random.c 65.6 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3
/*
 * random.c -- A strong random number generator
 *
4
 * Copyright (C) 2017-2022 Jason A. Donenfeld <Jason@zx2c4.com>. All Rights Reserved.
5
 *
6
 * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005
L
Linus Torvalds 已提交
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
 *
 * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999.  All
 * rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, and the entire permission notice in its entirety,
 *    including the disclaimer of warranties.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 * 3. The name of the author may not be used to endorse or promote
 *    products derived from this software without specific prior
 *    written permission.
 *
 * ALTERNATIVELY, this product may be distributed under the terms of
 * the GNU General Public License, in which case the provisions of the GPL are
 * required INSTEAD OF the above restrictions.  (This clause is
 * necessary due to a potential bad interaction between the GPL and
 * the restrictions contained in a BSD-style copyright.)
 *
 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
 * WHICH ARE HEREBY DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE
 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
 * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
 * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
 * DAMAGE.
 */

/*
 * (now, with legal B.S. out of the way.....)
 *
 * This routine gathers environmental noise from device drivers, etc.,
 * and returns good random numbers, suitable for cryptographic use.
 * Besides the obvious cryptographic uses, these numbers are also good
 * for seeding TCP sequence numbers, and other places where it is
 * desirable to have numbers which are not only random, but hard to
 * predict by an attacker.
 *
 * Theory of operation
 * ===================
 *
 * Computers are very predictable devices.  Hence it is extremely hard
 * to produce truly random numbers on a computer --- as opposed to
 * pseudo-random numbers, which can easily generated by using a
 * algorithm.  Unfortunately, it is very easy for attackers to guess
 * the sequence of pseudo-random number generators, and for some
 * applications this is not acceptable.  So instead, we must try to
 * gather "environmental noise" from the computer's environment, which
 * must be hard for outside attackers to observe, and use that to
 * generate random numbers.  In a Unix environment, this is best done
 * from inside the kernel.
 *
 * Sources of randomness from the environment include inter-keyboard
 * timings, inter-interrupt timings from some interrupts, and other
 * events which are both (a) non-deterministic and (b) hard for an
 * outside observer to measure.  Randomness from these sources are
 * added to an "entropy pool", which is mixed using a CRC-like function.
 * This is not cryptographically strong, but it is adequate assuming
 * the randomness is not chosen maliciously, and it is fast enough that
 * the overhead of doing it on every interrupt is very reasonable.
 * As random bytes are mixed into the entropy pool, the routines keep
 * an *estimate* of how many bits of randomness have been stored into
 * the random number generator's internal state.
 *
80 81
 * When random bytes are desired, they are obtained by taking the BLAKE2s
 * hash of the contents of the "entropy pool".  The BLAKE2s hash avoids
L
Linus Torvalds 已提交
82 83
 * exposing the internal state of the entropy pool.  It is believed to
 * be computationally infeasible to derive any useful information
84 85
 * about the input of BLAKE2s from its output.  Even if it is possible to
 * analyze BLAKE2s in some clever way, as long as the amount of data
L
Linus Torvalds 已提交
86 87 88 89 90 91 92 93 94
 * returned from the generator is less than the inherent entropy in
 * the pool, the output data is totally unpredictable.  For this
 * reason, the routine decreases its internal estimate of how many
 * bits of "true randomness" are contained in the entropy pool as it
 * outputs random numbers.
 *
 * If this estimate goes to zero, the routine can still generate
 * random numbers; however, an attacker may (at least in theory) be
 * able to infer the future output of the generator from prior
95
 * outputs.  This requires successful cryptanalysis of BLAKE2s, which is
L
Linus Torvalds 已提交
96 97 98 99 100 101 102
 * not believed to be feasible, but there is a remote possibility.
 * Nonetheless, these numbers should be useful for the vast majority
 * of purposes.
 *
 * Exported interfaces ---- output
 * ===============================
 *
103
 * There are four exported interfaces; two for use within the kernel,
schspa's avatar
schspa 已提交
104
 * and two for use from userspace.
L
Linus Torvalds 已提交
105
 *
106 107
 * Exported interfaces ---- userspace output
 * -----------------------------------------
L
Linus Torvalds 已提交
108
 *
109
 * The userspace interfaces are two character devices /dev/random and
L
Linus Torvalds 已提交
110 111 112 113 114 115 116 117 118 119 120 121
 * /dev/urandom.  /dev/random is suitable for use when very high
 * quality randomness is desired (for example, for key generation or
 * one-time pads), as it will only return a maximum of the number of
 * bits of randomness (as estimated by the random number generator)
 * contained in the entropy pool.
 *
 * The /dev/urandom device does not have this limit, and will return
 * as many bytes as are requested.  As more and more random bytes are
 * requested without giving time for the entropy pool to recharge,
 * this will result in random numbers that are merely cryptographically
 * strong.  For many applications, however, this is acceptable.
 *
122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
 * Exported interfaces ---- kernel output
 * --------------------------------------
 *
 * The primary kernel interface is
 *
 * 	void get_random_bytes(void *buf, int nbytes);
 *
 * This interface will return the requested number of random bytes,
 * and place it in the requested buffer.  This is equivalent to a
 * read from /dev/urandom.
 *
 * For less critical applications, there are the functions:
 *
 * 	u32 get_random_u32()
 * 	u64 get_random_u64()
 * 	unsigned int get_random_int()
 * 	unsigned long get_random_long()
 *
 * These are produced by a cryptographic RNG seeded from get_random_bytes,
 * and so do not deplete the entropy pool as much.  These are recommended
 * for most in-kernel operations *if the result is going to be stored in
 * the kernel*.
 *
 * Specifically, the get_random_int() family do not attempt to do
 * "anti-backtracking".  If you capture the state of the kernel (e.g.
 * by snapshotting the VM), you can figure out previous get_random_int()
 * return values.  But if the value is stored in the kernel anyway,
 * this is not a problem.
 *
 * It *is* safe to expose get_random_int() output to attackers (e.g. as
 * network cookies); given outputs 1..n, it's not feasible to predict
 * outputs 0 or n+1.  The only concern is an attacker who breaks into
 * the kernel later; the get_random_int() engine is not reseeded as
 * often as the get_random_bytes() one.
 *
 * get_random_bytes() is needed for keys that need to stay secret after
 * they are erased from the kernel.  For example, any key that will
 * be wrapped and stored encrypted.  And session encryption keys: we'd
 * like to know that after the session is closed and the keys erased,
 * the plaintext is unrecoverable to someone who recorded the ciphertext.
 *
 * But for network ports/cookies, stack canaries, PRNG seeds, address
 * space layout randomization, session *authentication* keys, or other
 * applications where the sensitive data is stored in the kernel in
 * plaintext for as long as it's sensitive, the get_random_int() family
 * is just fine.
 *
 * Consider ASLR.  We want to keep the address space secret from an
 * outside attacker while the process is running, but once the address
 * space is torn down, it's of no use to an attacker any more.  And it's
 * stored in kernel data structures as long as it's alive, so worrying
 * about an attacker's ability to extrapolate it from the get_random_int()
 * CRNG is silly.
 *
 * Even some cryptographic keys are safe to generate with get_random_int().
 * In particular, keys for SipHash are generally fine.  Here, knowledge
 * of the key authorizes you to do something to a kernel object (inject
 * packets to a network connection, or flood a hash table), and the
 * key is stored with the object being protected.  Once it goes away,
 * we no longer care if anyone knows the key.
 *
 * prandom_u32()
 * -------------
 *
 * For even weaker applications, see the pseudorandom generator
 * prandom_u32(), prandom_max(), and prandom_bytes().  If the random
 * numbers aren't security-critical at all, these are *far* cheaper.
 * Useful for self-tests, random error simulation, randomized backoffs,
 * and any other application where you trust that nobody is trying to
 * maliciously mess with you by guessing the "random" numbers.
 *
L
Linus Torvalds 已提交
193 194 195 196 197 198
 * Exported interfaces ---- input
 * ==============================
 *
 * The current exported interfaces for gathering environmental noise
 * from the devices are:
 *
199
 *	void add_device_randomness(const void *buf, unsigned int size);
L
Linus Torvalds 已提交
200 201
 * 	void add_input_randomness(unsigned int type, unsigned int code,
 *                                unsigned int value);
202
 *	void add_interrupt_randomness(int irq);
203
 * 	void add_disk_randomness(struct gendisk *disk);
204 205 206
 *	void add_hwgenerator_randomness(const char *buffer, size_t count,
 *					size_t entropy);
 *	void add_bootloader_randomness(const void *buf, unsigned int size);
L
Linus Torvalds 已提交
207
 *
208 209 210 211 212 213 214 215
 * add_device_randomness() is for adding data to the random pool that
 * is likely to differ between two devices (or possibly even per boot).
 * This would be things like MAC addresses or serial numbers, or the
 * read-out of the RTC. This does *not* add any actual entropy to the
 * pool, but it initializes the pool to different values for devices
 * that might otherwise be identical and have very little entropy
 * available to them (particularly common in the embedded world).
 *
L
Linus Torvalds 已提交
216 217 218
 * add_input_randomness() uses the input layer interrupt timing, as well as
 * the event type information from the hardware.
 *
219 220 221
 * add_interrupt_randomness() uses the interrupt timing as random
 * inputs to the entropy pool. Using the cycle counters and the irq source
 * as inputs, it feeds the randomness roughly once a second.
222 223 224 225 226 227
 *
 * add_disk_randomness() uses what amounts to the seek time of block
 * layer request events, on a per-disk_devt basis, as input to the
 * entropy pool. Note that high-speed solid state drives with very low
 * seek times do not make for good sources of entropy, as their seek
 * times are usually fairly consistent.
L
Linus Torvalds 已提交
228 229 230 231 232
 *
 * All of these routines try to estimate how many bits of randomness a
 * particular randomness source.  They do this by keeping track of the
 * first and second order deltas of the event timings.
 *
233 234 235 236 237 238 239 240
 * add_hwgenerator_randomness() is for true hardware RNGs, and will credit
 * entropy as specified by the caller. If the entropy pool is full it will
 * block until more entropy is needed.
 *
 * add_bootloader_randomness() is the same as add_hwgenerator_randomness() or
 * add_device_randomness(), depending on whether or not the configuration
 * option CONFIG_RANDOM_TRUST_BOOTLOADER is set.
 *
L
Linus Torvalds 已提交
241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319
 * Ensuring unpredictability at system startup
 * ============================================
 *
 * When any operating system starts up, it will go through a sequence
 * of actions that are fairly predictable by an adversary, especially
 * if the start-up does not involve interaction with a human operator.
 * This reduces the actual number of bits of unpredictability in the
 * entropy pool below the value in entropy_count.  In order to
 * counteract this effect, it helps to carry information in the
 * entropy pool across shut-downs and start-ups.  To do this, put the
 * following lines an appropriate script which is run during the boot
 * sequence:
 *
 *	echo "Initializing random number generator..."
 *	random_seed=/var/run/random-seed
 *	# Carry a random seed from start-up to start-up
 *	# Load and then save the whole entropy pool
 *	if [ -f $random_seed ]; then
 *		cat $random_seed >/dev/urandom
 *	else
 *		touch $random_seed
 *	fi
 *	chmod 600 $random_seed
 *	dd if=/dev/urandom of=$random_seed count=1 bs=512
 *
 * and the following lines in an appropriate script which is run as
 * the system is shutdown:
 *
 *	# Carry a random seed from shut-down to start-up
 *	# Save the whole entropy pool
 *	echo "Saving random seed..."
 *	random_seed=/var/run/random-seed
 *	touch $random_seed
 *	chmod 600 $random_seed
 *	dd if=/dev/urandom of=$random_seed count=1 bs=512
 *
 * For example, on most modern systems using the System V init
 * scripts, such code fragments would be found in
 * /etc/rc.d/init.d/random.  On older Linux systems, the correct script
 * location might be in /etc/rcb.d/rc.local or /etc/rc.d/rc.0.
 *
 * Effectively, these commands cause the contents of the entropy pool
 * to be saved at shut-down time and reloaded into the entropy pool at
 * start-up.  (The 'dd' in the addition to the bootup script is to
 * make sure that /etc/random-seed is different for every start-up,
 * even if the system crashes without executing rc.0.)  Even with
 * complete knowledge of the start-up activities, predicting the state
 * of the entropy pool requires knowledge of the previous history of
 * the system.
 *
 * Configuring the /dev/random driver under Linux
 * ==============================================
 *
 * The /dev/random driver under Linux uses minor numbers 8 and 9 of
 * the /dev/mem major number (#1).  So if your system does not have
 * /dev/random and /dev/urandom created already, they can be created
 * by using the commands:
 *
 * 	mknod /dev/random c 1 8
 * 	mknod /dev/urandom c 1 9
 *
 * Acknowledgements:
 * =================
 *
 * Ideas for constructing this random number generator were derived
 * from Pretty Good Privacy's random number generator, and from private
 * discussions with Phil Karn.  Colin Plumb provided a faster random
 * number generator, which speed up the mixing function of the entropy
 * pool, taken from PGPfone.  Dale Worley has also contributed many
 * useful ideas and suggestions to improve this driver.
 *
 * Any flaws in the design are solely my responsibility, and should
 * not be attributed to the Phil, Colin, or any of authors of PGP.
 *
 * Further background information on this topic may be obtained from
 * RFC 1750, "Randomness Recommendations for Security", by Donald
 * Eastlake, Steve Crocker, and Jeff Schiller.
 */

Y
Yangtao Li 已提交
320 321
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

L
Linus Torvalds 已提交
322 323 324 325 326 327 328 329 330 331 332 333 334
#include <linux/utsname.h>
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/major.h>
#include <linux/string.h>
#include <linux/fcntl.h>
#include <linux/slab.h>
#include <linux/random.h>
#include <linux/poll.h>
#include <linux/init.h>
#include <linux/fs.h>
#include <linux/genhd.h>
#include <linux/interrupt.h>
335
#include <linux/mm.h>
336
#include <linux/nodemask.h>
L
Linus Torvalds 已提交
337
#include <linux/spinlock.h>
338
#include <linux/kthread.h>
L
Linus Torvalds 已提交
339
#include <linux/percpu.h>
340
#include <linux/ptrace.h>
341
#include <linux/workqueue.h>
342
#include <linux/irq.h>
343
#include <linux/ratelimit.h>
344 345
#include <linux/syscalls.h>
#include <linux/completion.h>
346
#include <linux/uuid.h>
347
#include <crypto/chacha.h>
348
#include <crypto/blake2s.h>
349

L
Linus Torvalds 已提交
350
#include <asm/processor.h>
351
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
352
#include <asm/irq.h>
353
#include <asm/irq_regs.h>
L
Linus Torvalds 已提交
354 355
#include <asm/io.h>

356 357 358
#define CREATE_TRACE_POINTS
#include <trace/events/random.h>

359 360
/* #define ADD_INTERRUPT_BENCH */

L
Linus Torvalds 已提交
361 362 363
/*
 * Configuration information
 */
364 365
#define INPUT_POOL_SHIFT	12
#define INPUT_POOL_WORDS	(1 << (INPUT_POOL_SHIFT-5))
366
#define EXTRACT_SIZE		(BLAKE2S_HASH_SIZE / 2)
367

368
/*
T
Theodore Ts'o 已提交
369 370
 * To allow fractional bits to be tracked, the entropy_count field is
 * denominated in units of 1/8th bits.
371
 *
372
 * 2*(ENTROPY_SHIFT + poolbitshift) must <= 31, or the multiply in
373
 * credit_entropy_bits() needs to be 64 bits wide.
374 375
 */
#define ENTROPY_SHIFT 3
376
#define ENTROPY_BITS() (input_pool.entropy_count >> ENTROPY_SHIFT)
377

L
Linus Torvalds 已提交
378 379 380 381 382
/*
 * If the entropy count falls under this number of bits, then we
 * should wake up processes which are selecting or polling on write
 * access to /dev/random.
 */
383
static int random_write_wakeup_bits = 28 * (1 << 5);
L
Linus Torvalds 已提交
384 385

/*
386 387 388 389 390 391 392 393 394 395
 * Originally, we used a primitive polynomial of degree .poolwords
 * over GF(2).  The taps for various sizes are defined below.  They
 * were chosen to be evenly spaced except for the last tap, which is 1
 * to get the twisting happening as fast as possible.
 *
 * For the purposes of better mixing, we use the CRC-32 polynomial as
 * well to make a (modified) twisted Generalized Feedback Shift
 * Register.  (See M. Matsumoto & Y. Kurita, 1992.  Twisted GFSR
 * generators.  ACM Transactions on Modeling and Computer Simulation
 * 2(3):179-194.  Also see M. Matsumoto & Y. Kurita, 1994.  Twisted
396
 * GFSR generators II.  ACM Transactions on Modeling and Computer
397 398 399 400 401
 * Simulation 4:254-266)
 *
 * Thanks to Colin Plumb for suggesting this.
 *
 * The mixing operation is much less sensitive than the output hash,
402
 * where we use BLAKE2s.  All that we want of mixing operation is that
403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428
 * it be a good non-cryptographic hash; i.e. it not produce collisions
 * when fed "random" data of the sort we expect to see.  As long as
 * the pool state differs for different inputs, we have preserved the
 * input entropy and done a good job.  The fact that an intelligent
 * attacker can construct inputs that will produce controlled
 * alterations to the pool's state is not important because we don't
 * consider such inputs to contribute any randomness.  The only
 * property we need with respect to them is that the attacker can't
 * increase his/her knowledge of the pool's state.  Since all
 * additions are reversible (knowing the final state and the input,
 * you can reconstruct the initial state), if an attacker has any
 * uncertainty about the initial state, he/she can only shuffle that
 * uncertainty about, but never cause any collisions (which would
 * decrease the uncertainty).
 *
 * Our mixing functions were analyzed by Lacharme, Roeck, Strubel, and
 * Videau in their paper, "The Linux Pseudorandom Number Generator
 * Revisited" (see: http://eprint.iacr.org/2012/251.pdf).  In their
 * paper, they point out that we are not using a true Twisted GFSR,
 * since Matsumoto & Kurita used a trinomial feedback polynomial (that
 * is, with only three taps, instead of the six that we are using).
 * As a result, the resulting polynomial is neither primitive nor
 * irreducible, and hence does not have a maximal period over
 * GF(2**32).  They suggest a slight change to the generator
 * polynomial which improves the resulting TGFSR polynomial to be
 * irreducible, which we have made here.
L
Linus Torvalds 已提交
429
 */
430 431 432 433 434 435 436 437
enum poolinfo {
	POOL_WORDS = 128,
	POOL_WORDMASK = POOL_WORDS - 1,
	POOL_BYTES = POOL_WORDS * sizeof(u32),
	POOL_BITS = POOL_BYTES * 8,
	POOL_BITSHIFT = ilog2(POOL_WORDS) + 5,
	POOL_FRACBITS = POOL_WORDS << (ENTROPY_SHIFT + 5),

438
	/* x^128 + x^104 + x^76 + x^51 +x^25 + x + 1 */
439 440 441 442 443
	POOL_TAP1 = 104,
	POOL_TAP2 = 76,
	POOL_TAP3 = 51,
	POOL_TAP4 = 25,
	POOL_TAP5 = 1
L
Linus Torvalds 已提交
444 445 446 447 448
};

/*
 * Static global variables
 */
449
static DECLARE_WAIT_QUEUE_HEAD(random_write_wait);
450
static struct fasync_struct *fasync;
L
Linus Torvalds 已提交
451

452 453 454
static DEFINE_SPINLOCK(random_ready_list_lock);
static LIST_HEAD(random_ready_list);

455
struct crng_state {
456
	u32		state[16];
457 458 459 460
	unsigned long	init_time;
	spinlock_t	lock;
};

461
static struct crng_state primary_crng = {
462
	.lock = __SPIN_LOCK_UNLOCKED(primary_crng.lock),
463 464 465 466
	.state[0] = CHACHA_CONSTANT_EXPA,
	.state[1] = CHACHA_CONSTANT_ND_3,
	.state[2] = CHACHA_CONSTANT_2_BY,
	.state[3] = CHACHA_CONSTANT_TE_K,
467 468 469 470 471 472 473 474 475 476 477
};

/*
 * crng_init =  0 --> Uninitialized
 *		1 --> Initialized
 *		2 --> Initialized from input_pool
 *
 * crng_init is protected by primary_crng->lock, and only increases
 * its value (from 0->1->2).
 */
static int crng_init = 0;
478
static bool crng_need_final_init = false;
T
Theodore Ts'o 已提交
479
#define crng_ready() (likely(crng_init > 1))
480
static int crng_init_cnt = 0;
481
static unsigned long crng_global_init_time = 0;
482
#define CRNG_INIT_CNT_THRESH (2*CHACHA_KEY_SIZE)
483
static void _extract_crng(struct crng_state *crng, u8 out[CHACHA_BLOCK_SIZE]);
484
static void _crng_backtrack_protect(struct crng_state *crng,
485
				    u8 tmp[CHACHA_BLOCK_SIZE], int used);
486
static void process_random_ready_list(void);
487
static void _get_random_bytes(void *buf, int nbytes);
488

489 490 491 492 493 494 495 496 497 498
static struct ratelimit_state unseeded_warning =
	RATELIMIT_STATE_INIT("warn_unseeded_randomness", HZ, 3);
static struct ratelimit_state urandom_warning =
	RATELIMIT_STATE_INIT("warn_urandom_randomness", HZ, 3);

static int ratelimit_disable __read_mostly;

module_param_named(ratelimit_disable, ratelimit_disable, int, 0644);
MODULE_PARM_DESC(ratelimit_disable, "Disable random ratelimit suppression");

L
Linus Torvalds 已提交
499 500 501 502 503 504 505
/**********************************************************************
 *
 * OS independent entropy store.   Here are the functions which handle
 * storing entropy in an entropy pool.
 *
 **********************************************************************/

506 507 508
static u32 input_pool_data[INPUT_POOL_WORDS] __latent_entropy;

static struct {
509
	/* read-only data: */
510
	u32 *pool;
L
Linus Torvalds 已提交
511 512

	/* read-write data: */
513
	spinlock_t lock;
514 515
	u16 add_ptr;
	u16 input_rotate;
516
	int entropy_count;
517
} input_pool = {
518
	.lock = __SPIN_LOCK_UNLOCKED(input_pool.lock),
L
Linus Torvalds 已提交
519 520 521
	.pool = input_pool_data
};

522 523 524 525 526
static ssize_t extract_entropy(void *buf, size_t nbytes, int min);
static ssize_t _extract_entropy(void *buf, size_t nbytes);

static void crng_reseed(struct crng_state *crng, bool use_input_pool);

527
static u32 const twist_table[8] = {
528 529 530
	0x00000000, 0x3b6e20c8, 0x76dc4190, 0x4db26158,
	0xedb88320, 0xd6d6a3e8, 0x9b64c2b0, 0xa00ae278 };

L
Linus Torvalds 已提交
531
/*
532
 * This function adds bytes into the entropy "pool".  It does not
L
Linus Torvalds 已提交
533
 * update the entropy estimate.  The caller should call
534
 * credit_entropy_bits if this is appropriate.
L
Linus Torvalds 已提交
535 536 537 538 539 540
 *
 * The pool is stirred with a primitive polynomial of the appropriate
 * degree, and then twisted.  We twist by three bits at a time because
 * it's cheap to do so and helps slightly in the expected case where
 * the entropy is concentrated in the low-order bits.
 */
541
static void _mix_pool_bytes(const void *in, int nbytes)
L
Linus Torvalds 已提交
542
{
543
	unsigned long i;
544
	int input_rotate;
545 546
	const u8 *bytes = in;
	u32 w;
L
Linus Torvalds 已提交
547

548 549
	input_rotate = input_pool.input_rotate;
	i = input_pool.add_ptr;
L
Linus Torvalds 已提交
550

551 552
	/* mix one byte at a time to simplify size handling and churn faster */
	while (nbytes--) {
553
		w = rol32(*bytes++, input_rotate);
554
		i = (i - 1) & POOL_WORDMASK;
L
Linus Torvalds 已提交
555 556

		/* XOR in the various taps */
557 558 559 560 561 562
		w ^= input_pool.pool[i];
		w ^= input_pool.pool[(i + POOL_TAP1) & POOL_WORDMASK];
		w ^= input_pool.pool[(i + POOL_TAP2) & POOL_WORDMASK];
		w ^= input_pool.pool[(i + POOL_TAP3) & POOL_WORDMASK];
		w ^= input_pool.pool[(i + POOL_TAP4) & POOL_WORDMASK];
		w ^= input_pool.pool[(i + POOL_TAP5) & POOL_WORDMASK];
M
Matt Mackall 已提交
563 564

		/* Mix the result back in with a twist */
565
		input_pool.pool[i] = (w >> 3) ^ twist_table[w & 7];
566 567 568 569 570 571 572

		/*
		 * Normally, we add 7 bits of rotation to the pool.
		 * At the beginning of the pool, add an extra 7 bits
		 * rotation, so that successive passes spread the
		 * input bits across the pool evenly.
		 */
573
		input_rotate = (input_rotate + (i ? 7 : 14)) & 31;
L
Linus Torvalds 已提交
574 575
	}

576 577
	input_pool.input_rotate = input_rotate;
	input_pool.add_ptr = i;
L
Linus Torvalds 已提交
578 579
}

580
static void __mix_pool_bytes(const void *in, int nbytes)
581
{
582 583
	trace_mix_pool_bytes_nolock(nbytes, _RET_IP_);
	_mix_pool_bytes(in, nbytes);
584 585
}

586
static void mix_pool_bytes(const void *in, int nbytes)
L
Linus Torvalds 已提交
587
{
588 589
	unsigned long flags;

590 591 592 593
	trace_mix_pool_bytes(nbytes, _RET_IP_);
	spin_lock_irqsave(&input_pool.lock, flags);
	_mix_pool_bytes(in, nbytes);
	spin_unlock_irqrestore(&input_pool.lock, flags);
L
Linus Torvalds 已提交
594 595
}

596
struct fast_pool {
597
	u32		pool[4];
598
	unsigned long	last;
599 600
	u16		reg_idx;
	u8		count;
601 602 603 604 605 606 607
};

/*
 * This is a fast mixing routine used by the interrupt randomness
 * collector.  It's hardcoded for an 128 bit pool and assumes that any
 * locks that might be needed are taken by the caller.
 */
608
static void fast_mix(struct fast_pool *f)
609
{
610 611
	u32 a = f->pool[0],	b = f->pool[1];
	u32 c = f->pool[2],	d = f->pool[3];
612 613

	a += b;			c += d;
G
George Spelvin 已提交
614
	b = rol32(b, 6);	d = rol32(d, 27);
615 616 617
	d ^= a;			b ^= c;

	a += b;			c += d;
G
George Spelvin 已提交
618
	b = rol32(b, 16);	d = rol32(d, 14);
619 620 621
	d ^= a;			b ^= c;

	a += b;			c += d;
G
George Spelvin 已提交
622
	b = rol32(b, 6);	d = rol32(d, 27);
623 624 625
	d ^= a;			b ^= c;

	a += b;			c += d;
G
George Spelvin 已提交
626
	b = rol32(b, 16);	d = rol32(d, 14);
627 628 629 630
	d ^= a;			b ^= c;

	f->pool[0] = a;  f->pool[1] = b;
	f->pool[2] = c;  f->pool[3] = d;
631
	f->count++;
632 633
}

634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649
static void process_random_ready_list(void)
{
	unsigned long flags;
	struct random_ready_callback *rdy, *tmp;

	spin_lock_irqsave(&random_ready_list_lock, flags);
	list_for_each_entry_safe(rdy, tmp, &random_ready_list, list) {
		struct module *owner = rdy->owner;

		list_del_init(&rdy->list);
		rdy->func(rdy);
		module_put(owner);
	}
	spin_unlock_irqrestore(&random_ready_list_lock, flags);
}

L
Linus Torvalds 已提交
650
/*
651 652 653
 * Credit (or debit) the entropy store with n bits of entropy.
 * Use credit_entropy_bits_safe() if the value comes from userspace
 * or otherwise should be checked for extreme values.
L
Linus Torvalds 已提交
654
 */
655
static void credit_entropy_bits(int nbits)
L
Linus Torvalds 已提交
656
{
657
	int entropy_count, entropy_bits, orig;
658
	int nfrac = nbits << ENTROPY_SHIFT;
L
Linus Torvalds 已提交
659

660 661 662
	if (!nbits)
		return;

663
retry:
664
	entropy_count = orig = READ_ONCE(input_pool.entropy_count);
665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690
	if (nfrac < 0) {
		/* Debit */
		entropy_count += nfrac;
	} else {
		/*
		 * Credit: we have to account for the possibility of
		 * overwriting already present entropy.	 Even in the
		 * ideal case of pure Shannon entropy, new contributions
		 * approach the full value asymptotically:
		 *
		 * entropy <- entropy + (pool_size - entropy) *
		 *	(1 - exp(-add_entropy/pool_size))
		 *
		 * For add_entropy <= pool_size/2 then
		 * (1 - exp(-add_entropy/pool_size)) >=
		 *    (add_entropy/pool_size)*0.7869...
		 * so we can approximate the exponential with
		 * 3/4*add_entropy/pool_size and still be on the
		 * safe side by adding at most pool_size/2 at a time.
		 *
		 * The use of pool_size-2 in the while statement is to
		 * prevent rounding artifacts from making the loop
		 * arbitrarily long; this limits the loop to log2(pool_size)*2
		 * turns no matter how large nbits is.
		 */
		int pnfrac = nfrac;
691
		const int s = POOL_BITSHIFT + ENTROPY_SHIFT + 2;
692 693 694
		/* The +2 corresponds to the /4 in the denominator */

		do {
695
			unsigned int anfrac = min(pnfrac, POOL_FRACBITS/2);
696
			unsigned int add =
697
				((POOL_FRACBITS - entropy_count)*anfrac*3) >> s;
698 699 700

			entropy_count += add;
			pnfrac -= anfrac;
701
		} while (unlikely(entropy_count < POOL_FRACBITS-2 && pnfrac));
702
	}
703

704
	if (WARN_ON(entropy_count < 0)) {
705
		pr_warn("negative entropy/overflow: count %d\n", entropy_count);
706
		entropy_count = 0;
707 708
	} else if (entropy_count > POOL_FRACBITS)
		entropy_count = POOL_FRACBITS;
709
	if (cmpxchg(&input_pool.entropy_count, orig, entropy_count) != orig)
710
		goto retry;
L
Linus Torvalds 已提交
711

712
	trace_credit_entropy_bits(nbits, entropy_count >> ENTROPY_SHIFT, _RET_IP_);
713

714 715 716
	entropy_bits = entropy_count >> ENTROPY_SHIFT;
	if (crng_init < 2 && entropy_bits >= 128)
		crng_reseed(&primary_crng, true);
L
Linus Torvalds 已提交
717 718
}

719
static int credit_entropy_bits_safe(int nbits)
720
{
721 722 723
	if (nbits < 0)
		return -EINVAL;

724
	/* Cap the value to avoid overflows */
725
	nbits = min(nbits,  POOL_BITS);
726

727
	credit_entropy_bits(nbits);
728
	return 0;
729 730
}

731 732 733 734 735 736 737 738 739 740
/*********************************************************************
 *
 * CRNG using CHACHA20
 *
 *********************************************************************/

#define CRNG_RESEED_INTERVAL (300*HZ)

static DECLARE_WAIT_QUEUE_HEAD(crng_init_wait);

741 742 743 744 745 746 747 748
/*
 * Hack to deal with crazy userspace progams when they are all trying
 * to access /dev/urandom in parallel.  The programs are almost
 * certainly doing something terribly wrong, but we'll work around
 * their brain damage.
 */
static struct crng_state **crng_node_pool __read_mostly;

749
static void invalidate_batched_entropy(void);
750
static void numa_crng_init(void);
751

752 753 754 755 756 757 758
static bool trust_cpu __ro_after_init = IS_ENABLED(CONFIG_RANDOM_TRUST_CPU);
static int __init parse_trust_cpu(char *arg)
{
	return kstrtobool(arg, &trust_cpu);
}
early_param("random.trust_cpu", parse_trust_cpu);

759
static bool crng_init_try_arch(struct crng_state *crng)
760 761
{
	int		i;
762
	bool		arch_init = true;
763 764 765 766
	unsigned long	rv;

	for (i = 4; i < 16; i++) {
		if (!arch_get_random_seed_long(&rv) &&
767
		    !arch_get_random_long(&rv)) {
768
			rv = random_get_entropy();
769
			arch_init = false;
770
		}
771 772
		crng->state[i] ^= rv;
	}
773 774 775 776

	return arch_init;
}

777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794
static bool __init crng_init_try_arch_early(struct crng_state *crng)
{
	int		i;
	bool		arch_init = true;
	unsigned long	rv;

	for (i = 4; i < 16; i++) {
		if (!arch_get_random_seed_long_early(&rv) &&
		    !arch_get_random_long_early(&rv)) {
			rv = random_get_entropy();
			arch_init = false;
		}
		crng->state[i] ^= rv;
	}

	return arch_init;
}

795
static void crng_initialize_secondary(struct crng_state *crng)
796
{
797
	chacha_init_consts(crng->state);
798
	_get_random_bytes(&crng->state[4], sizeof(u32) * 12);
799 800 801 802 803 804
	crng_init_try_arch(crng);
	crng->init_time = jiffies - CRNG_RESEED_INTERVAL - 1;
}

static void __init crng_initialize_primary(struct crng_state *crng)
{
805
	_extract_entropy(&crng->state[4], sizeof(u32) * 12);
806
	if (crng_init_try_arch_early(crng) && trust_cpu && crng_init < 2) {
807 808
		invalidate_batched_entropy();
		numa_crng_init();
809
		crng_init = 2;
810
		pr_notice("crng init done (trusting CPU's manufacturer)\n");
811
	}
812 813 814
	crng->init_time = jiffies - CRNG_RESEED_INTERVAL - 1;
}

815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844
static void crng_finalize_init(struct crng_state *crng)
{
	if (crng != &primary_crng || crng_init >= 2)
		return;
	if (!system_wq) {
		/* We can't call numa_crng_init until we have workqueues,
		 * so mark this for processing later. */
		crng_need_final_init = true;
		return;
	}

	invalidate_batched_entropy();
	numa_crng_init();
	crng_init = 2;
	process_random_ready_list();
	wake_up_interruptible(&crng_init_wait);
	kill_fasync(&fasync, SIGIO, POLL_IN);
	pr_notice("crng init done\n");
	if (unseeded_warning.missed) {
		pr_notice("%d get_random_xx warning(s) missed due to ratelimiting\n",
			  unseeded_warning.missed);
		unseeded_warning.missed = 0;
	}
	if (urandom_warning.missed) {
		pr_notice("%d urandom warning(s) missed due to ratelimiting\n",
			  urandom_warning.missed);
		urandom_warning.missed = 0;
	}
}

845
static void do_numa_crng_init(struct work_struct *work)
846 847 848 849 850 851 852 853 854 855
{
	int i;
	struct crng_state *crng;
	struct crng_state **pool;

	pool = kcalloc(nr_node_ids, sizeof(*pool), GFP_KERNEL|__GFP_NOFAIL);
	for_each_online_node(i) {
		crng = kmalloc_node(sizeof(struct crng_state),
				    GFP_KERNEL | __GFP_NOFAIL, i);
		spin_lock_init(&crng->lock);
856
		crng_initialize_secondary(crng);
857 858
		pool[i] = crng;
	}
859 860
	/* pairs with READ_ONCE() in select_crng() */
	if (cmpxchg_release(&crng_node_pool, NULL, pool) != NULL) {
861 862 863 864 865
		for_each_node(i)
			kfree(pool[i]);
		kfree(pool);
	}
}
866 867 868 869 870

static DECLARE_WORK(numa_crng_init_work, do_numa_crng_init);

static void numa_crng_init(void)
{
871 872
	if (IS_ENABLED(CONFIG_NUMA))
		schedule_work(&numa_crng_init_work);
873
}
874 875 876

static struct crng_state *select_crng(void)
{
877 878 879 880 881 882 883 884 885
	if (IS_ENABLED(CONFIG_NUMA)) {
		struct crng_state **pool;
		int nid = numa_node_id();

		/* pairs with cmpxchg_release() in do_numa_crng_init() */
		pool = READ_ONCE(crng_node_pool);
		if (pool && pool[nid])
			return pool[nid];
	}
886 887 888

	return &primary_crng;
}
889

890 891
/*
 * crng_fast_load() can be called by code in the interrupt service
892 893
 * path.  So we can't afford to dilly-dally. Returns the number of
 * bytes processed from cp.
894
 */
895
static size_t crng_fast_load(const u8 *cp, size_t len)
896 897
{
	unsigned long flags;
898
	u8 *p;
899
	size_t ret = 0;
900 901 902

	if (!spin_trylock_irqsave(&primary_crng.lock, flags))
		return 0;
T
Theodore Ts'o 已提交
903
	if (crng_init != 0) {
904 905 906
		spin_unlock_irqrestore(&primary_crng.lock, flags);
		return 0;
	}
907
	p = (u8 *) &primary_crng.state[4];
908
	while (len > 0 && crng_init_cnt < CRNG_INIT_CNT_THRESH) {
909
		p[crng_init_cnt % CHACHA_KEY_SIZE] ^= *cp;
910
		cp++; crng_init_cnt++; len--; ret++;
911
	}
912
	spin_unlock_irqrestore(&primary_crng.lock, flags);
913
	if (crng_init_cnt >= CRNG_INIT_CNT_THRESH) {
914
		invalidate_batched_entropy();
915
		crng_init = 1;
Y
Yangtao Li 已提交
916
		pr_notice("fast init done\n");
917
	}
918
	return ret;
919 920
}

921 922 923 924 925 926 927 928 929 930 931 932 933 934
/*
 * crng_slow_load() is called by add_device_randomness, which has two
 * attributes.  (1) We can't trust the buffer passed to it is
 * guaranteed to be unpredictable (so it might not have any entropy at
 * all), and (2) it doesn't have the performance constraints of
 * crng_fast_load().
 *
 * So we do something more comprehensive which is guaranteed to touch
 * all of the primary_crng's state, and which uses a LFSR with a
 * period of 255 as part of the mixing algorithm.  Finally, we do
 * *not* advance crng_init_cnt since buffer we may get may be something
 * like a fixed DMI table (for example), which might very well be
 * unique to the machine, but is otherwise unvarying.
 */
935
static int crng_slow_load(const u8 *cp, size_t len)
936 937
{
	unsigned long		flags;
938 939 940 941 942
	static u8		lfsr = 1;
	u8			tmp;
	unsigned int		i, max = CHACHA_KEY_SIZE;
	const u8 *		src_buf = cp;
	u8 *			dest_buf = (u8 *) &primary_crng.state[4];
943 944 945 946 947 948 949 950 951 952 953 954 955 956 957

	if (!spin_trylock_irqsave(&primary_crng.lock, flags))
		return 0;
	if (crng_init != 0) {
		spin_unlock_irqrestore(&primary_crng.lock, flags);
		return 0;
	}
	if (len > max)
		max = len;

	for (i = 0; i < max ; i++) {
		tmp = lfsr;
		lfsr >>= 1;
		if (tmp & 1)
			lfsr ^= 0xE1;
958 959
		tmp = dest_buf[i % CHACHA_KEY_SIZE];
		dest_buf[i % CHACHA_KEY_SIZE] ^= src_buf[i % len] ^ lfsr;
960 961 962 963 964 965
		lfsr += (tmp << 3) | (tmp >> 5);
	}
	spin_unlock_irqrestore(&primary_crng.lock, flags);
	return 1;
}

966
static void crng_reseed(struct crng_state *crng, bool use_input_pool)
967 968 969 970
{
	unsigned long	flags;
	int		i, num;
	union {
971 972
		u8	block[CHACHA_BLOCK_SIZE];
		u32	key[8];
973 974
	} buf;

975 976
	if (use_input_pool) {
		num = extract_entropy(&buf, 32, 16);
977 978
		if (num == 0)
			return;
979
	} else {
980
		_extract_crng(&primary_crng, buf.block);
981
		_crng_backtrack_protect(&primary_crng, buf.block,
982
					CHACHA_KEY_SIZE);
983
	}
984
	spin_lock_irqsave(&crng->lock, flags);
985 986 987 988 989 990 991 992
	for (i = 0; i < 8; i++) {
		unsigned long	rv;
		if (!arch_get_random_seed_long(&rv) &&
		    !arch_get_random_long(&rv))
			rv = random_get_entropy();
		crng->state[i+4] ^= buf.key[i] ^ rv;
	}
	memzero_explicit(&buf, sizeof(buf));
993
	WRITE_ONCE(crng->init_time, jiffies);
994
	spin_unlock_irqrestore(&crng->lock, flags);
995
	crng_finalize_init(crng);
996 997
}

998
static void _extract_crng(struct crng_state *crng,
999
			  u8 out[CHACHA_BLOCK_SIZE])
1000
{
1001
	unsigned long flags, init_time;
1002 1003 1004 1005 1006

	if (crng_ready()) {
		init_time = READ_ONCE(crng->init_time);
		if (time_after(READ_ONCE(crng_global_init_time), init_time) ||
		    time_after(jiffies, init_time + CRNG_RESEED_INTERVAL))
1007
			crng_reseed(crng, crng == &primary_crng);
1008
	}
1009 1010 1011 1012 1013 1014 1015
	spin_lock_irqsave(&crng->lock, flags);
	chacha20_block(&crng->state[0], out);
	if (crng->state[12] == 0)
		crng->state[13]++;
	spin_unlock_irqrestore(&crng->lock, flags);
}

1016
static void extract_crng(u8 out[CHACHA_BLOCK_SIZE])
1017
{
1018
	_extract_crng(select_crng(), out);
1019 1020
}

1021 1022 1023 1024 1025
/*
 * Use the leftover bytes from the CRNG block output (if there is
 * enough) to mutate the CRNG key to provide backtracking protection.
 */
static void _crng_backtrack_protect(struct crng_state *crng,
1026
				    u8 tmp[CHACHA_BLOCK_SIZE], int used)
1027 1028
{
	unsigned long	flags;
1029
	u32		*s, *d;
1030 1031
	int		i;

1032
	used = round_up(used, sizeof(u32));
1033
	if (used + CHACHA_KEY_SIZE > CHACHA_BLOCK_SIZE) {
1034 1035 1036 1037
		extract_crng(tmp);
		used = 0;
	}
	spin_lock_irqsave(&crng->lock, flags);
1038
	s = (u32 *) &tmp[used];
1039 1040 1041 1042 1043 1044
	d = &crng->state[4];
	for (i=0; i < 8; i++)
		*d++ ^= *s++;
	spin_unlock_irqrestore(&crng->lock, flags);
}

1045
static void crng_backtrack_protect(u8 tmp[CHACHA_BLOCK_SIZE], int used)
1046
{
1047
	_crng_backtrack_protect(select_crng(), tmp, used);
1048 1049
}

1050 1051
static ssize_t extract_crng_user(void __user *buf, size_t nbytes)
{
1052
	ssize_t ret = 0, i = CHACHA_BLOCK_SIZE;
1053
	u8 tmp[CHACHA_BLOCK_SIZE] __aligned(4);
1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066
	int large_request = (nbytes > 256);

	while (nbytes) {
		if (large_request && need_resched()) {
			if (signal_pending(current)) {
				if (ret == 0)
					ret = -ERESTARTSYS;
				break;
			}
			schedule();
		}

		extract_crng(tmp);
1067
		i = min_t(int, nbytes, CHACHA_BLOCK_SIZE);
1068 1069 1070 1071 1072 1073 1074 1075 1076
		if (copy_to_user(buf, tmp, i)) {
			ret = -EFAULT;
			break;
		}

		nbytes -= i;
		buf += i;
		ret += i;
	}
1077
	crng_backtrack_protect(tmp, i);
1078 1079 1080 1081 1082 1083 1084 1085

	/* Wipe data just written to memory */
	memzero_explicit(tmp, sizeof(tmp));

	return ret;
}


L
Linus Torvalds 已提交
1086 1087 1088 1089 1090 1091 1092 1093 1094
/*********************************************************************
 *
 * Entropy input management
 *
 *********************************************************************/

/* There is one of these per entropy source */
struct timer_rand_state {
	cycles_t last_time;
1095
	long last_delta, last_delta2;
L
Linus Torvalds 已提交
1096 1097
};

1098 1099
#define INIT_TIMER_RAND_STATE { INITIAL_JIFFIES, };

1100
/*
1101 1102
 * Add device- or boot-specific data to the input pool to help
 * initialize it.
1103
 *
1104 1105 1106
 * None of this adds any entropy; it is meant to avoid the problem of
 * the entropy pool having similar initial state across largely
 * identical devices.
1107 1108 1109
 */
void add_device_randomness(const void *buf, unsigned int size)
{
1110
	unsigned long time = random_get_entropy() ^ jiffies;
1111
	unsigned long flags;
1112

1113 1114
	if (!crng_ready() && size)
		crng_slow_load(buf, size);
1115

1116
	trace_add_device_randomness(size, _RET_IP_);
1117
	spin_lock_irqsave(&input_pool.lock, flags);
1118 1119
	_mix_pool_bytes(buf, size);
	_mix_pool_bytes(&time, sizeof(time));
1120
	spin_unlock_irqrestore(&input_pool.lock, flags);
1121 1122 1123
}
EXPORT_SYMBOL(add_device_randomness);

1124
static struct timer_rand_state input_timer_state = INIT_TIMER_RAND_STATE;
1125

L
Linus Torvalds 已提交
1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139
/*
 * This function adds entropy to the entropy "pool" by using timing
 * delays.  It uses the timer_rand_state structure to make an estimate
 * of how many bits of entropy this call has added to the pool.
 *
 * The number "num" is also added to the pool - it should somehow describe
 * the type of event which just happened.  This is currently 0-255 for
 * keyboard scan codes, and 256 upwards for interrupts.
 *
 */
static void add_timer_randomness(struct timer_rand_state *state, unsigned num)
{
	struct {
		long jiffies;
1140 1141
		unsigned int cycles;
		unsigned int num;
L
Linus Torvalds 已提交
1142 1143 1144 1145
	} sample;
	long delta, delta2, delta3;

	sample.jiffies = jiffies;
1146
	sample.cycles = random_get_entropy();
L
Linus Torvalds 已提交
1147
	sample.num = num;
1148
	mix_pool_bytes(&sample, sizeof(sample));
L
Linus Torvalds 已提交
1149 1150 1151 1152 1153 1154

	/*
	 * Calculate number of bits of randomness we probably added.
	 * We take into account the first, second and third-order deltas
	 * in order to make our estimate.
	 */
1155 1156
	delta = sample.jiffies - READ_ONCE(state->last_time);
	WRITE_ONCE(state->last_time, sample.jiffies);
1157

1158 1159
	delta2 = delta - READ_ONCE(state->last_delta);
	WRITE_ONCE(state->last_delta, delta);
1160

1161 1162
	delta3 = delta2 - READ_ONCE(state->last_delta2);
	WRITE_ONCE(state->last_delta2, delta2);
1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173

	if (delta < 0)
		delta = -delta;
	if (delta2 < 0)
		delta2 = -delta2;
	if (delta3 < 0)
		delta3 = -delta3;
	if (delta > delta2)
		delta = delta2;
	if (delta > delta3)
		delta = delta3;
L
Linus Torvalds 已提交
1174

1175 1176 1177
	/*
	 * delta is now minimum absolute delta.
	 * Round down by 1 bit on general principles,
1178
	 * and limit entropy estimate to 12 bits.
1179
	 */
1180
	credit_entropy_bits(min_t(int, fls(delta>>1), 11));
L
Linus Torvalds 已提交
1181 1182
}

1183
void add_input_randomness(unsigned int type, unsigned int code,
L
Linus Torvalds 已提交
1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194
				 unsigned int value)
{
	static unsigned char last_value;

	/* ignore autorepeat and the like */
	if (value == last_value)
		return;

	last_value = value;
	add_timer_randomness(&input_timer_state,
			     (type << 4) ^ code ^ (code >> 4) ^ value);
1195
	trace_add_input_randomness(ENTROPY_BITS());
L
Linus Torvalds 已提交
1196
}
1197
EXPORT_SYMBOL_GPL(add_input_randomness);
L
Linus Torvalds 已提交
1198

1199 1200
static DEFINE_PER_CPU(struct fast_pool, irq_randomness);

1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221
#ifdef ADD_INTERRUPT_BENCH
static unsigned long avg_cycles, avg_deviation;

#define AVG_SHIFT 8     /* Exponential average factor k=1/256 */
#define FIXED_1_2 (1 << (AVG_SHIFT-1))

static void add_interrupt_bench(cycles_t start)
{
        long delta = random_get_entropy() - start;

        /* Use a weighted moving average */
        delta = delta - ((avg_cycles + FIXED_1_2) >> AVG_SHIFT);
        avg_cycles += delta;
        /* And average deviation */
        delta = abs(delta) - ((avg_deviation + FIXED_1_2) >> AVG_SHIFT);
        avg_deviation += delta;
}
#else
#define add_interrupt_bench(x)
#endif

1222
static u32 get_reg(struct fast_pool *f, struct pt_regs *regs)
1223
{
1224
	u32 *ptr = (u32 *) regs;
1225
	unsigned int idx;
1226 1227 1228

	if (regs == NULL)
		return 0;
1229
	idx = READ_ONCE(f->reg_idx);
1230
	if (idx >= sizeof(struct pt_regs) / sizeof(u32))
1231 1232 1233
		idx = 0;
	ptr += idx++;
	WRITE_ONCE(f->reg_idx, idx);
1234
	return *ptr;
1235 1236
}

1237
void add_interrupt_randomness(int irq)
L
Linus Torvalds 已提交
1238
{
1239
	struct fast_pool	*fast_pool = this_cpu_ptr(&irq_randomness);
1240 1241
	struct pt_regs		*regs = get_irq_regs();
	unsigned long		now = jiffies;
1242
	cycles_t		cycles = random_get_entropy();
1243 1244
	u32			c_high, j_high;
	u64			ip;
1245

1246 1247
	if (cycles == 0)
		cycles = get_reg(fast_pool, regs);
1248 1249
	c_high = (sizeof(cycles) > 4) ? cycles >> 32 : 0;
	j_high = (sizeof(now) > 4) ? now >> 32 : 0;
1250 1251
	fast_pool->pool[0] ^= cycles ^ j_high ^ irq;
	fast_pool->pool[1] ^= now ^ c_high;
1252
	ip = regs ? instruction_pointer(regs) : _RET_IP_;
1253
	fast_pool->pool[2] ^= ip;
1254 1255
	fast_pool->pool[3] ^= (sizeof(ip) > 4) ? ip >> 32 :
		get_reg(fast_pool, regs);
1256

1257 1258
	fast_mix(fast_pool);
	add_interrupt_bench(cycles);
1259

T
Theodore Ts'o 已提交
1260
	if (unlikely(crng_init == 0)) {
1261
		if ((fast_pool->count >= 64) &&
1262
		    crng_fast_load((u8 *)fast_pool->pool, sizeof(fast_pool->pool)) > 0) {
1263 1264 1265 1266 1267 1268
			fast_pool->count = 0;
			fast_pool->last = now;
		}
		return;
	}

1269 1270
	if ((fast_pool->count < 64) &&
	    !time_after(now, fast_pool->last + HZ))
L
Linus Torvalds 已提交
1271 1272
		return;

1273
	if (!spin_trylock(&input_pool.lock))
1274
		return;
1275

1276
	fast_pool->last = now;
1277 1278
	__mix_pool_bytes(&fast_pool->pool, sizeof(fast_pool->pool));
	spin_unlock(&input_pool.lock);
1279

1280
	fast_pool->count = 0;
1281

1282
	/* award one bit for the contents of the fast pool */
1283
	credit_entropy_bits(1);
L
Linus Torvalds 已提交
1284
}
1285
EXPORT_SYMBOL_GPL(add_interrupt_randomness);
L
Linus Torvalds 已提交
1286

1287
#ifdef CONFIG_BLOCK
L
Linus Torvalds 已提交
1288 1289 1290 1291 1292
void add_disk_randomness(struct gendisk *disk)
{
	if (!disk || !disk->random)
		return;
	/* first major is 1, so we get >= 0x200 here */
1293
	add_timer_randomness(disk->random, 0x100 + disk_devt(disk));
1294
	trace_add_disk_randomness(disk_devt(disk), ENTROPY_BITS());
L
Linus Torvalds 已提交
1295
}
1296
EXPORT_SYMBOL_GPL(add_disk_randomness);
1297
#endif
L
Linus Torvalds 已提交
1298 1299 1300 1301 1302 1303 1304 1305

/*********************************************************************
 *
 * Entropy extraction routines
 *
 *********************************************************************/

/*
G
Greg Price 已提交
1306 1307
 * This function decides how many bytes to actually take from the
 * given pool, and also debits the entropy count accordingly.
L
Linus Torvalds 已提交
1308
 */
1309
static size_t account(size_t nbytes, int min)
L
Linus Torvalds 已提交
1310
{
S
Stephan Müller 已提交
1311
	int entropy_count, orig, have_bytes;
1312
	size_t ibytes, nfrac;
L
Linus Torvalds 已提交
1313

1314
	BUG_ON(input_pool.entropy_count > POOL_FRACBITS);
L
Linus Torvalds 已提交
1315 1316

	/* Can we pull enough? */
1317
retry:
1318
	entropy_count = orig = READ_ONCE(input_pool.entropy_count);
1319
	ibytes = nbytes;
S
Stephan Müller 已提交
1320 1321
	/* never pull more than available */
	have_bytes = entropy_count >> (ENTROPY_SHIFT + 3);
1322

1323
	if (have_bytes < 0)
S
Stephan Müller 已提交
1324 1325
		have_bytes = 0;
	ibytes = min_t(size_t, ibytes, have_bytes);
G
Greg Price 已提交
1326
	if (ibytes < min)
1327
		ibytes = 0;
1328

1329
	if (WARN_ON(entropy_count < 0)) {
1330
		pr_warn("negative entropy count: count %d\n", entropy_count);
1331 1332 1333 1334 1335 1336
		entropy_count = 0;
	}
	nfrac = ibytes << (ENTROPY_SHIFT + 3);
	if ((size_t) entropy_count > nfrac)
		entropy_count -= nfrac;
	else
1337
		entropy_count = 0;
1338

1339
	if (cmpxchg(&input_pool.entropy_count, orig, entropy_count) != orig)
G
Greg Price 已提交
1340
		goto retry;
L
Linus Torvalds 已提交
1341

1342 1343
	trace_debit_entropy(8 * ibytes);
	if (ibytes && ENTROPY_BITS() < random_write_wakeup_bits) {
1344
		wake_up_interruptible(&random_write_wait);
1345 1346 1347
		kill_fasync(&fasync, SIGIO, POLL_OUT);
	}

1348
	return ibytes;
L
Linus Torvalds 已提交
1349 1350
}

G
Greg Price 已提交
1351
/*
1352
 * This function does the actual extraction for extract_entropy.
G
Greg Price 已提交
1353 1354 1355
 *
 * Note: we assume that .poolwords is a multiple of 16 words.
 */
1356
static void extract_buf(u8 *out)
L
Linus Torvalds 已提交
1357
{
1358 1359 1360
	struct blake2s_state state __aligned(__alignof__(unsigned long));
	u8 hash[BLAKE2S_HASH_SIZE];
	unsigned long *salt;
1361
	unsigned long flags;
L
Linus Torvalds 已提交
1362

1363 1364
	blake2s_init(&state, sizeof(hash));

1365
	/*
1366
	 * If we have an architectural hardware random number
1367
	 * generator, use it for BLAKE2's salt & personal fields.
1368
	 */
1369 1370
	for (salt = (unsigned long *)&state.h[4];
	     salt < (unsigned long *)&state.h[8]; ++salt) {
1371 1372 1373
		unsigned long v;
		if (!arch_get_random_long(&v))
			break;
1374
		*salt ^= v;
1375 1376
	}

1377
	/* Generate a hash across the pool */
1378 1379
	spin_lock_irqsave(&input_pool.lock, flags);
	blake2s_update(&state, (const u8 *)input_pool.pool, POOL_BYTES);
1380
	blake2s_final(&state, hash); /* final zeros out state */
1381

L
Linus Torvalds 已提交
1382
	/*
1383 1384 1385
	 * We mix the hash back into the pool to prevent backtracking
	 * attacks (where the attacker knows the state of the pool
	 * plus the current outputs, and attempts to find previous
1386 1387
	 * outputs), unless the hash function can be inverted. By
	 * mixing at least a hash worth of hash data back, we make
1388 1389
	 * brute-forcing the feedback as hard as brute-forcing the
	 * hash.
L
Linus Torvalds 已提交
1390
	 */
1391 1392
	__mix_pool_bytes(hash, sizeof(hash));
	spin_unlock_irqrestore(&input_pool.lock, flags);
L
Linus Torvalds 已提交
1393

1394 1395 1396
	/* Note that EXTRACT_SIZE is half of hash size here, because above
	 * we've dumped the full length back into mixer. By reducing the
	 * amount that we emit, we retain a level of forward secrecy.
L
Linus Torvalds 已提交
1397
	 */
1398 1399
	memcpy(out, hash, EXTRACT_SIZE);
	memzero_explicit(hash, sizeof(hash));
L
Linus Torvalds 已提交
1400 1401
}

1402
static ssize_t _extract_entropy(void *buf, size_t nbytes)
1403 1404
{
	ssize_t ret = 0, i;
1405
	u8 tmp[EXTRACT_SIZE];
1406 1407

	while (nbytes) {
1408
		extract_buf(tmp);
1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421
		i = min_t(int, nbytes, EXTRACT_SIZE);
		memcpy(buf, tmp, i);
		nbytes -= i;
		buf += i;
		ret += i;
	}

	/* Wipe data just returned from memory */
	memzero_explicit(tmp, sizeof(tmp));

	return ret;
}

G
Greg Price 已提交
1422 1423 1424 1425 1426
/*
 * This function extracts randomness from the "entropy pool", and
 * returns it in a buffer.
 *
 * The min parameter specifies the minimum amount we can pull before
1427
 * failing to avoid races that defeat catastrophic reseeding.
G
Greg Price 已提交
1428
 */
1429
static ssize_t extract_entropy(void *buf, size_t nbytes, int min)
L
Linus Torvalds 已提交
1430
{
1431 1432 1433
	trace_extract_entropy(nbytes, ENTROPY_BITS(), _RET_IP_);
	nbytes = account(nbytes, min);
	return _extract_entropy(buf, nbytes);
L
Linus Torvalds 已提交
1434 1435
}

1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455
#define warn_unseeded_randomness(previous) \
	_warn_unseeded_randomness(__func__, (void *) _RET_IP_, (previous))

static void _warn_unseeded_randomness(const char *func_name, void *caller,
				      void **previous)
{
#ifdef CONFIG_WARN_ALL_UNSEEDED_RANDOM
	const bool print_once = false;
#else
	static bool print_once __read_mostly;
#endif

	if (print_once ||
	    crng_ready() ||
	    (previous && (caller == READ_ONCE(*previous))))
		return;
	WRITE_ONCE(*previous, caller);
#ifndef CONFIG_WARN_ALL_UNSEEDED_RANDOM
	print_once = true;
#endif
1456
	if (__ratelimit(&unseeded_warning))
1457 1458 1459
		printk_deferred(KERN_NOTICE "random: %s called from %pS "
				"with crng_init=%d\n", func_name, caller,
				crng_init);
1460 1461
}

L
Linus Torvalds 已提交
1462 1463
/*
 * This function is the exported kernel interface.  It returns some
1464
 * number of good random numbers, suitable for key generation, seeding
1465 1466
 * TCP sequence numbers, etc.  It does not rely on the hardware random
 * number generator.  For random bytes direct from the hardware RNG
1467 1468 1469 1470
 * (when available), use get_random_bytes_arch(). In order to ensure
 * that the randomness provided by this function is okay, the function
 * wait_for_random_bytes() should be called and return 0 at least once
 * at any point prior.
L
Linus Torvalds 已提交
1471
 */
1472
static void _get_random_bytes(void *buf, int nbytes)
1473
{
1474
	u8 tmp[CHACHA_BLOCK_SIZE] __aligned(4);
1475

1476
	trace_get_random_bytes(nbytes, _RET_IP_);
1477

1478
	while (nbytes >= CHACHA_BLOCK_SIZE) {
1479
		extract_crng(buf);
1480 1481
		buf += CHACHA_BLOCK_SIZE;
		nbytes -= CHACHA_BLOCK_SIZE;
1482 1483 1484 1485 1486
	}

	if (nbytes > 0) {
		extract_crng(tmp);
		memcpy(buf, tmp, nbytes);
1487 1488
		crng_backtrack_protect(tmp, nbytes);
	} else
1489
		crng_backtrack_protect(tmp, CHACHA_BLOCK_SIZE);
1490
	memzero_explicit(tmp, sizeof(tmp));
1491
}
1492 1493 1494 1495 1496 1497 1498 1499

void get_random_bytes(void *buf, int nbytes)
{
	static void *previous;

	warn_unseeded_randomness(&previous);
	_get_random_bytes(buf, nbytes);
}
1500 1501
EXPORT_SYMBOL(get_random_bytes);

1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517

/*
 * Each time the timer fires, we expect that we got an unpredictable
 * jump in the cycle counter. Even if the timer is running on another
 * CPU, the timer activity will be touching the stack of the CPU that is
 * generating entropy..
 *
 * Note that we don't re-arm the timer in the timer itself - we are
 * happy to be scheduled away, since that just makes the load more
 * complex, but we do not want the timer to keep ticking unless the
 * entropy loop is running.
 *
 * So the re-arming always happens in the entropy loop itself.
 */
static void entropy_timer(struct timer_list *t)
{
1518
	credit_entropy_bits(1);
1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541
}

/*
 * If we have an actual cycle counter, see if we can
 * generate enough entropy with timing noise
 */
static void try_to_generate_entropy(void)
{
	struct {
		unsigned long now;
		struct timer_list timer;
	} stack;

	stack.now = random_get_entropy();

	/* Slow counter - or none. Don't even bother */
	if (stack.now == random_get_entropy())
		return;

	timer_setup_on_stack(&stack.timer, entropy_timer, 0);
	while (!crng_ready()) {
		if (!timer_pending(&stack.timer))
			mod_timer(&stack.timer, jiffies+1);
1542
		mix_pool_bytes(&stack.now, sizeof(stack.now));
1543 1544 1545 1546 1547 1548
		schedule();
		stack.now = random_get_entropy();
	}

	del_timer_sync(&stack.timer);
	destroy_timer_on_stack(&stack.timer);
1549
	mix_pool_bytes(&stack.now, sizeof(stack.now));
1550 1551
}

1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565
/*
 * Wait for the urandom pool to be seeded and thus guaranteed to supply
 * cryptographically secure random numbers. This applies to: the /dev/urandom
 * device, the get_random_bytes function, and the get_random_{u32,u64,int,long}
 * family of functions. Using any of these functions without first calling
 * this function forfeits the guarantee of security.
 *
 * Returns: 0 if the urandom pool has been seeded.
 *          -ERESTARTSYS if the function was interrupted by a signal.
 */
int wait_for_random_bytes(void)
{
	if (likely(crng_ready()))
		return 0;
1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576

	do {
		int ret;
		ret = wait_event_interruptible_timeout(crng_init_wait, crng_ready(), HZ);
		if (ret)
			return ret > 0 ? 0 : ret;

		try_to_generate_entropy();
	} while (!crng_ready());

	return 0;
1577 1578 1579
}
EXPORT_SYMBOL(wait_for_random_bytes);

1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594
/*
 * Returns whether or not the urandom pool has been seeded and thus guaranteed
 * to supply cryptographically secure random numbers. This applies to: the
 * /dev/urandom device, the get_random_bytes function, and the get_random_{u32,
 * ,u64,int,long} family of functions.
 *
 * Returns: true if the urandom pool has been seeded.
 *          false if the urandom pool has not been seeded.
 */
bool rng_is_initialized(void)
{
	return crng_ready();
}
EXPORT_SYMBOL(rng_is_initialized);

1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608
/*
 * Add a callback function that will be invoked when the nonblocking
 * pool is initialised.
 *
 * returns: 0 if callback is successfully added
 *	    -EALREADY if pool is already initialised (callback not called)
 *	    -ENOENT if module for callback is not alive
 */
int add_random_ready_callback(struct random_ready_callback *rdy)
{
	struct module *owner;
	unsigned long flags;
	int err = -EALREADY;

1609
	if (crng_ready())
1610 1611 1612 1613 1614 1615 1616
		return err;

	owner = rdy->owner;
	if (!try_module_get(owner))
		return -ENOENT;

	spin_lock_irqsave(&random_ready_list_lock, flags);
1617
	if (crng_ready())
1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652
		goto out;

	owner = NULL;

	list_add(&rdy->list, &random_ready_list);
	err = 0;

out:
	spin_unlock_irqrestore(&random_ready_list_lock, flags);

	module_put(owner);

	return err;
}
EXPORT_SYMBOL(add_random_ready_callback);

/*
 * Delete a previously registered readiness callback function.
 */
void del_random_ready_callback(struct random_ready_callback *rdy)
{
	unsigned long flags;
	struct module *owner = NULL;

	spin_lock_irqsave(&random_ready_list_lock, flags);
	if (!list_empty(&rdy->list)) {
		list_del_init(&rdy->list);
		owner = rdy->owner;
	}
	spin_unlock_irqrestore(&random_ready_list_lock, flags);

	module_put(owner);
}
EXPORT_SYMBOL(del_random_ready_callback);

1653 1654 1655 1656 1657 1658 1659 1660 1661
/*
 * This function will use the architecture-specific hardware random
 * number generator if it is available.  The arch-specific hw RNG will
 * almost certainly be faster than what we can do in software, but it
 * is impossible to verify that it is implemented securely (as
 * opposed, to, say, the AES encryption of a sequence number using a
 * key known by the NSA).  So it's useful if we need the speed, but
 * only if we're willing to trust the hardware manufacturer not to
 * have put in a back door.
1662 1663
 *
 * Return number of bytes filled in.
1664
 */
1665
int __must_check get_random_bytes_arch(void *buf, int nbytes)
L
Linus Torvalds 已提交
1666
{
1667
	int left = nbytes;
1668
	u8 *p = buf;
1669

1670 1671
	trace_get_random_bytes_arch(left, _RET_IP_);
	while (left) {
1672
		unsigned long v;
1673
		int chunk = min_t(int, left, sizeof(unsigned long));
1674

1675 1676
		if (!arch_get_random_long(&v))
			break;
1677

L
Luck, Tony 已提交
1678
		memcpy(p, &v, chunk);
1679
		p += chunk;
1680
		left -= chunk;
1681 1682
	}

1683
	return nbytes - left;
L
Linus Torvalds 已提交
1684
}
1685 1686
EXPORT_SYMBOL(get_random_bytes_arch);

L
Linus Torvalds 已提交
1687 1688 1689 1690 1691 1692 1693
/*
 * init_std_data - initialize pool with system data
 *
 * This function clears the pool's entropy count and mixes some system
 * data into the pool to prepare it for use. The pool is not cleared
 * as that can only decrease the entropy in the pool.
 */
1694
static void __init init_std_data(void)
L
Linus Torvalds 已提交
1695
{
1696
	int i;
1697 1698
	ktime_t now = ktime_get_real();
	unsigned long rv;
L
Linus Torvalds 已提交
1699

1700
	mix_pool_bytes(&now, sizeof(now));
1701
	for (i = POOL_BYTES; i > 0; i -= sizeof(rv)) {
1702 1703
		if (!arch_get_random_seed_long(&rv) &&
		    !arch_get_random_long(&rv))
1704
			rv = random_get_entropy();
1705
		mix_pool_bytes(&rv, sizeof(rv));
1706
	}
1707
	mix_pool_bytes(utsname(), sizeof(*(utsname())));
L
Linus Torvalds 已提交
1708 1709
}

1710 1711 1712 1713 1714 1715 1716 1717 1718 1719
/*
 * Note that setup_arch() may call add_device_randomness()
 * long before we get here. This allows seeding of the pools
 * with some platform dependent data very early in the boot
 * process. But it limits our options here. We must use
 * statically allocated structures that already have all
 * initializations complete at compile time. We should also
 * take care not to overwrite the precious per platform data
 * we were given.
 */
1720
int __init rand_initialize(void)
L
Linus Torvalds 已提交
1721
{
1722
	init_std_data();
1723 1724
	if (crng_need_final_init)
		crng_finalize_init(&primary_crng);
1725
	crng_initialize_primary(&primary_crng);
1726
	crng_global_init_time = jiffies;
1727 1728 1729 1730
	if (ratelimit_disable) {
		urandom_warning.interval = 0;
		unseeded_warning.interval = 0;
	}
L
Linus Torvalds 已提交
1731 1732 1733
	return 0;
}

1734
#ifdef CONFIG_BLOCK
L
Linus Torvalds 已提交
1735 1736 1737 1738 1739
void rand_initialize_disk(struct gendisk *disk)
{
	struct timer_rand_state *state;

	/*
1740
	 * If kzalloc returns null, we just won't use that entropy
L
Linus Torvalds 已提交
1741 1742
	 * source.
	 */
1743
	state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
1744 1745
	if (state) {
		state->last_time = INITIAL_JIFFIES;
L
Linus Torvalds 已提交
1746
		disk->random = state;
1747
	}
L
Linus Torvalds 已提交
1748
}
1749
#endif
L
Linus Torvalds 已提交
1750

1751 1752 1753 1754 1755 1756 1757 1758
static ssize_t
urandom_read_nowarn(struct file *file, char __user *buf, size_t nbytes,
		    loff_t *ppos)
{
	int ret;

	nbytes = min_t(size_t, nbytes, INT_MAX >> (ENTROPY_SHIFT + 3));
	ret = extract_crng_user(buf, nbytes);
1759
	trace_urandom_read(8 * nbytes, 0, ENTROPY_BITS());
1760 1761 1762
	return ret;
}

L
Linus Torvalds 已提交
1763
static ssize_t
1764
urandom_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
L
Linus Torvalds 已提交
1765
{
1766
	static int maxwarn = 10;
1767

1768
	if (!crng_ready() && maxwarn > 0) {
1769
		maxwarn--;
1770
		if (__ratelimit(&urandom_warning))
Y
Yangtao Li 已提交
1771 1772
			pr_notice("%s: uninitialized urandom read (%zd bytes read)\n",
				  current->comm, nbytes);
1773
	}
1774 1775

	return urandom_read_nowarn(file, buf, nbytes, ppos);
L
Linus Torvalds 已提交
1776 1777
}

1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788
static ssize_t
random_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
{
	int ret;

	ret = wait_for_random_bytes();
	if (ret != 0)
		return ret;
	return urandom_read_nowarn(file, buf, nbytes, ppos);
}

1789
static __poll_t
1790
random_poll(struct file *file, poll_table * wait)
L
Linus Torvalds 已提交
1791
{
1792
	__poll_t mask;
L
Linus Torvalds 已提交
1793

1794
	poll_wait(file, &crng_init_wait, wait);
1795 1796
	poll_wait(file, &random_write_wait, wait);
	mask = 0;
1797
	if (crng_ready())
1798
		mask |= EPOLLIN | EPOLLRDNORM;
1799
	if (ENTROPY_BITS() < random_write_wakeup_bits)
1800
		mask |= EPOLLOUT | EPOLLWRNORM;
L
Linus Torvalds 已提交
1801 1802 1803
	return mask;
}

1804
static int
1805
write_pool(const char __user *buffer, size_t count)
L
Linus Torvalds 已提交
1806 1807
{
	size_t bytes;
1808
	u32 t, buf[16];
L
Linus Torvalds 已提交
1809 1810
	const char __user *p = buffer;

1811
	while (count > 0) {
1812 1813
		int b, i = 0;

1814 1815 1816
		bytes = min(count, sizeof(buf));
		if (copy_from_user(&buf, p, bytes))
			return -EFAULT;
L
Linus Torvalds 已提交
1817

1818
		for (b = bytes; b > 0; b -= sizeof(u32), i++) {
1819 1820 1821 1822 1823
			if (!arch_get_random_int(&t))
				break;
			buf[i] ^= t;
		}

1824
		count -= bytes;
L
Linus Torvalds 已提交
1825 1826
		p += bytes;

1827
		mix_pool_bytes(buf, bytes);
1828
		cond_resched();
L
Linus Torvalds 已提交
1829
	}
1830 1831 1832 1833

	return 0;
}

1834 1835
static ssize_t random_write(struct file *file, const char __user *buffer,
			    size_t count, loff_t *ppos)
1836 1837 1838
{
	size_t ret;

1839
	ret = write_pool(buffer, count);
1840 1841 1842 1843
	if (ret)
		return ret;

	return (ssize_t)count;
L
Linus Torvalds 已提交
1844 1845
}

M
Matt Mackall 已提交
1846
static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
L
Linus Torvalds 已提交
1847 1848 1849 1850 1851 1852 1853
{
	int size, ent_count;
	int __user *p = (int __user *)arg;
	int retval;

	switch (cmd) {
	case RNDGETENTCNT:
M
Matt Mackall 已提交
1854
		/* inherently racy, no point locking */
1855
		ent_count = ENTROPY_BITS();
1856
		if (put_user(ent_count, p))
L
Linus Torvalds 已提交
1857 1858 1859 1860 1861 1862 1863
			return -EFAULT;
		return 0;
	case RNDADDTOENTCNT:
		if (!capable(CAP_SYS_ADMIN))
			return -EPERM;
		if (get_user(ent_count, p))
			return -EFAULT;
1864
		return credit_entropy_bits_safe(ent_count);
L
Linus Torvalds 已提交
1865 1866 1867 1868 1869 1870 1871 1872 1873
	case RNDADDENTROPY:
		if (!capable(CAP_SYS_ADMIN))
			return -EPERM;
		if (get_user(ent_count, p++))
			return -EFAULT;
		if (ent_count < 0)
			return -EINVAL;
		if (get_user(size, p++))
			return -EFAULT;
1874
		retval = write_pool((const char __user *)p, size);
L
Linus Torvalds 已提交
1875 1876
		if (retval < 0)
			return retval;
1877
		return credit_entropy_bits_safe(ent_count);
L
Linus Torvalds 已提交
1878 1879
	case RNDZAPENTCNT:
	case RNDCLEARPOOL:
1880 1881 1882 1883
		/*
		 * Clear the entropy pool counters. We no longer clear
		 * the entropy pool, as that's silly.
		 */
L
Linus Torvalds 已提交
1884 1885
		if (!capable(CAP_SYS_ADMIN))
			return -EPERM;
1886
		input_pool.entropy_count = 0;
L
Linus Torvalds 已提交
1887
		return 0;
1888 1889 1890 1891 1892
	case RNDRESEEDCRNG:
		if (!capable(CAP_SYS_ADMIN))
			return -EPERM;
		if (crng_init < 2)
			return -ENODATA;
1893
		crng_reseed(&primary_crng, true);
1894
		WRITE_ONCE(crng_global_init_time, jiffies - 1);
1895
		return 0;
L
Linus Torvalds 已提交
1896 1897 1898 1899 1900
	default:
		return -EINVAL;
	}
}

1901 1902 1903 1904 1905
static int random_fasync(int fd, struct file *filp, int on)
{
	return fasync_helper(fd, filp, on, &fasync);
}

1906
const struct file_operations random_fops = {
L
Linus Torvalds 已提交
1907 1908
	.read  = random_read,
	.write = random_write,
1909
	.poll  = random_poll,
M
Matt Mackall 已提交
1910
	.unlocked_ioctl = random_ioctl,
1911
	.compat_ioctl = compat_ptr_ioctl,
1912
	.fasync = random_fasync,
1913
	.llseek = noop_llseek,
L
Linus Torvalds 已提交
1914 1915
};

1916
const struct file_operations urandom_fops = {
L
Linus Torvalds 已提交
1917 1918
	.read  = urandom_read,
	.write = random_write,
M
Matt Mackall 已提交
1919
	.unlocked_ioctl = random_ioctl,
1920
	.compat_ioctl = compat_ptr_ioctl,
1921
	.fasync = random_fasync,
1922
	.llseek = noop_llseek,
L
Linus Torvalds 已提交
1923 1924
};

1925 1926 1927
SYSCALL_DEFINE3(getrandom, char __user *, buf, size_t, count,
		unsigned int, flags)
{
1928 1929
	int ret;

1930 1931 1932 1933 1934 1935 1936 1937
	if (flags & ~(GRND_NONBLOCK|GRND_RANDOM|GRND_INSECURE))
		return -EINVAL;

	/*
	 * Requesting insecure and blocking randomness at the same time makes
	 * no sense.
	 */
	if ((flags & (GRND_INSECURE|GRND_RANDOM)) == (GRND_INSECURE|GRND_RANDOM))
1938 1939 1940 1941 1942
		return -EINVAL;

	if (count > INT_MAX)
		count = INT_MAX;

1943
	if (!(flags & GRND_INSECURE) && !crng_ready()) {
1944 1945
		if (flags & GRND_NONBLOCK)
			return -EAGAIN;
1946 1947 1948
		ret = wait_for_random_bytes();
		if (unlikely(ret))
			return ret;
1949
	}
1950
	return urandom_read_nowarn(NULL, buf, count, NULL);
1951 1952
}

L
Linus Torvalds 已提交
1953 1954 1955 1956 1957 1958 1959 1960 1961 1962
/********************************************************************
 *
 * Sysctl interface
 *
 ********************************************************************/

#ifdef CONFIG_SYSCTL

#include <linux/sysctl.h>

1963
static int min_write_thresh;
L
Linus Torvalds 已提交
1964
static int max_write_thresh = INPUT_POOL_WORDS * 32;
1965
static int random_min_urandom_seed = 60;
L
Linus Torvalds 已提交
1966 1967 1968
static char sysctl_bootid[16];

/*
G
Greg Price 已提交
1969
 * This function is used to return both the bootid UUID, and random
L
Linus Torvalds 已提交
1970 1971 1972
 * UUID.  The difference is in whether table->data is NULL; if it is,
 * then a new UUID is generated and returned to the user.
 *
G
Greg Price 已提交
1973 1974 1975
 * If the user accesses this via the proc interface, the UUID will be
 * returned as an ASCII string in the standard UUID format; if via the
 * sysctl system call, as 16 bytes of binary data.
L
Linus Torvalds 已提交
1976
 */
1977
static int proc_do_uuid(struct ctl_table *table, int write,
1978
			void *buffer, size_t *lenp, loff_t *ppos)
L
Linus Torvalds 已提交
1979
{
1980
	struct ctl_table fake_table;
L
Linus Torvalds 已提交
1981 1982 1983 1984 1985 1986
	unsigned char buf[64], tmp_uuid[16], *uuid;

	uuid = table->data;
	if (!uuid) {
		uuid = tmp_uuid;
		generate_random_uuid(uuid);
1987 1988 1989 1990 1991 1992 1993 1994
	} else {
		static DEFINE_SPINLOCK(bootid_spinlock);

		spin_lock(&bootid_spinlock);
		if (!uuid[8])
			generate_random_uuid(uuid);
		spin_unlock(&bootid_spinlock);
	}
L
Linus Torvalds 已提交
1995

J
Joe Perches 已提交
1996 1997
	sprintf(buf, "%pU", uuid);

L
Linus Torvalds 已提交
1998 1999 2000
	fake_table.data = buf;
	fake_table.maxlen = sizeof(buf);

2001
	return proc_dostring(&fake_table, write, buffer, lenp, ppos);
L
Linus Torvalds 已提交
2002 2003
}

2004 2005 2006
/*
 * Return entropy available scaled to integral bits
 */
2007
static int proc_do_entropy(struct ctl_table *table, int write,
2008
			   void *buffer, size_t *lenp, loff_t *ppos)
2009
{
2010
	struct ctl_table fake_table;
2011 2012 2013 2014 2015 2016 2017 2018 2019 2020
	int entropy_count;

	entropy_count = *(int *)table->data >> ENTROPY_SHIFT;

	fake_table.data = &entropy_count;
	fake_table.maxlen = sizeof(entropy_count);

	return proc_dointvec(&fake_table, write, buffer, lenp, ppos);
}

L
Linus Torvalds 已提交
2021
static int sysctl_poolsize = INPUT_POOL_WORDS * 32;
2022 2023
extern struct ctl_table random_table[];
struct ctl_table random_table[] = {
L
Linus Torvalds 已提交
2024 2025 2026 2027 2028
	{
		.procname	= "poolsize",
		.data		= &sysctl_poolsize,
		.maxlen		= sizeof(int),
		.mode		= 0444,
2029
		.proc_handler	= proc_dointvec,
L
Linus Torvalds 已提交
2030 2031 2032 2033 2034
	},
	{
		.procname	= "entropy_avail",
		.maxlen		= sizeof(int),
		.mode		= 0444,
2035
		.proc_handler	= proc_do_entropy,
L
Linus Torvalds 已提交
2036 2037 2038 2039
		.data		= &input_pool.entropy_count,
	},
	{
		.procname	= "write_wakeup_threshold",
2040
		.data		= &random_write_wakeup_bits,
L
Linus Torvalds 已提交
2041 2042
		.maxlen		= sizeof(int),
		.mode		= 0644,
2043
		.proc_handler	= proc_dointvec_minmax,
L
Linus Torvalds 已提交
2044 2045 2046
		.extra1		= &min_write_thresh,
		.extra2		= &max_write_thresh,
	},
2047 2048 2049 2050 2051 2052 2053
	{
		.procname	= "urandom_min_reseed_secs",
		.data		= &random_min_urandom_seed,
		.maxlen		= sizeof(int),
		.mode		= 0644,
		.proc_handler	= proc_dointvec,
	},
L
Linus Torvalds 已提交
2054 2055 2056 2057 2058
	{
		.procname	= "boot_id",
		.data		= &sysctl_bootid,
		.maxlen		= 16,
		.mode		= 0444,
2059
		.proc_handler	= proc_do_uuid,
L
Linus Torvalds 已提交
2060 2061 2062 2063 2064
	},
	{
		.procname	= "uuid",
		.maxlen		= 16,
		.mode		= 0444,
2065
		.proc_handler	= proc_do_uuid,
L
Linus Torvalds 已提交
2066
	},
2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082
#ifdef ADD_INTERRUPT_BENCH
	{
		.procname	= "add_interrupt_avg_cycles",
		.data		= &avg_cycles,
		.maxlen		= sizeof(avg_cycles),
		.mode		= 0444,
		.proc_handler	= proc_doulongvec_minmax,
	},
	{
		.procname	= "add_interrupt_avg_deviation",
		.data		= &avg_deviation,
		.maxlen		= sizeof(avg_deviation),
		.mode		= 0444,
		.proc_handler	= proc_doulongvec_minmax,
	},
#endif
2083
	{ }
L
Linus Torvalds 已提交
2084 2085 2086
};
#endif 	/* CONFIG_SYSCTL */

2087 2088
struct batched_entropy {
	union {
2089 2090
		u64 entropy_u64[CHACHA_BLOCK_SIZE / sizeof(u64)];
		u32 entropy_u32[CHACHA_BLOCK_SIZE / sizeof(u32)];
2091 2092
	};
	unsigned int position;
2093
	spinlock_t batch_lock;
2094
};
2095

L
Linus Torvalds 已提交
2096
/*
2097
 * Get a random word for internal kernel use only. The quality of the random
2098 2099
 * number is good as /dev/urandom, but there is no backtrack protection, with
 * the goal of being quite fast and not depleting entropy. In order to ensure
2100
 * that the randomness provided by this function is okay, the function
2101 2102
 * wait_for_random_bytes() should be called and return 0 at least once at any
 * point prior.
L
Linus Torvalds 已提交
2103
 */
2104 2105 2106 2107
static DEFINE_PER_CPU(struct batched_entropy, batched_entropy_u64) = {
	.batch_lock	= __SPIN_LOCK_UNLOCKED(batched_entropy_u64.lock),
};

2108
u64 get_random_u64(void)
L
Linus Torvalds 已提交
2109
{
2110
	u64 ret;
2111
	unsigned long flags;
2112
	struct batched_entropy *batch;
2113
	static void *previous;
2114

2115
	warn_unseeded_randomness(&previous);
2116

2117 2118
	batch = raw_cpu_ptr(&batched_entropy_u64);
	spin_lock_irqsave(&batch->batch_lock, flags);
2119
	if (batch->position % ARRAY_SIZE(batch->entropy_u64) == 0) {
2120
		extract_crng((u8 *)batch->entropy_u64);
2121 2122
		batch->position = 0;
	}
2123
	ret = batch->entropy_u64[batch->position++];
2124
	spin_unlock_irqrestore(&batch->batch_lock, flags);
2125
	return ret;
L
Linus Torvalds 已提交
2126
}
2127
EXPORT_SYMBOL(get_random_u64);
L
Linus Torvalds 已提交
2128

2129 2130 2131
static DEFINE_PER_CPU(struct batched_entropy, batched_entropy_u32) = {
	.batch_lock	= __SPIN_LOCK_UNLOCKED(batched_entropy_u32.lock),
};
2132
u32 get_random_u32(void)
2133
{
2134
	u32 ret;
2135
	unsigned long flags;
2136
	struct batched_entropy *batch;
2137
	static void *previous;
2138

2139
	warn_unseeded_randomness(&previous);
2140

2141 2142
	batch = raw_cpu_ptr(&batched_entropy_u32);
	spin_lock_irqsave(&batch->batch_lock, flags);
2143
	if (batch->position % ARRAY_SIZE(batch->entropy_u32) == 0) {
2144
		extract_crng((u8 *)batch->entropy_u32);
2145 2146
		batch->position = 0;
	}
2147
	ret = batch->entropy_u32[batch->position++];
2148
	spin_unlock_irqrestore(&batch->batch_lock, flags);
2149 2150
	return ret;
}
2151
EXPORT_SYMBOL(get_random_u32);
2152

2153 2154 2155 2156 2157 2158 2159 2160 2161 2162
/* It's important to invalidate all potential batched entropy that might
 * be stored before the crng is initialized, which we can do lazily by
 * simply resetting the counter to zero so that it's re-extracted on the
 * next usage. */
static void invalidate_batched_entropy(void)
{
	int cpu;
	unsigned long flags;

	for_each_possible_cpu (cpu) {
2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173
		struct batched_entropy *batched_entropy;

		batched_entropy = per_cpu_ptr(&batched_entropy_u32, cpu);
		spin_lock_irqsave(&batched_entropy->batch_lock, flags);
		batched_entropy->position = 0;
		spin_unlock(&batched_entropy->batch_lock);

		batched_entropy = per_cpu_ptr(&batched_entropy_u64, cpu);
		spin_lock(&batched_entropy->batch_lock);
		batched_entropy->position = 0;
		spin_unlock_irqrestore(&batched_entropy->batch_lock, flags);
2174 2175 2176
	}
}

2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209
/**
 * randomize_page - Generate a random, page aligned address
 * @start:	The smallest acceptable address the caller will take.
 * @range:	The size of the area, starting at @start, within which the
 *		random address must fall.
 *
 * If @start + @range would overflow, @range is capped.
 *
 * NOTE: Historical use of randomize_range, which this replaces, presumed that
 * @start was already page aligned.  We now align it regardless.
 *
 * Return: A page aligned address within [start, start + range).  On error,
 * @start is returned.
 */
unsigned long
randomize_page(unsigned long start, unsigned long range)
{
	if (!PAGE_ALIGNED(start)) {
		range -= PAGE_ALIGN(start) - start;
		start = PAGE_ALIGN(start);
	}

	if (start > ULONG_MAX - range)
		range = ULONG_MAX - start;

	range >>= PAGE_SHIFT;

	if (range == 0)
		return start;

	return start + (get_random_long() % range << PAGE_SHIFT);
}

2210 2211 2212 2213 2214 2215 2216
/* Interface for in-kernel drivers of true hardware RNGs.
 * Those devices may produce endless random bits and will be throttled
 * when our pool is full.
 */
void add_hwgenerator_randomness(const char *buffer, size_t count,
				size_t entropy)
{
T
Theodore Ts'o 已提交
2217
	if (unlikely(crng_init == 0)) {
2218
		size_t ret = crng_fast_load(buffer, count);
2219
		mix_pool_bytes(buffer, ret);
2220 2221 2222 2223
		count -= ret;
		buffer += ret;
		if (!count || crng_init == 0)
			return;
2224
	}
2225 2226 2227 2228 2229

	/* Suspend writing if we're above the trickle threshold.
	 * We'll be woken up again once below random_write_wakeup_thresh,
	 * or when the calling thread is about to terminate.
	 */
2230 2231
	wait_event_interruptible(random_write_wait,
			!system_wq || kthread_should_stop() ||
2232 2233 2234
			ENTROPY_BITS() <= random_write_wakeup_bits);
	mix_pool_bytes(buffer, count);
	credit_entropy_bits(entropy);
2235 2236
}
EXPORT_SYMBOL_GPL(add_hwgenerator_randomness);
H
Hsin-Yi Wang 已提交
2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249

/* Handle random seed passed by bootloader.
 * If the seed is trustworthy, it would be regarded as hardware RNGs. Otherwise
 * it would be regarded as device data.
 * The decision is controlled by CONFIG_RANDOM_TRUST_BOOTLOADER.
 */
void add_bootloader_randomness(const void *buf, unsigned int size)
{
	if (IS_ENABLED(CONFIG_RANDOM_TRUST_BOOTLOADER))
		add_hwgenerator_randomness(buf, size, size * 8);
	else
		add_device_randomness(buf, size);
}
2250
EXPORT_SYMBOL_GPL(add_bootloader_randomness);