time.c 20.3 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11
/*
 *  linux/kernel/time.c
 *
 *  Copyright (C) 1991, 1992  Linus Torvalds
 *
 *  This file contains the interface functions for the various
 *  time related system calls: time, stime, gettimeofday, settimeofday,
 *			       adjtime
 */
/*
 * Modification history kernel/time.c
D
Daniel Walker 已提交
12
 *
L
Linus Torvalds 已提交
13
 * 1993-09-02    Philip Gladstone
14
 *      Created file with time related functions from sched/core.c and adjtimex()
L
Linus Torvalds 已提交
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
 * 1993-10-08    Torsten Duwe
 *      adjtime interface update and CMOS clock write code
 * 1995-08-13    Torsten Duwe
 *      kernel PLL updated to 1994-12-13 specs (rfc-1589)
 * 1999-01-16    Ulrich Windl
 *	Introduced error checking for many cases in adjtimex().
 *	Updated NTP code according to technical memorandum Jan '96
 *	"A Kernel Model for Precision Timekeeping" by Dave Mills
 *	Allow time_constant larger than MAXTC(6) for NTP v4 (MAXTC == 10)
 *	(Even though the technical memorandum forbids it)
 * 2004-07-14	 Christoph Lameter
 *	Added getnstimeofday to allow the posix timer functions to return
 *	with nanosecond accuracy
 */

30
#include <linux/export.h>
L
Linus Torvalds 已提交
31
#include <linux/timex.h>
32
#include <linux/capability.h>
33
#include <linux/timekeeper_internal.h>
L
Linus Torvalds 已提交
34 35 36 37
#include <linux/errno.h>
#include <linux/syscalls.h>
#include <linux/security.h>
#include <linux/fs.h>
R
Roman Zippel 已提交
38
#include <linux/math64.h>
39
#include <linux/ptrace.h>
L
Linus Torvalds 已提交
40 41 42 43

#include <asm/uaccess.h>
#include <asm/unistd.h>

44
#include "timeconst.h"
45
#include "timekeeping.h"
46

D
Daniel Walker 已提交
47
/*
L
Linus Torvalds 已提交
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
 * The timezone where the local system is located.  Used as a default by some
 * programs who obtain this value by using gettimeofday.
 */
struct timezone sys_tz;

EXPORT_SYMBOL(sys_tz);

#ifdef __ARCH_WANT_SYS_TIME

/*
 * sys_time() can be implemented in user-level using
 * sys_gettimeofday().  Is this for backwards compatibility?  If so,
 * why not move it into the appropriate arch directory (for those
 * architectures that need it).
 */
63
SYSCALL_DEFINE1(time, time_t __user *, tloc)
L
Linus Torvalds 已提交
64
{
I
Ingo Molnar 已提交
65
	time_t i = get_seconds();
L
Linus Torvalds 已提交
66 67

	if (tloc) {
L
Linus Torvalds 已提交
68
		if (put_user(i,tloc))
69
			return -EFAULT;
L
Linus Torvalds 已提交
70
	}
71
	force_successful_syscall_return();
L
Linus Torvalds 已提交
72 73 74 75 76 77 78 79 80
	return i;
}

/*
 * sys_stime() can be implemented in user-level using
 * sys_settimeofday().  Is this for backwards compatibility?  If so,
 * why not move it into the appropriate arch directory (for those
 * architectures that need it).
 */
D
Daniel Walker 已提交
81

82
SYSCALL_DEFINE1(stime, time_t __user *, tptr)
L
Linus Torvalds 已提交
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
{
	struct timespec tv;
	int err;

	if (get_user(tv.tv_sec, tptr))
		return -EFAULT;

	tv.tv_nsec = 0;

	err = security_settime(&tv, NULL);
	if (err)
		return err;

	do_settimeofday(&tv);
	return 0;
}

#endif /* __ARCH_WANT_SYS_TIME */

102 103
SYSCALL_DEFINE2(gettimeofday, struct timeval __user *, tv,
		struct timezone __user *, tz)
L
Linus Torvalds 已提交
104 105 106 107 108 109 110 111 112 113 114 115 116 117
{
	if (likely(tv != NULL)) {
		struct timeval ktv;
		do_gettimeofday(&ktv);
		if (copy_to_user(tv, &ktv, sizeof(ktv)))
			return -EFAULT;
	}
	if (unlikely(tz != NULL)) {
		if (copy_to_user(tz, &sys_tz, sizeof(sys_tz)))
			return -EFAULT;
	}
	return 0;
}

118 119 120 121 122 123
/*
 * Indicates if there is an offset between the system clock and the hardware
 * clock/persistent clock/rtc.
 */
int persistent_clock_is_local;

L
Linus Torvalds 已提交
124 125 126
/*
 * Adjust the time obtained from the CMOS to be UTC time instead of
 * local time.
D
Daniel Walker 已提交
127
 *
L
Linus Torvalds 已提交
128 129
 * This is ugly, but preferable to the alternatives.  Otherwise we
 * would either need to write a program to do it in /etc/rc (and risk
D
Daniel Walker 已提交
130
 * confusion if the program gets run more than once; it would also be
L
Linus Torvalds 已提交
131 132 133
 * hard to make the program warp the clock precisely n hours)  or
 * compile in the timezone information into the kernel.  Bad, bad....
 *
134
 *						- TYT, 1992-01-01
L
Linus Torvalds 已提交
135 136 137 138 139
 *
 * The best thing to do is to keep the CMOS clock in universal time (UTC)
 * as real UNIX machines always do it. This avoids all headaches about
 * daylight saving times and warping kernel clocks.
 */
140
static inline void warp_clock(void)
L
Linus Torvalds 已提交
141
{
142 143
	if (sys_tz.tz_minuteswest != 0) {
		struct timespec adjust;
144

145
		persistent_clock_is_local = 1;
146 147 148
		adjust.tv_sec = sys_tz.tz_minuteswest * 60;
		adjust.tv_nsec = 0;
		timekeeping_inject_offset(&adjust);
149
	}
L
Linus Torvalds 已提交
150 151 152 153 154 155 156 157 158 159 160 161 162
}

/*
 * In case for some reason the CMOS clock has not already been running
 * in UTC, but in some local time: The first time we set the timezone,
 * we will warp the clock so that it is ticking UTC time instead of
 * local time. Presumably, if someone is setting the timezone then we
 * are running in an environment where the programs understand about
 * timezones. This should be done at boot time in the /etc/rc script,
 * as soon as possible, so that the clock can be set right. Otherwise,
 * various programs will get confused when the clock gets warped.
 */

163
int do_sys_settimeofday(const struct timespec *tv, const struct timezone *tz)
L
Linus Torvalds 已提交
164 165 166 167
{
	static int firsttime = 1;
	int error = 0;

168
	if (tv && !timespec_valid(tv))
169 170
		return -EINVAL;

L
Linus Torvalds 已提交
171 172 173 174 175 176
	error = security_settime(tv, tz);
	if (error)
		return error;

	if (tz) {
		sys_tz = *tz;
177
		update_vsyscall_tz();
L
Linus Torvalds 已提交
178 179 180 181 182 183 184 185 186 187 188
		if (firsttime) {
			firsttime = 0;
			if (!tv)
				warp_clock();
		}
	}
	if (tv)
		return do_settimeofday(tv);
	return 0;
}

189 190
SYSCALL_DEFINE2(settimeofday, struct timeval __user *, tv,
		struct timezone __user *, tz)
L
Linus Torvalds 已提交
191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
{
	struct timeval user_tv;
	struct timespec	new_ts;
	struct timezone new_tz;

	if (tv) {
		if (copy_from_user(&user_tv, tv, sizeof(*tv)))
			return -EFAULT;
		new_ts.tv_sec = user_tv.tv_sec;
		new_ts.tv_nsec = user_tv.tv_usec * NSEC_PER_USEC;
	}
	if (tz) {
		if (copy_from_user(&new_tz, tz, sizeof(*tz)))
			return -EFAULT;
	}

	return do_sys_settimeofday(tv ? &new_ts : NULL, tz ? &new_tz : NULL);
}

210
SYSCALL_DEFINE1(adjtimex, struct timex __user *, txc_p)
L
Linus Torvalds 已提交
211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
{
	struct timex txc;		/* Local copy of parameter */
	int ret;

	/* Copy the user data space into the kernel copy
	 * structure. But bear in mind that the structures
	 * may change
	 */
	if(copy_from_user(&txc, txc_p, sizeof(struct timex)))
		return -EFAULT;
	ret = do_adjtimex(&txc);
	return copy_to_user(txc_p, &txc, sizeof(struct timex)) ? -EFAULT : ret;
}

/**
 * current_fs_time - Return FS time
 * @sb: Superblock.
 *
229
 * Return the current time truncated to the time granularity supported by
L
Linus Torvalds 已提交
230 231 232 233 234 235 236 237 238
 * the fs.
 */
struct timespec current_fs_time(struct super_block *sb)
{
	struct timespec now = current_kernel_time();
	return timespec_trunc(now, sb->s_time_gran);
}
EXPORT_SYMBOL(current_fs_time);

E
Eric Dumazet 已提交
239 240 241 242 243 244
/*
 * Convert jiffies to milliseconds and back.
 *
 * Avoid unnecessary multiplications/divisions in the
 * two most common HZ cases:
 */
245
unsigned int jiffies_to_msecs(const unsigned long j)
E
Eric Dumazet 已提交
246 247 248 249 250 251
{
#if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
	return (MSEC_PER_SEC / HZ) * j;
#elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
	return (j + (HZ / MSEC_PER_SEC) - 1)/(HZ / MSEC_PER_SEC);
#else
252
# if BITS_PER_LONG == 32
253
	return (HZ_TO_MSEC_MUL32 * j) >> HZ_TO_MSEC_SHR32;
254 255 256
# else
	return (j * HZ_TO_MSEC_NUM) / HZ_TO_MSEC_DEN;
# endif
E
Eric Dumazet 已提交
257 258 259 260
#endif
}
EXPORT_SYMBOL(jiffies_to_msecs);

261
unsigned int jiffies_to_usecs(const unsigned long j)
E
Eric Dumazet 已提交
262 263 264 265 266 267
{
#if HZ <= USEC_PER_SEC && !(USEC_PER_SEC % HZ)
	return (USEC_PER_SEC / HZ) * j;
#elif HZ > USEC_PER_SEC && !(HZ % USEC_PER_SEC)
	return (j + (HZ / USEC_PER_SEC) - 1)/(HZ / USEC_PER_SEC);
#else
268
# if BITS_PER_LONG == 32
269
	return (HZ_TO_USEC_MUL32 * j) >> HZ_TO_USEC_SHR32;
270 271 272
# else
	return (j * HZ_TO_USEC_NUM) / HZ_TO_USEC_DEN;
# endif
E
Eric Dumazet 已提交
273 274 275 276
#endif
}
EXPORT_SYMBOL(jiffies_to_usecs);

L
Linus Torvalds 已提交
277
/**
278
 * timespec_trunc - Truncate timespec to a granularity
L
Linus Torvalds 已提交
279
 * @t: Timespec
280
 * @gran: Granularity in ns.
L
Linus Torvalds 已提交
281
 *
282
 * Truncate a timespec to a granularity. gran must be smaller than a second.
L
Linus Torvalds 已提交
283 284 285 286
 * Always rounds down.
 *
 * This function should be only used for timestamps returned by
 * current_kernel_time() or CURRENT_TIME, not with do_gettimeofday() because
L
Li Zefan 已提交
287
 * it doesn't handle the better resolution of the latter.
L
Linus Torvalds 已提交
288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306
 */
struct timespec timespec_trunc(struct timespec t, unsigned gran)
{
	/*
	 * Division is pretty slow so avoid it for common cases.
	 * Currently current_kernel_time() never returns better than
	 * jiffies resolution. Exploit that.
	 */
	if (gran <= jiffies_to_usecs(1) * 1000) {
		/* nothing */
	} else if (gran == 1000000000) {
		t.tv_nsec = 0;
	} else {
		t.tv_nsec -= t.tv_nsec % gran;
	}
	return t;
}
EXPORT_SYMBOL(timespec_trunc);

307 308 309 310 311 312 313 314 315 316 317 318
/* Converts Gregorian date to seconds since 1970-01-01 00:00:00.
 * Assumes input in normal date format, i.e. 1980-12-31 23:59:59
 * => year=1980, mon=12, day=31, hour=23, min=59, sec=59.
 *
 * [For the Julian calendar (which was used in Russia before 1917,
 * Britain & colonies before 1752, anywhere else before 1582,
 * and is still in use by some communities) leave out the
 * -year/100+year/400 terms, and add 10.]
 *
 * This algorithm was first published by Gauss (I think).
 *
 * WARNING: this function will overflow on 2106-02-07 06:28:16 on
L
Li Zefan 已提交
319
 * machines where long is 32-bit! (However, as time_t is signed, we
320 321 322
 * will already get problems at other places on 2038-01-19 03:14:08)
 */
unsigned long
323 324 325
mktime(const unsigned int year0, const unsigned int mon0,
       const unsigned int day, const unsigned int hour,
       const unsigned int min, const unsigned int sec)
326
{
327 328 329 330 331
	unsigned int mon = mon0, year = year0;

	/* 1..12 -> 11,12,1..10 */
	if (0 >= (int) (mon -= 2)) {
		mon += 12;	/* Puts Feb last since it has leap day */
332 333 334 335 336 337 338 339 340 341 342
		year -= 1;
	}

	return ((((unsigned long)
		  (year/4 - year/100 + year/400 + 367*mon/12 + day) +
		  year*365 - 719499
	    )*24 + hour /* now have hours */
	  )*60 + min /* now have minutes */
	)*60 + sec; /* finally seconds */
}

343 344
EXPORT_SYMBOL(mktime);

345 346 347 348 349 350 351 352 353 354 355
/**
 * set_normalized_timespec - set timespec sec and nsec parts and normalize
 *
 * @ts:		pointer to timespec variable to be set
 * @sec:	seconds to set
 * @nsec:	nanoseconds to set
 *
 * Set seconds and nanoseconds field of a timespec variable and
 * normalize to the timespec storage format
 *
 * Note: The tv_nsec part is always in the range of
356
 *	0 <= tv_nsec < NSEC_PER_SEC
357 358
 * For negative values only the tv_sec field is negative !
 */
359
void set_normalized_timespec(struct timespec *ts, time_t sec, s64 nsec)
360 361
{
	while (nsec >= NSEC_PER_SEC) {
362 363 364 365 366 367
		/*
		 * The following asm() prevents the compiler from
		 * optimising this loop into a modulo operation. See
		 * also __iter_div_u64_rem() in include/linux/time.h
		 */
		asm("" : "+rm"(nsec));
368 369 370 371
		nsec -= NSEC_PER_SEC;
		++sec;
	}
	while (nsec < 0) {
372
		asm("" : "+rm"(nsec));
373 374 375 376 377 378
		nsec += NSEC_PER_SEC;
		--sec;
	}
	ts->tv_sec = sec;
	ts->tv_nsec = nsec;
}
379
EXPORT_SYMBOL(set_normalized_timespec);
380

381 382 383 384 385 386
/**
 * ns_to_timespec - Convert nanoseconds to timespec
 * @nsec:       the nanoseconds value to be converted
 *
 * Returns the timespec representation of the nsec parameter.
 */
387
struct timespec ns_to_timespec(const s64 nsec)
388 389
{
	struct timespec ts;
R
Roman Zippel 已提交
390
	s32 rem;
391

392 393 394
	if (!nsec)
		return (struct timespec) {0, 0};

R
Roman Zippel 已提交
395 396 397 398 399 400
	ts.tv_sec = div_s64_rem(nsec, NSEC_PER_SEC, &rem);
	if (unlikely(rem < 0)) {
		ts.tv_sec--;
		rem += NSEC_PER_SEC;
	}
	ts.tv_nsec = rem;
401 402 403

	return ts;
}
404
EXPORT_SYMBOL(ns_to_timespec);
405 406 407 408 409 410 411

/**
 * ns_to_timeval - Convert nanoseconds to timeval
 * @nsec:       the nanoseconds value to be converted
 *
 * Returns the timeval representation of the nsec parameter.
 */
412
struct timeval ns_to_timeval(const s64 nsec)
413 414 415 416 417 418 419 420 421
{
	struct timespec ts = ns_to_timespec(nsec);
	struct timeval tv;

	tv.tv_sec = ts.tv_sec;
	tv.tv_usec = (suseconds_t) ts.tv_nsec / 1000;

	return tv;
}
422
EXPORT_SYMBOL(ns_to_timeval);
423

424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485
#if BITS_PER_LONG == 32
/**
 * set_normalized_timespec - set timespec sec and nsec parts and normalize
 *
 * @ts:		pointer to timespec variable to be set
 * @sec:	seconds to set
 * @nsec:	nanoseconds to set
 *
 * Set seconds and nanoseconds field of a timespec variable and
 * normalize to the timespec storage format
 *
 * Note: The tv_nsec part is always in the range of
 *	0 <= tv_nsec < NSEC_PER_SEC
 * For negative values only the tv_sec field is negative !
 */
void set_normalized_timespec64(struct timespec64 *ts, time64_t sec, s64 nsec)
{
	while (nsec >= NSEC_PER_SEC) {
		/*
		 * The following asm() prevents the compiler from
		 * optimising this loop into a modulo operation. See
		 * also __iter_div_u64_rem() in include/linux/time.h
		 */
		asm("" : "+rm"(nsec));
		nsec -= NSEC_PER_SEC;
		++sec;
	}
	while (nsec < 0) {
		asm("" : "+rm"(nsec));
		nsec += NSEC_PER_SEC;
		--sec;
	}
	ts->tv_sec = sec;
	ts->tv_nsec = nsec;
}
EXPORT_SYMBOL(set_normalized_timespec64);

/**
 * ns_to_timespec64 - Convert nanoseconds to timespec64
 * @nsec:       the nanoseconds value to be converted
 *
 * Returns the timespec64 representation of the nsec parameter.
 */
struct timespec64 ns_to_timespec64(const s64 nsec)
{
	struct timespec64 ts;
	s32 rem;

	if (!nsec)
		return (struct timespec64) {0, 0};

	ts.tv_sec = div_s64_rem(nsec, NSEC_PER_SEC, &rem);
	if (unlikely(rem < 0)) {
		ts.tv_sec--;
		rem += NSEC_PER_SEC;
	}
	ts.tv_nsec = rem;

	return ts;
}
EXPORT_SYMBOL(ns_to_timespec64);
#endif
486 487 488 489 490 491 492 493 494 495 496 497 498 499
/*
 * When we convert to jiffies then we interpret incoming values
 * the following way:
 *
 * - negative values mean 'infinite timeout' (MAX_JIFFY_OFFSET)
 *
 * - 'too large' values [that would result in larger than
 *   MAX_JIFFY_OFFSET values] mean 'infinite timeout' too.
 *
 * - all other values are converted to jiffies by either multiplying
 *   the input value by a factor or dividing it with a factor
 *
 * We must also be careful about 32-bit overflows.
 */
500 501
unsigned long msecs_to_jiffies(const unsigned int m)
{
502 503 504 505
	/*
	 * Negative value, means infinite timeout:
	 */
	if ((int)m < 0)
506
		return MAX_JIFFY_OFFSET;
507

508
#if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
509 510 511 512 513
	/*
	 * HZ is equal to or smaller than 1000, and 1000 is a nice
	 * round multiple of HZ, divide with the factor between them,
	 * but round upwards:
	 */
514 515
	return (m + (MSEC_PER_SEC / HZ) - 1) / (MSEC_PER_SEC / HZ);
#elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
516 517 518 519 520 521 522 523 524 525
	/*
	 * HZ is larger than 1000, and HZ is a nice round multiple of
	 * 1000 - simply multiply with the factor between them.
	 *
	 * But first make sure the multiplication result cannot
	 * overflow:
	 */
	if (m > jiffies_to_msecs(MAX_JIFFY_OFFSET))
		return MAX_JIFFY_OFFSET;

526 527
	return m * (HZ / MSEC_PER_SEC);
#else
528 529 530
	/*
	 * Generic case - multiply, round and divide. But first
	 * check that if we are doing a net multiplication, that
531
	 * we wouldn't overflow:
532 533 534 535
	 */
	if (HZ > MSEC_PER_SEC && m > jiffies_to_msecs(MAX_JIFFY_OFFSET))
		return MAX_JIFFY_OFFSET;

536
	return (MSEC_TO_HZ_MUL32 * m + MSEC_TO_HZ_ADJ32)
537
		>> MSEC_TO_HZ_SHR32;
538 539 540 541 542 543 544 545 546 547 548 549 550
#endif
}
EXPORT_SYMBOL(msecs_to_jiffies);

unsigned long usecs_to_jiffies(const unsigned int u)
{
	if (u > jiffies_to_usecs(MAX_JIFFY_OFFSET))
		return MAX_JIFFY_OFFSET;
#if HZ <= USEC_PER_SEC && !(USEC_PER_SEC % HZ)
	return (u + (USEC_PER_SEC / HZ) - 1) / (USEC_PER_SEC / HZ);
#elif HZ > USEC_PER_SEC && !(HZ % USEC_PER_SEC)
	return u * (HZ / USEC_PER_SEC);
#else
551
	return (USEC_TO_HZ_MUL32 * u + USEC_TO_HZ_ADJ32)
552
		>> USEC_TO_HZ_SHR32;
553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591
#endif
}
EXPORT_SYMBOL(usecs_to_jiffies);

/*
 * The TICK_NSEC - 1 rounds up the value to the next resolution.  Note
 * that a remainder subtract here would not do the right thing as the
 * resolution values don't fall on second boundries.  I.e. the line:
 * nsec -= nsec % TICK_NSEC; is NOT a correct resolution rounding.
 *
 * Rather, we just shift the bits off the right.
 *
 * The >> (NSEC_JIFFIE_SC - SEC_JIFFIE_SC) converts the scaled nsec
 * value to a scaled second value.
 */
unsigned long
timespec_to_jiffies(const struct timespec *value)
{
	unsigned long sec = value->tv_sec;
	long nsec = value->tv_nsec + TICK_NSEC - 1;

	if (sec >= MAX_SEC_IN_JIFFIES){
		sec = MAX_SEC_IN_JIFFIES;
		nsec = 0;
	}
	return (((u64)sec * SEC_CONVERSION) +
		(((u64)nsec * NSEC_CONVERSION) >>
		 (NSEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;

}
EXPORT_SYMBOL(timespec_to_jiffies);

void
jiffies_to_timespec(const unsigned long jiffies, struct timespec *value)
{
	/*
	 * Convert jiffies to nanoseconds and separate with
	 * one divide.
	 */
R
Roman Zippel 已提交
592 593 594 595
	u32 rem;
	value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC,
				    NSEC_PER_SEC, &rem);
	value->tv_nsec = rem;
596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624
}
EXPORT_SYMBOL(jiffies_to_timespec);

/* Same for "timeval"
 *
 * Well, almost.  The problem here is that the real system resolution is
 * in nanoseconds and the value being converted is in micro seconds.
 * Also for some machines (those that use HZ = 1024, in-particular),
 * there is a LARGE error in the tick size in microseconds.

 * The solution we use is to do the rounding AFTER we convert the
 * microsecond part.  Thus the USEC_ROUND, the bits to be shifted off.
 * Instruction wise, this should cost only an additional add with carry
 * instruction above the way it was done above.
 */
unsigned long
timeval_to_jiffies(const struct timeval *value)
{
	unsigned long sec = value->tv_sec;
	long usec = value->tv_usec;

	if (sec >= MAX_SEC_IN_JIFFIES){
		sec = MAX_SEC_IN_JIFFIES;
		usec = 0;
	}
	return (((u64)sec * SEC_CONVERSION) +
		(((u64)usec * USEC_CONVERSION + USEC_ROUND) >>
		 (USEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;
}
625
EXPORT_SYMBOL(timeval_to_jiffies);
626 627 628 629 630 631 632

void jiffies_to_timeval(const unsigned long jiffies, struct timeval *value)
{
	/*
	 * Convert jiffies to nanoseconds and separate with
	 * one divide.
	 */
R
Roman Zippel 已提交
633
	u32 rem;
634

R
Roman Zippel 已提交
635 636 637
	value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC,
				    NSEC_PER_SEC, &rem);
	value->tv_usec = rem / NSEC_PER_USEC;
638
}
639
EXPORT_SYMBOL(jiffies_to_timeval);
640 641 642 643

/*
 * Convert jiffies/jiffies_64 to clock_t and back.
 */
644
clock_t jiffies_to_clock_t(unsigned long x)
645 646
{
#if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
647 648 649
# if HZ < USER_HZ
	return x * (USER_HZ / HZ);
# else
650
	return x / (HZ / USER_HZ);
651
# endif
652
#else
R
Roman Zippel 已提交
653
	return div_u64((u64)x * TICK_NSEC, NSEC_PER_SEC / USER_HZ);
654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669
#endif
}
EXPORT_SYMBOL(jiffies_to_clock_t);

unsigned long clock_t_to_jiffies(unsigned long x)
{
#if (HZ % USER_HZ)==0
	if (x >= ~0UL / (HZ / USER_HZ))
		return ~0UL;
	return x * (HZ / USER_HZ);
#else
	/* Don't worry about loss of precision here .. */
	if (x >= ~0UL / HZ * USER_HZ)
		return ~0UL;

	/* .. but do try to contain it here */
R
Roman Zippel 已提交
670
	return div_u64((u64)x * HZ, USER_HZ);
671 672 673 674 675 676 677
#endif
}
EXPORT_SYMBOL(clock_t_to_jiffies);

u64 jiffies_64_to_clock_t(u64 x)
{
#if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
678
# if HZ < USER_HZ
R
Roman Zippel 已提交
679
	x = div_u64(x * USER_HZ, HZ);
680
# elif HZ > USER_HZ
R
Roman Zippel 已提交
681
	x = div_u64(x, HZ / USER_HZ);
682 683
# else
	/* Nothing to do */
684
# endif
685 686 687 688 689 690
#else
	/*
	 * There are better ways that don't overflow early,
	 * but even this doesn't overflow in hundreds of years
	 * in 64 bits, so..
	 */
R
Roman Zippel 已提交
691
	x = div_u64(x * TICK_NSEC, (NSEC_PER_SEC / USER_HZ));
692 693 694 695 696 697 698 699
#endif
	return x;
}
EXPORT_SYMBOL(jiffies_64_to_clock_t);

u64 nsec_to_clock_t(u64 x)
{
#if (NSEC_PER_SEC % USER_HZ) == 0
R
Roman Zippel 已提交
700
	return div_u64(x, NSEC_PER_SEC / USER_HZ);
701
#elif (USER_HZ % 512) == 0
R
Roman Zippel 已提交
702
	return div_u64(x * USER_HZ / 512, NSEC_PER_SEC / 512);
703 704 705 706 707 708
#else
	/*
         * max relative error 5.7e-8 (1.8s per year) for USER_HZ <= 1024,
         * overflow after 64.99 years.
         * exact for HZ=60, 72, 90, 120, 144, 180, 300, 600, 900, ...
         */
R
Roman Zippel 已提交
709
	return div_u64(x * 9, (9ull * NSEC_PER_SEC + (USER_HZ / 2)) / USER_HZ);
710 711 712
#endif
}

713
/**
714
 * nsecs_to_jiffies64 - Convert nsecs in u64 to jiffies64
715 716 717 718 719 720 721 722 723 724 725
 *
 * @n:	nsecs in u64
 *
 * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
 * And this doesn't return MAX_JIFFY_OFFSET since this function is designed
 * for scheduler, not for use in device drivers to calculate timeout value.
 *
 * note:
 *   NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
 *   ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
 */
726
u64 nsecs_to_jiffies64(u64 n)
727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742
{
#if (NSEC_PER_SEC % HZ) == 0
	/* Common case, HZ = 100, 128, 200, 250, 256, 500, 512, 1000 etc. */
	return div_u64(n, NSEC_PER_SEC / HZ);
#elif (HZ % 512) == 0
	/* overflow after 292 years if HZ = 1024 */
	return div_u64(n * HZ / 512, NSEC_PER_SEC / 512);
#else
	/*
	 * Generic case - optimized for cases where HZ is a multiple of 3.
	 * overflow after 64.99 years, exact for HZ = 60, 72, 90, 120 etc.
	 */
	return div_u64(n * 9, (9ull * NSEC_PER_SEC + HZ / 2) / HZ);
#endif
}

743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759
/**
 * nsecs_to_jiffies - Convert nsecs in u64 to jiffies
 *
 * @n:	nsecs in u64
 *
 * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
 * And this doesn't return MAX_JIFFY_OFFSET since this function is designed
 * for scheduler, not for use in device drivers to calculate timeout value.
 *
 * note:
 *   NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
 *   ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
 */
unsigned long nsecs_to_jiffies(u64 n)
{
	return (unsigned long)nsecs_to_jiffies64(n);
}
760
EXPORT_SYMBOL_GPL(nsecs_to_jiffies);
761

762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778
/*
 * Add two timespec values and do a safety check for overflow.
 * It's assumed that both values are valid (>= 0)
 */
struct timespec timespec_add_safe(const struct timespec lhs,
				  const struct timespec rhs)
{
	struct timespec res;

	set_normalized_timespec(&res, lhs.tv_sec + rhs.tv_sec,
				lhs.tv_nsec + rhs.tv_nsec);

	if (res.tv_sec < lhs.tv_sec || res.tv_sec < rhs.tv_sec)
		res.tv_sec = TIME_T_MAX;

	return res;
}