time.c 22.5 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11
/*
 *  linux/kernel/time.c
 *
 *  Copyright (C) 1991, 1992  Linus Torvalds
 *
 *  This file contains the interface functions for the various
 *  time related system calls: time, stime, gettimeofday, settimeofday,
 *			       adjtime
 */
/*
 * Modification history kernel/time.c
D
Daniel Walker 已提交
12
 *
L
Linus Torvalds 已提交
13
 * 1993-09-02    Philip Gladstone
14
 *      Created file with time related functions from sched/core.c and adjtimex()
L
Linus Torvalds 已提交
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
 * 1993-10-08    Torsten Duwe
 *      adjtime interface update and CMOS clock write code
 * 1995-08-13    Torsten Duwe
 *      kernel PLL updated to 1994-12-13 specs (rfc-1589)
 * 1999-01-16    Ulrich Windl
 *	Introduced error checking for many cases in adjtimex().
 *	Updated NTP code according to technical memorandum Jan '96
 *	"A Kernel Model for Precision Timekeeping" by Dave Mills
 *	Allow time_constant larger than MAXTC(6) for NTP v4 (MAXTC == 10)
 *	(Even though the technical memorandum forbids it)
 * 2004-07-14	 Christoph Lameter
 *	Added getnstimeofday to allow the posix timer functions to return
 *	with nanosecond accuracy
 */

30
#include <linux/export.h>
L
Linus Torvalds 已提交
31
#include <linux/timex.h>
32
#include <linux/capability.h>
33
#include <linux/timekeeper_internal.h>
L
Linus Torvalds 已提交
34 35 36 37
#include <linux/errno.h>
#include <linux/syscalls.h>
#include <linux/security.h>
#include <linux/fs.h>
R
Roman Zippel 已提交
38
#include <linux/math64.h>
39
#include <linux/ptrace.h>
L
Linus Torvalds 已提交
40

41
#include <linux/uaccess.h>
42
#include <linux/compat.h>
L
Linus Torvalds 已提交
43 44
#include <asm/unistd.h>

45
#include <generated/timeconst.h>
46
#include "timekeeping.h"
47

D
Daniel Walker 已提交
48
/*
L
Linus Torvalds 已提交
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
 * The timezone where the local system is located.  Used as a default by some
 * programs who obtain this value by using gettimeofday.
 */
struct timezone sys_tz;

EXPORT_SYMBOL(sys_tz);

#ifdef __ARCH_WANT_SYS_TIME

/*
 * sys_time() can be implemented in user-level using
 * sys_gettimeofday().  Is this for backwards compatibility?  If so,
 * why not move it into the appropriate arch directory (for those
 * architectures that need it).
 */
64
SYSCALL_DEFINE1(time, time_t __user *, tloc)
L
Linus Torvalds 已提交
65
{
I
Ingo Molnar 已提交
66
	time_t i = get_seconds();
L
Linus Torvalds 已提交
67 68

	if (tloc) {
L
Linus Torvalds 已提交
69
		if (put_user(i,tloc))
70
			return -EFAULT;
L
Linus Torvalds 已提交
71
	}
72
	force_successful_syscall_return();
L
Linus Torvalds 已提交
73 74 75 76 77 78 79 80 81
	return i;
}

/*
 * sys_stime() can be implemented in user-level using
 * sys_settimeofday().  Is this for backwards compatibility?  If so,
 * why not move it into the appropriate arch directory (for those
 * architectures that need it).
 */
D
Daniel Walker 已提交
82

83
SYSCALL_DEFINE1(stime, time_t __user *, tptr)
L
Linus Torvalds 已提交
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
{
	struct timespec tv;
	int err;

	if (get_user(tv.tv_sec, tptr))
		return -EFAULT;

	tv.tv_nsec = 0;

	err = security_settime(&tv, NULL);
	if (err)
		return err;

	do_settimeofday(&tv);
	return 0;
}

#endif /* __ARCH_WANT_SYS_TIME */

103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
#ifdef CONFIG_COMPAT
#ifdef __ARCH_WANT_COMPAT_SYS_TIME

/* compat_time_t is a 32 bit "long" and needs to get converted. */
COMPAT_SYSCALL_DEFINE1(time, compat_time_t __user *, tloc)
{
	struct timeval tv;
	compat_time_t i;

	do_gettimeofday(&tv);
	i = tv.tv_sec;

	if (tloc) {
		if (put_user(i,tloc))
			return -EFAULT;
	}
	force_successful_syscall_return();
	return i;
}

COMPAT_SYSCALL_DEFINE1(stime, compat_time_t __user *, tptr)
{
	struct timespec tv;
	int err;

	if (get_user(tv.tv_sec, tptr))
		return -EFAULT;

	tv.tv_nsec = 0;

	err = security_settime(&tv, NULL);
	if (err)
		return err;

	do_settimeofday(&tv);
	return 0;
}

#endif /* __ARCH_WANT_COMPAT_SYS_TIME */
#endif

144 145
SYSCALL_DEFINE2(gettimeofday, struct timeval __user *, tv,
		struct timezone __user *, tz)
L
Linus Torvalds 已提交
146 147 148 149 150 151 152 153 154 155 156 157 158 159
{
	if (likely(tv != NULL)) {
		struct timeval ktv;
		do_gettimeofday(&ktv);
		if (copy_to_user(tv, &ktv, sizeof(ktv)))
			return -EFAULT;
	}
	if (unlikely(tz != NULL)) {
		if (copy_to_user(tz, &sys_tz, sizeof(sys_tz)))
			return -EFAULT;
	}
	return 0;
}

160 161 162 163 164 165
/*
 * Indicates if there is an offset between the system clock and the hardware
 * clock/persistent clock/rtc.
 */
int persistent_clock_is_local;

L
Linus Torvalds 已提交
166 167 168
/*
 * Adjust the time obtained from the CMOS to be UTC time instead of
 * local time.
D
Daniel Walker 已提交
169
 *
L
Linus Torvalds 已提交
170 171
 * This is ugly, but preferable to the alternatives.  Otherwise we
 * would either need to write a program to do it in /etc/rc (and risk
D
Daniel Walker 已提交
172
 * confusion if the program gets run more than once; it would also be
L
Linus Torvalds 已提交
173 174 175
 * hard to make the program warp the clock precisely n hours)  or
 * compile in the timezone information into the kernel.  Bad, bad....
 *
176
 *						- TYT, 1992-01-01
L
Linus Torvalds 已提交
177 178 179 180 181
 *
 * The best thing to do is to keep the CMOS clock in universal time (UTC)
 * as real UNIX machines always do it. This avoids all headaches about
 * daylight saving times and warping kernel clocks.
 */
182
static inline void warp_clock(void)
L
Linus Torvalds 已提交
183
{
184 185
	if (sys_tz.tz_minuteswest != 0) {
		struct timespec adjust;
186

187
		persistent_clock_is_local = 1;
188 189 190
		adjust.tv_sec = sys_tz.tz_minuteswest * 60;
		adjust.tv_nsec = 0;
		timekeeping_inject_offset(&adjust);
191
	}
L
Linus Torvalds 已提交
192 193 194 195 196 197 198 199 200 201 202 203 204
}

/*
 * In case for some reason the CMOS clock has not already been running
 * in UTC, but in some local time: The first time we set the timezone,
 * we will warp the clock so that it is ticking UTC time instead of
 * local time. Presumably, if someone is setting the timezone then we
 * are running in an environment where the programs understand about
 * timezones. This should be done at boot time in the /etc/rc script,
 * as soon as possible, so that the clock can be set right. Otherwise,
 * various programs will get confused when the clock gets warped.
 */

205
int do_sys_settimeofday64(const struct timespec64 *tv, const struct timezone *tz)
L
Linus Torvalds 已提交
206 207 208 209
{
	static int firsttime = 1;
	int error = 0;

210
	if (tv && !timespec64_valid(tv))
211 212
		return -EINVAL;

213
	error = security_settime64(tv, tz);
L
Linus Torvalds 已提交
214 215 216 217
	if (error)
		return error;

	if (tz) {
218 219 220 221
		/* Verify we're witin the +-15 hrs range */
		if (tz->tz_minuteswest > 15*60 || tz->tz_minuteswest < -15*60)
			return -EINVAL;

L
Linus Torvalds 已提交
222
		sys_tz = *tz;
223
		update_vsyscall_tz();
L
Linus Torvalds 已提交
224 225 226 227 228 229 230
		if (firsttime) {
			firsttime = 0;
			if (!tv)
				warp_clock();
		}
	}
	if (tv)
231
		return do_settimeofday64(tv);
L
Linus Torvalds 已提交
232 233 234
	return 0;
}

235 236
SYSCALL_DEFINE2(settimeofday, struct timeval __user *, tv,
		struct timezone __user *, tz)
L
Linus Torvalds 已提交
237
{
238
	struct timespec64 new_ts;
L
Linus Torvalds 已提交
239 240 241 242 243 244
	struct timeval user_tv;
	struct timezone new_tz;

	if (tv) {
		if (copy_from_user(&user_tv, tv, sizeof(*tv)))
			return -EFAULT;
245 246 247 248

		if (!timeval_valid(&user_tv))
			return -EINVAL;

L
Linus Torvalds 已提交
249 250 251 252 253 254 255 256
		new_ts.tv_sec = user_tv.tv_sec;
		new_ts.tv_nsec = user_tv.tv_usec * NSEC_PER_USEC;
	}
	if (tz) {
		if (copy_from_user(&new_tz, tz, sizeof(*tz)))
			return -EFAULT;
	}

257
	return do_sys_settimeofday64(tv ? &new_ts : NULL, tz ? &new_tz : NULL);
L
Linus Torvalds 已提交
258 259
}

260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
#ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE2(gettimeofday, struct compat_timeval __user *, tv,
		       struct timezone __user *, tz)
{
	if (tv) {
		struct timeval ktv;

		do_gettimeofday(&ktv);
		if (compat_put_timeval(&ktv, tv))
			return -EFAULT;
	}
	if (tz) {
		if (copy_to_user(tz, &sys_tz, sizeof(sys_tz)))
			return -EFAULT;
	}

	return 0;
}

COMPAT_SYSCALL_DEFINE2(settimeofday, struct compat_timeval __user *, tv,
		       struct timezone __user *, tz)
{
	struct timespec64 new_ts;
	struct timeval user_tv;
	struct timezone new_tz;

	if (tv) {
		if (compat_get_timeval(&user_tv, tv))
			return -EFAULT;
		new_ts.tv_sec = user_tv.tv_sec;
		new_ts.tv_nsec = user_tv.tv_usec * NSEC_PER_USEC;
	}
	if (tz) {
		if (copy_from_user(&new_tz, tz, sizeof(*tz)))
			return -EFAULT;
	}

	return do_sys_settimeofday64(tv ? &new_ts : NULL, tz ? &new_tz : NULL);
}
#endif

301
SYSCALL_DEFINE1(adjtimex, struct timex __user *, txc_p)
L
Linus Torvalds 已提交
302 303 304 305 306 307 308 309
{
	struct timex txc;		/* Local copy of parameter */
	int ret;

	/* Copy the user data space into the kernel copy
	 * structure. But bear in mind that the structures
	 * may change
	 */
310
	if (copy_from_user(&txc, txc_p, sizeof(struct timex)))
L
Linus Torvalds 已提交
311 312 313 314 315
		return -EFAULT;
	ret = do_adjtimex(&txc);
	return copy_to_user(txc_p, &txc, sizeof(struct timex)) ? -EFAULT : ret;
}

316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336
#ifdef CONFIG_COMPAT

COMPAT_SYSCALL_DEFINE1(adjtimex, struct compat_timex __user *, utp)
{
	struct timex txc;
	int err, ret;

	err = compat_get_timex(&txc, utp);
	if (err)
		return err;

	ret = do_adjtimex(&txc);

	err = compat_put_timex(utp, &txc);
	if (err)
		return err;

	return ret;
}
#endif

E
Eric Dumazet 已提交
337 338 339 340 341 342
/*
 * Convert jiffies to milliseconds and back.
 *
 * Avoid unnecessary multiplications/divisions in the
 * two most common HZ cases:
 */
343
unsigned int jiffies_to_msecs(const unsigned long j)
E
Eric Dumazet 已提交
344 345 346 347 348 349
{
#if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
	return (MSEC_PER_SEC / HZ) * j;
#elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
	return (j + (HZ / MSEC_PER_SEC) - 1)/(HZ / MSEC_PER_SEC);
#else
350
# if BITS_PER_LONG == 32
351
	return (HZ_TO_MSEC_MUL32 * j) >> HZ_TO_MSEC_SHR32;
352 353 354
# else
	return (j * HZ_TO_MSEC_NUM) / HZ_TO_MSEC_DEN;
# endif
E
Eric Dumazet 已提交
355 356 357 358
#endif
}
EXPORT_SYMBOL(jiffies_to_msecs);

359
unsigned int jiffies_to_usecs(const unsigned long j)
E
Eric Dumazet 已提交
360
{
361 362 363 364 365 366 367
	/*
	 * Hz usually doesn't go much further MSEC_PER_SEC.
	 * jiffies_to_usecs() and usecs_to_jiffies() depend on that.
	 */
	BUILD_BUG_ON(HZ > USEC_PER_SEC);

#if !(USEC_PER_SEC % HZ)
E
Eric Dumazet 已提交
368 369
	return (USEC_PER_SEC / HZ) * j;
#else
370
# if BITS_PER_LONG == 32
371
	return (HZ_TO_USEC_MUL32 * j) >> HZ_TO_USEC_SHR32;
372 373 374
# else
	return (j * HZ_TO_USEC_NUM) / HZ_TO_USEC_DEN;
# endif
E
Eric Dumazet 已提交
375 376 377 378
#endif
}
EXPORT_SYMBOL(jiffies_to_usecs);

L
Linus Torvalds 已提交
379
/**
380
 * timespec_trunc - Truncate timespec to a granularity
L
Linus Torvalds 已提交
381
 * @t: Timespec
382
 * @gran: Granularity in ns.
L
Linus Torvalds 已提交
383
 *
384 385
 * Truncate a timespec to a granularity. Always rounds down. gran must
 * not be 0 nor greater than a second (NSEC_PER_SEC, or 10^9 ns).
L
Linus Torvalds 已提交
386 387 388
 */
struct timespec timespec_trunc(struct timespec t, unsigned gran)
{
389 390
	/* Avoid division in the common cases 1 ns and 1 s. */
	if (gran == 1) {
L
Linus Torvalds 已提交
391
		/* nothing */
392
	} else if (gran == NSEC_PER_SEC) {
L
Linus Torvalds 已提交
393
		t.tv_nsec = 0;
394
	} else if (gran > 1 && gran < NSEC_PER_SEC) {
L
Linus Torvalds 已提交
395
		t.tv_nsec -= t.tv_nsec % gran;
396 397
	} else {
		WARN(1, "illegal file time granularity: %u", gran);
L
Linus Torvalds 已提交
398 399 400 401 402
	}
	return t;
}
EXPORT_SYMBOL(timespec_trunc);

403 404 405
/*
 * mktime64 - Converts date to seconds.
 * Converts Gregorian date to seconds since 1970-01-01 00:00:00.
406 407 408 409 410 411 412 413 414
 * Assumes input in normal date format, i.e. 1980-12-31 23:59:59
 * => year=1980, mon=12, day=31, hour=23, min=59, sec=59.
 *
 * [For the Julian calendar (which was used in Russia before 1917,
 * Britain & colonies before 1752, anywhere else before 1582,
 * and is still in use by some communities) leave out the
 * -year/100+year/400 terms, and add 10.]
 *
 * This algorithm was first published by Gauss (I think).
415 416 417 418 419 420 421
 *
 * A leap second can be indicated by calling this function with sec as
 * 60 (allowable under ISO 8601).  The leap second is treated the same
 * as the following second since they don't exist in UNIX time.
 *
 * An encoding of midnight at the end of the day as 24:00:00 - ie. midnight
 * tomorrow - (allowable under ISO 8601) is supported.
422
 */
423 424 425
time64_t mktime64(const unsigned int year0, const unsigned int mon0,
		const unsigned int day, const unsigned int hour,
		const unsigned int min, const unsigned int sec)
426
{
427 428 429 430 431
	unsigned int mon = mon0, year = year0;

	/* 1..12 -> 11,12,1..10 */
	if (0 >= (int) (mon -= 2)) {
		mon += 12;	/* Puts Feb last since it has leap day */
432 433 434
		year -= 1;
	}

435
	return ((((time64_t)
436 437
		  (year/4 - year/100 + year/400 + 367*mon/12 + day) +
		  year*365 - 719499
438
	    )*24 + hour /* now have hours - midnight tomorrow handled here */
439 440 441
	  )*60 + min /* now have minutes */
	)*60 + sec; /* finally seconds */
}
442
EXPORT_SYMBOL(mktime64);
443

444 445 446 447 448 449 450 451 452 453 454
/**
 * set_normalized_timespec - set timespec sec and nsec parts and normalize
 *
 * @ts:		pointer to timespec variable to be set
 * @sec:	seconds to set
 * @nsec:	nanoseconds to set
 *
 * Set seconds and nanoseconds field of a timespec variable and
 * normalize to the timespec storage format
 *
 * Note: The tv_nsec part is always in the range of
455
 *	0 <= tv_nsec < NSEC_PER_SEC
456 457
 * For negative values only the tv_sec field is negative !
 */
458
void set_normalized_timespec(struct timespec *ts, time_t sec, s64 nsec)
459 460
{
	while (nsec >= NSEC_PER_SEC) {
461 462 463 464 465 466
		/*
		 * The following asm() prevents the compiler from
		 * optimising this loop into a modulo operation. See
		 * also __iter_div_u64_rem() in include/linux/time.h
		 */
		asm("" : "+rm"(nsec));
467 468 469 470
		nsec -= NSEC_PER_SEC;
		++sec;
	}
	while (nsec < 0) {
471
		asm("" : "+rm"(nsec));
472 473 474 475 476 477
		nsec += NSEC_PER_SEC;
		--sec;
	}
	ts->tv_sec = sec;
	ts->tv_nsec = nsec;
}
478
EXPORT_SYMBOL(set_normalized_timespec);
479

480 481 482 483 484 485
/**
 * ns_to_timespec - Convert nanoseconds to timespec
 * @nsec:       the nanoseconds value to be converted
 *
 * Returns the timespec representation of the nsec parameter.
 */
486
struct timespec ns_to_timespec(const s64 nsec)
487 488
{
	struct timespec ts;
R
Roman Zippel 已提交
489
	s32 rem;
490

491 492 493
	if (!nsec)
		return (struct timespec) {0, 0};

R
Roman Zippel 已提交
494 495 496 497 498 499
	ts.tv_sec = div_s64_rem(nsec, NSEC_PER_SEC, &rem);
	if (unlikely(rem < 0)) {
		ts.tv_sec--;
		rem += NSEC_PER_SEC;
	}
	ts.tv_nsec = rem;
500 501 502

	return ts;
}
503
EXPORT_SYMBOL(ns_to_timespec);
504 505 506 507 508 509 510

/**
 * ns_to_timeval - Convert nanoseconds to timeval
 * @nsec:       the nanoseconds value to be converted
 *
 * Returns the timeval representation of the nsec parameter.
 */
511
struct timeval ns_to_timeval(const s64 nsec)
512 513 514 515 516 517 518 519 520
{
	struct timespec ts = ns_to_timespec(nsec);
	struct timeval tv;

	tv.tv_sec = ts.tv_sec;
	tv.tv_usec = (suseconds_t) ts.tv_nsec / 1000;

	return tv;
}
521
EXPORT_SYMBOL(ns_to_timeval);
522

523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584
#if BITS_PER_LONG == 32
/**
 * set_normalized_timespec - set timespec sec and nsec parts and normalize
 *
 * @ts:		pointer to timespec variable to be set
 * @sec:	seconds to set
 * @nsec:	nanoseconds to set
 *
 * Set seconds and nanoseconds field of a timespec variable and
 * normalize to the timespec storage format
 *
 * Note: The tv_nsec part is always in the range of
 *	0 <= tv_nsec < NSEC_PER_SEC
 * For negative values only the tv_sec field is negative !
 */
void set_normalized_timespec64(struct timespec64 *ts, time64_t sec, s64 nsec)
{
	while (nsec >= NSEC_PER_SEC) {
		/*
		 * The following asm() prevents the compiler from
		 * optimising this loop into a modulo operation. See
		 * also __iter_div_u64_rem() in include/linux/time.h
		 */
		asm("" : "+rm"(nsec));
		nsec -= NSEC_PER_SEC;
		++sec;
	}
	while (nsec < 0) {
		asm("" : "+rm"(nsec));
		nsec += NSEC_PER_SEC;
		--sec;
	}
	ts->tv_sec = sec;
	ts->tv_nsec = nsec;
}
EXPORT_SYMBOL(set_normalized_timespec64);

/**
 * ns_to_timespec64 - Convert nanoseconds to timespec64
 * @nsec:       the nanoseconds value to be converted
 *
 * Returns the timespec64 representation of the nsec parameter.
 */
struct timespec64 ns_to_timespec64(const s64 nsec)
{
	struct timespec64 ts;
	s32 rem;

	if (!nsec)
		return (struct timespec64) {0, 0};

	ts.tv_sec = div_s64_rem(nsec, NSEC_PER_SEC, &rem);
	if (unlikely(rem < 0)) {
		ts.tv_sec--;
		rem += NSEC_PER_SEC;
	}
	ts.tv_nsec = rem;

	return ts;
}
EXPORT_SYMBOL(ns_to_timespec64);
#endif
585 586 587 588 589
/**
 * msecs_to_jiffies: - convert milliseconds to jiffies
 * @m:	time in milliseconds
 *
 * conversion is done as follows:
590 591 592 593 594 595 596
 *
 * - negative values mean 'infinite timeout' (MAX_JIFFY_OFFSET)
 *
 * - 'too large' values [that would result in larger than
 *   MAX_JIFFY_OFFSET values] mean 'infinite timeout' too.
 *
 * - all other values are converted to jiffies by either multiplying
597 598 599
 *   the input value by a factor or dividing it with a factor and
 *   handling any 32-bit overflows.
 *   for the details see __msecs_to_jiffies()
600
 *
601 602 603 604 605 606 607
 * msecs_to_jiffies() checks for the passed in value being a constant
 * via __builtin_constant_p() allowing gcc to eliminate most of the
 * code, __msecs_to_jiffies() is called if the value passed does not
 * allow constant folding and the actual conversion must be done at
 * runtime.
 * the _msecs_to_jiffies helpers are the HZ dependent conversion
 * routines found in include/linux/jiffies.h
608
 */
609
unsigned long __msecs_to_jiffies(const unsigned int m)
610
{
611 612 613 614
	/*
	 * Negative value, means infinite timeout:
	 */
	if ((int)m < 0)
615
		return MAX_JIFFY_OFFSET;
616
	return _msecs_to_jiffies(m);
617
}
618
EXPORT_SYMBOL(__msecs_to_jiffies);
619

620
unsigned long __usecs_to_jiffies(const unsigned int u)
621 622 623
{
	if (u > jiffies_to_usecs(MAX_JIFFY_OFFSET))
		return MAX_JIFFY_OFFSET;
624
	return _usecs_to_jiffies(u);
625
}
626
EXPORT_SYMBOL(__usecs_to_jiffies);
627 628 629 630 631 632

/*
 * The TICK_NSEC - 1 rounds up the value to the next resolution.  Note
 * that a remainder subtract here would not do the right thing as the
 * resolution values don't fall on second boundries.  I.e. the line:
 * nsec -= nsec % TICK_NSEC; is NOT a correct resolution rounding.
633 634 635 636
 * Note that due to the small error in the multiplier here, this
 * rounding is incorrect for sufficiently large values of tv_nsec, but
 * well formed timespecs should have tv_nsec < NSEC_PER_SEC, so we're
 * OK.
637 638 639 640 641 642
 *
 * Rather, we just shift the bits off the right.
 *
 * The >> (NSEC_JIFFIE_SC - SEC_JIFFIE_SC) converts the scaled nsec
 * value to a scaled second value.
 */
643
static unsigned long
644
__timespec64_to_jiffies(u64 sec, long nsec)
645
{
646
	nsec = nsec + TICK_NSEC - 1;
647 648 649 650 651

	if (sec >= MAX_SEC_IN_JIFFIES){
		sec = MAX_SEC_IN_JIFFIES;
		nsec = 0;
	}
652
	return ((sec * SEC_CONVERSION) +
653 654 655 656
		(((u64)nsec * NSEC_CONVERSION) >>
		 (NSEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;

}
657

658 659
static unsigned long
__timespec_to_jiffies(unsigned long sec, long nsec)
660
{
661
	return __timespec64_to_jiffies((u64)sec, nsec);
662 663
}

664 665 666 667 668 669
unsigned long
timespec64_to_jiffies(const struct timespec64 *value)
{
	return __timespec64_to_jiffies(value->tv_sec, value->tv_nsec);
}
EXPORT_SYMBOL(timespec64_to_jiffies);
670 671

void
672
jiffies_to_timespec64(const unsigned long jiffies, struct timespec64 *value)
673 674 675 676 677
{
	/*
	 * Convert jiffies to nanoseconds and separate with
	 * one divide.
	 */
R
Roman Zippel 已提交
678 679 680 681
	u32 rem;
	value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC,
				    NSEC_PER_SEC, &rem);
	value->tv_nsec = rem;
682
}
683
EXPORT_SYMBOL(jiffies_to_timespec64);
684

685 686 687 688 689 690 691 692 693 694 695 696
/*
 * We could use a similar algorithm to timespec_to_jiffies (with a
 * different multiplier for usec instead of nsec). But this has a
 * problem with rounding: we can't exactly add TICK_NSEC - 1 to the
 * usec value, since it's not necessarily integral.
 *
 * We could instead round in the intermediate scaled representation
 * (i.e. in units of 1/2^(large scale) jiffies) but that's also
 * perilous: the scaling introduces a small positive error, which
 * combined with a division-rounding-upward (i.e. adding 2^(scale) - 1
 * units to the intermediate before shifting) leads to accidental
 * overflow and overestimates.
697
 *
698 699
 * At the cost of one additional multiplication by a constant, just
 * use the timespec implementation.
700 701 702 703
 */
unsigned long
timeval_to_jiffies(const struct timeval *value)
{
704 705
	return __timespec_to_jiffies(value->tv_sec,
				     value->tv_usec * NSEC_PER_USEC);
706
}
707
EXPORT_SYMBOL(timeval_to_jiffies);
708 709 710 711 712 713 714

void jiffies_to_timeval(const unsigned long jiffies, struct timeval *value)
{
	/*
	 * Convert jiffies to nanoseconds and separate with
	 * one divide.
	 */
R
Roman Zippel 已提交
715
	u32 rem;
716

R
Roman Zippel 已提交
717 718 719
	value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC,
				    NSEC_PER_SEC, &rem);
	value->tv_usec = rem / NSEC_PER_USEC;
720
}
721
EXPORT_SYMBOL(jiffies_to_timeval);
722 723 724 725

/*
 * Convert jiffies/jiffies_64 to clock_t and back.
 */
726
clock_t jiffies_to_clock_t(unsigned long x)
727 728
{
#if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
729 730 731
# if HZ < USER_HZ
	return x * (USER_HZ / HZ);
# else
732
	return x / (HZ / USER_HZ);
733
# endif
734
#else
R
Roman Zippel 已提交
735
	return div_u64((u64)x * TICK_NSEC, NSEC_PER_SEC / USER_HZ);
736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751
#endif
}
EXPORT_SYMBOL(jiffies_to_clock_t);

unsigned long clock_t_to_jiffies(unsigned long x)
{
#if (HZ % USER_HZ)==0
	if (x >= ~0UL / (HZ / USER_HZ))
		return ~0UL;
	return x * (HZ / USER_HZ);
#else
	/* Don't worry about loss of precision here .. */
	if (x >= ~0UL / HZ * USER_HZ)
		return ~0UL;

	/* .. but do try to contain it here */
R
Roman Zippel 已提交
752
	return div_u64((u64)x * HZ, USER_HZ);
753 754 755 756 757 758 759
#endif
}
EXPORT_SYMBOL(clock_t_to_jiffies);

u64 jiffies_64_to_clock_t(u64 x)
{
#if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
760
# if HZ < USER_HZ
R
Roman Zippel 已提交
761
	x = div_u64(x * USER_HZ, HZ);
762
# elif HZ > USER_HZ
R
Roman Zippel 已提交
763
	x = div_u64(x, HZ / USER_HZ);
764 765
# else
	/* Nothing to do */
766
# endif
767 768 769 770 771 772
#else
	/*
	 * There are better ways that don't overflow early,
	 * but even this doesn't overflow in hundreds of years
	 * in 64 bits, so..
	 */
R
Roman Zippel 已提交
773
	x = div_u64(x * TICK_NSEC, (NSEC_PER_SEC / USER_HZ));
774 775 776 777 778 779 780 781
#endif
	return x;
}
EXPORT_SYMBOL(jiffies_64_to_clock_t);

u64 nsec_to_clock_t(u64 x)
{
#if (NSEC_PER_SEC % USER_HZ) == 0
R
Roman Zippel 已提交
782
	return div_u64(x, NSEC_PER_SEC / USER_HZ);
783
#elif (USER_HZ % 512) == 0
R
Roman Zippel 已提交
784
	return div_u64(x * USER_HZ / 512, NSEC_PER_SEC / 512);
785 786 787 788 789 790
#else
	/*
         * max relative error 5.7e-8 (1.8s per year) for USER_HZ <= 1024,
         * overflow after 64.99 years.
         * exact for HZ=60, 72, 90, 120, 144, 180, 300, 600, 900, ...
         */
R
Roman Zippel 已提交
791
	return div_u64(x * 9, (9ull * NSEC_PER_SEC + (USER_HZ / 2)) / USER_HZ);
792 793 794
#endif
}

795 796 797 798 799 800 801 802 803 804
u64 jiffies64_to_nsecs(u64 j)
{
#if !(NSEC_PER_SEC % HZ)
	return (NSEC_PER_SEC / HZ) * j;
# else
	return div_u64(j * HZ_TO_NSEC_NUM, HZ_TO_NSEC_DEN);
#endif
}
EXPORT_SYMBOL(jiffies64_to_nsecs);

805
/**
806
 * nsecs_to_jiffies64 - Convert nsecs in u64 to jiffies64
807 808 809 810 811 812 813 814 815 816 817
 *
 * @n:	nsecs in u64
 *
 * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
 * And this doesn't return MAX_JIFFY_OFFSET since this function is designed
 * for scheduler, not for use in device drivers to calculate timeout value.
 *
 * note:
 *   NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
 *   ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
 */
818
u64 nsecs_to_jiffies64(u64 n)
819 820 821 822 823 824 825 826 827 828 829 830 831 832 833
{
#if (NSEC_PER_SEC % HZ) == 0
	/* Common case, HZ = 100, 128, 200, 250, 256, 500, 512, 1000 etc. */
	return div_u64(n, NSEC_PER_SEC / HZ);
#elif (HZ % 512) == 0
	/* overflow after 292 years if HZ = 1024 */
	return div_u64(n * HZ / 512, NSEC_PER_SEC / 512);
#else
	/*
	 * Generic case - optimized for cases where HZ is a multiple of 3.
	 * overflow after 64.99 years, exact for HZ = 60, 72, 90, 120 etc.
	 */
	return div_u64(n * 9, (9ull * NSEC_PER_SEC + HZ / 2) / HZ);
#endif
}
834
EXPORT_SYMBOL(nsecs_to_jiffies64);
835

836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852
/**
 * nsecs_to_jiffies - Convert nsecs in u64 to jiffies
 *
 * @n:	nsecs in u64
 *
 * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
 * And this doesn't return MAX_JIFFY_OFFSET since this function is designed
 * for scheduler, not for use in device drivers to calculate timeout value.
 *
 * note:
 *   NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
 *   ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
 */
unsigned long nsecs_to_jiffies(u64 n)
{
	return (unsigned long)nsecs_to_jiffies64(n);
}
853
EXPORT_SYMBOL_GPL(nsecs_to_jiffies);
854

855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871
/*
 * Add two timespec values and do a safety check for overflow.
 * It's assumed that both values are valid (>= 0)
 */
struct timespec timespec_add_safe(const struct timespec lhs,
				  const struct timespec rhs)
{
	struct timespec res;

	set_normalized_timespec(&res, lhs.tv_sec + rhs.tv_sec,
				lhs.tv_nsec + rhs.tv_nsec);

	if (res.tv_sec < lhs.tv_sec || res.tv_sec < rhs.tv_sec)
		res.tv_sec = TIME_T_MAX;

	return res;
}
872 873 874 875 876 877 878 879 880 881 882

/*
 * Add two timespec64 values and do a safety check for overflow.
 * It's assumed that both values are valid (>= 0).
 * And, each timespec64 is in normalized form.
 */
struct timespec64 timespec64_add_safe(const struct timespec64 lhs,
				const struct timespec64 rhs)
{
	struct timespec64 res;

883
	set_normalized_timespec64(&res, (timeu64_t) lhs.tv_sec + rhs.tv_sec,
884 885 886 887 888 889 890 891 892
			lhs.tv_nsec + rhs.tv_nsec);

	if (unlikely(res.tv_sec < lhs.tv_sec || res.tv_sec < rhs.tv_sec)) {
		res.tv_sec = TIME64_MAX;
		res.tv_nsec = 0;
	}

	return res;
}