time.c 19.9 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11
/*
 *  linux/kernel/time.c
 *
 *  Copyright (C) 1991, 1992  Linus Torvalds
 *
 *  This file contains the interface functions for the various
 *  time related system calls: time, stime, gettimeofday, settimeofday,
 *			       adjtime
 */
/*
 * Modification history kernel/time.c
D
Daniel Walker 已提交
12
 *
L
Linus Torvalds 已提交
13
 * 1993-09-02    Philip Gladstone
14
 *      Created file with time related functions from sched/core.c and adjtimex()
L
Linus Torvalds 已提交
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
 * 1993-10-08    Torsten Duwe
 *      adjtime interface update and CMOS clock write code
 * 1995-08-13    Torsten Duwe
 *      kernel PLL updated to 1994-12-13 specs (rfc-1589)
 * 1999-01-16    Ulrich Windl
 *	Introduced error checking for many cases in adjtimex().
 *	Updated NTP code according to technical memorandum Jan '96
 *	"A Kernel Model for Precision Timekeeping" by Dave Mills
 *	Allow time_constant larger than MAXTC(6) for NTP v4 (MAXTC == 10)
 *	(Even though the technical memorandum forbids it)
 * 2004-07-14	 Christoph Lameter
 *	Added getnstimeofday to allow the posix timer functions to return
 *	with nanosecond accuracy
 */

30
#include <linux/export.h>
L
Linus Torvalds 已提交
31
#include <linux/timex.h>
32
#include <linux/capability.h>
33
#include <linux/timekeeper_internal.h>
L
Linus Torvalds 已提交
34 35 36 37
#include <linux/errno.h>
#include <linux/syscalls.h>
#include <linux/security.h>
#include <linux/fs.h>
R
Roman Zippel 已提交
38
#include <linux/math64.h>
39
#include <linux/ptrace.h>
L
Linus Torvalds 已提交
40 41 42 43

#include <asm/uaccess.h>
#include <asm/unistd.h>

44
#include <generated/timeconst.h>
45
#include "timekeeping.h"
46

D
Daniel Walker 已提交
47
/*
L
Linus Torvalds 已提交
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
 * The timezone where the local system is located.  Used as a default by some
 * programs who obtain this value by using gettimeofday.
 */
struct timezone sys_tz;

EXPORT_SYMBOL(sys_tz);

#ifdef __ARCH_WANT_SYS_TIME

/*
 * sys_time() can be implemented in user-level using
 * sys_gettimeofday().  Is this for backwards compatibility?  If so,
 * why not move it into the appropriate arch directory (for those
 * architectures that need it).
 */
63
SYSCALL_DEFINE1(time, time_t __user *, tloc)
L
Linus Torvalds 已提交
64
{
I
Ingo Molnar 已提交
65
	time_t i = get_seconds();
L
Linus Torvalds 已提交
66 67

	if (tloc) {
L
Linus Torvalds 已提交
68
		if (put_user(i,tloc))
69
			return -EFAULT;
L
Linus Torvalds 已提交
70
	}
71
	force_successful_syscall_return();
L
Linus Torvalds 已提交
72 73 74 75 76 77 78 79 80
	return i;
}

/*
 * sys_stime() can be implemented in user-level using
 * sys_settimeofday().  Is this for backwards compatibility?  If so,
 * why not move it into the appropriate arch directory (for those
 * architectures that need it).
 */
D
Daniel Walker 已提交
81

82
SYSCALL_DEFINE1(stime, time_t __user *, tptr)
L
Linus Torvalds 已提交
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
{
	struct timespec tv;
	int err;

	if (get_user(tv.tv_sec, tptr))
		return -EFAULT;

	tv.tv_nsec = 0;

	err = security_settime(&tv, NULL);
	if (err)
		return err;

	do_settimeofday(&tv);
	return 0;
}

#endif /* __ARCH_WANT_SYS_TIME */

102 103
SYSCALL_DEFINE2(gettimeofday, struct timeval __user *, tv,
		struct timezone __user *, tz)
L
Linus Torvalds 已提交
104 105 106 107 108 109 110 111 112 113 114 115 116 117
{
	if (likely(tv != NULL)) {
		struct timeval ktv;
		do_gettimeofday(&ktv);
		if (copy_to_user(tv, &ktv, sizeof(ktv)))
			return -EFAULT;
	}
	if (unlikely(tz != NULL)) {
		if (copy_to_user(tz, &sys_tz, sizeof(sys_tz)))
			return -EFAULT;
	}
	return 0;
}

118 119 120 121 122 123
/*
 * Indicates if there is an offset between the system clock and the hardware
 * clock/persistent clock/rtc.
 */
int persistent_clock_is_local;

L
Linus Torvalds 已提交
124 125 126
/*
 * Adjust the time obtained from the CMOS to be UTC time instead of
 * local time.
D
Daniel Walker 已提交
127
 *
L
Linus Torvalds 已提交
128 129
 * This is ugly, but preferable to the alternatives.  Otherwise we
 * would either need to write a program to do it in /etc/rc (and risk
D
Daniel Walker 已提交
130
 * confusion if the program gets run more than once; it would also be
L
Linus Torvalds 已提交
131 132 133
 * hard to make the program warp the clock precisely n hours)  or
 * compile in the timezone information into the kernel.  Bad, bad....
 *
134
 *						- TYT, 1992-01-01
L
Linus Torvalds 已提交
135 136 137 138 139
 *
 * The best thing to do is to keep the CMOS clock in universal time (UTC)
 * as real UNIX machines always do it. This avoids all headaches about
 * daylight saving times and warping kernel clocks.
 */
140
static inline void warp_clock(void)
L
Linus Torvalds 已提交
141
{
142 143
	if (sys_tz.tz_minuteswest != 0) {
		struct timespec adjust;
144

145
		persistent_clock_is_local = 1;
146 147 148
		adjust.tv_sec = sys_tz.tz_minuteswest * 60;
		adjust.tv_nsec = 0;
		timekeeping_inject_offset(&adjust);
149
	}
L
Linus Torvalds 已提交
150 151 152 153 154 155 156 157 158 159 160 161 162
}

/*
 * In case for some reason the CMOS clock has not already been running
 * in UTC, but in some local time: The first time we set the timezone,
 * we will warp the clock so that it is ticking UTC time instead of
 * local time. Presumably, if someone is setting the timezone then we
 * are running in an environment where the programs understand about
 * timezones. This should be done at boot time in the /etc/rc script,
 * as soon as possible, so that the clock can be set right. Otherwise,
 * various programs will get confused when the clock gets warped.
 */

163
int do_sys_settimeofday(const struct timespec *tv, const struct timezone *tz)
L
Linus Torvalds 已提交
164 165 166 167
{
	static int firsttime = 1;
	int error = 0;

168
	if (tv && !timespec_valid(tv))
169 170
		return -EINVAL;

L
Linus Torvalds 已提交
171 172 173 174 175
	error = security_settime(tv, tz);
	if (error)
		return error;

	if (tz) {
176 177 178 179
		/* Verify we're witin the +-15 hrs range */
		if (tz->tz_minuteswest > 15*60 || tz->tz_minuteswest < -15*60)
			return -EINVAL;

L
Linus Torvalds 已提交
180
		sys_tz = *tz;
181
		update_vsyscall_tz();
L
Linus Torvalds 已提交
182 183 184 185 186 187 188 189 190 191 192
		if (firsttime) {
			firsttime = 0;
			if (!tv)
				warp_clock();
		}
	}
	if (tv)
		return do_settimeofday(tv);
	return 0;
}

193 194
SYSCALL_DEFINE2(settimeofday, struct timeval __user *, tv,
		struct timezone __user *, tz)
L
Linus Torvalds 已提交
195 196 197 198 199 200 201 202
{
	struct timeval user_tv;
	struct timespec	new_ts;
	struct timezone new_tz;

	if (tv) {
		if (copy_from_user(&user_tv, tv, sizeof(*tv)))
			return -EFAULT;
203 204 205 206

		if (!timeval_valid(&user_tv))
			return -EINVAL;

L
Linus Torvalds 已提交
207 208 209 210 211 212 213 214 215 216 217
		new_ts.tv_sec = user_tv.tv_sec;
		new_ts.tv_nsec = user_tv.tv_usec * NSEC_PER_USEC;
	}
	if (tz) {
		if (copy_from_user(&new_tz, tz, sizeof(*tz)))
			return -EFAULT;
	}

	return do_sys_settimeofday(tv ? &new_ts : NULL, tz ? &new_tz : NULL);
}

218
SYSCALL_DEFINE1(adjtimex, struct timex __user *, txc_p)
L
Linus Torvalds 已提交
219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
{
	struct timex txc;		/* Local copy of parameter */
	int ret;

	/* Copy the user data space into the kernel copy
	 * structure. But bear in mind that the structures
	 * may change
	 */
	if(copy_from_user(&txc, txc_p, sizeof(struct timex)))
		return -EFAULT;
	ret = do_adjtimex(&txc);
	return copy_to_user(txc_p, &txc, sizeof(struct timex)) ? -EFAULT : ret;
}

/**
 * current_fs_time - Return FS time
 * @sb: Superblock.
 *
237
 * Return the current time truncated to the time granularity supported by
L
Linus Torvalds 已提交
238 239 240 241 242 243 244 245 246
 * the fs.
 */
struct timespec current_fs_time(struct super_block *sb)
{
	struct timespec now = current_kernel_time();
	return timespec_trunc(now, sb->s_time_gran);
}
EXPORT_SYMBOL(current_fs_time);

E
Eric Dumazet 已提交
247 248 249 250 251 252
/*
 * Convert jiffies to milliseconds and back.
 *
 * Avoid unnecessary multiplications/divisions in the
 * two most common HZ cases:
 */
253
unsigned int jiffies_to_msecs(const unsigned long j)
E
Eric Dumazet 已提交
254 255 256 257 258 259
{
#if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
	return (MSEC_PER_SEC / HZ) * j;
#elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
	return (j + (HZ / MSEC_PER_SEC) - 1)/(HZ / MSEC_PER_SEC);
#else
260
# if BITS_PER_LONG == 32
261
	return (HZ_TO_MSEC_MUL32 * j) >> HZ_TO_MSEC_SHR32;
262 263 264
# else
	return (j * HZ_TO_MSEC_NUM) / HZ_TO_MSEC_DEN;
# endif
E
Eric Dumazet 已提交
265 266 267 268
#endif
}
EXPORT_SYMBOL(jiffies_to_msecs);

269
unsigned int jiffies_to_usecs(const unsigned long j)
E
Eric Dumazet 已提交
270
{
271 272 273 274 275 276 277
	/*
	 * Hz usually doesn't go much further MSEC_PER_SEC.
	 * jiffies_to_usecs() and usecs_to_jiffies() depend on that.
	 */
	BUILD_BUG_ON(HZ > USEC_PER_SEC);

#if !(USEC_PER_SEC % HZ)
E
Eric Dumazet 已提交
278 279
	return (USEC_PER_SEC / HZ) * j;
#else
280
# if BITS_PER_LONG == 32
281
	return (HZ_TO_USEC_MUL32 * j) >> HZ_TO_USEC_SHR32;
282 283 284
# else
	return (j * HZ_TO_USEC_NUM) / HZ_TO_USEC_DEN;
# endif
E
Eric Dumazet 已提交
285 286 287 288
#endif
}
EXPORT_SYMBOL(jiffies_to_usecs);

L
Linus Torvalds 已提交
289
/**
290
 * timespec_trunc - Truncate timespec to a granularity
L
Linus Torvalds 已提交
291
 * @t: Timespec
292
 * @gran: Granularity in ns.
L
Linus Torvalds 已提交
293
 *
294 295
 * Truncate a timespec to a granularity. Always rounds down. gran must
 * not be 0 nor greater than a second (NSEC_PER_SEC, or 10^9 ns).
L
Linus Torvalds 已提交
296 297 298
 */
struct timespec timespec_trunc(struct timespec t, unsigned gran)
{
299 300
	/* Avoid division in the common cases 1 ns and 1 s. */
	if (gran == 1) {
L
Linus Torvalds 已提交
301
		/* nothing */
302
	} else if (gran == NSEC_PER_SEC) {
L
Linus Torvalds 已提交
303
		t.tv_nsec = 0;
304
	} else if (gran > 1 && gran < NSEC_PER_SEC) {
L
Linus Torvalds 已提交
305
		t.tv_nsec -= t.tv_nsec % gran;
306 307
	} else {
		WARN(1, "illegal file time granularity: %u", gran);
L
Linus Torvalds 已提交
308 309 310 311 312
	}
	return t;
}
EXPORT_SYMBOL(timespec_trunc);

313 314 315
/*
 * mktime64 - Converts date to seconds.
 * Converts Gregorian date to seconds since 1970-01-01 00:00:00.
316 317 318 319 320 321 322 323 324 325
 * Assumes input in normal date format, i.e. 1980-12-31 23:59:59
 * => year=1980, mon=12, day=31, hour=23, min=59, sec=59.
 *
 * [For the Julian calendar (which was used in Russia before 1917,
 * Britain & colonies before 1752, anywhere else before 1582,
 * and is still in use by some communities) leave out the
 * -year/100+year/400 terms, and add 10.]
 *
 * This algorithm was first published by Gauss (I think).
 */
326 327 328
time64_t mktime64(const unsigned int year0, const unsigned int mon0,
		const unsigned int day, const unsigned int hour,
		const unsigned int min, const unsigned int sec)
329
{
330 331 332 333 334
	unsigned int mon = mon0, year = year0;

	/* 1..12 -> 11,12,1..10 */
	if (0 >= (int) (mon -= 2)) {
		mon += 12;	/* Puts Feb last since it has leap day */
335 336 337
		year -= 1;
	}

338
	return ((((time64_t)
339 340 341 342 343 344
		  (year/4 - year/100 + year/400 + 367*mon/12 + day) +
		  year*365 - 719499
	    )*24 + hour /* now have hours */
	  )*60 + min /* now have minutes */
	)*60 + sec; /* finally seconds */
}
345
EXPORT_SYMBOL(mktime64);
346

347 348 349 350 351 352 353 354 355 356 357
/**
 * set_normalized_timespec - set timespec sec and nsec parts and normalize
 *
 * @ts:		pointer to timespec variable to be set
 * @sec:	seconds to set
 * @nsec:	nanoseconds to set
 *
 * Set seconds and nanoseconds field of a timespec variable and
 * normalize to the timespec storage format
 *
 * Note: The tv_nsec part is always in the range of
358
 *	0 <= tv_nsec < NSEC_PER_SEC
359 360
 * For negative values only the tv_sec field is negative !
 */
361
void set_normalized_timespec(struct timespec *ts, time_t sec, s64 nsec)
362 363
{
	while (nsec >= NSEC_PER_SEC) {
364 365 366 367 368 369
		/*
		 * The following asm() prevents the compiler from
		 * optimising this loop into a modulo operation. See
		 * also __iter_div_u64_rem() in include/linux/time.h
		 */
		asm("" : "+rm"(nsec));
370 371 372 373
		nsec -= NSEC_PER_SEC;
		++sec;
	}
	while (nsec < 0) {
374
		asm("" : "+rm"(nsec));
375 376 377 378 379 380
		nsec += NSEC_PER_SEC;
		--sec;
	}
	ts->tv_sec = sec;
	ts->tv_nsec = nsec;
}
381
EXPORT_SYMBOL(set_normalized_timespec);
382

383 384 385 386 387 388
/**
 * ns_to_timespec - Convert nanoseconds to timespec
 * @nsec:       the nanoseconds value to be converted
 *
 * Returns the timespec representation of the nsec parameter.
 */
389
struct timespec ns_to_timespec(const s64 nsec)
390 391
{
	struct timespec ts;
R
Roman Zippel 已提交
392
	s32 rem;
393

394 395 396
	if (!nsec)
		return (struct timespec) {0, 0};

R
Roman Zippel 已提交
397 398 399 400 401 402
	ts.tv_sec = div_s64_rem(nsec, NSEC_PER_SEC, &rem);
	if (unlikely(rem < 0)) {
		ts.tv_sec--;
		rem += NSEC_PER_SEC;
	}
	ts.tv_nsec = rem;
403 404 405

	return ts;
}
406
EXPORT_SYMBOL(ns_to_timespec);
407 408 409 410 411 412 413

/**
 * ns_to_timeval - Convert nanoseconds to timeval
 * @nsec:       the nanoseconds value to be converted
 *
 * Returns the timeval representation of the nsec parameter.
 */
414
struct timeval ns_to_timeval(const s64 nsec)
415 416 417 418 419 420 421 422 423
{
	struct timespec ts = ns_to_timespec(nsec);
	struct timeval tv;

	tv.tv_sec = ts.tv_sec;
	tv.tv_usec = (suseconds_t) ts.tv_nsec / 1000;

	return tv;
}
424
EXPORT_SYMBOL(ns_to_timeval);
425

426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487
#if BITS_PER_LONG == 32
/**
 * set_normalized_timespec - set timespec sec and nsec parts and normalize
 *
 * @ts:		pointer to timespec variable to be set
 * @sec:	seconds to set
 * @nsec:	nanoseconds to set
 *
 * Set seconds and nanoseconds field of a timespec variable and
 * normalize to the timespec storage format
 *
 * Note: The tv_nsec part is always in the range of
 *	0 <= tv_nsec < NSEC_PER_SEC
 * For negative values only the tv_sec field is negative !
 */
void set_normalized_timespec64(struct timespec64 *ts, time64_t sec, s64 nsec)
{
	while (nsec >= NSEC_PER_SEC) {
		/*
		 * The following asm() prevents the compiler from
		 * optimising this loop into a modulo operation. See
		 * also __iter_div_u64_rem() in include/linux/time.h
		 */
		asm("" : "+rm"(nsec));
		nsec -= NSEC_PER_SEC;
		++sec;
	}
	while (nsec < 0) {
		asm("" : "+rm"(nsec));
		nsec += NSEC_PER_SEC;
		--sec;
	}
	ts->tv_sec = sec;
	ts->tv_nsec = nsec;
}
EXPORT_SYMBOL(set_normalized_timespec64);

/**
 * ns_to_timespec64 - Convert nanoseconds to timespec64
 * @nsec:       the nanoseconds value to be converted
 *
 * Returns the timespec64 representation of the nsec parameter.
 */
struct timespec64 ns_to_timespec64(const s64 nsec)
{
	struct timespec64 ts;
	s32 rem;

	if (!nsec)
		return (struct timespec64) {0, 0};

	ts.tv_sec = div_s64_rem(nsec, NSEC_PER_SEC, &rem);
	if (unlikely(rem < 0)) {
		ts.tv_sec--;
		rem += NSEC_PER_SEC;
	}
	ts.tv_nsec = rem;

	return ts;
}
EXPORT_SYMBOL(ns_to_timespec64);
#endif
488 489 490 491 492
/**
 * msecs_to_jiffies: - convert milliseconds to jiffies
 * @m:	time in milliseconds
 *
 * conversion is done as follows:
493 494 495 496 497 498 499
 *
 * - negative values mean 'infinite timeout' (MAX_JIFFY_OFFSET)
 *
 * - 'too large' values [that would result in larger than
 *   MAX_JIFFY_OFFSET values] mean 'infinite timeout' too.
 *
 * - all other values are converted to jiffies by either multiplying
500 501 502
 *   the input value by a factor or dividing it with a factor and
 *   handling any 32-bit overflows.
 *   for the details see __msecs_to_jiffies()
503
 *
504 505 506 507 508 509 510
 * msecs_to_jiffies() checks for the passed in value being a constant
 * via __builtin_constant_p() allowing gcc to eliminate most of the
 * code, __msecs_to_jiffies() is called if the value passed does not
 * allow constant folding and the actual conversion must be done at
 * runtime.
 * the _msecs_to_jiffies helpers are the HZ dependent conversion
 * routines found in include/linux/jiffies.h
511
 */
512
unsigned long __msecs_to_jiffies(const unsigned int m)
513
{
514 515 516 517
	/*
	 * Negative value, means infinite timeout:
	 */
	if ((int)m < 0)
518
		return MAX_JIFFY_OFFSET;
519
	return _msecs_to_jiffies(m);
520
}
521
EXPORT_SYMBOL(__msecs_to_jiffies);
522

523
unsigned long __usecs_to_jiffies(const unsigned int u)
524 525 526
{
	if (u > jiffies_to_usecs(MAX_JIFFY_OFFSET))
		return MAX_JIFFY_OFFSET;
527
	return _usecs_to_jiffies(u);
528
}
529
EXPORT_SYMBOL(__usecs_to_jiffies);
530 531 532 533 534 535

/*
 * The TICK_NSEC - 1 rounds up the value to the next resolution.  Note
 * that a remainder subtract here would not do the right thing as the
 * resolution values don't fall on second boundries.  I.e. the line:
 * nsec -= nsec % TICK_NSEC; is NOT a correct resolution rounding.
536 537 538 539
 * Note that due to the small error in the multiplier here, this
 * rounding is incorrect for sufficiently large values of tv_nsec, but
 * well formed timespecs should have tv_nsec < NSEC_PER_SEC, so we're
 * OK.
540 541 542 543 544 545
 *
 * Rather, we just shift the bits off the right.
 *
 * The >> (NSEC_JIFFIE_SC - SEC_JIFFIE_SC) converts the scaled nsec
 * value to a scaled second value.
 */
546
static unsigned long
547
__timespec64_to_jiffies(u64 sec, long nsec)
548
{
549
	nsec = nsec + TICK_NSEC - 1;
550 551 552 553 554

	if (sec >= MAX_SEC_IN_JIFFIES){
		sec = MAX_SEC_IN_JIFFIES;
		nsec = 0;
	}
555
	return ((sec * SEC_CONVERSION) +
556 557 558 559
		(((u64)nsec * NSEC_CONVERSION) >>
		 (NSEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;

}
560

561 562
static unsigned long
__timespec_to_jiffies(unsigned long sec, long nsec)
563
{
564
	return __timespec64_to_jiffies((u64)sec, nsec);
565 566
}

567 568 569 570 571 572
unsigned long
timespec64_to_jiffies(const struct timespec64 *value)
{
	return __timespec64_to_jiffies(value->tv_sec, value->tv_nsec);
}
EXPORT_SYMBOL(timespec64_to_jiffies);
573 574

void
575
jiffies_to_timespec64(const unsigned long jiffies, struct timespec64 *value)
576 577 578 579 580
{
	/*
	 * Convert jiffies to nanoseconds and separate with
	 * one divide.
	 */
R
Roman Zippel 已提交
581 582 583 584
	u32 rem;
	value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC,
				    NSEC_PER_SEC, &rem);
	value->tv_nsec = rem;
585
}
586
EXPORT_SYMBOL(jiffies_to_timespec64);
587

588 589 590 591 592 593 594 595 596 597 598 599
/*
 * We could use a similar algorithm to timespec_to_jiffies (with a
 * different multiplier for usec instead of nsec). But this has a
 * problem with rounding: we can't exactly add TICK_NSEC - 1 to the
 * usec value, since it's not necessarily integral.
 *
 * We could instead round in the intermediate scaled representation
 * (i.e. in units of 1/2^(large scale) jiffies) but that's also
 * perilous: the scaling introduces a small positive error, which
 * combined with a division-rounding-upward (i.e. adding 2^(scale) - 1
 * units to the intermediate before shifting) leads to accidental
 * overflow and overestimates.
600
 *
601 602
 * At the cost of one additional multiplication by a constant, just
 * use the timespec implementation.
603 604 605 606
 */
unsigned long
timeval_to_jiffies(const struct timeval *value)
{
607 608
	return __timespec_to_jiffies(value->tv_sec,
				     value->tv_usec * NSEC_PER_USEC);
609
}
610
EXPORT_SYMBOL(timeval_to_jiffies);
611 612 613 614 615 616 617

void jiffies_to_timeval(const unsigned long jiffies, struct timeval *value)
{
	/*
	 * Convert jiffies to nanoseconds and separate with
	 * one divide.
	 */
R
Roman Zippel 已提交
618
	u32 rem;
619

R
Roman Zippel 已提交
620 621 622
	value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC,
				    NSEC_PER_SEC, &rem);
	value->tv_usec = rem / NSEC_PER_USEC;
623
}
624
EXPORT_SYMBOL(jiffies_to_timeval);
625 626 627 628

/*
 * Convert jiffies/jiffies_64 to clock_t and back.
 */
629
clock_t jiffies_to_clock_t(unsigned long x)
630 631
{
#if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
632 633 634
# if HZ < USER_HZ
	return x * (USER_HZ / HZ);
# else
635
	return x / (HZ / USER_HZ);
636
# endif
637
#else
R
Roman Zippel 已提交
638
	return div_u64((u64)x * TICK_NSEC, NSEC_PER_SEC / USER_HZ);
639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654
#endif
}
EXPORT_SYMBOL(jiffies_to_clock_t);

unsigned long clock_t_to_jiffies(unsigned long x)
{
#if (HZ % USER_HZ)==0
	if (x >= ~0UL / (HZ / USER_HZ))
		return ~0UL;
	return x * (HZ / USER_HZ);
#else
	/* Don't worry about loss of precision here .. */
	if (x >= ~0UL / HZ * USER_HZ)
		return ~0UL;

	/* .. but do try to contain it here */
R
Roman Zippel 已提交
655
	return div_u64((u64)x * HZ, USER_HZ);
656 657 658 659 660 661 662
#endif
}
EXPORT_SYMBOL(clock_t_to_jiffies);

u64 jiffies_64_to_clock_t(u64 x)
{
#if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
663
# if HZ < USER_HZ
R
Roman Zippel 已提交
664
	x = div_u64(x * USER_HZ, HZ);
665
# elif HZ > USER_HZ
R
Roman Zippel 已提交
666
	x = div_u64(x, HZ / USER_HZ);
667 668
# else
	/* Nothing to do */
669
# endif
670 671 672 673 674 675
#else
	/*
	 * There are better ways that don't overflow early,
	 * but even this doesn't overflow in hundreds of years
	 * in 64 bits, so..
	 */
R
Roman Zippel 已提交
676
	x = div_u64(x * TICK_NSEC, (NSEC_PER_SEC / USER_HZ));
677 678 679 680 681 682 683 684
#endif
	return x;
}
EXPORT_SYMBOL(jiffies_64_to_clock_t);

u64 nsec_to_clock_t(u64 x)
{
#if (NSEC_PER_SEC % USER_HZ) == 0
R
Roman Zippel 已提交
685
	return div_u64(x, NSEC_PER_SEC / USER_HZ);
686
#elif (USER_HZ % 512) == 0
R
Roman Zippel 已提交
687
	return div_u64(x * USER_HZ / 512, NSEC_PER_SEC / 512);
688 689 690 691 692 693
#else
	/*
         * max relative error 5.7e-8 (1.8s per year) for USER_HZ <= 1024,
         * overflow after 64.99 years.
         * exact for HZ=60, 72, 90, 120, 144, 180, 300, 600, 900, ...
         */
R
Roman Zippel 已提交
694
	return div_u64(x * 9, (9ull * NSEC_PER_SEC + (USER_HZ / 2)) / USER_HZ);
695 696 697
#endif
}

698
/**
699
 * nsecs_to_jiffies64 - Convert nsecs in u64 to jiffies64
700 701 702 703 704 705 706 707 708 709 710
 *
 * @n:	nsecs in u64
 *
 * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
 * And this doesn't return MAX_JIFFY_OFFSET since this function is designed
 * for scheduler, not for use in device drivers to calculate timeout value.
 *
 * note:
 *   NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
 *   ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
 */
711
u64 nsecs_to_jiffies64(u64 n)
712 713 714 715 716 717 718 719 720 721 722 723 724 725 726
{
#if (NSEC_PER_SEC % HZ) == 0
	/* Common case, HZ = 100, 128, 200, 250, 256, 500, 512, 1000 etc. */
	return div_u64(n, NSEC_PER_SEC / HZ);
#elif (HZ % 512) == 0
	/* overflow after 292 years if HZ = 1024 */
	return div_u64(n * HZ / 512, NSEC_PER_SEC / 512);
#else
	/*
	 * Generic case - optimized for cases where HZ is a multiple of 3.
	 * overflow after 64.99 years, exact for HZ = 60, 72, 90, 120 etc.
	 */
	return div_u64(n * 9, (9ull * NSEC_PER_SEC + HZ / 2) / HZ);
#endif
}
727
EXPORT_SYMBOL(nsecs_to_jiffies64);
728

729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745
/**
 * nsecs_to_jiffies - Convert nsecs in u64 to jiffies
 *
 * @n:	nsecs in u64
 *
 * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
 * And this doesn't return MAX_JIFFY_OFFSET since this function is designed
 * for scheduler, not for use in device drivers to calculate timeout value.
 *
 * note:
 *   NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
 *   ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
 */
unsigned long nsecs_to_jiffies(u64 n)
{
	return (unsigned long)nsecs_to_jiffies64(n);
}
746
EXPORT_SYMBOL_GPL(nsecs_to_jiffies);
747

748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764
/*
 * Add two timespec values and do a safety check for overflow.
 * It's assumed that both values are valid (>= 0)
 */
struct timespec timespec_add_safe(const struct timespec lhs,
				  const struct timespec rhs)
{
	struct timespec res;

	set_normalized_timespec(&res, lhs.tv_sec + rhs.tv_sec,
				lhs.tv_nsec + rhs.tv_nsec);

	if (res.tv_sec < lhs.tv_sec || res.tv_sec < rhs.tv_sec)
		res.tv_sec = TIME_T_MAX;

	return res;
}