time.c 24.4 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11
/*
 *  linux/kernel/time.c
 *
 *  Copyright (C) 1991, 1992  Linus Torvalds
 *
 *  This file contains the interface functions for the various
 *  time related system calls: time, stime, gettimeofday, settimeofday,
 *			       adjtime
 */
/*
 * Modification history kernel/time.c
D
Daniel Walker 已提交
12
 *
L
Linus Torvalds 已提交
13
 * 1993-09-02    Philip Gladstone
14
 *      Created file with time related functions from sched/core.c and adjtimex()
L
Linus Torvalds 已提交
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
 * 1993-10-08    Torsten Duwe
 *      adjtime interface update and CMOS clock write code
 * 1995-08-13    Torsten Duwe
 *      kernel PLL updated to 1994-12-13 specs (rfc-1589)
 * 1999-01-16    Ulrich Windl
 *	Introduced error checking for many cases in adjtimex().
 *	Updated NTP code according to technical memorandum Jan '96
 *	"A Kernel Model for Precision Timekeeping" by Dave Mills
 *	Allow time_constant larger than MAXTC(6) for NTP v4 (MAXTC == 10)
 *	(Even though the technical memorandum forbids it)
 * 2004-07-14	 Christoph Lameter
 *	Added getnstimeofday to allow the posix timer functions to return
 *	with nanosecond accuracy
 */

30
#include <linux/export.h>
31
#include <linux/kernel.h>
L
Linus Torvalds 已提交
32
#include <linux/timex.h>
33
#include <linux/capability.h>
34
#include <linux/timekeeper_internal.h>
L
Linus Torvalds 已提交
35 36 37 38
#include <linux/errno.h>
#include <linux/syscalls.h>
#include <linux/security.h>
#include <linux/fs.h>
R
Roman Zippel 已提交
39
#include <linux/math64.h>
40
#include <linux/ptrace.h>
L
Linus Torvalds 已提交
41

42
#include <linux/uaccess.h>
43
#include <linux/compat.h>
L
Linus Torvalds 已提交
44 45
#include <asm/unistd.h>

46
#include <generated/timeconst.h>
47
#include "timekeeping.h"
48

D
Daniel Walker 已提交
49
/*
L
Linus Torvalds 已提交
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
 * The timezone where the local system is located.  Used as a default by some
 * programs who obtain this value by using gettimeofday.
 */
struct timezone sys_tz;

EXPORT_SYMBOL(sys_tz);

#ifdef __ARCH_WANT_SYS_TIME

/*
 * sys_time() can be implemented in user-level using
 * sys_gettimeofday().  Is this for backwards compatibility?  If so,
 * why not move it into the appropriate arch directory (for those
 * architectures that need it).
 */
65
SYSCALL_DEFINE1(time, time_t __user *, tloc)
L
Linus Torvalds 已提交
66
{
67
	time_t i = (time_t)ktime_get_real_seconds();
L
Linus Torvalds 已提交
68 69

	if (tloc) {
L
Linus Torvalds 已提交
70
		if (put_user(i,tloc))
71
			return -EFAULT;
L
Linus Torvalds 已提交
72
	}
73
	force_successful_syscall_return();
L
Linus Torvalds 已提交
74 75 76 77 78 79 80 81 82
	return i;
}

/*
 * sys_stime() can be implemented in user-level using
 * sys_settimeofday().  Is this for backwards compatibility?  If so,
 * why not move it into the appropriate arch directory (for those
 * architectures that need it).
 */
D
Daniel Walker 已提交
83

84
SYSCALL_DEFINE1(stime, time_t __user *, tptr)
L
Linus Torvalds 已提交
85
{
86
	struct timespec64 tv;
L
Linus Torvalds 已提交
87 88 89 90 91 92 93
	int err;

	if (get_user(tv.tv_sec, tptr))
		return -EFAULT;

	tv.tv_nsec = 0;

94
	err = security_settime64(&tv, NULL);
L
Linus Torvalds 已提交
95 96 97
	if (err)
		return err;

98
	do_settimeofday64(&tv);
L
Linus Torvalds 已提交
99 100 101 102 103
	return 0;
}

#endif /* __ARCH_WANT_SYS_TIME */

104 105 106 107 108 109 110 111
#ifdef CONFIG_COMPAT
#ifdef __ARCH_WANT_COMPAT_SYS_TIME

/* compat_time_t is a 32 bit "long" and needs to get converted. */
COMPAT_SYSCALL_DEFINE1(time, compat_time_t __user *, tloc)
{
	compat_time_t i;

112
	i = (compat_time_t)ktime_get_real_seconds();
113 114 115 116 117 118 119 120 121 122 123

	if (tloc) {
		if (put_user(i,tloc))
			return -EFAULT;
	}
	force_successful_syscall_return();
	return i;
}

COMPAT_SYSCALL_DEFINE1(stime, compat_time_t __user *, tptr)
{
124
	struct timespec64 tv;
125 126 127 128 129 130 131
	int err;

	if (get_user(tv.tv_sec, tptr))
		return -EFAULT;

	tv.tv_nsec = 0;

132
	err = security_settime64(&tv, NULL);
133 134 135
	if (err)
		return err;

136
	do_settimeofday64(&tv);
137 138 139 140 141 142
	return 0;
}

#endif /* __ARCH_WANT_COMPAT_SYS_TIME */
#endif

143 144
SYSCALL_DEFINE2(gettimeofday, struct timeval __user *, tv,
		struct timezone __user *, tz)
L
Linus Torvalds 已提交
145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
{
	if (likely(tv != NULL)) {
		struct timeval ktv;
		do_gettimeofday(&ktv);
		if (copy_to_user(tv, &ktv, sizeof(ktv)))
			return -EFAULT;
	}
	if (unlikely(tz != NULL)) {
		if (copy_to_user(tz, &sys_tz, sizeof(sys_tz)))
			return -EFAULT;
	}
	return 0;
}

/*
 * In case for some reason the CMOS clock has not already been running
 * in UTC, but in some local time: The first time we set the timezone,
 * we will warp the clock so that it is ticking UTC time instead of
 * local time. Presumably, if someone is setting the timezone then we
 * are running in an environment where the programs understand about
 * timezones. This should be done at boot time in the /etc/rc script,
 * as soon as possible, so that the clock can be set right. Otherwise,
 * various programs will get confused when the clock gets warped.
 */

170
int do_sys_settimeofday64(const struct timespec64 *tv, const struct timezone *tz)
L
Linus Torvalds 已提交
171 172 173 174
{
	static int firsttime = 1;
	int error = 0;

175
	if (tv && !timespec64_valid(tv))
176 177
		return -EINVAL;

178
	error = security_settime64(tv, tz);
L
Linus Torvalds 已提交
179 180 181 182
	if (error)
		return error;

	if (tz) {
183 184 185 186
		/* Verify we're witin the +-15 hrs range */
		if (tz->tz_minuteswest > 15*60 || tz->tz_minuteswest < -15*60)
			return -EINVAL;

L
Linus Torvalds 已提交
187
		sys_tz = *tz;
188
		update_vsyscall_tz();
L
Linus Torvalds 已提交
189 190 191
		if (firsttime) {
			firsttime = 0;
			if (!tv)
192
				timekeeping_warp_clock();
L
Linus Torvalds 已提交
193 194 195
		}
	}
	if (tv)
196
		return do_settimeofday64(tv);
L
Linus Torvalds 已提交
197 198 199
	return 0;
}

200 201
SYSCALL_DEFINE2(settimeofday, struct timeval __user *, tv,
		struct timezone __user *, tz)
L
Linus Torvalds 已提交
202
{
203
	struct timespec64 new_ts;
L
Linus Torvalds 已提交
204 205 206 207 208 209
	struct timeval user_tv;
	struct timezone new_tz;

	if (tv) {
		if (copy_from_user(&user_tv, tv, sizeof(*tv)))
			return -EFAULT;
210 211 212 213

		if (!timeval_valid(&user_tv))
			return -EINVAL;

L
Linus Torvalds 已提交
214 215 216 217 218 219 220 221
		new_ts.tv_sec = user_tv.tv_sec;
		new_ts.tv_nsec = user_tv.tv_usec * NSEC_PER_USEC;
	}
	if (tz) {
		if (copy_from_user(&new_tz, tz, sizeof(*tz)))
			return -EFAULT;
	}

222
	return do_sys_settimeofday64(tv ? &new_ts : NULL, tz ? &new_tz : NULL);
L
Linus Torvalds 已提交
223 224
}

225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265
#ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE2(gettimeofday, struct compat_timeval __user *, tv,
		       struct timezone __user *, tz)
{
	if (tv) {
		struct timeval ktv;

		do_gettimeofday(&ktv);
		if (compat_put_timeval(&ktv, tv))
			return -EFAULT;
	}
	if (tz) {
		if (copy_to_user(tz, &sys_tz, sizeof(sys_tz)))
			return -EFAULT;
	}

	return 0;
}

COMPAT_SYSCALL_DEFINE2(settimeofday, struct compat_timeval __user *, tv,
		       struct timezone __user *, tz)
{
	struct timespec64 new_ts;
	struct timeval user_tv;
	struct timezone new_tz;

	if (tv) {
		if (compat_get_timeval(&user_tv, tv))
			return -EFAULT;
		new_ts.tv_sec = user_tv.tv_sec;
		new_ts.tv_nsec = user_tv.tv_usec * NSEC_PER_USEC;
	}
	if (tz) {
		if (copy_from_user(&new_tz, tz, sizeof(*tz)))
			return -EFAULT;
	}

	return do_sys_settimeofday64(tv ? &new_ts : NULL, tz ? &new_tz : NULL);
}
#endif

266
SYSCALL_DEFINE1(adjtimex, struct timex __user *, txc_p)
L
Linus Torvalds 已提交
267 268 269 270 271 272 273 274
{
	struct timex txc;		/* Local copy of parameter */
	int ret;

	/* Copy the user data space into the kernel copy
	 * structure. But bear in mind that the structures
	 * may change
	 */
275
	if (copy_from_user(&txc, txc_p, sizeof(struct timex)))
L
Linus Torvalds 已提交
276 277 278 279 280
		return -EFAULT;
	ret = do_adjtimex(&txc);
	return copy_to_user(txc_p, &txc, sizeof(struct timex)) ? -EFAULT : ret;
}

281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301
#ifdef CONFIG_COMPAT

COMPAT_SYSCALL_DEFINE1(adjtimex, struct compat_timex __user *, utp)
{
	struct timex txc;
	int err, ret;

	err = compat_get_timex(&txc, utp);
	if (err)
		return err;

	ret = do_adjtimex(&txc);

	err = compat_put_timex(utp, &txc);
	if (err)
		return err;

	return ret;
}
#endif

E
Eric Dumazet 已提交
302 303 304 305 306 307
/*
 * Convert jiffies to milliseconds and back.
 *
 * Avoid unnecessary multiplications/divisions in the
 * two most common HZ cases:
 */
308
unsigned int jiffies_to_msecs(const unsigned long j)
E
Eric Dumazet 已提交
309 310 311 312 313 314
{
#if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
	return (MSEC_PER_SEC / HZ) * j;
#elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
	return (j + (HZ / MSEC_PER_SEC) - 1)/(HZ / MSEC_PER_SEC);
#else
315
# if BITS_PER_LONG == 32
316 317
	return (HZ_TO_MSEC_MUL32 * j + (1ULL << HZ_TO_MSEC_SHR32) - 1) >>
	       HZ_TO_MSEC_SHR32;
318
# else
319
	return DIV_ROUND_UP(j * HZ_TO_MSEC_NUM, HZ_TO_MSEC_DEN);
320
# endif
E
Eric Dumazet 已提交
321 322 323 324
#endif
}
EXPORT_SYMBOL(jiffies_to_msecs);

325
unsigned int jiffies_to_usecs(const unsigned long j)
E
Eric Dumazet 已提交
326
{
327 328 329 330 331 332 333
	/*
	 * Hz usually doesn't go much further MSEC_PER_SEC.
	 * jiffies_to_usecs() and usecs_to_jiffies() depend on that.
	 */
	BUILD_BUG_ON(HZ > USEC_PER_SEC);

#if !(USEC_PER_SEC % HZ)
E
Eric Dumazet 已提交
334 335
	return (USEC_PER_SEC / HZ) * j;
#else
336
# if BITS_PER_LONG == 32
337
	return (HZ_TO_USEC_MUL32 * j) >> HZ_TO_USEC_SHR32;
338 339 340
# else
	return (j * HZ_TO_USEC_NUM) / HZ_TO_USEC_DEN;
# endif
E
Eric Dumazet 已提交
341 342 343 344
#endif
}
EXPORT_SYMBOL(jiffies_to_usecs);

L
Linus Torvalds 已提交
345
/**
346
 * timespec_trunc - Truncate timespec to a granularity
L
Linus Torvalds 已提交
347
 * @t: Timespec
348
 * @gran: Granularity in ns.
L
Linus Torvalds 已提交
349
 *
350 351
 * Truncate a timespec to a granularity. Always rounds down. gran must
 * not be 0 nor greater than a second (NSEC_PER_SEC, or 10^9 ns).
L
Linus Torvalds 已提交
352 353 354
 */
struct timespec timespec_trunc(struct timespec t, unsigned gran)
{
355 356
	/* Avoid division in the common cases 1 ns and 1 s. */
	if (gran == 1) {
L
Linus Torvalds 已提交
357
		/* nothing */
358
	} else if (gran == NSEC_PER_SEC) {
L
Linus Torvalds 已提交
359
		t.tv_nsec = 0;
360
	} else if (gran > 1 && gran < NSEC_PER_SEC) {
L
Linus Torvalds 已提交
361
		t.tv_nsec -= t.tv_nsec % gran;
362 363
	} else {
		WARN(1, "illegal file time granularity: %u", gran);
L
Linus Torvalds 已提交
364 365 366 367 368
	}
	return t;
}
EXPORT_SYMBOL(timespec_trunc);

369 370 371
/*
 * mktime64 - Converts date to seconds.
 * Converts Gregorian date to seconds since 1970-01-01 00:00:00.
372 373 374 375 376 377 378 379 380
 * Assumes input in normal date format, i.e. 1980-12-31 23:59:59
 * => year=1980, mon=12, day=31, hour=23, min=59, sec=59.
 *
 * [For the Julian calendar (which was used in Russia before 1917,
 * Britain & colonies before 1752, anywhere else before 1582,
 * and is still in use by some communities) leave out the
 * -year/100+year/400 terms, and add 10.]
 *
 * This algorithm was first published by Gauss (I think).
381 382 383 384 385 386 387
 *
 * A leap second can be indicated by calling this function with sec as
 * 60 (allowable under ISO 8601).  The leap second is treated the same
 * as the following second since they don't exist in UNIX time.
 *
 * An encoding of midnight at the end of the day as 24:00:00 - ie. midnight
 * tomorrow - (allowable under ISO 8601) is supported.
388
 */
389 390 391
time64_t mktime64(const unsigned int year0, const unsigned int mon0,
		const unsigned int day, const unsigned int hour,
		const unsigned int min, const unsigned int sec)
392
{
393 394 395 396 397
	unsigned int mon = mon0, year = year0;

	/* 1..12 -> 11,12,1..10 */
	if (0 >= (int) (mon -= 2)) {
		mon += 12;	/* Puts Feb last since it has leap day */
398 399 400
		year -= 1;
	}

401
	return ((((time64_t)
402 403
		  (year/4 - year/100 + year/400 + 367*mon/12 + day) +
		  year*365 - 719499
404
	    )*24 + hour /* now have hours - midnight tomorrow handled here */
405 406 407
	  )*60 + min /* now have minutes */
	)*60 + sec; /* finally seconds */
}
408
EXPORT_SYMBOL(mktime64);
409

410 411 412 413 414 415 416 417 418 419 420
/**
 * set_normalized_timespec - set timespec sec and nsec parts and normalize
 *
 * @ts:		pointer to timespec variable to be set
 * @sec:	seconds to set
 * @nsec:	nanoseconds to set
 *
 * Set seconds and nanoseconds field of a timespec variable and
 * normalize to the timespec storage format
 *
 * Note: The tv_nsec part is always in the range of
421
 *	0 <= tv_nsec < NSEC_PER_SEC
422 423
 * For negative values only the tv_sec field is negative !
 */
424
void set_normalized_timespec(struct timespec *ts, time_t sec, s64 nsec)
425 426
{
	while (nsec >= NSEC_PER_SEC) {
427 428 429 430 431 432
		/*
		 * The following asm() prevents the compiler from
		 * optimising this loop into a modulo operation. See
		 * also __iter_div_u64_rem() in include/linux/time.h
		 */
		asm("" : "+rm"(nsec));
433 434 435 436
		nsec -= NSEC_PER_SEC;
		++sec;
	}
	while (nsec < 0) {
437
		asm("" : "+rm"(nsec));
438 439 440 441 442 443
		nsec += NSEC_PER_SEC;
		--sec;
	}
	ts->tv_sec = sec;
	ts->tv_nsec = nsec;
}
444
EXPORT_SYMBOL(set_normalized_timespec);
445

446 447 448 449 450 451
/**
 * ns_to_timespec - Convert nanoseconds to timespec
 * @nsec:       the nanoseconds value to be converted
 *
 * Returns the timespec representation of the nsec parameter.
 */
452
struct timespec ns_to_timespec(const s64 nsec)
453 454
{
	struct timespec ts;
R
Roman Zippel 已提交
455
	s32 rem;
456

457 458 459
	if (!nsec)
		return (struct timespec) {0, 0};

R
Roman Zippel 已提交
460 461 462 463 464 465
	ts.tv_sec = div_s64_rem(nsec, NSEC_PER_SEC, &rem);
	if (unlikely(rem < 0)) {
		ts.tv_sec--;
		rem += NSEC_PER_SEC;
	}
	ts.tv_nsec = rem;
466 467 468

	return ts;
}
469
EXPORT_SYMBOL(ns_to_timespec);
470 471 472 473 474 475 476

/**
 * ns_to_timeval - Convert nanoseconds to timeval
 * @nsec:       the nanoseconds value to be converted
 *
 * Returns the timeval representation of the nsec parameter.
 */
477
struct timeval ns_to_timeval(const s64 nsec)
478 479 480 481 482 483 484 485 486
{
	struct timespec ts = ns_to_timespec(nsec);
	struct timeval tv;

	tv.tv_sec = ts.tv_sec;
	tv.tv_usec = (suseconds_t) ts.tv_nsec / 1000;

	return tv;
}
487
EXPORT_SYMBOL(ns_to_timeval);
488

489 490 491 492 493 494 495 496 497 498 499 500
struct __kernel_old_timeval ns_to_kernel_old_timeval(const s64 nsec)
{
	struct timespec64 ts = ns_to_timespec64(nsec);
	struct __kernel_old_timeval tv;

	tv.tv_sec = ts.tv_sec;
	tv.tv_usec = (suseconds_t)ts.tv_nsec / 1000;

	return tv;
}
EXPORT_SYMBOL(ns_to_kernel_old_timeval);

501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560
/**
 * set_normalized_timespec - set timespec sec and nsec parts and normalize
 *
 * @ts:		pointer to timespec variable to be set
 * @sec:	seconds to set
 * @nsec:	nanoseconds to set
 *
 * Set seconds and nanoseconds field of a timespec variable and
 * normalize to the timespec storage format
 *
 * Note: The tv_nsec part is always in the range of
 *	0 <= tv_nsec < NSEC_PER_SEC
 * For negative values only the tv_sec field is negative !
 */
void set_normalized_timespec64(struct timespec64 *ts, time64_t sec, s64 nsec)
{
	while (nsec >= NSEC_PER_SEC) {
		/*
		 * The following asm() prevents the compiler from
		 * optimising this loop into a modulo operation. See
		 * also __iter_div_u64_rem() in include/linux/time.h
		 */
		asm("" : "+rm"(nsec));
		nsec -= NSEC_PER_SEC;
		++sec;
	}
	while (nsec < 0) {
		asm("" : "+rm"(nsec));
		nsec += NSEC_PER_SEC;
		--sec;
	}
	ts->tv_sec = sec;
	ts->tv_nsec = nsec;
}
EXPORT_SYMBOL(set_normalized_timespec64);

/**
 * ns_to_timespec64 - Convert nanoseconds to timespec64
 * @nsec:       the nanoseconds value to be converted
 *
 * Returns the timespec64 representation of the nsec parameter.
 */
struct timespec64 ns_to_timespec64(const s64 nsec)
{
	struct timespec64 ts;
	s32 rem;

	if (!nsec)
		return (struct timespec64) {0, 0};

	ts.tv_sec = div_s64_rem(nsec, NSEC_PER_SEC, &rem);
	if (unlikely(rem < 0)) {
		ts.tv_sec--;
		rem += NSEC_PER_SEC;
	}
	ts.tv_nsec = rem;

	return ts;
}
EXPORT_SYMBOL(ns_to_timespec64);
561

562 563 564 565 566
/**
 * msecs_to_jiffies: - convert milliseconds to jiffies
 * @m:	time in milliseconds
 *
 * conversion is done as follows:
567 568 569 570 571 572 573
 *
 * - negative values mean 'infinite timeout' (MAX_JIFFY_OFFSET)
 *
 * - 'too large' values [that would result in larger than
 *   MAX_JIFFY_OFFSET values] mean 'infinite timeout' too.
 *
 * - all other values are converted to jiffies by either multiplying
574 575 576
 *   the input value by a factor or dividing it with a factor and
 *   handling any 32-bit overflows.
 *   for the details see __msecs_to_jiffies()
577
 *
578 579 580 581 582 583 584
 * msecs_to_jiffies() checks for the passed in value being a constant
 * via __builtin_constant_p() allowing gcc to eliminate most of the
 * code, __msecs_to_jiffies() is called if the value passed does not
 * allow constant folding and the actual conversion must be done at
 * runtime.
 * the _msecs_to_jiffies helpers are the HZ dependent conversion
 * routines found in include/linux/jiffies.h
585
 */
586
unsigned long __msecs_to_jiffies(const unsigned int m)
587
{
588 589 590 591
	/*
	 * Negative value, means infinite timeout:
	 */
	if ((int)m < 0)
592
		return MAX_JIFFY_OFFSET;
593
	return _msecs_to_jiffies(m);
594
}
595
EXPORT_SYMBOL(__msecs_to_jiffies);
596

597
unsigned long __usecs_to_jiffies(const unsigned int u)
598 599 600
{
	if (u > jiffies_to_usecs(MAX_JIFFY_OFFSET))
		return MAX_JIFFY_OFFSET;
601
	return _usecs_to_jiffies(u);
602
}
603
EXPORT_SYMBOL(__usecs_to_jiffies);
604 605 606 607 608 609

/*
 * The TICK_NSEC - 1 rounds up the value to the next resolution.  Note
 * that a remainder subtract here would not do the right thing as the
 * resolution values don't fall on second boundries.  I.e. the line:
 * nsec -= nsec % TICK_NSEC; is NOT a correct resolution rounding.
610 611 612 613
 * Note that due to the small error in the multiplier here, this
 * rounding is incorrect for sufficiently large values of tv_nsec, but
 * well formed timespecs should have tv_nsec < NSEC_PER_SEC, so we're
 * OK.
614 615 616 617 618 619
 *
 * Rather, we just shift the bits off the right.
 *
 * The >> (NSEC_JIFFIE_SC - SEC_JIFFIE_SC) converts the scaled nsec
 * value to a scaled second value.
 */
620
static unsigned long
621
__timespec64_to_jiffies(u64 sec, long nsec)
622
{
623
	nsec = nsec + TICK_NSEC - 1;
624 625 626 627 628

	if (sec >= MAX_SEC_IN_JIFFIES){
		sec = MAX_SEC_IN_JIFFIES;
		nsec = 0;
	}
629
	return ((sec * SEC_CONVERSION) +
630 631 632 633
		(((u64)nsec * NSEC_CONVERSION) >>
		 (NSEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;

}
634

635 636
static unsigned long
__timespec_to_jiffies(unsigned long sec, long nsec)
637
{
638
	return __timespec64_to_jiffies((u64)sec, nsec);
639 640
}

641 642 643 644 645 646
unsigned long
timespec64_to_jiffies(const struct timespec64 *value)
{
	return __timespec64_to_jiffies(value->tv_sec, value->tv_nsec);
}
EXPORT_SYMBOL(timespec64_to_jiffies);
647 648

void
649
jiffies_to_timespec64(const unsigned long jiffies, struct timespec64 *value)
650 651 652 653 654
{
	/*
	 * Convert jiffies to nanoseconds and separate with
	 * one divide.
	 */
R
Roman Zippel 已提交
655 656 657 658
	u32 rem;
	value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC,
				    NSEC_PER_SEC, &rem);
	value->tv_nsec = rem;
659
}
660
EXPORT_SYMBOL(jiffies_to_timespec64);
661

662 663 664 665 666 667 668 669 670 671 672 673
/*
 * We could use a similar algorithm to timespec_to_jiffies (with a
 * different multiplier for usec instead of nsec). But this has a
 * problem with rounding: we can't exactly add TICK_NSEC - 1 to the
 * usec value, since it's not necessarily integral.
 *
 * We could instead round in the intermediate scaled representation
 * (i.e. in units of 1/2^(large scale) jiffies) but that's also
 * perilous: the scaling introduces a small positive error, which
 * combined with a division-rounding-upward (i.e. adding 2^(scale) - 1
 * units to the intermediate before shifting) leads to accidental
 * overflow and overestimates.
674
 *
675 676
 * At the cost of one additional multiplication by a constant, just
 * use the timespec implementation.
677 678 679 680
 */
unsigned long
timeval_to_jiffies(const struct timeval *value)
{
681 682
	return __timespec_to_jiffies(value->tv_sec,
				     value->tv_usec * NSEC_PER_USEC);
683
}
684
EXPORT_SYMBOL(timeval_to_jiffies);
685 686 687 688 689 690 691

void jiffies_to_timeval(const unsigned long jiffies, struct timeval *value)
{
	/*
	 * Convert jiffies to nanoseconds and separate with
	 * one divide.
	 */
R
Roman Zippel 已提交
692
	u32 rem;
693

R
Roman Zippel 已提交
694 695 696
	value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC,
				    NSEC_PER_SEC, &rem);
	value->tv_usec = rem / NSEC_PER_USEC;
697
}
698
EXPORT_SYMBOL(jiffies_to_timeval);
699 700 701 702

/*
 * Convert jiffies/jiffies_64 to clock_t and back.
 */
703
clock_t jiffies_to_clock_t(unsigned long x)
704 705
{
#if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
706 707 708
# if HZ < USER_HZ
	return x * (USER_HZ / HZ);
# else
709
	return x / (HZ / USER_HZ);
710
# endif
711
#else
R
Roman Zippel 已提交
712
	return div_u64((u64)x * TICK_NSEC, NSEC_PER_SEC / USER_HZ);
713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728
#endif
}
EXPORT_SYMBOL(jiffies_to_clock_t);

unsigned long clock_t_to_jiffies(unsigned long x)
{
#if (HZ % USER_HZ)==0
	if (x >= ~0UL / (HZ / USER_HZ))
		return ~0UL;
	return x * (HZ / USER_HZ);
#else
	/* Don't worry about loss of precision here .. */
	if (x >= ~0UL / HZ * USER_HZ)
		return ~0UL;

	/* .. but do try to contain it here */
R
Roman Zippel 已提交
729
	return div_u64((u64)x * HZ, USER_HZ);
730 731 732 733 734 735 736
#endif
}
EXPORT_SYMBOL(clock_t_to_jiffies);

u64 jiffies_64_to_clock_t(u64 x)
{
#if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
737
# if HZ < USER_HZ
R
Roman Zippel 已提交
738
	x = div_u64(x * USER_HZ, HZ);
739
# elif HZ > USER_HZ
R
Roman Zippel 已提交
740
	x = div_u64(x, HZ / USER_HZ);
741 742
# else
	/* Nothing to do */
743
# endif
744 745 746 747 748 749
#else
	/*
	 * There are better ways that don't overflow early,
	 * but even this doesn't overflow in hundreds of years
	 * in 64 bits, so..
	 */
R
Roman Zippel 已提交
750
	x = div_u64(x * TICK_NSEC, (NSEC_PER_SEC / USER_HZ));
751 752 753 754 755 756 757 758
#endif
	return x;
}
EXPORT_SYMBOL(jiffies_64_to_clock_t);

u64 nsec_to_clock_t(u64 x)
{
#if (NSEC_PER_SEC % USER_HZ) == 0
R
Roman Zippel 已提交
759
	return div_u64(x, NSEC_PER_SEC / USER_HZ);
760
#elif (USER_HZ % 512) == 0
R
Roman Zippel 已提交
761
	return div_u64(x * USER_HZ / 512, NSEC_PER_SEC / 512);
762 763 764 765 766 767
#else
	/*
         * max relative error 5.7e-8 (1.8s per year) for USER_HZ <= 1024,
         * overflow after 64.99 years.
         * exact for HZ=60, 72, 90, 120, 144, 180, 300, 600, 900, ...
         */
R
Roman Zippel 已提交
768
	return div_u64(x * 9, (9ull * NSEC_PER_SEC + (USER_HZ / 2)) / USER_HZ);
769 770 771
#endif
}

772 773 774 775 776 777 778 779 780 781
u64 jiffies64_to_nsecs(u64 j)
{
#if !(NSEC_PER_SEC % HZ)
	return (NSEC_PER_SEC / HZ) * j;
# else
	return div_u64(j * HZ_TO_NSEC_NUM, HZ_TO_NSEC_DEN);
#endif
}
EXPORT_SYMBOL(jiffies64_to_nsecs);

782
/**
783
 * nsecs_to_jiffies64 - Convert nsecs in u64 to jiffies64
784 785 786 787 788 789 790 791 792 793 794
 *
 * @n:	nsecs in u64
 *
 * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
 * And this doesn't return MAX_JIFFY_OFFSET since this function is designed
 * for scheduler, not for use in device drivers to calculate timeout value.
 *
 * note:
 *   NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
 *   ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
 */
795
u64 nsecs_to_jiffies64(u64 n)
796 797 798 799 800 801 802 803 804 805 806 807 808 809 810
{
#if (NSEC_PER_SEC % HZ) == 0
	/* Common case, HZ = 100, 128, 200, 250, 256, 500, 512, 1000 etc. */
	return div_u64(n, NSEC_PER_SEC / HZ);
#elif (HZ % 512) == 0
	/* overflow after 292 years if HZ = 1024 */
	return div_u64(n * HZ / 512, NSEC_PER_SEC / 512);
#else
	/*
	 * Generic case - optimized for cases where HZ is a multiple of 3.
	 * overflow after 64.99 years, exact for HZ = 60, 72, 90, 120 etc.
	 */
	return div_u64(n * 9, (9ull * NSEC_PER_SEC + HZ / 2) / HZ);
#endif
}
811
EXPORT_SYMBOL(nsecs_to_jiffies64);
812

813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829
/**
 * nsecs_to_jiffies - Convert nsecs in u64 to jiffies
 *
 * @n:	nsecs in u64
 *
 * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
 * And this doesn't return MAX_JIFFY_OFFSET since this function is designed
 * for scheduler, not for use in device drivers to calculate timeout value.
 *
 * note:
 *   NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
 *   ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
 */
unsigned long nsecs_to_jiffies(u64 n)
{
	return (unsigned long)nsecs_to_jiffies64(n);
}
830
EXPORT_SYMBOL_GPL(nsecs_to_jiffies);
831

832 833 834 835 836 837 838 839 840 841
/*
 * Add two timespec64 values and do a safety check for overflow.
 * It's assumed that both values are valid (>= 0).
 * And, each timespec64 is in normalized form.
 */
struct timespec64 timespec64_add_safe(const struct timespec64 lhs,
				const struct timespec64 rhs)
{
	struct timespec64 res;

842
	set_normalized_timespec64(&res, (timeu64_t) lhs.tv_sec + rhs.tv_sec,
843 844 845 846 847 848 849 850 851
			lhs.tv_nsec + rhs.tv_nsec);

	if (unlikely(res.tv_sec < lhs.tv_sec || res.tv_sec < rhs.tv_sec)) {
		res.tv_sec = TIME64_MAX;
		res.tv_nsec = 0;
	}

	return res;
}
852 853

int get_timespec64(struct timespec64 *ts,
854
		   const struct __kernel_timespec __user *uts)
855
{
856
	struct __kernel_timespec kts;
857 858 859 860 861 862 863
	int ret;

	ret = copy_from_user(&kts, uts, sizeof(kts));
	if (ret)
		return -EFAULT;

	ts->tv_sec = kts.tv_sec;
864 865 866 867 868

	/* Zero out the padding for 32 bit systems or in compat mode */
	if (IS_ENABLED(CONFIG_64BIT_TIME) && (!IS_ENABLED(CONFIG_64BIT) || in_compat_syscall()))
		kts.tv_nsec &= 0xFFFFFFFFUL;

869 870 871 872 873 874 875
	ts->tv_nsec = kts.tv_nsec;

	return 0;
}
EXPORT_SYMBOL_GPL(get_timespec64);

int put_timespec64(const struct timespec64 *ts,
876
		   struct __kernel_timespec __user *uts)
877
{
878
	struct __kernel_timespec kts = {
879 880 881
		.tv_sec = ts->tv_sec,
		.tv_nsec = ts->tv_nsec
	};
882

883 884 885
	return copy_to_user(uts, &kts, sizeof(kts)) ? -EFAULT : 0;
}
EXPORT_SYMBOL_GPL(put_timespec64);
886

887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930
int __compat_get_timespec64(struct timespec64 *ts64,
				   const struct compat_timespec __user *cts)
{
	struct compat_timespec ts;
	int ret;

	ret = copy_from_user(&ts, cts, sizeof(ts));
	if (ret)
		return -EFAULT;

	ts64->tv_sec = ts.tv_sec;
	ts64->tv_nsec = ts.tv_nsec;

	return 0;
}

int __compat_put_timespec64(const struct timespec64 *ts64,
				   struct compat_timespec __user *cts)
{
	struct compat_timespec ts = {
		.tv_sec = ts64->tv_sec,
		.tv_nsec = ts64->tv_nsec
	};
	return copy_to_user(cts, &ts, sizeof(ts)) ? -EFAULT : 0;
}

int compat_get_timespec64(struct timespec64 *ts, const void __user *uts)
{
	if (COMPAT_USE_64BIT_TIME)
		return copy_from_user(ts, uts, sizeof(*ts)) ? -EFAULT : 0;
	else
		return __compat_get_timespec64(ts, uts);
}
EXPORT_SYMBOL_GPL(compat_get_timespec64);

int compat_put_timespec64(const struct timespec64 *ts, void __user *uts)
{
	if (COMPAT_USE_64BIT_TIME)
		return copy_to_user(uts, ts, sizeof(*ts)) ? -EFAULT : 0;
	else
		return __compat_put_timespec64(ts, uts);
}
EXPORT_SYMBOL_GPL(compat_put_timespec64);

931
int get_itimerspec64(struct itimerspec64 *it,
932
			const struct __kernel_itimerspec __user *uit)
933 934 935 936 937 938 939 940 941 942 943 944 945 946
{
	int ret;

	ret = get_timespec64(&it->it_interval, &uit->it_interval);
	if (ret)
		return ret;

	ret = get_timespec64(&it->it_value, &uit->it_value);

	return ret;
}
EXPORT_SYMBOL_GPL(get_itimerspec64);

int put_itimerspec64(const struct itimerspec64 *it,
947
			struct __kernel_itimerspec __user *uit)
948 949 950 951 952 953 954 955 956 957 958 959
{
	int ret;

	ret = put_timespec64(&it->it_interval, &uit->it_interval);
	if (ret)
		return ret;

	ret = put_timespec64(&it->it_value, &uit->it_value);

	return ret;
}
EXPORT_SYMBOL_GPL(put_itimerspec64);
960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980

int get_compat_itimerspec64(struct itimerspec64 *its,
			const struct compat_itimerspec __user *uits)
{

	if (__compat_get_timespec64(&its->it_interval, &uits->it_interval) ||
	    __compat_get_timespec64(&its->it_value, &uits->it_value))
		return -EFAULT;
	return 0;
}
EXPORT_SYMBOL_GPL(get_compat_itimerspec64);

int put_compat_itimerspec64(const struct itimerspec64 *its,
			struct compat_itimerspec __user *uits)
{
	if (__compat_put_timespec64(&its->it_interval, &uits->it_interval) ||
	    __compat_put_timespec64(&its->it_value, &uits->it_value))
		return -EFAULT;
	return 0;
}
EXPORT_SYMBOL_GPL(put_compat_itimerspec64);