, iterator.sptep,
3608
			      spte, ret);
3609 3610
	walk_shadow_page_lockless_end(vcpu);

3611
	return ret;
3612 3613
}

3614 3615
static void mmu_free_root_page(struct kvm *kvm, hpa_t *root_hpa,
			       struct list_head *invalid_list)
3616
{
3617
	struct kvm_mmu_page *sp;
3618

3619
	if (!VALID_PAGE(*root_hpa))
A
Avi Kivity 已提交
3620
		return;
3621

3622
	sp = to_shadow_page(*root_hpa & PT64_BASE_ADDR_MASK);
3623 3624 3625
	--sp->root_count;
	if (!sp->root_count && sp->role.invalid)
		kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
3626

3627 3628 3629
	*root_hpa = INVALID_PAGE;
}

3630
/* roots_to_free must be some combination of the KVM_MMU_ROOT_* flags */
3631 3632
void kvm_mmu_free_roots(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
			ulong roots_to_free)
3633
{
3634
	struct kvm *kvm = vcpu->kvm;
3635 3636
	int i;
	LIST_HEAD(invalid_list);
3637
	bool free_active_root = roots_to_free & KVM_MMU_ROOT_CURRENT;
3638

3639
	BUILD_BUG_ON(KVM_MMU_NUM_PREV_ROOTS >= BITS_PER_LONG);
3640

3641
	/* Before acquiring the MMU lock, see if we need to do any real work. */
3642 3643 3644 3645 3646 3647 3648 3649 3650
	if (!(free_active_root && VALID_PAGE(mmu->root_hpa))) {
		for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
			if ((roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) &&
			    VALID_PAGE(mmu->prev_roots[i].hpa))
				break;

		if (i == KVM_MMU_NUM_PREV_ROOTS)
			return;
	}
3651

3652
	spin_lock(&kvm->mmu_lock);
3653

3654 3655
	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
		if (roots_to_free & KVM_MMU_ROOT_PREVIOUS(i))
3656
			mmu_free_root_page(kvm, &mmu->prev_roots[i].hpa,
3657
					   &invalid_list);
3658

3659 3660 3661
	if (free_active_root) {
		if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
		    (mmu->root_level >= PT64_ROOT_4LEVEL || mmu->direct_map)) {
3662
			mmu_free_root_page(kvm, &mmu->root_hpa, &invalid_list);
3663 3664 3665
		} else {
			for (i = 0; i < 4; ++i)
				if (mmu->pae_root[i] != 0)
3666
					mmu_free_root_page(kvm,
3667 3668 3669 3670
							   &mmu->pae_root[i],
							   &invalid_list);
			mmu->root_hpa = INVALID_PAGE;
		}
3671
		mmu->root_pgd = 0;
3672
	}
3673

3674 3675
	kvm_mmu_commit_zap_page(kvm, &invalid_list);
	spin_unlock(&kvm->mmu_lock);
3676
}
3677
EXPORT_SYMBOL_GPL(kvm_mmu_free_roots);
3678

3679 3680 3681 3682
static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
{
	int ret = 0;

3683
	if (!kvm_vcpu_is_visible_gfn(vcpu, root_gfn)) {
3684
		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3685 3686 3687 3688 3689 3690
		ret = 1;
	}

	return ret;
}

3691 3692
static hpa_t mmu_alloc_root(struct kvm_vcpu *vcpu, gfn_t gfn, gva_t gva,
			    u8 level, bool direct)
3693 3694
{
	struct kvm_mmu_page *sp;
3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712

	spin_lock(&vcpu->kvm->mmu_lock);

	if (make_mmu_pages_available(vcpu)) {
		spin_unlock(&vcpu->kvm->mmu_lock);
		return INVALID_PAGE;
	}
	sp = kvm_mmu_get_page(vcpu, gfn, gva, level, direct, ACC_ALL);
	++sp->root_count;

	spin_unlock(&vcpu->kvm->mmu_lock);
	return __pa(sp->spt);
}

static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
{
	u8 shadow_root_level = vcpu->arch.mmu->shadow_root_level;
	hpa_t root;
3713
	unsigned i;
3714

3715 3716 3717
	if (shadow_root_level >= PT64_ROOT_4LEVEL) {
		root = mmu_alloc_root(vcpu, 0, 0, shadow_root_level, true);
		if (!VALID_PAGE(root))
3718
			return -ENOSPC;
3719 3720
		vcpu->arch.mmu->root_hpa = root;
	} else if (shadow_root_level == PT32E_ROOT_LEVEL) {
3721
		for (i = 0; i < 4; ++i) {
3722
			MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu->pae_root[i]));
3723

3724 3725 3726
			root = mmu_alloc_root(vcpu, i << (30 - PAGE_SHIFT),
					      i << 30, PT32_ROOT_LEVEL, true);
			if (!VALID_PAGE(root))
3727
				return -ENOSPC;
3728
			vcpu->arch.mmu->pae_root[i] = root | PT_PRESENT_MASK;
3729
		}
3730
		vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->pae_root);
3731 3732
	} else
		BUG();
3733

3734 3735
	/* root_pgd is ignored for direct MMUs. */
	vcpu->arch.mmu->root_pgd = 0;
3736 3737 3738 3739 3740

	return 0;
}

static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
3741
{
3742
	u64 pdptr, pm_mask;
3743
	gfn_t root_gfn, root_pgd;
3744
	hpa_t root;
3745
	int i;
3746

3747 3748
	root_pgd = vcpu->arch.mmu->get_guest_pgd(vcpu);
	root_gfn = root_pgd >> PAGE_SHIFT;
3749

3750 3751 3752 3753 3754 3755 3756
	if (mmu_check_root(vcpu, root_gfn))
		return 1;

	/*
	 * Do we shadow a long mode page table? If so we need to
	 * write-protect the guests page table root.
	 */
3757
	if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) {
3758
		MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu->root_hpa));
3759

3760 3761 3762
		root = mmu_alloc_root(vcpu, root_gfn, 0,
				      vcpu->arch.mmu->shadow_root_level, false);
		if (!VALID_PAGE(root))
3763
			return -ENOSPC;
3764
		vcpu->arch.mmu->root_hpa = root;
3765
		goto set_root_pgd;
3766
	}
3767

3768 3769
	/*
	 * We shadow a 32 bit page table. This may be a legacy 2-level
3770 3771
	 * or a PAE 3-level page table. In either case we need to be aware that
	 * the shadow page table may be a PAE or a long mode page table.
3772
	 */
3773
	pm_mask = PT_PRESENT_MASK;
3774
	if (vcpu->arch.mmu->shadow_root_level == PT64_ROOT_4LEVEL)
3775 3776
		pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;

3777
	for (i = 0; i < 4; ++i) {
3778
		MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu->pae_root[i]));
3779 3780
		if (vcpu->arch.mmu->root_level == PT32E_ROOT_LEVEL) {
			pdptr = vcpu->arch.mmu->get_pdptr(vcpu, i);
B
Bandan Das 已提交
3781
			if (!(pdptr & PT_PRESENT_MASK)) {
3782
				vcpu->arch.mmu->pae_root[i] = 0;
A
Avi Kivity 已提交
3783 3784
				continue;
			}
A
Avi Kivity 已提交
3785
			root_gfn = pdptr >> PAGE_SHIFT;
3786 3787
			if (mmu_check_root(vcpu, root_gfn))
				return 1;
3788
		}
3789

3790 3791 3792 3793
		root = mmu_alloc_root(vcpu, root_gfn, i << 30,
				      PT32_ROOT_LEVEL, false);
		if (!VALID_PAGE(root))
			return -ENOSPC;
3794
		vcpu->arch.mmu->pae_root[i] = root | pm_mask;
3795
	}
3796
	vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->pae_root);
3797 3798 3799 3800 3801

	/*
	 * If we shadow a 32 bit page table with a long mode page
	 * table we enter this path.
	 */
3802 3803
	if (vcpu->arch.mmu->shadow_root_level == PT64_ROOT_4LEVEL) {
		if (vcpu->arch.mmu->lm_root == NULL) {
3804 3805 3806 3807 3808 3809 3810
			/*
			 * The additional page necessary for this is only
			 * allocated on demand.
			 */

			u64 *lm_root;

3811
			lm_root = (void*)get_zeroed_page(GFP_KERNEL_ACCOUNT);
3812 3813 3814
			if (lm_root == NULL)
				return 1;

3815
			lm_root[0] = __pa(vcpu->arch.mmu->pae_root) | pm_mask;
3816

3817
			vcpu->arch.mmu->lm_root = lm_root;
3818 3819
		}

3820
		vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->lm_root);
3821 3822
	}

3823 3824
set_root_pgd:
	vcpu->arch.mmu->root_pgd = root_pgd;
3825

3826
	return 0;
3827 3828
}

3829 3830
static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
{
3831
	if (vcpu->arch.mmu->direct_map)
3832 3833 3834 3835 3836
		return mmu_alloc_direct_roots(vcpu);
	else
		return mmu_alloc_shadow_roots(vcpu);
}

3837
void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3838 3839 3840 3841
{
	int i;
	struct kvm_mmu_page *sp;

3842
	if (vcpu->arch.mmu->direct_map)
3843 3844
		return;

3845
	if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
3846
		return;
3847

3848
	vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
3849

3850 3851
	if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) {
		hpa_t root = vcpu->arch.mmu->root_hpa;
3852
		sp = to_shadow_page(root);
3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870

		/*
		 * Even if another CPU was marking the SP as unsync-ed
		 * simultaneously, any guest page table changes are not
		 * guaranteed to be visible anyway until this VCPU issues a TLB
		 * flush strictly after those changes are made. We only need to
		 * ensure that the other CPU sets these flags before any actual
		 * changes to the page tables are made. The comments in
		 * mmu_need_write_protect() describe what could go wrong if this
		 * requirement isn't satisfied.
		 */
		if (!smp_load_acquire(&sp->unsync) &&
		    !smp_load_acquire(&sp->unsync_children))
			return;

		spin_lock(&vcpu->kvm->mmu_lock);
		kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);

3871
		mmu_sync_children(vcpu, sp);
3872

3873
		kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3874
		spin_unlock(&vcpu->kvm->mmu_lock);
3875 3876
		return;
	}
3877 3878 3879 3880

	spin_lock(&vcpu->kvm->mmu_lock);
	kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);

3881
	for (i = 0; i < 4; ++i) {
3882
		hpa_t root = vcpu->arch.mmu->pae_root[i];
3883

3884
		if (root && VALID_PAGE(root)) {
3885
			root &= PT64_BASE_ADDR_MASK;
3886
			sp = to_shadow_page(root);
3887 3888 3889 3890
			mmu_sync_children(vcpu, sp);
		}
	}

3891
	kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3892
	spin_unlock(&vcpu->kvm->mmu_lock);
3893
}
N
Nadav Har'El 已提交
3894
EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots);
3895

3896
static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gpa_t vaddr,
3897
				  u32 access, struct x86_exception *exception)
A
Avi Kivity 已提交
3898
{
3899 3900
	if (exception)
		exception->error_code = 0;
A
Avi Kivity 已提交
3901 3902 3903
	return vaddr;
}

3904
static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gpa_t vaddr,
3905 3906
					 u32 access,
					 struct x86_exception *exception)
3907
{
3908 3909
	if (exception)
		exception->error_code = 0;
3910
	return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
3911 3912
}

3913 3914 3915
static bool
__is_rsvd_bits_set(struct rsvd_bits_validate *rsvd_check, u64 pte, int level)
{
3916
	int bit7 = (pte >> 7) & 1;
3917

3918
	return pte & rsvd_check->rsvd_bits_mask[bit7][level-1];
3919 3920
}

3921
static bool __is_bad_mt_xwr(struct rsvd_bits_validate *rsvd_check, u64 pte)
3922
{
3923
	return rsvd_check->bad_mt_xwr & BIT_ULL(pte & 0x3f);
3924 3925
}

3926
static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3927
{
3928 3929 3930 3931 3932 3933 3934
	/*
	 * A nested guest cannot use the MMIO cache if it is using nested
	 * page tables, because cr2 is a nGPA while the cache stores GPAs.
	 */
	if (mmu_is_nested(vcpu))
		return false;

3935 3936 3937 3938 3939 3940
	if (direct)
		return vcpu_match_mmio_gpa(vcpu, addr);

	return vcpu_match_mmio_gva(vcpu, addr);
}

3941 3942 3943
/* return true if reserved bit is detected on spte. */
static bool
walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
3944 3945
{
	struct kvm_shadow_walk_iterator iterator;
3946
	u64 sptes[PT64_ROOT_MAX_LEVEL], spte = 0ull;
3947
	struct rsvd_bits_validate *rsvd_check;
3948 3949
	int root, leaf;
	bool reserved = false;
3950

3951
	rsvd_check = &vcpu->arch.mmu->shadow_zero_check;
3952

3953
	walk_shadow_page_lockless_begin(vcpu);
3954

3955 3956
	for (shadow_walk_init(&iterator, vcpu, addr),
		 leaf = root = iterator.level;
3957 3958 3959 3960 3961
	     shadow_walk_okay(&iterator);
	     __shadow_walk_next(&iterator, spte)) {
		spte = mmu_spte_get_lockless(iterator.sptep);

		sptes[leaf - 1] = spte;
3962
		leaf--;
3963

3964 3965
		if (!is_shadow_present_pte(spte))
			break;
3966

3967 3968 3969 3970 3971 3972 3973
		/*
		 * Use a bitwise-OR instead of a logical-OR to aggregate the
		 * reserved bit and EPT's invalid memtype/XWR checks to avoid
		 * adding a Jcc in the loop.
		 */
		reserved |= __is_bad_mt_xwr(rsvd_check, spte) |
			    __is_rsvd_bits_set(rsvd_check, spte, iterator.level);
3974 3975
	}

3976 3977
	walk_shadow_page_lockless_end(vcpu);

3978 3979 3980
	if (reserved) {
		pr_err("%s: detect reserved bits on spte, addr 0x%llx, dump hierarchy:\n",
		       __func__, addr);
3981
		while (root > leaf) {
3982 3983 3984 3985 3986
			pr_err("------ spte 0x%llx level %d.\n",
			       sptes[root - 1], root);
			root--;
		}
	}
3987

3988 3989
	*sptep = spte;
	return reserved;
3990 3991
}

P
Paolo Bonzini 已提交
3992
static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3993 3994
{
	u64 spte;
3995
	bool reserved;
3996

3997
	if (mmio_info_in_cache(vcpu, addr, direct))
3998
		return RET_PF_EMULATE;
3999

4000
	reserved = walk_shadow_page_get_mmio_spte(vcpu, addr, &spte);
4001
	if (WARN_ON(reserved))
4002
		return -EINVAL;
4003 4004 4005

	if (is_mmio_spte(spte)) {
		gfn_t gfn = get_mmio_spte_gfn(spte);
4006
		unsigned int access = get_mmio_spte_access(spte);
4007

4008
		if (!check_mmio_spte(vcpu, spte))
4009
			return RET_PF_INVALID;
4010

4011 4012
		if (direct)
			addr = 0;
X
Xiao Guangrong 已提交
4013 4014

		trace_handle_mmio_page_fault(addr, gfn, access);
4015
		vcpu_cache_mmio_info(vcpu, addr, gfn, access);
4016
		return RET_PF_EMULATE;
4017 4018 4019 4020 4021 4022
	}

	/*
	 * If the page table is zapped by other cpus, let CPU fault again on
	 * the address.
	 */
4023
	return RET_PF_RETRY;
4024 4025
}

4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045
static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu,
					 u32 error_code, gfn_t gfn)
{
	if (unlikely(error_code & PFERR_RSVD_MASK))
		return false;

	if (!(error_code & PFERR_PRESENT_MASK) ||
	      !(error_code & PFERR_WRITE_MASK))
		return false;

	/*
	 * guest is writing the page which is write tracked which can
	 * not be fixed by page fault handler.
	 */
	if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
		return true;

	return false;
}

4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059
static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr)
{
	struct kvm_shadow_walk_iterator iterator;
	u64 spte;

	walk_shadow_page_lockless_begin(vcpu);
	for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
		clear_sp_write_flooding_count(iterator.sptep);
		if (!is_shadow_present_pte(spte))
			break;
	}
	walk_shadow_page_lockless_end(vcpu);
}

4060 4061
static bool kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
				    gfn_t gfn)
4062 4063
{
	struct kvm_arch_async_pf arch;
X
Xiao Guangrong 已提交
4064

4065
	arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
4066
	arch.gfn = gfn;
4067
	arch.direct_map = vcpu->arch.mmu->direct_map;
4068
	arch.cr3 = vcpu->arch.mmu->get_guest_pgd(vcpu);
4069

4070 4071
	return kvm_setup_async_pf(vcpu, cr2_or_gpa,
				  kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
4072 4073
}

4074
static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
4075 4076
			 gpa_t cr2_or_gpa, kvm_pfn_t *pfn, bool write,
			 bool *writable)
4077
{
4078
	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
4079 4080
	bool async;

4081 4082
	/* Don't expose private memslots to L2. */
	if (is_guest_mode(vcpu) && !kvm_is_visible_memslot(slot)) {
4083
		*pfn = KVM_PFN_NOSLOT;
4084
		*writable = false;
4085 4086 4087
		return false;
	}

4088 4089
	async = false;
	*pfn = __gfn_to_pfn_memslot(slot, gfn, false, &async, write, writable);
4090 4091 4092
	if (!async)
		return false; /* *pfn has correct page already */

4093
	if (!prefault && kvm_can_do_async_pf(vcpu)) {
4094
		trace_kvm_try_async_get_page(cr2_or_gpa, gfn);
4095
		if (kvm_find_async_pf_gfn(vcpu, gfn)) {
4096
			trace_kvm_async_pf_doublefault(cr2_or_gpa, gfn);
4097 4098
			kvm_make_request(KVM_REQ_APF_HALT, vcpu);
			return true;
4099
		} else if (kvm_arch_setup_async_pf(vcpu, cr2_or_gpa, gfn))
4100 4101 4102
			return true;
	}

4103
	*pfn = __gfn_to_pfn_memslot(slot, gfn, false, NULL, write, writable);
4104 4105 4106
	return false;
}

4107 4108
static int direct_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
			     bool prefault, int max_level, bool is_tdp)
A
Avi Kivity 已提交
4109
{
4110 4111 4112
	bool write = error_code & PFERR_WRITE_MASK;
	bool exec = error_code & PFERR_FETCH_MASK;
	bool lpage_disallowed = exec && is_nx_huge_page_enabled();
4113
	bool map_writable;
A
Avi Kivity 已提交
4114

4115 4116 4117
	gfn_t gfn = gpa >> PAGE_SHIFT;
	unsigned long mmu_seq;
	kvm_pfn_t pfn;
4118
	int r;
4119

4120
	if (page_fault_handle_page_track(vcpu, error_code, gfn))
4121
		return RET_PF_EMULATE;
4122

4123 4124 4125
	r = fast_page_fault(vcpu, gpa, error_code);
	if (r != RET_PF_INVALID)
		return r;
4126

4127
	r = mmu_topup_memory_caches(vcpu, false);
4128 4129
	if (r)
		return r;
4130

4131
	if (lpage_disallowed)
4132
		max_level = PG_LEVEL_4K;
4133 4134 4135 4136 4137 4138 4139

	mmu_seq = vcpu->kvm->mmu_notifier_seq;
	smp_rmb();

	if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
		return RET_PF_RETRY;

4140
	if (handle_abnormal_pfn(vcpu, is_tdp ? 0 : gpa, gfn, pfn, ACC_ALL, &r))
4141
		return r;
A
Avi Kivity 已提交
4142

4143 4144 4145 4146
	r = RET_PF_RETRY;
	spin_lock(&vcpu->kvm->mmu_lock);
	if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
		goto out_unlock;
4147 4148
	r = make_mmu_pages_available(vcpu);
	if (r)
4149
		goto out_unlock;
4150
	r = __direct_map(vcpu, gpa, write, map_writable, max_level, pfn,
4151
			 prefault, is_tdp && lpage_disallowed);
4152

4153 4154 4155 4156
out_unlock:
	spin_unlock(&vcpu->kvm->mmu_lock);
	kvm_release_pfn_clean(pfn);
	return r;
A
Avi Kivity 已提交
4157 4158
}

4159 4160 4161 4162 4163 4164 4165
static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa,
				u32 error_code, bool prefault)
{
	pgprintk("%s: gva %lx error %x\n", __func__, gpa, error_code);

	/* This path builds a PAE pagetable, we can map 2mb pages at maximum. */
	return direct_page_fault(vcpu, gpa & PAGE_MASK, error_code, prefault,
4166
				 PG_LEVEL_2M, false);
4167 4168
}

4169
int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code,
4170
				u64 fault_address, char *insn, int insn_len)
4171 4172
{
	int r = 1;
4173
	u32 flags = vcpu->arch.apf.host_apf_flags;
4174

4175 4176 4177 4178 4179 4180
#ifndef CONFIG_X86_64
	/* A 64-bit CR2 should be impossible on 32-bit KVM. */
	if (WARN_ON_ONCE(fault_address >> 32))
		return -EFAULT;
#endif

P
Paolo Bonzini 已提交
4181
	vcpu->arch.l1tf_flush_l1d = true;
4182
	if (!flags) {
4183 4184
		trace_kvm_page_fault(fault_address, error_code);

4185
		if (kvm_event_needs_reinjection(vcpu))
4186 4187 4188
			kvm_mmu_unprotect_page_virt(vcpu, fault_address);
		r = kvm_mmu_page_fault(vcpu, fault_address, error_code, insn,
				insn_len);
4189
	} else if (flags & KVM_PV_REASON_PAGE_NOT_PRESENT) {
4190
		vcpu->arch.apf.host_apf_flags = 0;
4191
		local_irq_disable();
4192
		kvm_async_pf_task_wait_schedule(fault_address);
4193
		local_irq_enable();
4194 4195
	} else {
		WARN_ONCE(1, "Unexpected host async PF flags: %x\n", flags);
4196
	}
4197

4198 4199 4200 4201
	return r;
}
EXPORT_SYMBOL_GPL(kvm_handle_page_fault);

4202 4203
int kvm_tdp_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
		       bool prefault)
4204
{
4205
	int max_level;
4206

4207
	for (max_level = KVM_MAX_HUGEPAGE_LEVEL;
4208
	     max_level > PG_LEVEL_4K;
4209 4210
	     max_level--) {
		int page_num = KVM_PAGES_PER_HPAGE(max_level);
4211
		gfn_t base = (gpa >> PAGE_SHIFT) & ~(page_num - 1);
4212

4213 4214
		if (kvm_mtrr_check_gfn_range_consistency(vcpu, base, page_num))
			break;
4215
	}
4216

4217 4218
	return direct_page_fault(vcpu, gpa, error_code, prefault,
				 max_level, true);
4219 4220
}

4221 4222
static void nonpaging_init_context(struct kvm_vcpu *vcpu,
				   struct kvm_mmu *context)
A
Avi Kivity 已提交
4223 4224 4225
{
	context->page_fault = nonpaging_page_fault;
	context->gva_to_gpa = nonpaging_gva_to_gpa;
4226
	context->sync_page = nonpaging_sync_page;
4227
	context->invlpg = NULL;
4228
	context->update_pte = nonpaging_update_pte;
4229
	context->root_level = 0;
A
Avi Kivity 已提交
4230
	context->shadow_root_level = PT32E_ROOT_LEVEL;
4231
	context->direct_map = true;
4232
	context->nx = false;
A
Avi Kivity 已提交
4233 4234
}

4235
static inline bool is_root_usable(struct kvm_mmu_root_info *root, gpa_t pgd,
4236 4237
				  union kvm_mmu_page_role role)
{
4238
	return (role.direct || pgd == root->pgd) &&
4239 4240
	       VALID_PAGE(root->hpa) && to_shadow_page(root->hpa) &&
	       role.word == to_shadow_page(root->hpa)->role.word;
4241 4242
}

4243
/*
4244
 * Find out if a previously cached root matching the new pgd/role is available.
4245 4246 4247 4248 4249 4250
 * The current root is also inserted into the cache.
 * If a matching root was found, it is assigned to kvm_mmu->root_hpa and true is
 * returned.
 * Otherwise, the LRU root from the cache is assigned to kvm_mmu->root_hpa and
 * false is returned. This root should now be freed by the caller.
 */
4251
static bool cached_root_available(struct kvm_vcpu *vcpu, gpa_t new_pgd,
4252 4253 4254 4255
				  union kvm_mmu_page_role new_role)
{
	uint i;
	struct kvm_mmu_root_info root;
4256
	struct kvm_mmu *mmu = vcpu->arch.mmu;
4257

4258
	root.pgd = mmu->root_pgd;
4259 4260
	root.hpa = mmu->root_hpa;

4261
	if (is_root_usable(&root, new_pgd, new_role))
4262 4263
		return true;

4264 4265 4266
	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
		swap(root, mmu->prev_roots[i]);

4267
		if (is_root_usable(&root, new_pgd, new_role))
4268 4269 4270 4271
			break;
	}

	mmu->root_hpa = root.hpa;
4272
	mmu->root_pgd = root.pgd;
4273 4274 4275 4276

	return i < KVM_MMU_NUM_PREV_ROOTS;
}

4277
static bool fast_pgd_switch(struct kvm_vcpu *vcpu, gpa_t new_pgd,
4278
			    union kvm_mmu_page_role new_role)
A
Avi Kivity 已提交
4279
{
4280
	struct kvm_mmu *mmu = vcpu->arch.mmu;
4281 4282 4283 4284 4285 4286 4287

	/*
	 * For now, limit the fast switch to 64-bit hosts+VMs in order to avoid
	 * having to deal with PDPTEs. We may add support for 32-bit hosts/VMs
	 * later if necessary.
	 */
	if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
4288
	    mmu->root_level >= PT64_ROOT_4LEVEL)
4289
		return cached_root_available(vcpu, new_pgd, new_role);
4290 4291

	return false;
A
Avi Kivity 已提交
4292 4293
}

4294
static void __kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd,
4295
			      union kvm_mmu_page_role new_role,
4296
			      bool skip_tlb_flush, bool skip_mmu_sync)
A
Avi Kivity 已提交
4297
{
4298
	if (!fast_pgd_switch(vcpu, new_pgd, new_role)) {
4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310
		kvm_mmu_free_roots(vcpu, vcpu->arch.mmu, KVM_MMU_ROOT_CURRENT);
		return;
	}

	/*
	 * It's possible that the cached previous root page is obsolete because
	 * of a change in the MMU generation number. However, changing the
	 * generation number is accompanied by KVM_REQ_MMU_RELOAD, which will
	 * free the root set here and allocate a new one.
	 */
	kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu);

4311
	if (!skip_mmu_sync || force_flush_and_sync_on_reuse)
4312
		kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
4313
	if (!skip_tlb_flush || force_flush_and_sync_on_reuse)
4314 4315 4316 4317 4318 4319 4320 4321 4322 4323
		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);

	/*
	 * The last MMIO access's GVA and GPA are cached in the VCPU. When
	 * switching to a new CR3, that GVA->GPA mapping may no longer be
	 * valid. So clear any cached MMIO info even when we don't need to sync
	 * the shadow page tables.
	 */
	vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);

4324
	__clear_sp_write_flooding_count(to_shadow_page(vcpu->arch.mmu->root_hpa));
A
Avi Kivity 已提交
4325 4326
}

4327
void kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd, bool skip_tlb_flush,
4328
		     bool skip_mmu_sync)
4329
{
4330
	__kvm_mmu_new_pgd(vcpu, new_pgd, kvm_mmu_calc_root_page_role(vcpu),
4331
			  skip_tlb_flush, skip_mmu_sync);
4332
}
4333
EXPORT_SYMBOL_GPL(kvm_mmu_new_pgd);
4334

4335 4336
static unsigned long get_cr3(struct kvm_vcpu *vcpu)
{
4337
	return kvm_read_cr3(vcpu);
4338 4339
}

4340
static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
4341
			   unsigned int access, int *nr_present)
4342 4343 4344 4345 4346 4347 4348 4349
{
	if (unlikely(is_mmio_spte(*sptep))) {
		if (gfn != get_mmio_spte_gfn(*sptep)) {
			mmu_spte_clear_no_track(sptep);
			return true;
		}

		(*nr_present)++;
4350
		mark_mmio_spte(vcpu, sptep, gfn, access);
4351 4352 4353 4354 4355 4356
		return true;
	}

	return false;
}

4357 4358
static inline bool is_last_gpte(struct kvm_mmu *mmu,
				unsigned level, unsigned gpte)
A
Avi Kivity 已提交
4359
{
4360 4361 4362 4363 4364 4365 4366
	/*
	 * The RHS has bit 7 set iff level < mmu->last_nonleaf_level.
	 * If it is clear, there are no large pages at this level, so clear
	 * PT_PAGE_SIZE_MASK in gpte if that is the case.
	 */
	gpte &= level - mmu->last_nonleaf_level;

4367
	/*
4368 4369 4370
	 * PG_LEVEL_4K always terminates.  The RHS has bit 7 set
	 * iff level <= PG_LEVEL_4K, which for our purpose means
	 * level == PG_LEVEL_4K; set PT_PAGE_SIZE_MASK in gpte then.
4371
	 */
4372
	gpte |= level - PG_LEVEL_4K - 1;
4373

4374
	return gpte & PT_PAGE_SIZE_MASK;
A
Avi Kivity 已提交
4375 4376
}

4377 4378 4379 4380 4381
#define PTTYPE_EPT 18 /* arbitrary */
#define PTTYPE PTTYPE_EPT
#include "paging_tmpl.h"
#undef PTTYPE

A
Avi Kivity 已提交
4382 4383 4384 4385 4386 4387 4388 4389
#define PTTYPE 64
#include "paging_tmpl.h"
#undef PTTYPE

#define PTTYPE 32
#include "paging_tmpl.h"
#undef PTTYPE

4390 4391 4392 4393
static void
__reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
			struct rsvd_bits_validate *rsvd_check,
			int maxphyaddr, int level, bool nx, bool gbpages,
4394
			bool pse, bool amd)
4395 4396
{
	u64 exb_bit_rsvd = 0;
4397
	u64 gbpages_bit_rsvd = 0;
4398
	u64 nonleaf_bit8_rsvd = 0;
4399

4400
	rsvd_check->bad_mt_xwr = 0;
4401

4402
	if (!nx)
4403
		exb_bit_rsvd = rsvd_bits(63, 63);
4404
	if (!gbpages)
4405
		gbpages_bit_rsvd = rsvd_bits(7, 7);
4406 4407 4408 4409 4410

	/*
	 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
	 * leaf entries) on AMD CPUs only.
	 */
4411
	if (amd)
4412 4413
		nonleaf_bit8_rsvd = rsvd_bits(8, 8);

4414
	switch (level) {
4415 4416
	case PT32_ROOT_LEVEL:
		/* no rsvd bits for 2 level 4K page table entries */
4417 4418 4419 4420
		rsvd_check->rsvd_bits_mask[0][1] = 0;
		rsvd_check->rsvd_bits_mask[0][0] = 0;
		rsvd_check->rsvd_bits_mask[1][0] =
			rsvd_check->rsvd_bits_mask[0][0];
4421

4422
		if (!pse) {
4423
			rsvd_check->rsvd_bits_mask[1][1] = 0;
4424 4425 4426
			break;
		}

4427 4428
		if (is_cpuid_PSE36())
			/* 36bits PSE 4MB page */
4429
			rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
4430 4431
		else
			/* 32 bits PSE 4MB page */
4432
			rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
4433 4434
		break;
	case PT32E_ROOT_LEVEL:
4435
		rsvd_check->rsvd_bits_mask[0][2] =
4436
			rsvd_bits(maxphyaddr, 63) |
4437
			rsvd_bits(5, 8) | rsvd_bits(1, 2);	/* PDPTE */
4438
		rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4439
			rsvd_bits(maxphyaddr, 62);	/* PDE */
4440
		rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
4441
			rsvd_bits(maxphyaddr, 62); 	/* PTE */
4442
		rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
4443 4444
			rsvd_bits(maxphyaddr, 62) |
			rsvd_bits(13, 20);		/* large page */
4445 4446
		rsvd_check->rsvd_bits_mask[1][0] =
			rsvd_check->rsvd_bits_mask[0][0];
4447
		break;
4448 4449 4450 4451 4452 4453
	case PT64_ROOT_5LEVEL:
		rsvd_check->rsvd_bits_mask[0][4] = exb_bit_rsvd |
			nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
			rsvd_bits(maxphyaddr, 51);
		rsvd_check->rsvd_bits_mask[1][4] =
			rsvd_check->rsvd_bits_mask[0][4];
4454
		fallthrough;
4455
	case PT64_ROOT_4LEVEL:
4456 4457
		rsvd_check->rsvd_bits_mask[0][3] = exb_bit_rsvd |
			nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
4458
			rsvd_bits(maxphyaddr, 51);
4459
		rsvd_check->rsvd_bits_mask[0][2] = exb_bit_rsvd |
4460
			gbpages_bit_rsvd |
4461
			rsvd_bits(maxphyaddr, 51);
4462 4463 4464 4465 4466 4467 4468
		rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
			rsvd_bits(maxphyaddr, 51);
		rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
			rsvd_bits(maxphyaddr, 51);
		rsvd_check->rsvd_bits_mask[1][3] =
			rsvd_check->rsvd_bits_mask[0][3];
		rsvd_check->rsvd_bits_mask[1][2] = exb_bit_rsvd |
4469
			gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51) |
4470
			rsvd_bits(13, 29);
4471
		rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
4472 4473
			rsvd_bits(maxphyaddr, 51) |
			rsvd_bits(13, 20);		/* large page */
4474 4475
		rsvd_check->rsvd_bits_mask[1][0] =
			rsvd_check->rsvd_bits_mask[0][0];
4476 4477 4478 4479
		break;
	}
}

4480 4481 4482 4483 4484
static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
				  struct kvm_mmu *context)
{
	__reset_rsvds_bits_mask(vcpu, &context->guest_rsvd_check,
				cpuid_maxphyaddr(vcpu), context->root_level,
4485 4486
				context->nx,
				guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
4487 4488
				is_pse(vcpu),
				guest_cpuid_is_amd_or_hygon(vcpu));
4489 4490
}

4491 4492 4493
static void
__reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
			    int maxphyaddr, bool execonly)
4494
{
4495
	u64 bad_mt_xwr;
4496

4497 4498
	rsvd_check->rsvd_bits_mask[0][4] =
		rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
4499
	rsvd_check->rsvd_bits_mask[0][3] =
4500
		rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
4501
	rsvd_check->rsvd_bits_mask[0][2] =
4502
		rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
4503
	rsvd_check->rsvd_bits_mask[0][1] =
4504
		rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
4505
	rsvd_check->rsvd_bits_mask[0][0] = rsvd_bits(maxphyaddr, 51);
4506 4507

	/* large page */
4508
	rsvd_check->rsvd_bits_mask[1][4] = rsvd_check->rsvd_bits_mask[0][4];
4509 4510
	rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
	rsvd_check->rsvd_bits_mask[1][2] =
4511
		rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 29);
4512
	rsvd_check->rsvd_bits_mask[1][1] =
4513
		rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 20);
4514
	rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
4515

4516 4517 4518 4519 4520 4521 4522 4523
	bad_mt_xwr = 0xFFull << (2 * 8);	/* bits 3..5 must not be 2 */
	bad_mt_xwr |= 0xFFull << (3 * 8);	/* bits 3..5 must not be 3 */
	bad_mt_xwr |= 0xFFull << (7 * 8);	/* bits 3..5 must not be 7 */
	bad_mt_xwr |= REPEAT_BYTE(1ull << 2);	/* bits 0..2 must not be 010 */
	bad_mt_xwr |= REPEAT_BYTE(1ull << 6);	/* bits 0..2 must not be 110 */
	if (!execonly) {
		/* bits 0..2 must not be 100 unless VMX capabilities allow it */
		bad_mt_xwr |= REPEAT_BYTE(1ull << 4);
4524
	}
4525
	rsvd_check->bad_mt_xwr = bad_mt_xwr;
4526 4527
}

4528 4529 4530 4531 4532 4533 4534
static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
		struct kvm_mmu *context, bool execonly)
{
	__reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
				    cpuid_maxphyaddr(vcpu), execonly);
}

4535 4536 4537 4538 4539 4540 4541 4542
/*
 * the page table on host is the shadow page table for the page
 * table in guest or amd nested guest, its mmu features completely
 * follow the features in guest.
 */
void
reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
{
4543 4544
	bool uses_nx = context->nx ||
		context->mmu_role.base.smep_andnot_wp;
4545 4546
	struct rsvd_bits_validate *shadow_zero_check;
	int i;
4547

4548 4549 4550 4551
	/*
	 * Passing "true" to the last argument is okay; it adds a check
	 * on bit 8 of the SPTEs which KVM doesn't use anyway.
	 */
4552 4553
	shadow_zero_check = &context->shadow_zero_check;
	__reset_rsvds_bits_mask(vcpu, shadow_zero_check,
4554
				shadow_phys_bits,
4555
				context->shadow_root_level, uses_nx,
4556 4557
				guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
				is_pse(vcpu), true);
4558 4559 4560 4561 4562 4563 4564 4565 4566

	if (!shadow_me_mask)
		return;

	for (i = context->shadow_root_level; --i >= 0;) {
		shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
		shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
	}

4567 4568 4569
}
EXPORT_SYMBOL_GPL(reset_shadow_zero_bits_mask);

4570 4571 4572 4573 4574 4575
static inline bool boot_cpu_is_amd(void)
{
	WARN_ON_ONCE(!tdp_enabled);
	return shadow_x_mask == 0;
}

4576 4577 4578 4579 4580 4581 4582 4583
/*
 * the direct page table on host, use as much mmu features as
 * possible, however, kvm currently does not do execution-protection.
 */
static void
reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
				struct kvm_mmu *context)
{
4584 4585 4586 4587 4588
	struct rsvd_bits_validate *shadow_zero_check;
	int i;

	shadow_zero_check = &context->shadow_zero_check;

4589
	if (boot_cpu_is_amd())
4590
		__reset_rsvds_bits_mask(vcpu, shadow_zero_check,
4591
					shadow_phys_bits,
4592
					context->shadow_root_level, false,
4593 4594
					boot_cpu_has(X86_FEATURE_GBPAGES),
					true, true);
4595
	else
4596
		__reset_rsvds_bits_mask_ept(shadow_zero_check,
4597
					    shadow_phys_bits,
4598 4599
					    false);

4600 4601 4602 4603 4604 4605 4606
	if (!shadow_me_mask)
		return;

	for (i = context->shadow_root_level; --i >= 0;) {
		shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
		shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
	}
4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617
}

/*
 * as the comments in reset_shadow_zero_bits_mask() except it
 * is the shadow page table for intel nested guest.
 */
static void
reset_ept_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
				struct kvm_mmu *context, bool execonly)
{
	__reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
4618
				    shadow_phys_bits, execonly);
4619 4620
}

4621 4622 4623 4624 4625 4626 4627 4628 4629 4630
#define BYTE_MASK(access) \
	((1 & (access) ? 2 : 0) | \
	 (2 & (access) ? 4 : 0) | \
	 (3 & (access) ? 8 : 0) | \
	 (4 & (access) ? 16 : 0) | \
	 (5 & (access) ? 32 : 0) | \
	 (6 & (access) ? 64 : 0) | \
	 (7 & (access) ? 128 : 0))


4631 4632
static void update_permission_bitmask(struct kvm_vcpu *vcpu,
				      struct kvm_mmu *mmu, bool ept)
4633
{
4634 4635 4636 4637 4638 4639 4640 4641 4642
	unsigned byte;

	const u8 x = BYTE_MASK(ACC_EXEC_MASK);
	const u8 w = BYTE_MASK(ACC_WRITE_MASK);
	const u8 u = BYTE_MASK(ACC_USER_MASK);

	bool cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP) != 0;
	bool cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP) != 0;
	bool cr0_wp = is_write_protection(vcpu);
4643 4644

	for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
4645 4646
		unsigned pfec = byte << 1;

F
Feng Wu 已提交
4647
		/*
4648 4649
		 * Each "*f" variable has a 1 bit for each UWX value
		 * that causes a fault with the given PFEC.
F
Feng Wu 已提交
4650
		 */
4651

4652
		/* Faults from writes to non-writable pages */
4653
		u8 wf = (pfec & PFERR_WRITE_MASK) ? (u8)~w : 0;
4654
		/* Faults from user mode accesses to supervisor pages */
4655
		u8 uf = (pfec & PFERR_USER_MASK) ? (u8)~u : 0;
4656
		/* Faults from fetches of non-executable pages*/
4657
		u8 ff = (pfec & PFERR_FETCH_MASK) ? (u8)~x : 0;
4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682
		/* Faults from kernel mode fetches of user pages */
		u8 smepf = 0;
		/* Faults from kernel mode accesses of user pages */
		u8 smapf = 0;

		if (!ept) {
			/* Faults from kernel mode accesses to user pages */
			u8 kf = (pfec & PFERR_USER_MASK) ? 0 : u;

			/* Not really needed: !nx will cause pte.nx to fault */
			if (!mmu->nx)
				ff = 0;

			/* Allow supervisor writes if !cr0.wp */
			if (!cr0_wp)
				wf = (pfec & PFERR_USER_MASK) ? wf : 0;

			/* Disallow supervisor fetches of user code if cr4.smep */
			if (cr4_smep)
				smepf = (pfec & PFERR_FETCH_MASK) ? kf : 0;

			/*
			 * SMAP:kernel-mode data accesses from user-mode
			 * mappings should fault. A fault is considered
			 * as a SMAP violation if all of the following
P
Peng Hao 已提交
4683
			 * conditions are true:
4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696
			 *   - X86_CR4_SMAP is set in CR4
			 *   - A user page is accessed
			 *   - The access is not a fetch
			 *   - Page fault in kernel mode
			 *   - if CPL = 3 or X86_EFLAGS_AC is clear
			 *
			 * Here, we cover the first three conditions.
			 * The fourth is computed dynamically in permission_fault();
			 * PFERR_RSVD_MASK bit will be set in PFEC if the access is
			 * *not* subject to SMAP restrictions.
			 */
			if (cr4_smap)
				smapf = (pfec & (PFERR_RSVD_MASK|PFERR_FETCH_MASK)) ? 0 : kf;
4697
		}
4698 4699

		mmu->permissions[byte] = ff | uf | wf | smepf | smapf;
4700 4701 4702
	}
}

4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777
/*
* PKU is an additional mechanism by which the paging controls access to
* user-mode addresses based on the value in the PKRU register.  Protection
* key violations are reported through a bit in the page fault error code.
* Unlike other bits of the error code, the PK bit is not known at the
* call site of e.g. gva_to_gpa; it must be computed directly in
* permission_fault based on two bits of PKRU, on some machine state (CR4,
* CR0, EFER, CPL), and on other bits of the error code and the page tables.
*
* In particular the following conditions come from the error code, the
* page tables and the machine state:
* - PK is always zero unless CR4.PKE=1 and EFER.LMA=1
* - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch)
* - PK is always zero if U=0 in the page tables
* - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access.
*
* The PKRU bitmask caches the result of these four conditions.  The error
* code (minus the P bit) and the page table's U bit form an index into the
* PKRU bitmask.  Two bits of the PKRU bitmask are then extracted and ANDed
* with the two bits of the PKRU register corresponding to the protection key.
* For the first three conditions above the bits will be 00, thus masking
* away both AD and WD.  For all reads or if the last condition holds, WD
* only will be masked away.
*/
static void update_pkru_bitmask(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
				bool ept)
{
	unsigned bit;
	bool wp;

	if (ept) {
		mmu->pkru_mask = 0;
		return;
	}

	/* PKEY is enabled only if CR4.PKE and EFER.LMA are both set. */
	if (!kvm_read_cr4_bits(vcpu, X86_CR4_PKE) || !is_long_mode(vcpu)) {
		mmu->pkru_mask = 0;
		return;
	}

	wp = is_write_protection(vcpu);

	for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) {
		unsigned pfec, pkey_bits;
		bool check_pkey, check_write, ff, uf, wf, pte_user;

		pfec = bit << 1;
		ff = pfec & PFERR_FETCH_MASK;
		uf = pfec & PFERR_USER_MASK;
		wf = pfec & PFERR_WRITE_MASK;

		/* PFEC.RSVD is replaced by ACC_USER_MASK. */
		pte_user = pfec & PFERR_RSVD_MASK;

		/*
		 * Only need to check the access which is not an
		 * instruction fetch and is to a user page.
		 */
		check_pkey = (!ff && pte_user);
		/*
		 * write access is controlled by PKRU if it is a
		 * user access or CR0.WP = 1.
		 */
		check_write = check_pkey && wf && (uf || wp);

		/* PKRU.AD stops both read and write access. */
		pkey_bits = !!check_pkey;
		/* PKRU.WD stops write access. */
		pkey_bits |= (!!check_write) << 1;

		mmu->pkru_mask |= (pkey_bits & 3) << pfec;
	}
}

4778
static void update_last_nonleaf_level(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
A
Avi Kivity 已提交
4779
{
4780 4781 4782 4783 4784
	unsigned root_level = mmu->root_level;

	mmu->last_nonleaf_level = root_level;
	if (root_level == PT32_ROOT_LEVEL && is_pse(vcpu))
		mmu->last_nonleaf_level++;
A
Avi Kivity 已提交
4785 4786
}

4787 4788 4789
static void paging64_init_context_common(struct kvm_vcpu *vcpu,
					 struct kvm_mmu *context,
					 int level)
A
Avi Kivity 已提交
4790
{
4791
	context->nx = is_nx(vcpu);
4792
	context->root_level = level;
4793

4794
	reset_rsvds_bits_mask(vcpu, context);
4795
	update_permission_bitmask(vcpu, context, false);
4796
	update_pkru_bitmask(vcpu, context, false);
4797
	update_last_nonleaf_level(vcpu, context);
A
Avi Kivity 已提交
4798

4799
	MMU_WARN_ON(!is_pae(vcpu));
A
Avi Kivity 已提交
4800 4801
	context->page_fault = paging64_page_fault;
	context->gva_to_gpa = paging64_gva_to_gpa;
4802
	context->sync_page = paging64_sync_page;
M
Marcelo Tosatti 已提交
4803
	context->invlpg = paging64_invlpg;
4804
	context->update_pte = paging64_update_pte;
4805
	context->shadow_root_level = level;
4806
	context->direct_map = false;
A
Avi Kivity 已提交
4807 4808
}

4809 4810
static void paging64_init_context(struct kvm_vcpu *vcpu,
				  struct kvm_mmu *context)
4811
{
4812 4813 4814 4815
	int root_level = is_la57_mode(vcpu) ?
			 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;

	paging64_init_context_common(vcpu, context, root_level);
4816 4817
}

4818 4819
static void paging32_init_context(struct kvm_vcpu *vcpu,
				  struct kvm_mmu *context)
A
Avi Kivity 已提交
4820
{
4821
	context->nx = false;
4822
	context->root_level = PT32_ROOT_LEVEL;
4823

4824
	reset_rsvds_bits_mask(vcpu, context);
4825
	update_permission_bitmask(vcpu, context, false);
4826
	update_pkru_bitmask(vcpu, context, false);
4827
	update_last_nonleaf_level(vcpu, context);
A
Avi Kivity 已提交
4828 4829 4830

	context->page_fault = paging32_page_fault;
	context->gva_to_gpa = paging32_gva_to_gpa;
4831
	context->sync_page = paging32_sync_page;
M
Marcelo Tosatti 已提交
4832
	context->invlpg = paging32_invlpg;
4833
	context->update_pte = paging32_update_pte;
A
Avi Kivity 已提交
4834
	context->shadow_root_level = PT32E_ROOT_LEVEL;
4835
	context->direct_map = false;
A
Avi Kivity 已提交
4836 4837
}

4838 4839
static void paging32E_init_context(struct kvm_vcpu *vcpu,
				   struct kvm_mmu *context)
A
Avi Kivity 已提交
4840
{
4841
	paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
A
Avi Kivity 已提交
4842 4843
}

4844 4845 4846 4847
static union kvm_mmu_extended_role kvm_calc_mmu_role_ext(struct kvm_vcpu *vcpu)
{
	union kvm_mmu_extended_role ext = {0};

4848
	ext.cr0_pg = !!is_paging(vcpu);
4849
	ext.cr4_pae = !!is_pae(vcpu);
4850 4851 4852 4853
	ext.cr4_smep = !!kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
	ext.cr4_smap = !!kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
	ext.cr4_pse = !!is_pse(vcpu);
	ext.cr4_pke = !!kvm_read_cr4_bits(vcpu, X86_CR4_PKE);
4854
	ext.maxphyaddr = cpuid_maxphyaddr(vcpu);
4855 4856 4857 4858 4859 4860

	ext.valid = 1;

	return ext;
}

4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879
static union kvm_mmu_role kvm_calc_mmu_role_common(struct kvm_vcpu *vcpu,
						   bool base_only)
{
	union kvm_mmu_role role = {0};

	role.base.access = ACC_ALL;
	role.base.nxe = !!is_nx(vcpu);
	role.base.cr0_wp = is_write_protection(vcpu);
	role.base.smm = is_smm(vcpu);
	role.base.guest_mode = is_guest_mode(vcpu);

	if (base_only)
		return role;

	role.ext = kvm_calc_mmu_role_ext(vcpu);

	return role;
}

4880 4881 4882
static inline int kvm_mmu_get_tdp_level(struct kvm_vcpu *vcpu)
{
	/* Use 5-level TDP if and only if it's useful/necessary. */
4883
	if (max_tdp_level == 5 && cpuid_maxphyaddr(vcpu) <= 48)
4884 4885
		return 4;

4886
	return max_tdp_level;
4887 4888
}

4889 4890
static union kvm_mmu_role
kvm_calc_tdp_mmu_root_page_role(struct kvm_vcpu *vcpu, bool base_only)
4891
{
4892
	union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, base_only);
4893

4894
	role.base.ad_disabled = (shadow_accessed_mask == 0);
4895
	role.base.level = kvm_mmu_get_tdp_level(vcpu);
4896
	role.base.direct = true;
4897
	role.base.gpte_is_8_bytes = true;
4898 4899 4900 4901

	return role;
}

4902
static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
4903
{
4904
	struct kvm_mmu *context = &vcpu->arch.root_mmu;
4905 4906
	union kvm_mmu_role new_role =
		kvm_calc_tdp_mmu_root_page_role(vcpu, false);
4907

4908 4909 4910 4911
	if (new_role.as_u64 == context->mmu_role.as_u64)
		return;

	context->mmu_role.as_u64 = new_role.as_u64;
4912
	context->page_fault = kvm_tdp_page_fault;
4913
	context->sync_page = nonpaging_sync_page;
4914
	context->invlpg = NULL;
4915
	context->update_pte = nonpaging_update_pte;
4916
	context->shadow_root_level = kvm_mmu_get_tdp_level(vcpu);
4917
	context->direct_map = true;
4918
	context->get_guest_pgd = get_cr3;
4919
	context->get_pdptr = kvm_pdptr_read;
4920
	context->inject_page_fault = kvm_inject_page_fault;
4921 4922

	if (!is_paging(vcpu)) {
4923
		context->nx = false;
4924 4925 4926
		context->gva_to_gpa = nonpaging_gva_to_gpa;
		context->root_level = 0;
	} else if (is_long_mode(vcpu)) {
4927
		context->nx = is_nx(vcpu);
4928 4929
		context->root_level = is_la57_mode(vcpu) ?
				PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4930 4931
		reset_rsvds_bits_mask(vcpu, context);
		context->gva_to_gpa = paging64_gva_to_gpa;
4932
	} else if (is_pae(vcpu)) {
4933
		context->nx = is_nx(vcpu);
4934
		context->root_level = PT32E_ROOT_LEVEL;
4935 4936
		reset_rsvds_bits_mask(vcpu, context);
		context->gva_to_gpa = paging64_gva_to_gpa;
4937
	} else {
4938
		context->nx = false;
4939
		context->root_level = PT32_ROOT_LEVEL;
4940 4941
		reset_rsvds_bits_mask(vcpu, context);
		context->gva_to_gpa = paging32_gva_to_gpa;
4942 4943
	}

4944
	update_permission_bitmask(vcpu, context, false);
4945
	update_pkru_bitmask(vcpu, context, false);
4946
	update_last_nonleaf_level(vcpu, context);
4947
	reset_tdp_shadow_zero_bits_mask(vcpu, context);
4948 4949
}

4950
static union kvm_mmu_role
4951
kvm_calc_shadow_root_page_role_common(struct kvm_vcpu *vcpu, bool base_only)
4952 4953 4954 4955 4956 4957 4958
{
	union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, base_only);

	role.base.smep_andnot_wp = role.ext.cr4_smep &&
		!is_write_protection(vcpu);
	role.base.smap_andnot_wp = role.ext.cr4_smap &&
		!is_write_protection(vcpu);
4959
	role.base.gpte_is_8_bytes = !!is_pae(vcpu);
4960

4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971
	return role;
}

static union kvm_mmu_role
kvm_calc_shadow_mmu_root_page_role(struct kvm_vcpu *vcpu, bool base_only)
{
	union kvm_mmu_role role =
		kvm_calc_shadow_root_page_role_common(vcpu, base_only);

	role.base.direct = !is_paging(vcpu);

4972
	if (!is_long_mode(vcpu))
4973
		role.base.level = PT32E_ROOT_LEVEL;
4974
	else if (is_la57_mode(vcpu))
4975
		role.base.level = PT64_ROOT_5LEVEL;
4976
	else
4977
		role.base.level = PT64_ROOT_4LEVEL;
4978 4979 4980 4981

	return role;
}

4982 4983 4984
static void shadow_mmu_init_context(struct kvm_vcpu *vcpu, struct kvm_mmu *context,
				    u32 cr0, u32 cr4, u32 efer,
				    union kvm_mmu_role new_role)
4985
{
4986
	if (!(cr0 & X86_CR0_PG))
4987
		nonpaging_init_context(vcpu, context);
4988
	else if (efer & EFER_LMA)
4989
		paging64_init_context(vcpu, context);
4990
	else if (cr4 & X86_CR4_PAE)
4991
		paging32E_init_context(vcpu, context);
A
Avi Kivity 已提交
4992
	else
4993
		paging32_init_context(vcpu, context);
4994

4995
	context->mmu_role.as_u64 = new_role.as_u64;
4996
	reset_shadow_zero_bits_mask(vcpu, context);
4997
}
4998 4999 5000

static void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, u32 cr0, u32 cr4, u32 efer)
{
5001
	struct kvm_mmu *context = &vcpu->arch.root_mmu;
5002 5003 5004 5005
	union kvm_mmu_role new_role =
		kvm_calc_shadow_mmu_root_page_role(vcpu, false);

	if (new_role.as_u64 != context->mmu_role.as_u64)
5006
		shadow_mmu_init_context(vcpu, context, cr0, cr4, efer, new_role);
5007 5008
}

5009 5010 5011 5012 5013 5014 5015
static union kvm_mmu_role
kvm_calc_shadow_npt_root_page_role(struct kvm_vcpu *vcpu)
{
	union kvm_mmu_role role =
		kvm_calc_shadow_root_page_role_common(vcpu, false);

	role.base.direct = false;
5016
	role.base.level = kvm_mmu_get_tdp_level(vcpu);
5017 5018 5019 5020

	return role;
}

5021 5022 5023
void kvm_init_shadow_npt_mmu(struct kvm_vcpu *vcpu, u32 cr0, u32 cr4, u32 efer,
			     gpa_t nested_cr3)
{
5024
	struct kvm_mmu *context = &vcpu->arch.guest_mmu;
5025
	union kvm_mmu_role new_role = kvm_calc_shadow_npt_root_page_role(vcpu);
5026

5027 5028
	context->shadow_root_level = new_role.base.level;

5029 5030
	__kvm_mmu_new_pgd(vcpu, nested_cr3, new_role.base, false, false);

5031
	if (new_role.as_u64 != context->mmu_role.as_u64)
5032
		shadow_mmu_init_context(vcpu, context, cr0, cr4, efer, new_role);
5033 5034
}
EXPORT_SYMBOL_GPL(kvm_init_shadow_npt_mmu);
5035

5036 5037
static union kvm_mmu_role
kvm_calc_shadow_ept_root_page_role(struct kvm_vcpu *vcpu, bool accessed_dirty,
5038
				   bool execonly, u8 level)
5039
{
5040
	union kvm_mmu_role role = {0};
5041

5042 5043
	/* SMM flag is inherited from root_mmu */
	role.base.smm = vcpu->arch.root_mmu.mmu_role.base.smm;
5044

5045
	role.base.level = level;
5046
	role.base.gpte_is_8_bytes = true;
5047 5048 5049 5050
	role.base.direct = false;
	role.base.ad_disabled = !accessed_dirty;
	role.base.guest_mode = true;
	role.base.access = ACC_ALL;
5051

5052 5053 5054 5055 5056 5057 5058
	/*
	 * WP=1 and NOT_WP=1 is an impossible combination, use WP and the
	 * SMAP variation to denote shadow EPT entries.
	 */
	role.base.cr0_wp = true;
	role.base.smap_andnot_wp = true;

5059
	role.ext = kvm_calc_mmu_role_ext(vcpu);
5060
	role.ext.execonly = execonly;
5061 5062 5063 5064

	return role;
}

5065
void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly,
5066
			     bool accessed_dirty, gpa_t new_eptp)
N
Nadav Har'El 已提交
5067
{
5068
	struct kvm_mmu *context = &vcpu->arch.guest_mmu;
5069
	u8 level = vmx_eptp_page_walk_level(new_eptp);
5070 5071
	union kvm_mmu_role new_role =
		kvm_calc_shadow_ept_root_page_role(vcpu, accessed_dirty,
5072
						   execonly, level);
5073

5074
	__kvm_mmu_new_pgd(vcpu, new_eptp, new_role.base, true, true);
5075 5076 5077

	if (new_role.as_u64 == context->mmu_role.as_u64)
		return;
5078

5079
	context->shadow_root_level = level;
N
Nadav Har'El 已提交
5080 5081

	context->nx = true;
5082
	context->ept_ad = accessed_dirty;
N
Nadav Har'El 已提交
5083 5084 5085 5086 5087
	context->page_fault = ept_page_fault;
	context->gva_to_gpa = ept_gva_to_gpa;
	context->sync_page = ept_sync_page;
	context->invlpg = ept_invlpg;
	context->update_pte = ept_update_pte;
5088
	context->root_level = level;
N
Nadav Har'El 已提交
5089
	context->direct_map = false;
5090
	context->mmu_role.as_u64 = new_role.as_u64;
5091

N
Nadav Har'El 已提交
5092
	update_permission_bitmask(vcpu, context, true);
5093
	update_pkru_bitmask(vcpu, context, true);
5094
	update_last_nonleaf_level(vcpu, context);
N
Nadav Har'El 已提交
5095
	reset_rsvds_bits_mask_ept(vcpu, context, execonly);
5096
	reset_ept_shadow_zero_bits_mask(vcpu, context, execonly);
N
Nadav Har'El 已提交
5097 5098 5099
}
EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);

5100
static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
5101
{
5102
	struct kvm_mmu *context = &vcpu->arch.root_mmu;
5103

5104 5105 5106 5107 5108
	kvm_init_shadow_mmu(vcpu,
			    kvm_read_cr0_bits(vcpu, X86_CR0_PG),
			    kvm_read_cr4_bits(vcpu, X86_CR4_PAE),
			    vcpu->arch.efer);

5109
	context->get_guest_pgd     = get_cr3;
5110 5111
	context->get_pdptr         = kvm_pdptr_read;
	context->inject_page_fault = kvm_inject_page_fault;
A
Avi Kivity 已提交
5112 5113
}

5114
static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
5115
{
5116
	union kvm_mmu_role new_role = kvm_calc_mmu_role_common(vcpu, false);
5117 5118
	struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;

5119 5120 5121 5122
	if (new_role.as_u64 == g_context->mmu_role.as_u64)
		return;

	g_context->mmu_role.as_u64 = new_role.as_u64;
5123
	g_context->get_guest_pgd     = get_cr3;
5124
	g_context->get_pdptr         = kvm_pdptr_read;
5125 5126
	g_context->inject_page_fault = kvm_inject_page_fault;

5127 5128 5129 5130 5131 5132
	/*
	 * L2 page tables are never shadowed, so there is no need to sync
	 * SPTEs.
	 */
	g_context->invlpg            = NULL;

5133
	/*
5134
	 * Note that arch.mmu->gva_to_gpa translates l2_gpa to l1_gpa using
5135 5136 5137 5138 5139
	 * L1's nested page tables (e.g. EPT12). The nested translation
	 * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using
	 * L2's page tables as the first level of translation and L1's
	 * nested page tables as the second level of translation. Basically
	 * the gva_to_gpa functions between mmu and nested_mmu are swapped.
5140 5141
	 */
	if (!is_paging(vcpu)) {
5142
		g_context->nx = false;
5143 5144 5145
		g_context->root_level = 0;
		g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
	} else if (is_long_mode(vcpu)) {
5146
		g_context->nx = is_nx(vcpu);
5147 5148
		g_context->root_level = is_la57_mode(vcpu) ?
					PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
5149
		reset_rsvds_bits_mask(vcpu, g_context);
5150 5151
		g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
	} else if (is_pae(vcpu)) {
5152
		g_context->nx = is_nx(vcpu);
5153
		g_context->root_level = PT32E_ROOT_LEVEL;
5154
		reset_rsvds_bits_mask(vcpu, g_context);
5155 5156
		g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
	} else {
5157
		g_context->nx = false;
5158
		g_context->root_level = PT32_ROOT_LEVEL;
5159
		reset_rsvds_bits_mask(vcpu, g_context);
5160 5161 5162
		g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
	}

5163
	update_permission_bitmask(vcpu, g_context, false);
5164
	update_pkru_bitmask(vcpu, g_context, false);
5165
	update_last_nonleaf_level(vcpu, g_context);
5166 5167
}

5168
void kvm_init_mmu(struct kvm_vcpu *vcpu, bool reset_roots)
5169
{
5170
	if (reset_roots) {
5171 5172
		uint i;

5173
		vcpu->arch.mmu->root_hpa = INVALID_PAGE;
5174 5175

		for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5176
			vcpu->arch.mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
5177 5178
	}

5179
	if (mmu_is_nested(vcpu))
5180
		init_kvm_nested_mmu(vcpu);
5181
	else if (tdp_enabled)
5182
		init_kvm_tdp_mmu(vcpu);
5183
	else
5184
		init_kvm_softmmu(vcpu);
5185
}
5186
EXPORT_SYMBOL_GPL(kvm_init_mmu);
5187

5188 5189 5190
static union kvm_mmu_page_role
kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu)
{
5191 5192
	union kvm_mmu_role role;

5193
	if (tdp_enabled)
5194
		role = kvm_calc_tdp_mmu_root_page_role(vcpu, true);
5195
	else
5196 5197 5198
		role = kvm_calc_shadow_mmu_root_page_role(vcpu, true);

	return role.base;
5199
}
5200

5201
void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
5202
{
5203
	kvm_mmu_unload(vcpu);
5204
	kvm_init_mmu(vcpu, true);
A
Avi Kivity 已提交
5205
}
5206
EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
A
Avi Kivity 已提交
5207 5208

int kvm_mmu_load(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
5209
{
5210 5211
	int r;

5212
	r = mmu_topup_memory_caches(vcpu, !vcpu->arch.mmu->direct_map);
A
Avi Kivity 已提交
5213 5214
	if (r)
		goto out;
5215
	r = mmu_alloc_roots(vcpu);
5216
	kvm_mmu_sync_roots(vcpu);
5217 5218
	if (r)
		goto out;
5219
	kvm_mmu_load_pgd(vcpu);
5220
	kvm_x86_ops.tlb_flush_current(vcpu);
5221 5222
out:
	return r;
A
Avi Kivity 已提交
5223
}
A
Avi Kivity 已提交
5224 5225 5226 5227
EXPORT_SYMBOL_GPL(kvm_mmu_load);

void kvm_mmu_unload(struct kvm_vcpu *vcpu)
{
5228 5229 5230 5231
	kvm_mmu_free_roots(vcpu, &vcpu->arch.root_mmu, KVM_MMU_ROOTS_ALL);
	WARN_ON(VALID_PAGE(vcpu->arch.root_mmu.root_hpa));
	kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
	WARN_ON(VALID_PAGE(vcpu->arch.guest_mmu.root_hpa));
A
Avi Kivity 已提交
5232
}
5233
EXPORT_SYMBOL_GPL(kvm_mmu_unload);
A
Avi Kivity 已提交
5234

5235
static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
5236 5237
				  struct kvm_mmu_page *sp, u64 *spte,
				  const void *new)
5238
{
5239
	if (sp->role.level != PG_LEVEL_4K) {
5240 5241
		++vcpu->kvm->stat.mmu_pde_zapped;
		return;
5242
        }
5243

A
Avi Kivity 已提交
5244
	++vcpu->kvm->stat.mmu_pte_updated;
5245
	vcpu->arch.mmu->update_pte(vcpu, sp, spte, new);
5246 5247
}

5248 5249 5250 5251 5252 5253 5254 5255
static bool need_remote_flush(u64 old, u64 new)
{
	if (!is_shadow_present_pte(old))
		return false;
	if (!is_shadow_present_pte(new))
		return true;
	if ((old ^ new) & PT64_BASE_ADDR_MASK)
		return true;
5256 5257
	old ^= shadow_nx_mask;
	new ^= shadow_nx_mask;
5258 5259 5260
	return (old & ~new & PT64_PERM_MASK) != 0;
}

5261
static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
5262
				    int *bytes)
5263
{
5264
	u64 gentry = 0;
5265
	int r;
5266 5267 5268

	/*
	 * Assume that the pte write on a page table of the same type
5269 5270
	 * as the current vcpu paging mode since we update the sptes only
	 * when they have the same mode.
5271
	 */
5272
	if (is_pae(vcpu) && *bytes == 4) {
5273
		/* Handle a 32-bit guest writing two halves of a 64-bit gpte */
5274 5275
		*gpa &= ~(gpa_t)7;
		*bytes = 8;
5276 5277
	}

5278 5279 5280 5281
	if (*bytes == 4 || *bytes == 8) {
		r = kvm_vcpu_read_guest_atomic(vcpu, *gpa, &gentry, *bytes);
		if (r)
			gentry = 0;
5282 5283
	}

5284 5285 5286 5287 5288 5289 5290
	return gentry;
}

/*
 * If we're seeing too many writes to a page, it may no longer be a page table,
 * or we may be forking, in which case it is better to unmap the page.
 */
5291
static bool detect_write_flooding(struct kvm_mmu_page *sp)
5292
{
5293 5294 5295 5296
	/*
	 * Skip write-flooding detected for the sp whose level is 1, because
	 * it can become unsync, then the guest page is not write-protected.
	 */
5297
	if (sp->role.level == PG_LEVEL_4K)
5298
		return false;
5299

5300 5301
	atomic_inc(&sp->write_flooding_count);
	return atomic_read(&sp->write_flooding_count) >= 3;
5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316
}

/*
 * Misaligned accesses are too much trouble to fix up; also, they usually
 * indicate a page is not used as a page table.
 */
static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
				    int bytes)
{
	unsigned offset, pte_size, misaligned;

	pgprintk("misaligned: gpa %llx bytes %d role %x\n",
		 gpa, bytes, sp->role.word);

	offset = offset_in_page(gpa);
5317
	pte_size = sp->role.gpte_is_8_bytes ? 8 : 4;
5318 5319 5320 5321 5322 5323 5324 5325

	/*
	 * Sometimes, the OS only writes the last one bytes to update status
	 * bits, for example, in linux, andb instruction is used in clear_bit().
	 */
	if (!(offset & (pte_size - 1)) && bytes == 1)
		return false;

5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340
	misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
	misaligned |= bytes < 4;

	return misaligned;
}

static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
{
	unsigned page_offset, quadrant;
	u64 *spte;
	int level;

	page_offset = offset_in_page(gpa);
	level = sp->role.level;
	*nspte = 1;
5341
	if (!sp->role.gpte_is_8_bytes) {
5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362
		page_offset <<= 1;	/* 32->64 */
		/*
		 * A 32-bit pde maps 4MB while the shadow pdes map
		 * only 2MB.  So we need to double the offset again
		 * and zap two pdes instead of one.
		 */
		if (level == PT32_ROOT_LEVEL) {
			page_offset &= ~7; /* kill rounding error */
			page_offset <<= 1;
			*nspte = 2;
		}
		quadrant = page_offset >> PAGE_SHIFT;
		page_offset &= ~PAGE_MASK;
		if (quadrant != sp->role.quadrant)
			return NULL;
	}

	spte = &sp->spt[page_offset / sizeof(*spte)];
	return spte;
}

5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378
/*
 * Ignore various flags when determining if a SPTE can be immediately
 * overwritten for the current MMU.
 *  - level: explicitly checked in mmu_pte_write_new_pte(), and will never
 *    match the current MMU role, as MMU's level tracks the root level.
 *  - access: updated based on the new guest PTE
 *  - quadrant: handled by get_written_sptes()
 *  - invalid: always false (loop only walks valid shadow pages)
 */
static const union kvm_mmu_page_role role_ign = {
	.level = 0xf,
	.access = 0x7,
	.quadrant = 0x3,
	.invalid = 0x1,
};

5379
static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
5380 5381
			      const u8 *new, int bytes,
			      struct kvm_page_track_notifier_node *node)
5382 5383 5384 5385 5386 5387
{
	gfn_t gfn = gpa >> PAGE_SHIFT;
	struct kvm_mmu_page *sp;
	LIST_HEAD(invalid_list);
	u64 entry, gentry, *spte;
	int npte;
5388
	bool remote_flush, local_flush;
5389 5390 5391 5392 5393

	/*
	 * If we don't have indirect shadow pages, it means no page is
	 * write-protected, so we can exit simply.
	 */
5394
	if (!READ_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
5395 5396
		return;

5397
	remote_flush = local_flush = false;
5398 5399 5400 5401 5402 5403 5404 5405

	pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);

	/*
	 * No need to care whether allocation memory is successful
	 * or not since pte prefetch is skiped if it does not have
	 * enough objects in the cache.
	 */
5406
	mmu_topup_memory_caches(vcpu, true);
5407 5408

	spin_lock(&vcpu->kvm->mmu_lock);
5409 5410 5411

	gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, &bytes);

5412
	++vcpu->kvm->stat.mmu_pte_write;
5413
	kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
5414

5415
	for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
5416
		if (detect_write_misaligned(sp, gpa, bytes) ||
5417
		      detect_write_flooding(sp)) {
5418
			kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
A
Avi Kivity 已提交
5419
			++vcpu->kvm->stat.mmu_flooded;
5420 5421
			continue;
		}
5422 5423 5424 5425 5426

		spte = get_written_sptes(sp, gpa, &npte);
		if (!spte)
			continue;

5427
		local_flush = true;
5428
		while (npte--) {
5429 5430
			u32 base_role = vcpu->arch.mmu->mmu_role.base.word;

5431
			entry = *spte;
5432
			mmu_page_zap_pte(vcpu->kvm, sp, spte, NULL);
5433
			if (gentry &&
5434 5435
			    !((sp->role.word ^ base_role) & ~role_ign.word) &&
			    rmap_can_add(vcpu))
5436
				mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
G
Gleb Natapov 已提交
5437
			if (need_remote_flush(entry, *spte))
5438
				remote_flush = true;
5439
			++spte;
5440 5441
		}
	}
5442
	kvm_mmu_flush_or_zap(vcpu, &invalid_list, remote_flush, local_flush);
5443
	kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
5444
	spin_unlock(&vcpu->kvm->mmu_lock);
5445 5446
}

5447 5448
int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
{
5449 5450
	gpa_t gpa;
	int r;
5451

5452
	if (vcpu->arch.mmu->direct_map)
5453 5454
		return 0;

5455
	gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
5456 5457

	r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
5458

5459
	return r;
5460
}
5461
EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
5462

5463
int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code,
5464
		       void *insn, int insn_len)
5465
{
5466
	int r, emulation_type = EMULTYPE_PF;
5467
	bool direct = vcpu->arch.mmu->direct_map;
5468

5469
	if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa)))
5470 5471
		return RET_PF_RETRY;

5472
	r = RET_PF_INVALID;
5473
	if (unlikely(error_code & PFERR_RSVD_MASK)) {
5474
		r = handle_mmio_page_fault(vcpu, cr2_or_gpa, direct);
5475
		if (r == RET_PF_EMULATE)
5476 5477
			goto emulate;
	}
5478

5479
	if (r == RET_PF_INVALID) {
5480 5481
		r = kvm_mmu_do_page_fault(vcpu, cr2_or_gpa,
					  lower_32_bits(error_code), false);
5482 5483
		if (WARN_ON_ONCE(r == RET_PF_INVALID))
			return -EIO;
5484 5485
	}

5486
	if (r < 0)
5487
		return r;
5488 5489
	if (r != RET_PF_EMULATE)
		return 1;
5490

5491 5492 5493 5494 5495 5496 5497
	/*
	 * Before emulating the instruction, check if the error code
	 * was due to a RO violation while translating the guest page.
	 * This can occur when using nested virtualization with nested
	 * paging in both guests. If true, we simply unprotect the page
	 * and resume the guest.
	 */
5498
	if (vcpu->arch.mmu->direct_map &&
5499
	    (error_code & PFERR_NESTED_GUEST_PAGE) == PFERR_NESTED_GUEST_PAGE) {
5500
		kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(cr2_or_gpa));
5501 5502 5503
		return 1;
	}

5504 5505 5506 5507 5508 5509
	/*
	 * vcpu->arch.mmu.page_fault returned RET_PF_EMULATE, but we can still
	 * optimistically try to just unprotect the page and let the processor
	 * re-execute the instruction that caused the page fault.  Do not allow
	 * retrying MMIO emulation, as it's not only pointless but could also
	 * cause us to enter an infinite loop because the processor will keep
5510 5511 5512 5513
	 * faulting on the non-existent MMIO address.  Retrying an instruction
	 * from a nested guest is also pointless and dangerous as we are only
	 * explicitly shadowing L1's page tables, i.e. unprotecting something
	 * for L1 isn't going to magically fix whatever issue cause L2 to fail.
5514
	 */
5515
	if (!mmio_info_in_cache(vcpu, cr2_or_gpa, direct) && !is_guest_mode(vcpu))
5516
		emulation_type |= EMULTYPE_ALLOW_RETRY_PF;
5517
emulate:
5518
	return x86_emulate_instruction(vcpu, cr2_or_gpa, emulation_type, insn,
5519
				       insn_len);
5520 5521 5522
}
EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);

5523 5524
void kvm_mmu_invalidate_gva(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
			    gva_t gva, hpa_t root_hpa)
M
Marcelo Tosatti 已提交
5525
{
5526
	int i;
5527

5528 5529 5530 5531 5532 5533 5534 5535 5536 5537
	/* It's actually a GPA for vcpu->arch.guest_mmu.  */
	if (mmu != &vcpu->arch.guest_mmu) {
		/* INVLPG on a non-canonical address is a NOP according to the SDM.  */
		if (is_noncanonical_address(gva, vcpu))
			return;

		kvm_x86_ops.tlb_flush_gva(vcpu, gva);
	}

	if (!mmu->invlpg)
5538 5539
		return;

5540 5541
	if (root_hpa == INVALID_PAGE) {
		mmu->invlpg(vcpu, gva, mmu->root_hpa);
5542

5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561
		/*
		 * INVLPG is required to invalidate any global mappings for the VA,
		 * irrespective of PCID. Since it would take us roughly similar amount
		 * of work to determine whether any of the prev_root mappings of the VA
		 * is marked global, or to just sync it blindly, so we might as well
		 * just always sync it.
		 *
		 * Mappings not reachable via the current cr3 or the prev_roots will be
		 * synced when switching to that cr3, so nothing needs to be done here
		 * for them.
		 */
		for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
			if (VALID_PAGE(mmu->prev_roots[i].hpa))
				mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
	} else {
		mmu->invlpg(vcpu, gva, root_hpa);
	}
}
EXPORT_SYMBOL_GPL(kvm_mmu_invalidate_gva);
5562

5563 5564 5565
void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
{
	kvm_mmu_invalidate_gva(vcpu, vcpu->arch.mmu, gva, INVALID_PAGE);
M
Marcelo Tosatti 已提交
5566 5567 5568 5569
	++vcpu->stat.invlpg;
}
EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);

5570

5571 5572
void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid)
{
5573
	struct kvm_mmu *mmu = vcpu->arch.mmu;
5574
	bool tlb_flush = false;
5575
	uint i;
5576 5577

	if (pcid == kvm_get_active_pcid(vcpu)) {
5578
		mmu->invlpg(vcpu, gva, mmu->root_hpa);
5579
		tlb_flush = true;
5580 5581
	}

5582 5583
	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
		if (VALID_PAGE(mmu->prev_roots[i].hpa) &&
5584
		    pcid == kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd)) {
5585 5586 5587
			mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
			tlb_flush = true;
		}
5588
	}
5589

5590
	if (tlb_flush)
5591
		kvm_x86_ops.tlb_flush_gva(vcpu, gva);
5592

5593 5594 5595
	++vcpu->stat.invlpg;

	/*
5596 5597 5598
	 * Mappings not reachable via the current cr3 or the prev_roots will be
	 * synced when switching to that cr3, so nothing needs to be done here
	 * for them.
5599 5600 5601 5602
	 */
}
EXPORT_SYMBOL_GPL(kvm_mmu_invpcid_gva);

5603 5604
void kvm_configure_mmu(bool enable_tdp, int tdp_max_root_level,
		       int tdp_huge_page_level)
5605
{
5606
	tdp_enabled = enable_tdp;
5607
	max_tdp_level = tdp_max_root_level;
5608 5609

	/*
5610
	 * max_huge_page_level reflects KVM's MMU capabilities irrespective
5611 5612 5613 5614 5615 5616
	 * of kernel support, e.g. KVM may be capable of using 1GB pages when
	 * the kernel is not.  But, KVM never creates a page size greater than
	 * what is used by the kernel for any given HVA, i.e. the kernel's
	 * capabilities are ultimately consulted by kvm_mmu_hugepage_adjust().
	 */
	if (tdp_enabled)
5617
		max_huge_page_level = tdp_huge_page_level;
5618
	else if (boot_cpu_has(X86_FEATURE_GBPAGES))
5619
		max_huge_page_level = PG_LEVEL_1G;
5620
	else
5621
		max_huge_page_level = PG_LEVEL_2M;
5622
}
5623
EXPORT_SYMBOL_GPL(kvm_configure_mmu);
5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643

/* The return value indicates if tlb flush on all vcpus is needed. */
typedef bool (*slot_level_handler) (struct kvm *kvm, struct kvm_rmap_head *rmap_head);

/* The caller should hold mmu-lock before calling this function. */
static __always_inline bool
slot_handle_level_range(struct kvm *kvm, struct kvm_memory_slot *memslot,
			slot_level_handler fn, int start_level, int end_level,
			gfn_t start_gfn, gfn_t end_gfn, bool lock_flush_tlb)
{
	struct slot_rmap_walk_iterator iterator;
	bool flush = false;

	for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
			end_gfn, &iterator) {
		if (iterator.rmap)
			flush |= fn(kvm, iterator.rmap);

		if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
			if (flush && lock_flush_tlb) {
5644 5645 5646
				kvm_flush_remote_tlbs_with_address(kvm,
						start_gfn,
						iterator.gfn - start_gfn + 1);
5647 5648 5649 5650 5651 5652 5653
				flush = false;
			}
			cond_resched_lock(&kvm->mmu_lock);
		}
	}

	if (flush && lock_flush_tlb) {
5654 5655
		kvm_flush_remote_tlbs_with_address(kvm, start_gfn,
						   end_gfn - start_gfn + 1);
5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676
		flush = false;
	}

	return flush;
}

static __always_inline bool
slot_handle_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
		  slot_level_handler fn, int start_level, int end_level,
		  bool lock_flush_tlb)
{
	return slot_handle_level_range(kvm, memslot, fn, start_level,
			end_level, memslot->base_gfn,
			memslot->base_gfn + memslot->npages - 1,
			lock_flush_tlb);
}

static __always_inline bool
slot_handle_all_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
		      slot_level_handler fn, bool lock_flush_tlb)
{
5677
	return slot_handle_level(kvm, memslot, fn, PG_LEVEL_4K,
5678
				 KVM_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
5679 5680 5681 5682 5683 5684
}

static __always_inline bool
slot_handle_large_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
			slot_level_handler fn, bool lock_flush_tlb)
{
5685
	return slot_handle_level(kvm, memslot, fn, PG_LEVEL_4K + 1,
5686
				 KVM_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
5687 5688 5689 5690 5691 5692
}

static __always_inline bool
slot_handle_leaf(struct kvm *kvm, struct kvm_memory_slot *memslot,
		 slot_level_handler fn, bool lock_flush_tlb)
{
5693 5694
	return slot_handle_level(kvm, memslot, fn, PG_LEVEL_4K,
				 PG_LEVEL_4K, lock_flush_tlb);
5695 5696
}

5697
static void free_mmu_pages(struct kvm_mmu *mmu)
A
Avi Kivity 已提交
5698
{
5699 5700
	free_page((unsigned long)mmu->pae_root);
	free_page((unsigned long)mmu->lm_root);
A
Avi Kivity 已提交
5701 5702
}

5703
static int alloc_mmu_pages(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
A
Avi Kivity 已提交
5704
{
5705
	struct page *page;
A
Avi Kivity 已提交
5706 5707
	int i;

5708
	/*
5709 5710 5711 5712 5713 5714 5715
	 * When using PAE paging, the four PDPTEs are treated as 'root' pages,
	 * while the PDP table is a per-vCPU construct that's allocated at MMU
	 * creation.  When emulating 32-bit mode, cr3 is only 32 bits even on
	 * x86_64.  Therefore we need to allocate the PDP table in the first
	 * 4GB of memory, which happens to fit the DMA32 zone.  Except for
	 * SVM's 32-bit NPT support, TDP paging doesn't use PAE paging and can
	 * skip allocating the PDP table.
5716
	 */
5717
	if (tdp_enabled && kvm_mmu_get_tdp_level(vcpu) > PT32E_ROOT_LEVEL)
5718 5719
		return 0;

5720
	page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_DMA32);
5721
	if (!page)
5722 5723
		return -ENOMEM;

5724
	mmu->pae_root = page_address(page);
5725
	for (i = 0; i < 4; ++i)
5726
		mmu->pae_root[i] = INVALID_PAGE;
5727

A
Avi Kivity 已提交
5728 5729 5730
	return 0;
}

5731
int kvm_mmu_create(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
5732
{
5733
	uint i;
5734
	int ret;
5735

5736
	vcpu->arch.mmu_pte_list_desc_cache.kmem_cache = pte_list_desc_cache;
5737 5738
	vcpu->arch.mmu_pte_list_desc_cache.gfp_zero = __GFP_ZERO;

5739
	vcpu->arch.mmu_page_header_cache.kmem_cache = mmu_page_header_cache;
5740
	vcpu->arch.mmu_page_header_cache.gfp_zero = __GFP_ZERO;
5741

5742 5743
	vcpu->arch.mmu_shadow_page_cache.gfp_zero = __GFP_ZERO;

5744 5745
	vcpu->arch.mmu = &vcpu->arch.root_mmu;
	vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
A
Avi Kivity 已提交
5746

5747
	vcpu->arch.root_mmu.root_hpa = INVALID_PAGE;
5748
	vcpu->arch.root_mmu.root_pgd = 0;
5749
	vcpu->arch.root_mmu.translate_gpa = translate_gpa;
5750
	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5751
		vcpu->arch.root_mmu.prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
A
Avi Kivity 已提交
5752

5753
	vcpu->arch.guest_mmu.root_hpa = INVALID_PAGE;
5754
	vcpu->arch.guest_mmu.root_pgd = 0;
5755 5756 5757
	vcpu->arch.guest_mmu.translate_gpa = translate_gpa;
	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
		vcpu->arch.guest_mmu.prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
5758

5759
	vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772

	ret = alloc_mmu_pages(vcpu, &vcpu->arch.guest_mmu);
	if (ret)
		return ret;

	ret = alloc_mmu_pages(vcpu, &vcpu->arch.root_mmu);
	if (ret)
		goto fail_allocate_root;

	return ret;
 fail_allocate_root:
	free_mmu_pages(&vcpu->arch.guest_mmu);
	return ret;
A
Avi Kivity 已提交
5773 5774
}

5775
#define BATCH_ZAP_PAGES	10
5776 5777 5778
static void kvm_zap_obsolete_pages(struct kvm *kvm)
{
	struct kvm_mmu_page *sp, *node;
5779
	int nr_zapped, batch = 0;
5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791

restart:
	list_for_each_entry_safe_reverse(sp, node,
	      &kvm->arch.active_mmu_pages, link) {
		/*
		 * No obsolete valid page exists before a newly created page
		 * since active_mmu_pages is a FIFO list.
		 */
		if (!is_obsolete_sp(kvm, sp))
			break;

		/*
5792 5793 5794
		 * Invalid pages should never land back on the list of active
		 * pages.  Skip the bogus page, otherwise we'll get stuck in an
		 * infinite loop if the page gets put back on the list (again).
5795
		 */
5796
		if (WARN_ON(sp->role.invalid))
5797 5798
			continue;

5799 5800 5801 5802 5803 5804
		/*
		 * No need to flush the TLB since we're only zapping shadow
		 * pages with an obsolete generation number and all vCPUS have
		 * loaded a new root, i.e. the shadow pages being zapped cannot
		 * be in active use by the guest.
		 */
5805
		if (batch >= BATCH_ZAP_PAGES &&
5806
		    cond_resched_lock(&kvm->mmu_lock)) {
5807
			batch = 0;
5808 5809 5810
			goto restart;
		}

5811 5812
		if (__kvm_mmu_prepare_zap_page(kvm, sp,
				&kvm->arch.zapped_obsolete_pages, &nr_zapped)) {
5813
			batch += nr_zapped;
5814
			goto restart;
5815
		}
5816 5817
	}

5818 5819 5820 5821 5822
	/*
	 * Trigger a remote TLB flush before freeing the page tables to ensure
	 * KVM is not in the middle of a lockless shadow page table walk, which
	 * may reference the pages.
	 */
5823
	kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836
}

/*
 * Fast invalidate all shadow pages and use lock-break technique
 * to zap obsolete pages.
 *
 * It's required when memslot is being deleted or VM is being
 * destroyed, in these cases, we should ensure that KVM MMU does
 * not use any resource of the being-deleted slot or all slots
 * after calling the function.
 */
static void kvm_mmu_zap_all_fast(struct kvm *kvm)
{
5837 5838
	lockdep_assert_held(&kvm->slots_lock);

5839
	spin_lock(&kvm->mmu_lock);
5840
	trace_kvm_mmu_zap_all_fast(kvm);
5841 5842 5843 5844 5845 5846 5847 5848 5849

	/*
	 * Toggle mmu_valid_gen between '0' and '1'.  Because slots_lock is
	 * held for the entire duration of zapping obsolete pages, it's
	 * impossible for there to be multiple invalid generations associated
	 * with *valid* shadow pages at any given time, i.e. there is exactly
	 * one valid generation and (at most) one invalid generation.
	 */
	kvm->arch.mmu_valid_gen = kvm->arch.mmu_valid_gen ? 0 : 1;
5850

5851 5852 5853 5854 5855 5856 5857 5858 5859 5860
	/*
	 * Notify all vcpus to reload its shadow page table and flush TLB.
	 * Then all vcpus will switch to new shadow page table with the new
	 * mmu_valid_gen.
	 *
	 * Note: we need to do this under the protection of mmu_lock,
	 * otherwise, vcpu would purge shadow page but miss tlb flush.
	 */
	kvm_reload_remote_mmus(kvm);

5861 5862 5863 5864
	kvm_zap_obsolete_pages(kvm);
	spin_unlock(&kvm->mmu_lock);
}

5865 5866 5867 5868 5869
static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
{
	return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
}

5870
static void kvm_mmu_invalidate_zap_pages_in_memslot(struct kvm *kvm,
5871 5872
			struct kvm_memory_slot *slot,
			struct kvm_page_track_notifier_node *node)
5873
{
5874
	kvm_mmu_zap_all_fast(kvm);
5875 5876
}

5877
void kvm_mmu_init_vm(struct kvm *kvm)
5878
{
5879
	struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5880

5881
	node->track_write = kvm_mmu_pte_write;
5882
	node->track_flush_slot = kvm_mmu_invalidate_zap_pages_in_memslot;
5883
	kvm_page_track_register_notifier(kvm, node);
5884 5885
}

5886
void kvm_mmu_uninit_vm(struct kvm *kvm)
5887
{
5888
	struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5889

5890
	kvm_page_track_unregister_notifier(kvm, node);
5891 5892
}

X
Xiao Guangrong 已提交
5893 5894 5895 5896
void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
{
	struct kvm_memslots *slots;
	struct kvm_memory_slot *memslot;
5897
	int i;
X
Xiao Guangrong 已提交
5898 5899

	spin_lock(&kvm->mmu_lock);
5900 5901 5902 5903 5904 5905 5906 5907 5908
	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
		slots = __kvm_memslots(kvm, i);
		kvm_for_each_memslot(memslot, slots) {
			gfn_t start, end;

			start = max(gfn_start, memslot->base_gfn);
			end = min(gfn_end, memslot->base_gfn + memslot->npages);
			if (start >= end)
				continue;
X
Xiao Guangrong 已提交
5909

5910
			slot_handle_level_range(kvm, memslot, kvm_zap_rmapp,
5911
						PG_LEVEL_4K,
5912
						KVM_MAX_HUGEPAGE_LEVEL,
5913
						start, end - 1, true);
5914
		}
X
Xiao Guangrong 已提交
5915 5916 5917 5918 5919
	}

	spin_unlock(&kvm->mmu_lock);
}

5920 5921
static bool slot_rmap_write_protect(struct kvm *kvm,
				    struct kvm_rmap_head *rmap_head)
5922
{
5923
	return __rmap_write_protect(kvm, rmap_head, false);
5924 5925
}

5926
void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
5927 5928
				      struct kvm_memory_slot *memslot,
				      int start_level)
A
Avi Kivity 已提交
5929
{
5930
	bool flush;
A
Avi Kivity 已提交
5931

5932
	spin_lock(&kvm->mmu_lock);
5933
	flush = slot_handle_level(kvm, memslot, slot_rmap_write_protect,
5934
				start_level, KVM_MAX_HUGEPAGE_LEVEL, false);
5935
	spin_unlock(&kvm->mmu_lock);
5936 5937 5938 5939 5940 5941 5942 5943

	/*
	 * We can flush all the TLBs out of the mmu lock without TLB
	 * corruption since we just change the spte from writable to
	 * readonly so that we only need to care the case of changing
	 * spte from present to present (changing the spte from present
	 * to nonpresent will flush all the TLBs immediately), in other
	 * words, the only case we care is mmu_spte_update() where we
W
Wei Yang 已提交
5944
	 * have checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE
5945 5946 5947
	 * instead of PT_WRITABLE_MASK, that means it does not depend
	 * on PT_WRITABLE_MASK anymore.
	 */
5948
	if (flush)
5949
		kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
A
Avi Kivity 已提交
5950
}
5951

5952
static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
5953
					 struct kvm_rmap_head *rmap_head)
5954 5955 5956 5957
{
	u64 *sptep;
	struct rmap_iterator iter;
	int need_tlb_flush = 0;
D
Dan Williams 已提交
5958
	kvm_pfn_t pfn;
5959 5960
	struct kvm_mmu_page *sp;

5961
restart:
5962
	for_each_rmap_spte(rmap_head, &iter, sptep) {
5963
		sp = sptep_to_sp(sptep);
5964 5965 5966
		pfn = spte_to_pfn(*sptep);

		/*
5967 5968 5969 5970 5971
		 * We cannot do huge page mapping for indirect shadow pages,
		 * which are found on the last rmap (level = 1) when not using
		 * tdp; such shadow pages are synced with the page table in
		 * the guest, and the guest page table is using 4K page size
		 * mapping if the indirect sp has level = 1.
5972
		 */
5973
		if (sp->role.direct && !kvm_is_reserved_pfn(pfn) &&
5974 5975
		    (kvm_is_zone_device_pfn(pfn) ||
		     PageCompound(pfn_to_page(pfn)))) {
5976
			pte_list_remove(rmap_head, sptep);
5977 5978 5979 5980 5981 5982 5983

			if (kvm_available_flush_tlb_with_range())
				kvm_flush_remote_tlbs_with_address(kvm, sp->gfn,
					KVM_PAGES_PER_HPAGE(sp->role.level));
			else
				need_tlb_flush = 1;

5984 5985
			goto restart;
		}
5986 5987 5988 5989 5990 5991
	}

	return need_tlb_flush;
}

void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
5992
				   const struct kvm_memory_slot *memslot)
5993
{
5994
	/* FIXME: const-ify all uses of struct kvm_memory_slot.  */
5995
	spin_lock(&kvm->mmu_lock);
5996 5997
	slot_handle_leaf(kvm, (struct kvm_memory_slot *)memslot,
			 kvm_mmu_zap_collapsible_spte, true);
5998 5999 6000
	spin_unlock(&kvm->mmu_lock);
}

6001 6002 6003 6004
void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
					struct kvm_memory_slot *memslot)
{
	/*
6005 6006 6007 6008 6009
	 * All current use cases for flushing the TLBs for a specific memslot
	 * are related to dirty logging, and do the TLB flush out of mmu_lock.
	 * The interaction between the various operations on memslot must be
	 * serialized by slots_locks to ensure the TLB flush from one operation
	 * is observed by any other operation on the same memslot.
6010 6011
	 */
	lockdep_assert_held(&kvm->slots_lock);
6012 6013
	kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn,
					   memslot->npages);
6014 6015
}

6016 6017 6018
void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
				   struct kvm_memory_slot *memslot)
{
6019
	bool flush;
6020 6021

	spin_lock(&kvm->mmu_lock);
6022
	flush = slot_handle_leaf(kvm, memslot, __rmap_clear_dirty, false);
6023 6024 6025 6026 6027 6028 6029 6030 6031
	spin_unlock(&kvm->mmu_lock);

	/*
	 * It's also safe to flush TLBs out of mmu lock here as currently this
	 * function is only used for dirty logging, in which case flushing TLB
	 * out of mmu lock also guarantees no dirty pages will be lost in
	 * dirty_bitmap.
	 */
	if (flush)
6032
		kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
6033 6034 6035 6036 6037 6038
}
EXPORT_SYMBOL_GPL(kvm_mmu_slot_leaf_clear_dirty);

void kvm_mmu_slot_largepage_remove_write_access(struct kvm *kvm,
					struct kvm_memory_slot *memslot)
{
6039
	bool flush;
6040 6041

	spin_lock(&kvm->mmu_lock);
6042 6043
	flush = slot_handle_large_level(kvm, memslot, slot_rmap_write_protect,
					false);
6044 6045 6046
	spin_unlock(&kvm->mmu_lock);

	if (flush)
6047
		kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
6048 6049 6050 6051 6052 6053
}
EXPORT_SYMBOL_GPL(kvm_mmu_slot_largepage_remove_write_access);

void kvm_mmu_slot_set_dirty(struct kvm *kvm,
			    struct kvm_memory_slot *memslot)
{
6054
	bool flush;
6055 6056

	spin_lock(&kvm->mmu_lock);
6057
	flush = slot_handle_all_level(kvm, memslot, __rmap_set_dirty, false);
6058 6059 6060
	spin_unlock(&kvm->mmu_lock);

	if (flush)
6061
		kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
6062 6063 6064
}
EXPORT_SYMBOL_GPL(kvm_mmu_slot_set_dirty);

6065
void kvm_mmu_zap_all(struct kvm *kvm)
6066 6067
{
	struct kvm_mmu_page *sp, *node;
6068
	LIST_HEAD(invalid_list);
6069
	int ign;
6070

6071
	spin_lock(&kvm->mmu_lock);
6072
restart:
6073
	list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link) {
6074
		if (WARN_ON(sp->role.invalid))
6075
			continue;
6076
		if (__kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list, &ign))
6077
			goto restart;
6078
		if (cond_resched_lock(&kvm->mmu_lock))
6079 6080 6081
			goto restart;
	}

6082
	kvm_mmu_commit_zap_page(kvm, &invalid_list);
6083 6084 6085
	spin_unlock(&kvm->mmu_lock);
}

6086
void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen)
6087
{
6088
	WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
6089

6090
	gen &= MMIO_SPTE_GEN_MASK;
6091

6092
	/*
6093 6094 6095 6096 6097 6098 6099 6100
	 * Generation numbers are incremented in multiples of the number of
	 * address spaces in order to provide unique generations across all
	 * address spaces.  Strip what is effectively the address space
	 * modifier prior to checking for a wrap of the MMIO generation so
	 * that a wrap in any address space is detected.
	 */
	gen &= ~((u64)KVM_ADDRESS_SPACE_NUM - 1);

6101
	/*
6102
	 * The very rare case: if the MMIO generation number has wrapped,
6103 6104
	 * zap all shadow pages.
	 */
6105
	if (unlikely(gen == 0)) {
6106
		kvm_debug_ratelimited("kvm: zapping shadow pages for mmio generation wraparound\n");
6107
		kvm_mmu_zap_all_fast(kvm);
6108
	}
6109 6110
}

6111 6112
static unsigned long
mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
6113 6114
{
	struct kvm *kvm;
6115
	int nr_to_scan = sc->nr_to_scan;
6116
	unsigned long freed = 0;
6117

J
Junaid Shahid 已提交
6118
	mutex_lock(&kvm_lock);
6119 6120

	list_for_each_entry(kvm, &vm_list, vm_list) {
6121
		int idx;
6122
		LIST_HEAD(invalid_list);
6123

6124 6125 6126 6127 6128 6129 6130 6131
		/*
		 * Never scan more than sc->nr_to_scan VM instances.
		 * Will not hit this condition practically since we do not try
		 * to shrink more than one VM and it is very unlikely to see
		 * !n_used_mmu_pages so many times.
		 */
		if (!nr_to_scan--)
			break;
6132 6133 6134 6135 6136 6137
		/*
		 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
		 * here. We may skip a VM instance errorneosly, but we do not
		 * want to shrink a VM that only started to populate its MMU
		 * anyway.
		 */
6138 6139
		if (!kvm->arch.n_used_mmu_pages &&
		    !kvm_has_zapped_obsolete_pages(kvm))
6140 6141
			continue;

6142
		idx = srcu_read_lock(&kvm->srcu);
6143 6144
		spin_lock(&kvm->mmu_lock);

6145 6146 6147 6148 6149 6150
		if (kvm_has_zapped_obsolete_pages(kvm)) {
			kvm_mmu_commit_zap_page(kvm,
			      &kvm->arch.zapped_obsolete_pages);
			goto unlock;
		}

6151
		freed = kvm_mmu_zap_oldest_mmu_pages(kvm, sc->nr_to_scan);
6152

6153
unlock:
6154
		spin_unlock(&kvm->mmu_lock);
6155
		srcu_read_unlock(&kvm->srcu, idx);
6156

6157 6158 6159 6160 6161
		/*
		 * unfair on small ones
		 * per-vm shrinkers cry out
		 * sadness comes quickly
		 */
6162 6163
		list_move_tail(&kvm->vm_list, &vm_list);
		break;
6164 6165
	}

J
Junaid Shahid 已提交
6166
	mutex_unlock(&kvm_lock);
6167 6168 6169 6170 6171 6172
	return freed;
}

static unsigned long
mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
{
6173
	return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
6174 6175 6176
}

static struct shrinker mmu_shrinker = {
6177 6178
	.count_objects = mmu_shrink_count,
	.scan_objects = mmu_shrink_scan,
6179 6180 6181
	.seeks = DEFAULT_SEEKS * 10,
};

I
Ingo Molnar 已提交
6182
static void mmu_destroy_caches(void)
6183
{
6184 6185
	kmem_cache_destroy(pte_list_desc_cache);
	kmem_cache_destroy(mmu_page_header_cache);
6186 6187
}

6188 6189 6190 6191 6192
static void kvm_set_mmio_spte_mask(void)
{
	u64 mask;

	/*
6193 6194 6195 6196 6197
	 * Set a reserved PA bit in MMIO SPTEs to generate page faults with
	 * PFEC.RSVD=1 on MMIO accesses.  64-bit PTEs (PAE, x86-64, and EPT
	 * paging) support a maximum of 52 bits of PA, i.e. if the CPU supports
	 * 52-bit physical addresses then there are no reserved PA bits in the
	 * PTEs and so the reserved PA approach must be disabled.
6198
	 */
6199 6200 6201 6202
	if (shadow_phys_bits < 52)
		mask = BIT_ULL(51) | PT_PRESENT_MASK;
	else
		mask = 0;
6203

P
Paolo Bonzini 已提交
6204
	kvm_mmu_set_mmio_spte_mask(mask, ACC_WRITE_MASK | ACC_USER_MASK);
6205 6206
}

P
Paolo Bonzini 已提交
6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240
static bool get_nx_auto_mode(void)
{
	/* Return true when CPU has the bug, and mitigations are ON */
	return boot_cpu_has_bug(X86_BUG_ITLB_MULTIHIT) && !cpu_mitigations_off();
}

static void __set_nx_huge_pages(bool val)
{
	nx_huge_pages = itlb_multihit_kvm_mitigation = val;
}

static int set_nx_huge_pages(const char *val, const struct kernel_param *kp)
{
	bool old_val = nx_huge_pages;
	bool new_val;

	/* In "auto" mode deploy workaround only if CPU has the bug. */
	if (sysfs_streq(val, "off"))
		new_val = 0;
	else if (sysfs_streq(val, "force"))
		new_val = 1;
	else if (sysfs_streq(val, "auto"))
		new_val = get_nx_auto_mode();
	else if (strtobool(val, &new_val) < 0)
		return -EINVAL;

	__set_nx_huge_pages(new_val);

	if (new_val != old_val) {
		struct kvm *kvm;

		mutex_lock(&kvm_lock);

		list_for_each_entry(kvm, &vm_list, vm_list) {
6241
			mutex_lock(&kvm->slots_lock);
P
Paolo Bonzini 已提交
6242
			kvm_mmu_zap_all_fast(kvm);
6243
			mutex_unlock(&kvm->slots_lock);
6244 6245

			wake_up_process(kvm->arch.nx_lpage_recovery_thread);
P
Paolo Bonzini 已提交
6246 6247 6248 6249 6250 6251 6252
		}
		mutex_unlock(&kvm_lock);
	}

	return 0;
}

6253 6254
int kvm_mmu_module_init(void)
{
6255 6256
	int ret = -ENOMEM;

P
Paolo Bonzini 已提交
6257 6258 6259
	if (nx_huge_pages == -1)
		__set_nx_huge_pages(get_nx_auto_mode());

6260 6261 6262 6263 6264 6265 6266 6267 6268 6269
	/*
	 * MMU roles use union aliasing which is, generally speaking, an
	 * undefined behavior. However, we supposedly know how compilers behave
	 * and the current status quo is unlikely to change. Guardians below are
	 * supposed to let us know if the assumption becomes false.
	 */
	BUILD_BUG_ON(sizeof(union kvm_mmu_page_role) != sizeof(u32));
	BUILD_BUG_ON(sizeof(union kvm_mmu_extended_role) != sizeof(u32));
	BUILD_BUG_ON(sizeof(union kvm_mmu_role) != sizeof(u64));

6270
	kvm_mmu_reset_all_pte_masks();
6271

6272 6273
	kvm_set_mmio_spte_mask();

6274 6275
	pte_list_desc_cache = kmem_cache_create("pte_list_desc",
					    sizeof(struct pte_list_desc),
6276
					    0, SLAB_ACCOUNT, NULL);
6277
	if (!pte_list_desc_cache)
6278
		goto out;
6279

6280 6281
	mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
						  sizeof(struct kvm_mmu_page),
6282
						  0, SLAB_ACCOUNT, NULL);
6283
	if (!mmu_page_header_cache)
6284
		goto out;
6285

6286
	if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
6287
		goto out;
6288

6289 6290 6291
	ret = register_shrinker(&mmu_shrinker);
	if (ret)
		goto out;
6292

6293 6294
	return 0;

6295
out:
6296
	mmu_destroy_caches();
6297
	return ret;
6298 6299
}

6300
/*
P
Peng Hao 已提交
6301
 * Calculate mmu pages needed for kvm.
6302
 */
6303
unsigned long kvm_mmu_calculate_default_mmu_pages(struct kvm *kvm)
6304
{
6305 6306
	unsigned long nr_mmu_pages;
	unsigned long nr_pages = 0;
6307
	struct kvm_memslots *slots;
6308
	struct kvm_memory_slot *memslot;
6309
	int i;
6310

6311 6312
	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
		slots = __kvm_memslots(kvm, i);
6313

6314 6315 6316
		kvm_for_each_memslot(memslot, slots)
			nr_pages += memslot->npages;
	}
6317 6318

	nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
6319
	nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES);
6320 6321 6322 6323

	return nr_mmu_pages;
}

6324 6325
void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
{
6326
	kvm_mmu_unload(vcpu);
6327 6328
	free_mmu_pages(&vcpu->arch.root_mmu);
	free_mmu_pages(&vcpu->arch.guest_mmu);
6329
	mmu_free_memory_caches(vcpu);
6330 6331 6332 6333 6334 6335 6336
}

void kvm_mmu_module_exit(void)
{
	mmu_destroy_caches();
	percpu_counter_destroy(&kvm_total_used_mmu_pages);
	unregister_shrinker(&mmu_shrinker);
6337 6338
	mmu_audit_disable();
}
6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451

static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp)
{
	unsigned int old_val;
	int err;

	old_val = nx_huge_pages_recovery_ratio;
	err = param_set_uint(val, kp);
	if (err)
		return err;

	if (READ_ONCE(nx_huge_pages) &&
	    !old_val && nx_huge_pages_recovery_ratio) {
		struct kvm *kvm;

		mutex_lock(&kvm_lock);

		list_for_each_entry(kvm, &vm_list, vm_list)
			wake_up_process(kvm->arch.nx_lpage_recovery_thread);

		mutex_unlock(&kvm_lock);
	}

	return err;
}

static void kvm_recover_nx_lpages(struct kvm *kvm)
{
	int rcu_idx;
	struct kvm_mmu_page *sp;
	unsigned int ratio;
	LIST_HEAD(invalid_list);
	ulong to_zap;

	rcu_idx = srcu_read_lock(&kvm->srcu);
	spin_lock(&kvm->mmu_lock);

	ratio = READ_ONCE(nx_huge_pages_recovery_ratio);
	to_zap = ratio ? DIV_ROUND_UP(kvm->stat.nx_lpage_splits, ratio) : 0;
	while (to_zap && !list_empty(&kvm->arch.lpage_disallowed_mmu_pages)) {
		/*
		 * We use a separate list instead of just using active_mmu_pages
		 * because the number of lpage_disallowed pages is expected to
		 * be relatively small compared to the total.
		 */
		sp = list_first_entry(&kvm->arch.lpage_disallowed_mmu_pages,
				      struct kvm_mmu_page,
				      lpage_disallowed_link);
		WARN_ON_ONCE(!sp->lpage_disallowed);
		kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
		WARN_ON_ONCE(sp->lpage_disallowed);

		if (!--to_zap || need_resched() || spin_needbreak(&kvm->mmu_lock)) {
			kvm_mmu_commit_zap_page(kvm, &invalid_list);
			if (to_zap)
				cond_resched_lock(&kvm->mmu_lock);
		}
	}

	spin_unlock(&kvm->mmu_lock);
	srcu_read_unlock(&kvm->srcu, rcu_idx);
}

static long get_nx_lpage_recovery_timeout(u64 start_time)
{
	return READ_ONCE(nx_huge_pages) && READ_ONCE(nx_huge_pages_recovery_ratio)
		? start_time + 60 * HZ - get_jiffies_64()
		: MAX_SCHEDULE_TIMEOUT;
}

static int kvm_nx_lpage_recovery_worker(struct kvm *kvm, uintptr_t data)
{
	u64 start_time;
	long remaining_time;

	while (true) {
		start_time = get_jiffies_64();
		remaining_time = get_nx_lpage_recovery_timeout(start_time);

		set_current_state(TASK_INTERRUPTIBLE);
		while (!kthread_should_stop() && remaining_time > 0) {
			schedule_timeout(remaining_time);
			remaining_time = get_nx_lpage_recovery_timeout(start_time);
			set_current_state(TASK_INTERRUPTIBLE);
		}

		set_current_state(TASK_RUNNING);

		if (kthread_should_stop())
			return 0;

		kvm_recover_nx_lpages(kvm);
	}
}

int kvm_mmu_post_init_vm(struct kvm *kvm)
{
	int err;

	err = kvm_vm_create_worker_thread(kvm, kvm_nx_lpage_recovery_worker, 0,
					  "kvm-nx-lpage-recovery",
					  &kvm->arch.nx_lpage_recovery_thread);
	if (!err)
		kthread_unpark(kvm->arch.nx_lpage_recovery_thread);

	return err;
}

void kvm_mmu_pre_destroy_vm(struct kvm *kvm)
{
	if (kvm->arch.nx_lpage_recovery_thread)
		kthread_stop(kvm->arch.nx_lpage_recovery_thread);
}