time.c 21.0 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11
/*
 *  linux/kernel/time.c
 *
 *  Copyright (C) 1991, 1992  Linus Torvalds
 *
 *  This file contains the interface functions for the various
 *  time related system calls: time, stime, gettimeofday, settimeofday,
 *			       adjtime
 */
/*
 * Modification history kernel/time.c
D
Daniel Walker 已提交
12
 *
L
Linus Torvalds 已提交
13
 * 1993-09-02    Philip Gladstone
14
 *      Created file with time related functions from sched/core.c and adjtimex()
L
Linus Torvalds 已提交
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
 * 1993-10-08    Torsten Duwe
 *      adjtime interface update and CMOS clock write code
 * 1995-08-13    Torsten Duwe
 *      kernel PLL updated to 1994-12-13 specs (rfc-1589)
 * 1999-01-16    Ulrich Windl
 *	Introduced error checking for many cases in adjtimex().
 *	Updated NTP code according to technical memorandum Jan '96
 *	"A Kernel Model for Precision Timekeeping" by Dave Mills
 *	Allow time_constant larger than MAXTC(6) for NTP v4 (MAXTC == 10)
 *	(Even though the technical memorandum forbids it)
 * 2004-07-14	 Christoph Lameter
 *	Added getnstimeofday to allow the posix timer functions to return
 *	with nanosecond accuracy
 */

30
#include <linux/export.h>
L
Linus Torvalds 已提交
31
#include <linux/timex.h>
32
#include <linux/capability.h>
33
#include <linux/timekeeper_internal.h>
L
Linus Torvalds 已提交
34 35 36 37
#include <linux/errno.h>
#include <linux/syscalls.h>
#include <linux/security.h>
#include <linux/fs.h>
R
Roman Zippel 已提交
38
#include <linux/math64.h>
39
#include <linux/ptrace.h>
L
Linus Torvalds 已提交
40

41
#include <linux/uaccess.h>
42
#include <linux/compat.h>
L
Linus Torvalds 已提交
43 44
#include <asm/unistd.h>

45
#include <generated/timeconst.h>
46
#include "timekeeping.h"
47

D
Daniel Walker 已提交
48
/*
L
Linus Torvalds 已提交
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
 * The timezone where the local system is located.  Used as a default by some
 * programs who obtain this value by using gettimeofday.
 */
struct timezone sys_tz;

EXPORT_SYMBOL(sys_tz);

#ifdef __ARCH_WANT_SYS_TIME

/*
 * sys_time() can be implemented in user-level using
 * sys_gettimeofday().  Is this for backwards compatibility?  If so,
 * why not move it into the appropriate arch directory (for those
 * architectures that need it).
 */
64
SYSCALL_DEFINE1(time, time_t __user *, tloc)
L
Linus Torvalds 已提交
65
{
I
Ingo Molnar 已提交
66
	time_t i = get_seconds();
L
Linus Torvalds 已提交
67 68

	if (tloc) {
L
Linus Torvalds 已提交
69
		if (put_user(i,tloc))
70
			return -EFAULT;
L
Linus Torvalds 已提交
71
	}
72
	force_successful_syscall_return();
L
Linus Torvalds 已提交
73 74 75 76 77 78 79 80 81
	return i;
}

/*
 * sys_stime() can be implemented in user-level using
 * sys_settimeofday().  Is this for backwards compatibility?  If so,
 * why not move it into the appropriate arch directory (for those
 * architectures that need it).
 */
D
Daniel Walker 已提交
82

83
SYSCALL_DEFINE1(stime, time_t __user *, tptr)
L
Linus Torvalds 已提交
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
{
	struct timespec tv;
	int err;

	if (get_user(tv.tv_sec, tptr))
		return -EFAULT;

	tv.tv_nsec = 0;

	err = security_settime(&tv, NULL);
	if (err)
		return err;

	do_settimeofday(&tv);
	return 0;
}

#endif /* __ARCH_WANT_SYS_TIME */

103 104
SYSCALL_DEFINE2(gettimeofday, struct timeval __user *, tv,
		struct timezone __user *, tz)
L
Linus Torvalds 已提交
105 106 107 108 109 110 111 112 113 114 115 116 117 118
{
	if (likely(tv != NULL)) {
		struct timeval ktv;
		do_gettimeofday(&ktv);
		if (copy_to_user(tv, &ktv, sizeof(ktv)))
			return -EFAULT;
	}
	if (unlikely(tz != NULL)) {
		if (copy_to_user(tz, &sys_tz, sizeof(sys_tz)))
			return -EFAULT;
	}
	return 0;
}

119 120 121 122 123 124
/*
 * Indicates if there is an offset between the system clock and the hardware
 * clock/persistent clock/rtc.
 */
int persistent_clock_is_local;

L
Linus Torvalds 已提交
125 126 127
/*
 * Adjust the time obtained from the CMOS to be UTC time instead of
 * local time.
D
Daniel Walker 已提交
128
 *
L
Linus Torvalds 已提交
129 130
 * This is ugly, but preferable to the alternatives.  Otherwise we
 * would either need to write a program to do it in /etc/rc (and risk
D
Daniel Walker 已提交
131
 * confusion if the program gets run more than once; it would also be
L
Linus Torvalds 已提交
132 133 134
 * hard to make the program warp the clock precisely n hours)  or
 * compile in the timezone information into the kernel.  Bad, bad....
 *
135
 *						- TYT, 1992-01-01
L
Linus Torvalds 已提交
136 137 138 139 140
 *
 * The best thing to do is to keep the CMOS clock in universal time (UTC)
 * as real UNIX machines always do it. This avoids all headaches about
 * daylight saving times and warping kernel clocks.
 */
141
static inline void warp_clock(void)
L
Linus Torvalds 已提交
142
{
143 144
	if (sys_tz.tz_minuteswest != 0) {
		struct timespec adjust;
145

146
		persistent_clock_is_local = 1;
147 148 149
		adjust.tv_sec = sys_tz.tz_minuteswest * 60;
		adjust.tv_nsec = 0;
		timekeeping_inject_offset(&adjust);
150
	}
L
Linus Torvalds 已提交
151 152 153 154 155 156 157 158 159 160 161 162 163
}

/*
 * In case for some reason the CMOS clock has not already been running
 * in UTC, but in some local time: The first time we set the timezone,
 * we will warp the clock so that it is ticking UTC time instead of
 * local time. Presumably, if someone is setting the timezone then we
 * are running in an environment where the programs understand about
 * timezones. This should be done at boot time in the /etc/rc script,
 * as soon as possible, so that the clock can be set right. Otherwise,
 * various programs will get confused when the clock gets warped.
 */

164
int do_sys_settimeofday64(const struct timespec64 *tv, const struct timezone *tz)
L
Linus Torvalds 已提交
165 166 167 168
{
	static int firsttime = 1;
	int error = 0;

169
	if (tv && !timespec64_valid(tv))
170 171
		return -EINVAL;

172
	error = security_settime64(tv, tz);
L
Linus Torvalds 已提交
173 174 175 176
	if (error)
		return error;

	if (tz) {
177 178 179 180
		/* Verify we're witin the +-15 hrs range */
		if (tz->tz_minuteswest > 15*60 || tz->tz_minuteswest < -15*60)
			return -EINVAL;

L
Linus Torvalds 已提交
181
		sys_tz = *tz;
182
		update_vsyscall_tz();
L
Linus Torvalds 已提交
183 184 185 186 187 188 189
		if (firsttime) {
			firsttime = 0;
			if (!tv)
				warp_clock();
		}
	}
	if (tv)
190
		return do_settimeofday64(tv);
L
Linus Torvalds 已提交
191 192 193
	return 0;
}

194 195
SYSCALL_DEFINE2(settimeofday, struct timeval __user *, tv,
		struct timezone __user *, tz)
L
Linus Torvalds 已提交
196
{
197
	struct timespec64 new_ts;
L
Linus Torvalds 已提交
198 199 200 201 202 203
	struct timeval user_tv;
	struct timezone new_tz;

	if (tv) {
		if (copy_from_user(&user_tv, tv, sizeof(*tv)))
			return -EFAULT;
204 205 206 207

		if (!timeval_valid(&user_tv))
			return -EINVAL;

L
Linus Torvalds 已提交
208 209 210 211 212 213 214 215
		new_ts.tv_sec = user_tv.tv_sec;
		new_ts.tv_nsec = user_tv.tv_usec * NSEC_PER_USEC;
	}
	if (tz) {
		if (copy_from_user(&new_tz, tz, sizeof(*tz)))
			return -EFAULT;
	}

216
	return do_sys_settimeofday64(tv ? &new_ts : NULL, tz ? &new_tz : NULL);
L
Linus Torvalds 已提交
217 218
}

219
SYSCALL_DEFINE1(adjtimex, struct timex __user *, txc_p)
L
Linus Torvalds 已提交
220 221 222 223 224 225 226 227
{
	struct timex txc;		/* Local copy of parameter */
	int ret;

	/* Copy the user data space into the kernel copy
	 * structure. But bear in mind that the structures
	 * may change
	 */
228
	if (copy_from_user(&txc, txc_p, sizeof(struct timex)))
L
Linus Torvalds 已提交
229 230 231 232 233
		return -EFAULT;
	ret = do_adjtimex(&txc);
	return copy_to_user(txc_p, &txc, sizeof(struct timex)) ? -EFAULT : ret;
}

234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
#ifdef CONFIG_COMPAT

COMPAT_SYSCALL_DEFINE1(adjtimex, struct compat_timex __user *, utp)
{
	struct timex txc;
	int err, ret;

	err = compat_get_timex(&txc, utp);
	if (err)
		return err;

	ret = do_adjtimex(&txc);

	err = compat_put_timex(utp, &txc);
	if (err)
		return err;

	return ret;
}
#endif

E
Eric Dumazet 已提交
255 256 257 258 259 260
/*
 * Convert jiffies to milliseconds and back.
 *
 * Avoid unnecessary multiplications/divisions in the
 * two most common HZ cases:
 */
261
unsigned int jiffies_to_msecs(const unsigned long j)
E
Eric Dumazet 已提交
262 263 264 265 266 267
{
#if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
	return (MSEC_PER_SEC / HZ) * j;
#elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
	return (j + (HZ / MSEC_PER_SEC) - 1)/(HZ / MSEC_PER_SEC);
#else
268
# if BITS_PER_LONG == 32
269
	return (HZ_TO_MSEC_MUL32 * j) >> HZ_TO_MSEC_SHR32;
270 271 272
# else
	return (j * HZ_TO_MSEC_NUM) / HZ_TO_MSEC_DEN;
# endif
E
Eric Dumazet 已提交
273 274 275 276
#endif
}
EXPORT_SYMBOL(jiffies_to_msecs);

277
unsigned int jiffies_to_usecs(const unsigned long j)
E
Eric Dumazet 已提交
278
{
279 280 281 282 283 284 285
	/*
	 * Hz usually doesn't go much further MSEC_PER_SEC.
	 * jiffies_to_usecs() and usecs_to_jiffies() depend on that.
	 */
	BUILD_BUG_ON(HZ > USEC_PER_SEC);

#if !(USEC_PER_SEC % HZ)
E
Eric Dumazet 已提交
286 287
	return (USEC_PER_SEC / HZ) * j;
#else
288
# if BITS_PER_LONG == 32
289
	return (HZ_TO_USEC_MUL32 * j) >> HZ_TO_USEC_SHR32;
290 291 292
# else
	return (j * HZ_TO_USEC_NUM) / HZ_TO_USEC_DEN;
# endif
E
Eric Dumazet 已提交
293 294 295 296
#endif
}
EXPORT_SYMBOL(jiffies_to_usecs);

L
Linus Torvalds 已提交
297
/**
298
 * timespec_trunc - Truncate timespec to a granularity
L
Linus Torvalds 已提交
299
 * @t: Timespec
300
 * @gran: Granularity in ns.
L
Linus Torvalds 已提交
301
 *
302 303
 * Truncate a timespec to a granularity. Always rounds down. gran must
 * not be 0 nor greater than a second (NSEC_PER_SEC, or 10^9 ns).
L
Linus Torvalds 已提交
304 305 306
 */
struct timespec timespec_trunc(struct timespec t, unsigned gran)
{
307 308
	/* Avoid division in the common cases 1 ns and 1 s. */
	if (gran == 1) {
L
Linus Torvalds 已提交
309
		/* nothing */
310
	} else if (gran == NSEC_PER_SEC) {
L
Linus Torvalds 已提交
311
		t.tv_nsec = 0;
312
	} else if (gran > 1 && gran < NSEC_PER_SEC) {
L
Linus Torvalds 已提交
313
		t.tv_nsec -= t.tv_nsec % gran;
314 315
	} else {
		WARN(1, "illegal file time granularity: %u", gran);
L
Linus Torvalds 已提交
316 317 318 319 320
	}
	return t;
}
EXPORT_SYMBOL(timespec_trunc);

321 322 323
/*
 * mktime64 - Converts date to seconds.
 * Converts Gregorian date to seconds since 1970-01-01 00:00:00.
324 325 326 327 328 329 330 331 332
 * Assumes input in normal date format, i.e. 1980-12-31 23:59:59
 * => year=1980, mon=12, day=31, hour=23, min=59, sec=59.
 *
 * [For the Julian calendar (which was used in Russia before 1917,
 * Britain & colonies before 1752, anywhere else before 1582,
 * and is still in use by some communities) leave out the
 * -year/100+year/400 terms, and add 10.]
 *
 * This algorithm was first published by Gauss (I think).
333 334 335 336 337 338 339
 *
 * A leap second can be indicated by calling this function with sec as
 * 60 (allowable under ISO 8601).  The leap second is treated the same
 * as the following second since they don't exist in UNIX time.
 *
 * An encoding of midnight at the end of the day as 24:00:00 - ie. midnight
 * tomorrow - (allowable under ISO 8601) is supported.
340
 */
341 342 343
time64_t mktime64(const unsigned int year0, const unsigned int mon0,
		const unsigned int day, const unsigned int hour,
		const unsigned int min, const unsigned int sec)
344
{
345 346 347 348 349
	unsigned int mon = mon0, year = year0;

	/* 1..12 -> 11,12,1..10 */
	if (0 >= (int) (mon -= 2)) {
		mon += 12;	/* Puts Feb last since it has leap day */
350 351 352
		year -= 1;
	}

353
	return ((((time64_t)
354 355
		  (year/4 - year/100 + year/400 + 367*mon/12 + day) +
		  year*365 - 719499
356
	    )*24 + hour /* now have hours - midnight tomorrow handled here */
357 358 359
	  )*60 + min /* now have minutes */
	)*60 + sec; /* finally seconds */
}
360
EXPORT_SYMBOL(mktime64);
361

362 363 364 365 366 367 368 369 370 371 372
/**
 * set_normalized_timespec - set timespec sec and nsec parts and normalize
 *
 * @ts:		pointer to timespec variable to be set
 * @sec:	seconds to set
 * @nsec:	nanoseconds to set
 *
 * Set seconds and nanoseconds field of a timespec variable and
 * normalize to the timespec storage format
 *
 * Note: The tv_nsec part is always in the range of
373
 *	0 <= tv_nsec < NSEC_PER_SEC
374 375
 * For negative values only the tv_sec field is negative !
 */
376
void set_normalized_timespec(struct timespec *ts, time_t sec, s64 nsec)
377 378
{
	while (nsec >= NSEC_PER_SEC) {
379 380 381 382 383 384
		/*
		 * The following asm() prevents the compiler from
		 * optimising this loop into a modulo operation. See
		 * also __iter_div_u64_rem() in include/linux/time.h
		 */
		asm("" : "+rm"(nsec));
385 386 387 388
		nsec -= NSEC_PER_SEC;
		++sec;
	}
	while (nsec < 0) {
389
		asm("" : "+rm"(nsec));
390 391 392 393 394 395
		nsec += NSEC_PER_SEC;
		--sec;
	}
	ts->tv_sec = sec;
	ts->tv_nsec = nsec;
}
396
EXPORT_SYMBOL(set_normalized_timespec);
397

398 399 400 401 402 403
/**
 * ns_to_timespec - Convert nanoseconds to timespec
 * @nsec:       the nanoseconds value to be converted
 *
 * Returns the timespec representation of the nsec parameter.
 */
404
struct timespec ns_to_timespec(const s64 nsec)
405 406
{
	struct timespec ts;
R
Roman Zippel 已提交
407
	s32 rem;
408

409 410 411
	if (!nsec)
		return (struct timespec) {0, 0};

R
Roman Zippel 已提交
412 413 414 415 416 417
	ts.tv_sec = div_s64_rem(nsec, NSEC_PER_SEC, &rem);
	if (unlikely(rem < 0)) {
		ts.tv_sec--;
		rem += NSEC_PER_SEC;
	}
	ts.tv_nsec = rem;
418 419 420

	return ts;
}
421
EXPORT_SYMBOL(ns_to_timespec);
422 423 424 425 426 427 428

/**
 * ns_to_timeval - Convert nanoseconds to timeval
 * @nsec:       the nanoseconds value to be converted
 *
 * Returns the timeval representation of the nsec parameter.
 */
429
struct timeval ns_to_timeval(const s64 nsec)
430 431 432 433 434 435 436 437 438
{
	struct timespec ts = ns_to_timespec(nsec);
	struct timeval tv;

	tv.tv_sec = ts.tv_sec;
	tv.tv_usec = (suseconds_t) ts.tv_nsec / 1000;

	return tv;
}
439
EXPORT_SYMBOL(ns_to_timeval);
440

441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502
#if BITS_PER_LONG == 32
/**
 * set_normalized_timespec - set timespec sec and nsec parts and normalize
 *
 * @ts:		pointer to timespec variable to be set
 * @sec:	seconds to set
 * @nsec:	nanoseconds to set
 *
 * Set seconds and nanoseconds field of a timespec variable and
 * normalize to the timespec storage format
 *
 * Note: The tv_nsec part is always in the range of
 *	0 <= tv_nsec < NSEC_PER_SEC
 * For negative values only the tv_sec field is negative !
 */
void set_normalized_timespec64(struct timespec64 *ts, time64_t sec, s64 nsec)
{
	while (nsec >= NSEC_PER_SEC) {
		/*
		 * The following asm() prevents the compiler from
		 * optimising this loop into a modulo operation. See
		 * also __iter_div_u64_rem() in include/linux/time.h
		 */
		asm("" : "+rm"(nsec));
		nsec -= NSEC_PER_SEC;
		++sec;
	}
	while (nsec < 0) {
		asm("" : "+rm"(nsec));
		nsec += NSEC_PER_SEC;
		--sec;
	}
	ts->tv_sec = sec;
	ts->tv_nsec = nsec;
}
EXPORT_SYMBOL(set_normalized_timespec64);

/**
 * ns_to_timespec64 - Convert nanoseconds to timespec64
 * @nsec:       the nanoseconds value to be converted
 *
 * Returns the timespec64 representation of the nsec parameter.
 */
struct timespec64 ns_to_timespec64(const s64 nsec)
{
	struct timespec64 ts;
	s32 rem;

	if (!nsec)
		return (struct timespec64) {0, 0};

	ts.tv_sec = div_s64_rem(nsec, NSEC_PER_SEC, &rem);
	if (unlikely(rem < 0)) {
		ts.tv_sec--;
		rem += NSEC_PER_SEC;
	}
	ts.tv_nsec = rem;

	return ts;
}
EXPORT_SYMBOL(ns_to_timespec64);
#endif
503 504 505 506 507
/**
 * msecs_to_jiffies: - convert milliseconds to jiffies
 * @m:	time in milliseconds
 *
 * conversion is done as follows:
508 509 510 511 512 513 514
 *
 * - negative values mean 'infinite timeout' (MAX_JIFFY_OFFSET)
 *
 * - 'too large' values [that would result in larger than
 *   MAX_JIFFY_OFFSET values] mean 'infinite timeout' too.
 *
 * - all other values are converted to jiffies by either multiplying
515 516 517
 *   the input value by a factor or dividing it with a factor and
 *   handling any 32-bit overflows.
 *   for the details see __msecs_to_jiffies()
518
 *
519 520 521 522 523 524 525
 * msecs_to_jiffies() checks for the passed in value being a constant
 * via __builtin_constant_p() allowing gcc to eliminate most of the
 * code, __msecs_to_jiffies() is called if the value passed does not
 * allow constant folding and the actual conversion must be done at
 * runtime.
 * the _msecs_to_jiffies helpers are the HZ dependent conversion
 * routines found in include/linux/jiffies.h
526
 */
527
unsigned long __msecs_to_jiffies(const unsigned int m)
528
{
529 530 531 532
	/*
	 * Negative value, means infinite timeout:
	 */
	if ((int)m < 0)
533
		return MAX_JIFFY_OFFSET;
534
	return _msecs_to_jiffies(m);
535
}
536
EXPORT_SYMBOL(__msecs_to_jiffies);
537

538
unsigned long __usecs_to_jiffies(const unsigned int u)
539 540 541
{
	if (u > jiffies_to_usecs(MAX_JIFFY_OFFSET))
		return MAX_JIFFY_OFFSET;
542
	return _usecs_to_jiffies(u);
543
}
544
EXPORT_SYMBOL(__usecs_to_jiffies);
545 546 547 548 549 550

/*
 * The TICK_NSEC - 1 rounds up the value to the next resolution.  Note
 * that a remainder subtract here would not do the right thing as the
 * resolution values don't fall on second boundries.  I.e. the line:
 * nsec -= nsec % TICK_NSEC; is NOT a correct resolution rounding.
551 552 553 554
 * Note that due to the small error in the multiplier here, this
 * rounding is incorrect for sufficiently large values of tv_nsec, but
 * well formed timespecs should have tv_nsec < NSEC_PER_SEC, so we're
 * OK.
555 556 557 558 559 560
 *
 * Rather, we just shift the bits off the right.
 *
 * The >> (NSEC_JIFFIE_SC - SEC_JIFFIE_SC) converts the scaled nsec
 * value to a scaled second value.
 */
561
static unsigned long
562
__timespec64_to_jiffies(u64 sec, long nsec)
563
{
564
	nsec = nsec + TICK_NSEC - 1;
565 566 567 568 569

	if (sec >= MAX_SEC_IN_JIFFIES){
		sec = MAX_SEC_IN_JIFFIES;
		nsec = 0;
	}
570
	return ((sec * SEC_CONVERSION) +
571 572 573 574
		(((u64)nsec * NSEC_CONVERSION) >>
		 (NSEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;

}
575

576 577
static unsigned long
__timespec_to_jiffies(unsigned long sec, long nsec)
578
{
579
	return __timespec64_to_jiffies((u64)sec, nsec);
580 581
}

582 583 584 585 586 587
unsigned long
timespec64_to_jiffies(const struct timespec64 *value)
{
	return __timespec64_to_jiffies(value->tv_sec, value->tv_nsec);
}
EXPORT_SYMBOL(timespec64_to_jiffies);
588 589

void
590
jiffies_to_timespec64(const unsigned long jiffies, struct timespec64 *value)
591 592 593 594 595
{
	/*
	 * Convert jiffies to nanoseconds and separate with
	 * one divide.
	 */
R
Roman Zippel 已提交
596 597 598 599
	u32 rem;
	value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC,
				    NSEC_PER_SEC, &rem);
	value->tv_nsec = rem;
600
}
601
EXPORT_SYMBOL(jiffies_to_timespec64);
602

603 604 605 606 607 608 609 610 611 612 613 614
/*
 * We could use a similar algorithm to timespec_to_jiffies (with a
 * different multiplier for usec instead of nsec). But this has a
 * problem with rounding: we can't exactly add TICK_NSEC - 1 to the
 * usec value, since it's not necessarily integral.
 *
 * We could instead round in the intermediate scaled representation
 * (i.e. in units of 1/2^(large scale) jiffies) but that's also
 * perilous: the scaling introduces a small positive error, which
 * combined with a division-rounding-upward (i.e. adding 2^(scale) - 1
 * units to the intermediate before shifting) leads to accidental
 * overflow and overestimates.
615
 *
616 617
 * At the cost of one additional multiplication by a constant, just
 * use the timespec implementation.
618 619 620 621
 */
unsigned long
timeval_to_jiffies(const struct timeval *value)
{
622 623
	return __timespec_to_jiffies(value->tv_sec,
				     value->tv_usec * NSEC_PER_USEC);
624
}
625
EXPORT_SYMBOL(timeval_to_jiffies);
626 627 628 629 630 631 632

void jiffies_to_timeval(const unsigned long jiffies, struct timeval *value)
{
	/*
	 * Convert jiffies to nanoseconds and separate with
	 * one divide.
	 */
R
Roman Zippel 已提交
633
	u32 rem;
634

R
Roman Zippel 已提交
635 636 637
	value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC,
				    NSEC_PER_SEC, &rem);
	value->tv_usec = rem / NSEC_PER_USEC;
638
}
639
EXPORT_SYMBOL(jiffies_to_timeval);
640 641 642 643

/*
 * Convert jiffies/jiffies_64 to clock_t and back.
 */
644
clock_t jiffies_to_clock_t(unsigned long x)
645 646
{
#if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
647 648 649
# if HZ < USER_HZ
	return x * (USER_HZ / HZ);
# else
650
	return x / (HZ / USER_HZ);
651
# endif
652
#else
R
Roman Zippel 已提交
653
	return div_u64((u64)x * TICK_NSEC, NSEC_PER_SEC / USER_HZ);
654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669
#endif
}
EXPORT_SYMBOL(jiffies_to_clock_t);

unsigned long clock_t_to_jiffies(unsigned long x)
{
#if (HZ % USER_HZ)==0
	if (x >= ~0UL / (HZ / USER_HZ))
		return ~0UL;
	return x * (HZ / USER_HZ);
#else
	/* Don't worry about loss of precision here .. */
	if (x >= ~0UL / HZ * USER_HZ)
		return ~0UL;

	/* .. but do try to contain it here */
R
Roman Zippel 已提交
670
	return div_u64((u64)x * HZ, USER_HZ);
671 672 673 674 675 676 677
#endif
}
EXPORT_SYMBOL(clock_t_to_jiffies);

u64 jiffies_64_to_clock_t(u64 x)
{
#if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
678
# if HZ < USER_HZ
R
Roman Zippel 已提交
679
	x = div_u64(x * USER_HZ, HZ);
680
# elif HZ > USER_HZ
R
Roman Zippel 已提交
681
	x = div_u64(x, HZ / USER_HZ);
682 683
# else
	/* Nothing to do */
684
# endif
685 686 687 688 689 690
#else
	/*
	 * There are better ways that don't overflow early,
	 * but even this doesn't overflow in hundreds of years
	 * in 64 bits, so..
	 */
R
Roman Zippel 已提交
691
	x = div_u64(x * TICK_NSEC, (NSEC_PER_SEC / USER_HZ));
692 693 694 695 696 697 698 699
#endif
	return x;
}
EXPORT_SYMBOL(jiffies_64_to_clock_t);

u64 nsec_to_clock_t(u64 x)
{
#if (NSEC_PER_SEC % USER_HZ) == 0
R
Roman Zippel 已提交
700
	return div_u64(x, NSEC_PER_SEC / USER_HZ);
701
#elif (USER_HZ % 512) == 0
R
Roman Zippel 已提交
702
	return div_u64(x * USER_HZ / 512, NSEC_PER_SEC / 512);
703 704 705 706 707 708
#else
	/*
         * max relative error 5.7e-8 (1.8s per year) for USER_HZ <= 1024,
         * overflow after 64.99 years.
         * exact for HZ=60, 72, 90, 120, 144, 180, 300, 600, 900, ...
         */
R
Roman Zippel 已提交
709
	return div_u64(x * 9, (9ull * NSEC_PER_SEC + (USER_HZ / 2)) / USER_HZ);
710 711 712
#endif
}

713 714 715 716 717 718 719 720 721 722
u64 jiffies64_to_nsecs(u64 j)
{
#if !(NSEC_PER_SEC % HZ)
	return (NSEC_PER_SEC / HZ) * j;
# else
	return div_u64(j * HZ_TO_NSEC_NUM, HZ_TO_NSEC_DEN);
#endif
}
EXPORT_SYMBOL(jiffies64_to_nsecs);

723
/**
724
 * nsecs_to_jiffies64 - Convert nsecs in u64 to jiffies64
725 726 727 728 729 730 731 732 733 734 735
 *
 * @n:	nsecs in u64
 *
 * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
 * And this doesn't return MAX_JIFFY_OFFSET since this function is designed
 * for scheduler, not for use in device drivers to calculate timeout value.
 *
 * note:
 *   NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
 *   ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
 */
736
u64 nsecs_to_jiffies64(u64 n)
737 738 739 740 741 742 743 744 745 746 747 748 749 750 751
{
#if (NSEC_PER_SEC % HZ) == 0
	/* Common case, HZ = 100, 128, 200, 250, 256, 500, 512, 1000 etc. */
	return div_u64(n, NSEC_PER_SEC / HZ);
#elif (HZ % 512) == 0
	/* overflow after 292 years if HZ = 1024 */
	return div_u64(n * HZ / 512, NSEC_PER_SEC / 512);
#else
	/*
	 * Generic case - optimized for cases where HZ is a multiple of 3.
	 * overflow after 64.99 years, exact for HZ = 60, 72, 90, 120 etc.
	 */
	return div_u64(n * 9, (9ull * NSEC_PER_SEC + HZ / 2) / HZ);
#endif
}
752
EXPORT_SYMBOL(nsecs_to_jiffies64);
753

754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770
/**
 * nsecs_to_jiffies - Convert nsecs in u64 to jiffies
 *
 * @n:	nsecs in u64
 *
 * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
 * And this doesn't return MAX_JIFFY_OFFSET since this function is designed
 * for scheduler, not for use in device drivers to calculate timeout value.
 *
 * note:
 *   NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
 *   ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
 */
unsigned long nsecs_to_jiffies(u64 n)
{
	return (unsigned long)nsecs_to_jiffies64(n);
}
771
EXPORT_SYMBOL_GPL(nsecs_to_jiffies);
772

773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789
/*
 * Add two timespec values and do a safety check for overflow.
 * It's assumed that both values are valid (>= 0)
 */
struct timespec timespec_add_safe(const struct timespec lhs,
				  const struct timespec rhs)
{
	struct timespec res;

	set_normalized_timespec(&res, lhs.tv_sec + rhs.tv_sec,
				lhs.tv_nsec + rhs.tv_nsec);

	if (res.tv_sec < lhs.tv_sec || res.tv_sec < rhs.tv_sec)
		res.tv_sec = TIME_T_MAX;

	return res;
}
790 791 792 793 794 795 796 797 798 799 800

/*
 * Add two timespec64 values and do a safety check for overflow.
 * It's assumed that both values are valid (>= 0).
 * And, each timespec64 is in normalized form.
 */
struct timespec64 timespec64_add_safe(const struct timespec64 lhs,
				const struct timespec64 rhs)
{
	struct timespec64 res;

801
	set_normalized_timespec64(&res, (timeu64_t) lhs.tv_sec + rhs.tv_sec,
802 803 804 805 806 807 808 809 810
			lhs.tv_nsec + rhs.tv_nsec);

	if (unlikely(res.tv_sec < lhs.tv_sec || res.tv_sec < rhs.tv_sec)) {
		res.tv_sec = TIME64_MAX;
		res.tv_nsec = 0;
	}

	return res;
}