time.c 23.5 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11
/*
 *  linux/kernel/time.c
 *
 *  Copyright (C) 1991, 1992  Linus Torvalds
 *
 *  This file contains the interface functions for the various
 *  time related system calls: time, stime, gettimeofday, settimeofday,
 *			       adjtime
 */
/*
 * Modification history kernel/time.c
D
Daniel Walker 已提交
12
 *
L
Linus Torvalds 已提交
13
 * 1993-09-02    Philip Gladstone
14
 *      Created file with time related functions from sched/core.c and adjtimex()
L
Linus Torvalds 已提交
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
 * 1993-10-08    Torsten Duwe
 *      adjtime interface update and CMOS clock write code
 * 1995-08-13    Torsten Duwe
 *      kernel PLL updated to 1994-12-13 specs (rfc-1589)
 * 1999-01-16    Ulrich Windl
 *	Introduced error checking for many cases in adjtimex().
 *	Updated NTP code according to technical memorandum Jan '96
 *	"A Kernel Model for Precision Timekeeping" by Dave Mills
 *	Allow time_constant larger than MAXTC(6) for NTP v4 (MAXTC == 10)
 *	(Even though the technical memorandum forbids it)
 * 2004-07-14	 Christoph Lameter
 *	Added getnstimeofday to allow the posix timer functions to return
 *	with nanosecond accuracy
 */

30
#include <linux/export.h>
L
Linus Torvalds 已提交
31
#include <linux/timex.h>
32
#include <linux/capability.h>
33
#include <linux/timekeeper_internal.h>
L
Linus Torvalds 已提交
34 35 36 37
#include <linux/errno.h>
#include <linux/syscalls.h>
#include <linux/security.h>
#include <linux/fs.h>
R
Roman Zippel 已提交
38
#include <linux/math64.h>
39
#include <linux/ptrace.h>
L
Linus Torvalds 已提交
40

41
#include <linux/uaccess.h>
42
#include <linux/compat.h>
L
Linus Torvalds 已提交
43 44
#include <asm/unistd.h>

45
#include <generated/timeconst.h>
46
#include "timekeeping.h"
47

D
Daniel Walker 已提交
48
/*
L
Linus Torvalds 已提交
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
 * The timezone where the local system is located.  Used as a default by some
 * programs who obtain this value by using gettimeofday.
 */
struct timezone sys_tz;

EXPORT_SYMBOL(sys_tz);

#ifdef __ARCH_WANT_SYS_TIME

/*
 * sys_time() can be implemented in user-level using
 * sys_gettimeofday().  Is this for backwards compatibility?  If so,
 * why not move it into the appropriate arch directory (for those
 * architectures that need it).
 */
64
SYSCALL_DEFINE1(time, time_t __user *, tloc)
L
Linus Torvalds 已提交
65
{
I
Ingo Molnar 已提交
66
	time_t i = get_seconds();
L
Linus Torvalds 已提交
67 68

	if (tloc) {
L
Linus Torvalds 已提交
69
		if (put_user(i,tloc))
70
			return -EFAULT;
L
Linus Torvalds 已提交
71
	}
72
	force_successful_syscall_return();
L
Linus Torvalds 已提交
73 74 75 76 77 78 79 80 81
	return i;
}

/*
 * sys_stime() can be implemented in user-level using
 * sys_settimeofday().  Is this for backwards compatibility?  If so,
 * why not move it into the appropriate arch directory (for those
 * architectures that need it).
 */
D
Daniel Walker 已提交
82

83
SYSCALL_DEFINE1(stime, time_t __user *, tptr)
L
Linus Torvalds 已提交
84
{
85
	struct timespec64 tv;
L
Linus Torvalds 已提交
86 87 88 89 90 91 92
	int err;

	if (get_user(tv.tv_sec, tptr))
		return -EFAULT;

	tv.tv_nsec = 0;

93
	err = security_settime64(&tv, NULL);
L
Linus Torvalds 已提交
94 95 96
	if (err)
		return err;

97
	do_settimeofday64(&tv);
L
Linus Torvalds 已提交
98 99 100 101 102
	return 0;
}

#endif /* __ARCH_WANT_SYS_TIME */

103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
#ifdef CONFIG_COMPAT
#ifdef __ARCH_WANT_COMPAT_SYS_TIME

/* compat_time_t is a 32 bit "long" and needs to get converted. */
COMPAT_SYSCALL_DEFINE1(time, compat_time_t __user *, tloc)
{
	struct timeval tv;
	compat_time_t i;

	do_gettimeofday(&tv);
	i = tv.tv_sec;

	if (tloc) {
		if (put_user(i,tloc))
			return -EFAULT;
	}
	force_successful_syscall_return();
	return i;
}

COMPAT_SYSCALL_DEFINE1(stime, compat_time_t __user *, tptr)
{
125
	struct timespec64 tv;
126 127 128 129 130 131 132
	int err;

	if (get_user(tv.tv_sec, tptr))
		return -EFAULT;

	tv.tv_nsec = 0;

133
	err = security_settime64(&tv, NULL);
134 135 136
	if (err)
		return err;

137
	do_settimeofday64(&tv);
138 139 140 141 142 143
	return 0;
}

#endif /* __ARCH_WANT_COMPAT_SYS_TIME */
#endif

144 145
SYSCALL_DEFINE2(gettimeofday, struct timeval __user *, tv,
		struct timezone __user *, tz)
L
Linus Torvalds 已提交
146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
{
	if (likely(tv != NULL)) {
		struct timeval ktv;
		do_gettimeofday(&ktv);
		if (copy_to_user(tv, &ktv, sizeof(ktv)))
			return -EFAULT;
	}
	if (unlikely(tz != NULL)) {
		if (copy_to_user(tz, &sys_tz, sizeof(sys_tz)))
			return -EFAULT;
	}
	return 0;
}

/*
 * In case for some reason the CMOS clock has not already been running
 * in UTC, but in some local time: The first time we set the timezone,
 * we will warp the clock so that it is ticking UTC time instead of
 * local time. Presumably, if someone is setting the timezone then we
 * are running in an environment where the programs understand about
 * timezones. This should be done at boot time in the /etc/rc script,
 * as soon as possible, so that the clock can be set right. Otherwise,
 * various programs will get confused when the clock gets warped.
 */

171
int do_sys_settimeofday64(const struct timespec64 *tv, const struct timezone *tz)
L
Linus Torvalds 已提交
172 173 174 175
{
	static int firsttime = 1;
	int error = 0;

176
	if (tv && !timespec64_valid(tv))
177 178
		return -EINVAL;

179
	error = security_settime64(tv, tz);
L
Linus Torvalds 已提交
180 181 182 183
	if (error)
		return error;

	if (tz) {
184 185 186 187
		/* Verify we're witin the +-15 hrs range */
		if (tz->tz_minuteswest > 15*60 || tz->tz_minuteswest < -15*60)
			return -EINVAL;

L
Linus Torvalds 已提交
188
		sys_tz = *tz;
189
		update_vsyscall_tz();
L
Linus Torvalds 已提交
190 191 192
		if (firsttime) {
			firsttime = 0;
			if (!tv)
193
				timekeeping_warp_clock();
L
Linus Torvalds 已提交
194 195 196
		}
	}
	if (tv)
197
		return do_settimeofday64(tv);
L
Linus Torvalds 已提交
198 199 200
	return 0;
}

201 202
SYSCALL_DEFINE2(settimeofday, struct timeval __user *, tv,
		struct timezone __user *, tz)
L
Linus Torvalds 已提交
203
{
204
	struct timespec64 new_ts;
L
Linus Torvalds 已提交
205 206 207 208 209 210
	struct timeval user_tv;
	struct timezone new_tz;

	if (tv) {
		if (copy_from_user(&user_tv, tv, sizeof(*tv)))
			return -EFAULT;
211 212 213 214

		if (!timeval_valid(&user_tv))
			return -EINVAL;

L
Linus Torvalds 已提交
215 216 217 218 219 220 221 222
		new_ts.tv_sec = user_tv.tv_sec;
		new_ts.tv_nsec = user_tv.tv_usec * NSEC_PER_USEC;
	}
	if (tz) {
		if (copy_from_user(&new_tz, tz, sizeof(*tz)))
			return -EFAULT;
	}

223
	return do_sys_settimeofday64(tv ? &new_ts : NULL, tz ? &new_tz : NULL);
L
Linus Torvalds 已提交
224 225
}

226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
#ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE2(gettimeofday, struct compat_timeval __user *, tv,
		       struct timezone __user *, tz)
{
	if (tv) {
		struct timeval ktv;

		do_gettimeofday(&ktv);
		if (compat_put_timeval(&ktv, tv))
			return -EFAULT;
	}
	if (tz) {
		if (copy_to_user(tz, &sys_tz, sizeof(sys_tz)))
			return -EFAULT;
	}

	return 0;
}

COMPAT_SYSCALL_DEFINE2(settimeofday, struct compat_timeval __user *, tv,
		       struct timezone __user *, tz)
{
	struct timespec64 new_ts;
	struct timeval user_tv;
	struct timezone new_tz;

	if (tv) {
		if (compat_get_timeval(&user_tv, tv))
			return -EFAULT;
		new_ts.tv_sec = user_tv.tv_sec;
		new_ts.tv_nsec = user_tv.tv_usec * NSEC_PER_USEC;
	}
	if (tz) {
		if (copy_from_user(&new_tz, tz, sizeof(*tz)))
			return -EFAULT;
	}

	return do_sys_settimeofday64(tv ? &new_ts : NULL, tz ? &new_tz : NULL);
}
#endif

267
SYSCALL_DEFINE1(adjtimex, struct timex __user *, txc_p)
L
Linus Torvalds 已提交
268 269 270 271 272 273 274 275
{
	struct timex txc;		/* Local copy of parameter */
	int ret;

	/* Copy the user data space into the kernel copy
	 * structure. But bear in mind that the structures
	 * may change
	 */
276
	if (copy_from_user(&txc, txc_p, sizeof(struct timex)))
L
Linus Torvalds 已提交
277 278 279 280 281
		return -EFAULT;
	ret = do_adjtimex(&txc);
	return copy_to_user(txc_p, &txc, sizeof(struct timex)) ? -EFAULT : ret;
}

282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302
#ifdef CONFIG_COMPAT

COMPAT_SYSCALL_DEFINE1(adjtimex, struct compat_timex __user *, utp)
{
	struct timex txc;
	int err, ret;

	err = compat_get_timex(&txc, utp);
	if (err)
		return err;

	ret = do_adjtimex(&txc);

	err = compat_put_timex(utp, &txc);
	if (err)
		return err;

	return ret;
}
#endif

E
Eric Dumazet 已提交
303 304 305 306 307 308
/*
 * Convert jiffies to milliseconds and back.
 *
 * Avoid unnecessary multiplications/divisions in the
 * two most common HZ cases:
 */
309
unsigned int jiffies_to_msecs(const unsigned long j)
E
Eric Dumazet 已提交
310 311 312 313 314 315
{
#if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
	return (MSEC_PER_SEC / HZ) * j;
#elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
	return (j + (HZ / MSEC_PER_SEC) - 1)/(HZ / MSEC_PER_SEC);
#else
316
# if BITS_PER_LONG == 32
317
	return (HZ_TO_MSEC_MUL32 * j) >> HZ_TO_MSEC_SHR32;
318 319 320
# else
	return (j * HZ_TO_MSEC_NUM) / HZ_TO_MSEC_DEN;
# endif
E
Eric Dumazet 已提交
321 322 323 324
#endif
}
EXPORT_SYMBOL(jiffies_to_msecs);

325
unsigned int jiffies_to_usecs(const unsigned long j)
E
Eric Dumazet 已提交
326
{
327 328 329 330 331 332 333
	/*
	 * Hz usually doesn't go much further MSEC_PER_SEC.
	 * jiffies_to_usecs() and usecs_to_jiffies() depend on that.
	 */
	BUILD_BUG_ON(HZ > USEC_PER_SEC);

#if !(USEC_PER_SEC % HZ)
E
Eric Dumazet 已提交
334 335
	return (USEC_PER_SEC / HZ) * j;
#else
336
# if BITS_PER_LONG == 32
337
	return (HZ_TO_USEC_MUL32 * j) >> HZ_TO_USEC_SHR32;
338 339 340
# else
	return (j * HZ_TO_USEC_NUM) / HZ_TO_USEC_DEN;
# endif
E
Eric Dumazet 已提交
341 342 343 344
#endif
}
EXPORT_SYMBOL(jiffies_to_usecs);

L
Linus Torvalds 已提交
345
/**
346
 * timespec_trunc - Truncate timespec to a granularity
L
Linus Torvalds 已提交
347
 * @t: Timespec
348
 * @gran: Granularity in ns.
L
Linus Torvalds 已提交
349
 *
350 351
 * Truncate a timespec to a granularity. Always rounds down. gran must
 * not be 0 nor greater than a second (NSEC_PER_SEC, or 10^9 ns).
L
Linus Torvalds 已提交
352 353 354
 */
struct timespec timespec_trunc(struct timespec t, unsigned gran)
{
355 356
	/* Avoid division in the common cases 1 ns and 1 s. */
	if (gran == 1) {
L
Linus Torvalds 已提交
357
		/* nothing */
358
	} else if (gran == NSEC_PER_SEC) {
L
Linus Torvalds 已提交
359
		t.tv_nsec = 0;
360
	} else if (gran > 1 && gran < NSEC_PER_SEC) {
L
Linus Torvalds 已提交
361
		t.tv_nsec -= t.tv_nsec % gran;
362 363
	} else {
		WARN(1, "illegal file time granularity: %u", gran);
L
Linus Torvalds 已提交
364 365 366 367 368
	}
	return t;
}
EXPORT_SYMBOL(timespec_trunc);

369 370 371
/*
 * mktime64 - Converts date to seconds.
 * Converts Gregorian date to seconds since 1970-01-01 00:00:00.
372 373 374 375 376 377 378 379 380
 * Assumes input in normal date format, i.e. 1980-12-31 23:59:59
 * => year=1980, mon=12, day=31, hour=23, min=59, sec=59.
 *
 * [For the Julian calendar (which was used in Russia before 1917,
 * Britain & colonies before 1752, anywhere else before 1582,
 * and is still in use by some communities) leave out the
 * -year/100+year/400 terms, and add 10.]
 *
 * This algorithm was first published by Gauss (I think).
381 382 383 384 385 386 387
 *
 * A leap second can be indicated by calling this function with sec as
 * 60 (allowable under ISO 8601).  The leap second is treated the same
 * as the following second since they don't exist in UNIX time.
 *
 * An encoding of midnight at the end of the day as 24:00:00 - ie. midnight
 * tomorrow - (allowable under ISO 8601) is supported.
388
 */
389 390 391
time64_t mktime64(const unsigned int year0, const unsigned int mon0,
		const unsigned int day, const unsigned int hour,
		const unsigned int min, const unsigned int sec)
392
{
393 394 395 396 397
	unsigned int mon = mon0, year = year0;

	/* 1..12 -> 11,12,1..10 */
	if (0 >= (int) (mon -= 2)) {
		mon += 12;	/* Puts Feb last since it has leap day */
398 399 400
		year -= 1;
	}

401
	return ((((time64_t)
402 403
		  (year/4 - year/100 + year/400 + 367*mon/12 + day) +
		  year*365 - 719499
404
	    )*24 + hour /* now have hours - midnight tomorrow handled here */
405 406 407
	  )*60 + min /* now have minutes */
	)*60 + sec; /* finally seconds */
}
408
EXPORT_SYMBOL(mktime64);
409

410
#if __BITS_PER_LONG == 32
411 412 413 414 415 416 417 418 419 420 421
/**
 * set_normalized_timespec - set timespec sec and nsec parts and normalize
 *
 * @ts:		pointer to timespec variable to be set
 * @sec:	seconds to set
 * @nsec:	nanoseconds to set
 *
 * Set seconds and nanoseconds field of a timespec variable and
 * normalize to the timespec storage format
 *
 * Note: The tv_nsec part is always in the range of
422
 *	0 <= tv_nsec < NSEC_PER_SEC
423 424
 * For negative values only the tv_sec field is negative !
 */
425
void set_normalized_timespec(struct timespec *ts, time_t sec, s64 nsec)
426 427
{
	while (nsec >= NSEC_PER_SEC) {
428 429 430 431 432 433
		/*
		 * The following asm() prevents the compiler from
		 * optimising this loop into a modulo operation. See
		 * also __iter_div_u64_rem() in include/linux/time.h
		 */
		asm("" : "+rm"(nsec));
434 435 436 437
		nsec -= NSEC_PER_SEC;
		++sec;
	}
	while (nsec < 0) {
438
		asm("" : "+rm"(nsec));
439 440 441 442 443 444
		nsec += NSEC_PER_SEC;
		--sec;
	}
	ts->tv_sec = sec;
	ts->tv_nsec = nsec;
}
445
EXPORT_SYMBOL(set_normalized_timespec);
446

447 448 449 450 451 452
/**
 * ns_to_timespec - Convert nanoseconds to timespec
 * @nsec:       the nanoseconds value to be converted
 *
 * Returns the timespec representation of the nsec parameter.
 */
453
struct timespec ns_to_timespec(const s64 nsec)
454 455
{
	struct timespec ts;
R
Roman Zippel 已提交
456
	s32 rem;
457

458 459 460
	if (!nsec)
		return (struct timespec) {0, 0};

R
Roman Zippel 已提交
461 462 463 464 465 466
	ts.tv_sec = div_s64_rem(nsec, NSEC_PER_SEC, &rem);
	if (unlikely(rem < 0)) {
		ts.tv_sec--;
		rem += NSEC_PER_SEC;
	}
	ts.tv_nsec = rem;
467 468 469

	return ts;
}
470
EXPORT_SYMBOL(ns_to_timespec);
471
#endif
472 473 474 475 476 477 478

/**
 * ns_to_timeval - Convert nanoseconds to timeval
 * @nsec:       the nanoseconds value to be converted
 *
 * Returns the timeval representation of the nsec parameter.
 */
479
struct timeval ns_to_timeval(const s64 nsec)
480 481 482 483 484 485 486 487 488
{
	struct timespec ts = ns_to_timespec(nsec);
	struct timeval tv;

	tv.tv_sec = ts.tv_sec;
	tv.tv_usec = (suseconds_t) ts.tv_nsec / 1000;

	return tv;
}
489
EXPORT_SYMBOL(ns_to_timeval);
490

491 492 493 494 495 496 497 498 499 500 501 502
struct __kernel_old_timeval ns_to_kernel_old_timeval(const s64 nsec)
{
	struct timespec64 ts = ns_to_timespec64(nsec);
	struct __kernel_old_timeval tv;

	tv.tv_sec = ts.tv_sec;
	tv.tv_usec = (suseconds_t)ts.tv_nsec / 1000;

	return tv;
}
EXPORT_SYMBOL(ns_to_kernel_old_timeval);

503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562
/**
 * set_normalized_timespec - set timespec sec and nsec parts and normalize
 *
 * @ts:		pointer to timespec variable to be set
 * @sec:	seconds to set
 * @nsec:	nanoseconds to set
 *
 * Set seconds and nanoseconds field of a timespec variable and
 * normalize to the timespec storage format
 *
 * Note: The tv_nsec part is always in the range of
 *	0 <= tv_nsec < NSEC_PER_SEC
 * For negative values only the tv_sec field is negative !
 */
void set_normalized_timespec64(struct timespec64 *ts, time64_t sec, s64 nsec)
{
	while (nsec >= NSEC_PER_SEC) {
		/*
		 * The following asm() prevents the compiler from
		 * optimising this loop into a modulo operation. See
		 * also __iter_div_u64_rem() in include/linux/time.h
		 */
		asm("" : "+rm"(nsec));
		nsec -= NSEC_PER_SEC;
		++sec;
	}
	while (nsec < 0) {
		asm("" : "+rm"(nsec));
		nsec += NSEC_PER_SEC;
		--sec;
	}
	ts->tv_sec = sec;
	ts->tv_nsec = nsec;
}
EXPORT_SYMBOL(set_normalized_timespec64);

/**
 * ns_to_timespec64 - Convert nanoseconds to timespec64
 * @nsec:       the nanoseconds value to be converted
 *
 * Returns the timespec64 representation of the nsec parameter.
 */
struct timespec64 ns_to_timespec64(const s64 nsec)
{
	struct timespec64 ts;
	s32 rem;

	if (!nsec)
		return (struct timespec64) {0, 0};

	ts.tv_sec = div_s64_rem(nsec, NSEC_PER_SEC, &rem);
	if (unlikely(rem < 0)) {
		ts.tv_sec--;
		rem += NSEC_PER_SEC;
	}
	ts.tv_nsec = rem;

	return ts;
}
EXPORT_SYMBOL(ns_to_timespec64);
563

564 565 566 567 568
/**
 * msecs_to_jiffies: - convert milliseconds to jiffies
 * @m:	time in milliseconds
 *
 * conversion is done as follows:
569 570 571 572 573 574 575
 *
 * - negative values mean 'infinite timeout' (MAX_JIFFY_OFFSET)
 *
 * - 'too large' values [that would result in larger than
 *   MAX_JIFFY_OFFSET values] mean 'infinite timeout' too.
 *
 * - all other values are converted to jiffies by either multiplying
576 577 578
 *   the input value by a factor or dividing it with a factor and
 *   handling any 32-bit overflows.
 *   for the details see __msecs_to_jiffies()
579
 *
580 581 582 583 584 585 586
 * msecs_to_jiffies() checks for the passed in value being a constant
 * via __builtin_constant_p() allowing gcc to eliminate most of the
 * code, __msecs_to_jiffies() is called if the value passed does not
 * allow constant folding and the actual conversion must be done at
 * runtime.
 * the _msecs_to_jiffies helpers are the HZ dependent conversion
 * routines found in include/linux/jiffies.h
587
 */
588
unsigned long __msecs_to_jiffies(const unsigned int m)
589
{
590 591 592 593
	/*
	 * Negative value, means infinite timeout:
	 */
	if ((int)m < 0)
594
		return MAX_JIFFY_OFFSET;
595
	return _msecs_to_jiffies(m);
596
}
597
EXPORT_SYMBOL(__msecs_to_jiffies);
598

599
unsigned long __usecs_to_jiffies(const unsigned int u)
600 601 602
{
	if (u > jiffies_to_usecs(MAX_JIFFY_OFFSET))
		return MAX_JIFFY_OFFSET;
603
	return _usecs_to_jiffies(u);
604
}
605
EXPORT_SYMBOL(__usecs_to_jiffies);
606 607 608 609 610 611

/*
 * The TICK_NSEC - 1 rounds up the value to the next resolution.  Note
 * that a remainder subtract here would not do the right thing as the
 * resolution values don't fall on second boundries.  I.e. the line:
 * nsec -= nsec % TICK_NSEC; is NOT a correct resolution rounding.
612 613 614 615
 * Note that due to the small error in the multiplier here, this
 * rounding is incorrect for sufficiently large values of tv_nsec, but
 * well formed timespecs should have tv_nsec < NSEC_PER_SEC, so we're
 * OK.
616 617 618 619 620 621
 *
 * Rather, we just shift the bits off the right.
 *
 * The >> (NSEC_JIFFIE_SC - SEC_JIFFIE_SC) converts the scaled nsec
 * value to a scaled second value.
 */
622
static unsigned long
623
__timespec64_to_jiffies(u64 sec, long nsec)
624
{
625
	nsec = nsec + TICK_NSEC - 1;
626 627 628 629 630

	if (sec >= MAX_SEC_IN_JIFFIES){
		sec = MAX_SEC_IN_JIFFIES;
		nsec = 0;
	}
631
	return ((sec * SEC_CONVERSION) +
632 633 634 635
		(((u64)nsec * NSEC_CONVERSION) >>
		 (NSEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;

}
636

637 638
static unsigned long
__timespec_to_jiffies(unsigned long sec, long nsec)
639
{
640
	return __timespec64_to_jiffies((u64)sec, nsec);
641 642
}

643 644 645 646 647 648
unsigned long
timespec64_to_jiffies(const struct timespec64 *value)
{
	return __timespec64_to_jiffies(value->tv_sec, value->tv_nsec);
}
EXPORT_SYMBOL(timespec64_to_jiffies);
649 650

void
651
jiffies_to_timespec64(const unsigned long jiffies, struct timespec64 *value)
652 653 654 655 656
{
	/*
	 * Convert jiffies to nanoseconds and separate with
	 * one divide.
	 */
R
Roman Zippel 已提交
657 658 659 660
	u32 rem;
	value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC,
				    NSEC_PER_SEC, &rem);
	value->tv_nsec = rem;
661
}
662
EXPORT_SYMBOL(jiffies_to_timespec64);
663

664 665 666 667 668 669 670 671 672 673 674 675
/*
 * We could use a similar algorithm to timespec_to_jiffies (with a
 * different multiplier for usec instead of nsec). But this has a
 * problem with rounding: we can't exactly add TICK_NSEC - 1 to the
 * usec value, since it's not necessarily integral.
 *
 * We could instead round in the intermediate scaled representation
 * (i.e. in units of 1/2^(large scale) jiffies) but that's also
 * perilous: the scaling introduces a small positive error, which
 * combined with a division-rounding-upward (i.e. adding 2^(scale) - 1
 * units to the intermediate before shifting) leads to accidental
 * overflow and overestimates.
676
 *
677 678
 * At the cost of one additional multiplication by a constant, just
 * use the timespec implementation.
679 680 681 682
 */
unsigned long
timeval_to_jiffies(const struct timeval *value)
{
683 684
	return __timespec_to_jiffies(value->tv_sec,
				     value->tv_usec * NSEC_PER_USEC);
685
}
686
EXPORT_SYMBOL(timeval_to_jiffies);
687 688 689 690 691 692 693

void jiffies_to_timeval(const unsigned long jiffies, struct timeval *value)
{
	/*
	 * Convert jiffies to nanoseconds and separate with
	 * one divide.
	 */
R
Roman Zippel 已提交
694
	u32 rem;
695

R
Roman Zippel 已提交
696 697 698
	value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC,
				    NSEC_PER_SEC, &rem);
	value->tv_usec = rem / NSEC_PER_USEC;
699
}
700
EXPORT_SYMBOL(jiffies_to_timeval);
701 702 703 704

/*
 * Convert jiffies/jiffies_64 to clock_t and back.
 */
705
clock_t jiffies_to_clock_t(unsigned long x)
706 707
{
#if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
708 709 710
# if HZ < USER_HZ
	return x * (USER_HZ / HZ);
# else
711
	return x / (HZ / USER_HZ);
712
# endif
713
#else
R
Roman Zippel 已提交
714
	return div_u64((u64)x * TICK_NSEC, NSEC_PER_SEC / USER_HZ);
715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730
#endif
}
EXPORT_SYMBOL(jiffies_to_clock_t);

unsigned long clock_t_to_jiffies(unsigned long x)
{
#if (HZ % USER_HZ)==0
	if (x >= ~0UL / (HZ / USER_HZ))
		return ~0UL;
	return x * (HZ / USER_HZ);
#else
	/* Don't worry about loss of precision here .. */
	if (x >= ~0UL / HZ * USER_HZ)
		return ~0UL;

	/* .. but do try to contain it here */
R
Roman Zippel 已提交
731
	return div_u64((u64)x * HZ, USER_HZ);
732 733 734 735 736 737 738
#endif
}
EXPORT_SYMBOL(clock_t_to_jiffies);

u64 jiffies_64_to_clock_t(u64 x)
{
#if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
739
# if HZ < USER_HZ
R
Roman Zippel 已提交
740
	x = div_u64(x * USER_HZ, HZ);
741
# elif HZ > USER_HZ
R
Roman Zippel 已提交
742
	x = div_u64(x, HZ / USER_HZ);
743 744
# else
	/* Nothing to do */
745
# endif
746 747 748 749 750 751
#else
	/*
	 * There are better ways that don't overflow early,
	 * but even this doesn't overflow in hundreds of years
	 * in 64 bits, so..
	 */
R
Roman Zippel 已提交
752
	x = div_u64(x * TICK_NSEC, (NSEC_PER_SEC / USER_HZ));
753 754 755 756 757 758 759 760
#endif
	return x;
}
EXPORT_SYMBOL(jiffies_64_to_clock_t);

u64 nsec_to_clock_t(u64 x)
{
#if (NSEC_PER_SEC % USER_HZ) == 0
R
Roman Zippel 已提交
761
	return div_u64(x, NSEC_PER_SEC / USER_HZ);
762
#elif (USER_HZ % 512) == 0
R
Roman Zippel 已提交
763
	return div_u64(x * USER_HZ / 512, NSEC_PER_SEC / 512);
764 765 766 767 768 769
#else
	/*
         * max relative error 5.7e-8 (1.8s per year) for USER_HZ <= 1024,
         * overflow after 64.99 years.
         * exact for HZ=60, 72, 90, 120, 144, 180, 300, 600, 900, ...
         */
R
Roman Zippel 已提交
770
	return div_u64(x * 9, (9ull * NSEC_PER_SEC + (USER_HZ / 2)) / USER_HZ);
771 772 773
#endif
}

774 775 776 777 778 779 780 781 782 783
u64 jiffies64_to_nsecs(u64 j)
{
#if !(NSEC_PER_SEC % HZ)
	return (NSEC_PER_SEC / HZ) * j;
# else
	return div_u64(j * HZ_TO_NSEC_NUM, HZ_TO_NSEC_DEN);
#endif
}
EXPORT_SYMBOL(jiffies64_to_nsecs);

784
/**
785
 * nsecs_to_jiffies64 - Convert nsecs in u64 to jiffies64
786 787 788 789 790 791 792 793 794 795 796
 *
 * @n:	nsecs in u64
 *
 * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
 * And this doesn't return MAX_JIFFY_OFFSET since this function is designed
 * for scheduler, not for use in device drivers to calculate timeout value.
 *
 * note:
 *   NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
 *   ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
 */
797
u64 nsecs_to_jiffies64(u64 n)
798 799 800 801 802 803 804 805 806 807 808 809 810 811 812
{
#if (NSEC_PER_SEC % HZ) == 0
	/* Common case, HZ = 100, 128, 200, 250, 256, 500, 512, 1000 etc. */
	return div_u64(n, NSEC_PER_SEC / HZ);
#elif (HZ % 512) == 0
	/* overflow after 292 years if HZ = 1024 */
	return div_u64(n * HZ / 512, NSEC_PER_SEC / 512);
#else
	/*
	 * Generic case - optimized for cases where HZ is a multiple of 3.
	 * overflow after 64.99 years, exact for HZ = 60, 72, 90, 120 etc.
	 */
	return div_u64(n * 9, (9ull * NSEC_PER_SEC + HZ / 2) / HZ);
#endif
}
813
EXPORT_SYMBOL(nsecs_to_jiffies64);
814

815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831
/**
 * nsecs_to_jiffies - Convert nsecs in u64 to jiffies
 *
 * @n:	nsecs in u64
 *
 * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
 * And this doesn't return MAX_JIFFY_OFFSET since this function is designed
 * for scheduler, not for use in device drivers to calculate timeout value.
 *
 * note:
 *   NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
 *   ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
 */
unsigned long nsecs_to_jiffies(u64 n)
{
	return (unsigned long)nsecs_to_jiffies64(n);
}
832
EXPORT_SYMBOL_GPL(nsecs_to_jiffies);
833

834 835 836 837 838 839 840 841 842 843
/*
 * Add two timespec64 values and do a safety check for overflow.
 * It's assumed that both values are valid (>= 0).
 * And, each timespec64 is in normalized form.
 */
struct timespec64 timespec64_add_safe(const struct timespec64 lhs,
				const struct timespec64 rhs)
{
	struct timespec64 res;

844
	set_normalized_timespec64(&res, (timeu64_t) lhs.tv_sec + rhs.tv_sec,
845 846 847 848 849 850 851 852 853
			lhs.tv_nsec + rhs.tv_nsec);

	if (unlikely(res.tv_sec < lhs.tv_sec || res.tv_sec < rhs.tv_sec)) {
		res.tv_sec = TIME64_MAX;
		res.tv_nsec = 0;
	}

	return res;
}
854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881

int get_timespec64(struct timespec64 *ts,
		   const struct timespec __user *uts)
{
	struct timespec kts;
	int ret;

	ret = copy_from_user(&kts, uts, sizeof(kts));
	if (ret)
		return -EFAULT;

	ts->tv_sec = kts.tv_sec;
	ts->tv_nsec = kts.tv_nsec;

	return 0;
}
EXPORT_SYMBOL_GPL(get_timespec64);

int put_timespec64(const struct timespec64 *ts,
		   struct timespec __user *uts)
{
	struct timespec kts = {
		.tv_sec = ts->tv_sec,
		.tv_nsec = ts->tv_nsec
	};
	return copy_to_user(uts, &kts, sizeof(kts)) ? -EFAULT : 0;
}
EXPORT_SYMBOL_GPL(put_timespec64);
882

883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926
int __compat_get_timespec64(struct timespec64 *ts64,
				   const struct compat_timespec __user *cts)
{
	struct compat_timespec ts;
	int ret;

	ret = copy_from_user(&ts, cts, sizeof(ts));
	if (ret)
		return -EFAULT;

	ts64->tv_sec = ts.tv_sec;
	ts64->tv_nsec = ts.tv_nsec;

	return 0;
}

int __compat_put_timespec64(const struct timespec64 *ts64,
				   struct compat_timespec __user *cts)
{
	struct compat_timespec ts = {
		.tv_sec = ts64->tv_sec,
		.tv_nsec = ts64->tv_nsec
	};
	return copy_to_user(cts, &ts, sizeof(ts)) ? -EFAULT : 0;
}

int compat_get_timespec64(struct timespec64 *ts, const void __user *uts)
{
	if (COMPAT_USE_64BIT_TIME)
		return copy_from_user(ts, uts, sizeof(*ts)) ? -EFAULT : 0;
	else
		return __compat_get_timespec64(ts, uts);
}
EXPORT_SYMBOL_GPL(compat_get_timespec64);

int compat_put_timespec64(const struct timespec64 *ts, void __user *uts)
{
	if (COMPAT_USE_64BIT_TIME)
		return copy_to_user(uts, ts, sizeof(*ts)) ? -EFAULT : 0;
	else
		return __compat_put_timespec64(ts, uts);
}
EXPORT_SYMBOL_GPL(compat_put_timespec64);

927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955
int get_itimerspec64(struct itimerspec64 *it,
			const struct itimerspec __user *uit)
{
	int ret;

	ret = get_timespec64(&it->it_interval, &uit->it_interval);
	if (ret)
		return ret;

	ret = get_timespec64(&it->it_value, &uit->it_value);

	return ret;
}
EXPORT_SYMBOL_GPL(get_itimerspec64);

int put_itimerspec64(const struct itimerspec64 *it,
			struct itimerspec __user *uit)
{
	int ret;

	ret = put_timespec64(&it->it_interval, &uit->it_interval);
	if (ret)
		return ret;

	ret = put_timespec64(&it->it_value, &uit->it_value);

	return ret;
}
EXPORT_SYMBOL_GPL(put_itimerspec64);