time.c 23.7 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11
/*
 *  linux/kernel/time.c
 *
 *  Copyright (C) 1991, 1992  Linus Torvalds
 *
 *  This file contains the interface functions for the various
 *  time related system calls: time, stime, gettimeofday, settimeofday,
 *			       adjtime
 */
/*
 * Modification history kernel/time.c
D
Daniel Walker 已提交
12
 *
L
Linus Torvalds 已提交
13
 * 1993-09-02    Philip Gladstone
14
 *      Created file with time related functions from sched/core.c and adjtimex()
L
Linus Torvalds 已提交
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
 * 1993-10-08    Torsten Duwe
 *      adjtime interface update and CMOS clock write code
 * 1995-08-13    Torsten Duwe
 *      kernel PLL updated to 1994-12-13 specs (rfc-1589)
 * 1999-01-16    Ulrich Windl
 *	Introduced error checking for many cases in adjtimex().
 *	Updated NTP code according to technical memorandum Jan '96
 *	"A Kernel Model for Precision Timekeeping" by Dave Mills
 *	Allow time_constant larger than MAXTC(6) for NTP v4 (MAXTC == 10)
 *	(Even though the technical memorandum forbids it)
 * 2004-07-14	 Christoph Lameter
 *	Added getnstimeofday to allow the posix timer functions to return
 *	with nanosecond accuracy
 */

30
#include <linux/export.h>
L
Linus Torvalds 已提交
31
#include <linux/timex.h>
32
#include <linux/capability.h>
33
#include <linux/timekeeper_internal.h>
L
Linus Torvalds 已提交
34 35 36 37
#include <linux/errno.h>
#include <linux/syscalls.h>
#include <linux/security.h>
#include <linux/fs.h>
R
Roman Zippel 已提交
38
#include <linux/math64.h>
39
#include <linux/ptrace.h>
L
Linus Torvalds 已提交
40

41
#include <linux/uaccess.h>
42
#include <linux/compat.h>
L
Linus Torvalds 已提交
43 44
#include <asm/unistd.h>

45
#include <generated/timeconst.h>
46
#include "timekeeping.h"
47

D
Daniel Walker 已提交
48
/*
L
Linus Torvalds 已提交
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
 * The timezone where the local system is located.  Used as a default by some
 * programs who obtain this value by using gettimeofday.
 */
struct timezone sys_tz;

EXPORT_SYMBOL(sys_tz);

#ifdef __ARCH_WANT_SYS_TIME

/*
 * sys_time() can be implemented in user-level using
 * sys_gettimeofday().  Is this for backwards compatibility?  If so,
 * why not move it into the appropriate arch directory (for those
 * architectures that need it).
 */
64
SYSCALL_DEFINE1(time, time_t __user *, tloc)
L
Linus Torvalds 已提交
65
{
66
	time_t i = (time_t)ktime_get_real_seconds();
L
Linus Torvalds 已提交
67 68

	if (tloc) {
L
Linus Torvalds 已提交
69
		if (put_user(i,tloc))
70
			return -EFAULT;
L
Linus Torvalds 已提交
71
	}
72
	force_successful_syscall_return();
L
Linus Torvalds 已提交
73 74 75 76 77 78 79 80 81
	return i;
}

/*
 * sys_stime() can be implemented in user-level using
 * sys_settimeofday().  Is this for backwards compatibility?  If so,
 * why not move it into the appropriate arch directory (for those
 * architectures that need it).
 */
D
Daniel Walker 已提交
82

83
SYSCALL_DEFINE1(stime, time_t __user *, tptr)
L
Linus Torvalds 已提交
84
{
85
	struct timespec64 tv;
L
Linus Torvalds 已提交
86 87 88 89 90 91 92
	int err;

	if (get_user(tv.tv_sec, tptr))
		return -EFAULT;

	tv.tv_nsec = 0;

93
	err = security_settime64(&tv, NULL);
L
Linus Torvalds 已提交
94 95 96
	if (err)
		return err;

97
	do_settimeofday64(&tv);
L
Linus Torvalds 已提交
98 99 100 101 102
	return 0;
}

#endif /* __ARCH_WANT_SYS_TIME */

103 104 105 106 107 108 109 110
#ifdef CONFIG_COMPAT
#ifdef __ARCH_WANT_COMPAT_SYS_TIME

/* compat_time_t is a 32 bit "long" and needs to get converted. */
COMPAT_SYSCALL_DEFINE1(time, compat_time_t __user *, tloc)
{
	compat_time_t i;

111
	i = (compat_time_t)ktime_get_real_seconds();
112 113 114 115 116 117 118 119 120 121 122

	if (tloc) {
		if (put_user(i,tloc))
			return -EFAULT;
	}
	force_successful_syscall_return();
	return i;
}

COMPAT_SYSCALL_DEFINE1(stime, compat_time_t __user *, tptr)
{
123
	struct timespec64 tv;
124 125 126 127 128 129 130
	int err;

	if (get_user(tv.tv_sec, tptr))
		return -EFAULT;

	tv.tv_nsec = 0;

131
	err = security_settime64(&tv, NULL);
132 133 134
	if (err)
		return err;

135
	do_settimeofday64(&tv);
136 137 138 139 140 141
	return 0;
}

#endif /* __ARCH_WANT_COMPAT_SYS_TIME */
#endif

142 143
SYSCALL_DEFINE2(gettimeofday, struct timeval __user *, tv,
		struct timezone __user *, tz)
L
Linus Torvalds 已提交
144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
{
	if (likely(tv != NULL)) {
		struct timeval ktv;
		do_gettimeofday(&ktv);
		if (copy_to_user(tv, &ktv, sizeof(ktv)))
			return -EFAULT;
	}
	if (unlikely(tz != NULL)) {
		if (copy_to_user(tz, &sys_tz, sizeof(sys_tz)))
			return -EFAULT;
	}
	return 0;
}

/*
 * In case for some reason the CMOS clock has not already been running
 * in UTC, but in some local time: The first time we set the timezone,
 * we will warp the clock so that it is ticking UTC time instead of
 * local time. Presumably, if someone is setting the timezone then we
 * are running in an environment where the programs understand about
 * timezones. This should be done at boot time in the /etc/rc script,
 * as soon as possible, so that the clock can be set right. Otherwise,
 * various programs will get confused when the clock gets warped.
 */

169
int do_sys_settimeofday64(const struct timespec64 *tv, const struct timezone *tz)
L
Linus Torvalds 已提交
170 171 172 173
{
	static int firsttime = 1;
	int error = 0;

174
	if (tv && !timespec64_valid(tv))
175 176
		return -EINVAL;

177
	error = security_settime64(tv, tz);
L
Linus Torvalds 已提交
178 179 180 181
	if (error)
		return error;

	if (tz) {
182 183 184 185
		/* Verify we're witin the +-15 hrs range */
		if (tz->tz_minuteswest > 15*60 || tz->tz_minuteswest < -15*60)
			return -EINVAL;

L
Linus Torvalds 已提交
186
		sys_tz = *tz;
187
		update_vsyscall_tz();
L
Linus Torvalds 已提交
188 189 190
		if (firsttime) {
			firsttime = 0;
			if (!tv)
191
				timekeeping_warp_clock();
L
Linus Torvalds 已提交
192 193 194
		}
	}
	if (tv)
195
		return do_settimeofday64(tv);
L
Linus Torvalds 已提交
196 197 198
	return 0;
}

199 200
SYSCALL_DEFINE2(settimeofday, struct timeval __user *, tv,
		struct timezone __user *, tz)
L
Linus Torvalds 已提交
201
{
202
	struct timespec64 new_ts;
L
Linus Torvalds 已提交
203 204 205 206 207 208
	struct timeval user_tv;
	struct timezone new_tz;

	if (tv) {
		if (copy_from_user(&user_tv, tv, sizeof(*tv)))
			return -EFAULT;
209 210 211 212

		if (!timeval_valid(&user_tv))
			return -EINVAL;

L
Linus Torvalds 已提交
213 214 215 216 217 218 219 220
		new_ts.tv_sec = user_tv.tv_sec;
		new_ts.tv_nsec = user_tv.tv_usec * NSEC_PER_USEC;
	}
	if (tz) {
		if (copy_from_user(&new_tz, tz, sizeof(*tz)))
			return -EFAULT;
	}

221
	return do_sys_settimeofday64(tv ? &new_ts : NULL, tz ? &new_tz : NULL);
L
Linus Torvalds 已提交
222 223
}

224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
#ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE2(gettimeofday, struct compat_timeval __user *, tv,
		       struct timezone __user *, tz)
{
	if (tv) {
		struct timeval ktv;

		do_gettimeofday(&ktv);
		if (compat_put_timeval(&ktv, tv))
			return -EFAULT;
	}
	if (tz) {
		if (copy_to_user(tz, &sys_tz, sizeof(sys_tz)))
			return -EFAULT;
	}

	return 0;
}

COMPAT_SYSCALL_DEFINE2(settimeofday, struct compat_timeval __user *, tv,
		       struct timezone __user *, tz)
{
	struct timespec64 new_ts;
	struct timeval user_tv;
	struct timezone new_tz;

	if (tv) {
		if (compat_get_timeval(&user_tv, tv))
			return -EFAULT;
		new_ts.tv_sec = user_tv.tv_sec;
		new_ts.tv_nsec = user_tv.tv_usec * NSEC_PER_USEC;
	}
	if (tz) {
		if (copy_from_user(&new_tz, tz, sizeof(*tz)))
			return -EFAULT;
	}

	return do_sys_settimeofday64(tv ? &new_ts : NULL, tz ? &new_tz : NULL);
}
#endif

265
SYSCALL_DEFINE1(adjtimex, struct timex __user *, txc_p)
L
Linus Torvalds 已提交
266 267 268 269 270 271 272 273
{
	struct timex txc;		/* Local copy of parameter */
	int ret;

	/* Copy the user data space into the kernel copy
	 * structure. But bear in mind that the structures
	 * may change
	 */
274
	if (copy_from_user(&txc, txc_p, sizeof(struct timex)))
L
Linus Torvalds 已提交
275 276 277 278 279
		return -EFAULT;
	ret = do_adjtimex(&txc);
	return copy_to_user(txc_p, &txc, sizeof(struct timex)) ? -EFAULT : ret;
}

280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
#ifdef CONFIG_COMPAT

COMPAT_SYSCALL_DEFINE1(adjtimex, struct compat_timex __user *, utp)
{
	struct timex txc;
	int err, ret;

	err = compat_get_timex(&txc, utp);
	if (err)
		return err;

	ret = do_adjtimex(&txc);

	err = compat_put_timex(utp, &txc);
	if (err)
		return err;

	return ret;
}
#endif

E
Eric Dumazet 已提交
301 302 303 304 305 306
/*
 * Convert jiffies to milliseconds and back.
 *
 * Avoid unnecessary multiplications/divisions in the
 * two most common HZ cases:
 */
307
unsigned int jiffies_to_msecs(const unsigned long j)
E
Eric Dumazet 已提交
308 309 310 311 312 313
{
#if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
	return (MSEC_PER_SEC / HZ) * j;
#elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
	return (j + (HZ / MSEC_PER_SEC) - 1)/(HZ / MSEC_PER_SEC);
#else
314
# if BITS_PER_LONG == 32
315
	return (HZ_TO_MSEC_MUL32 * j) >> HZ_TO_MSEC_SHR32;
316 317 318
# else
	return (j * HZ_TO_MSEC_NUM) / HZ_TO_MSEC_DEN;
# endif
E
Eric Dumazet 已提交
319 320 321 322
#endif
}
EXPORT_SYMBOL(jiffies_to_msecs);

323
unsigned int jiffies_to_usecs(const unsigned long j)
E
Eric Dumazet 已提交
324
{
325 326 327 328 329 330 331
	/*
	 * Hz usually doesn't go much further MSEC_PER_SEC.
	 * jiffies_to_usecs() and usecs_to_jiffies() depend on that.
	 */
	BUILD_BUG_ON(HZ > USEC_PER_SEC);

#if !(USEC_PER_SEC % HZ)
E
Eric Dumazet 已提交
332 333
	return (USEC_PER_SEC / HZ) * j;
#else
334
# if BITS_PER_LONG == 32
335
	return (HZ_TO_USEC_MUL32 * j) >> HZ_TO_USEC_SHR32;
336 337 338
# else
	return (j * HZ_TO_USEC_NUM) / HZ_TO_USEC_DEN;
# endif
E
Eric Dumazet 已提交
339 340 341 342
#endif
}
EXPORT_SYMBOL(jiffies_to_usecs);

L
Linus Torvalds 已提交
343
/**
344
 * timespec_trunc - Truncate timespec to a granularity
L
Linus Torvalds 已提交
345
 * @t: Timespec
346
 * @gran: Granularity in ns.
L
Linus Torvalds 已提交
347
 *
348 349
 * Truncate a timespec to a granularity. Always rounds down. gran must
 * not be 0 nor greater than a second (NSEC_PER_SEC, or 10^9 ns).
L
Linus Torvalds 已提交
350 351 352
 */
struct timespec timespec_trunc(struct timespec t, unsigned gran)
{
353 354
	/* Avoid division in the common cases 1 ns and 1 s. */
	if (gran == 1) {
L
Linus Torvalds 已提交
355
		/* nothing */
356
	} else if (gran == NSEC_PER_SEC) {
L
Linus Torvalds 已提交
357
		t.tv_nsec = 0;
358
	} else if (gran > 1 && gran < NSEC_PER_SEC) {
L
Linus Torvalds 已提交
359
		t.tv_nsec -= t.tv_nsec % gran;
360 361
	} else {
		WARN(1, "illegal file time granularity: %u", gran);
L
Linus Torvalds 已提交
362 363 364 365 366
	}
	return t;
}
EXPORT_SYMBOL(timespec_trunc);

367 368 369
/*
 * mktime64 - Converts date to seconds.
 * Converts Gregorian date to seconds since 1970-01-01 00:00:00.
370 371 372 373 374 375 376 377 378
 * Assumes input in normal date format, i.e. 1980-12-31 23:59:59
 * => year=1980, mon=12, day=31, hour=23, min=59, sec=59.
 *
 * [For the Julian calendar (which was used in Russia before 1917,
 * Britain & colonies before 1752, anywhere else before 1582,
 * and is still in use by some communities) leave out the
 * -year/100+year/400 terms, and add 10.]
 *
 * This algorithm was first published by Gauss (I think).
379 380 381 382 383 384 385
 *
 * A leap second can be indicated by calling this function with sec as
 * 60 (allowable under ISO 8601).  The leap second is treated the same
 * as the following second since they don't exist in UNIX time.
 *
 * An encoding of midnight at the end of the day as 24:00:00 - ie. midnight
 * tomorrow - (allowable under ISO 8601) is supported.
386
 */
387 388 389
time64_t mktime64(const unsigned int year0, const unsigned int mon0,
		const unsigned int day, const unsigned int hour,
		const unsigned int min, const unsigned int sec)
390
{
391 392 393 394 395
	unsigned int mon = mon0, year = year0;

	/* 1..12 -> 11,12,1..10 */
	if (0 >= (int) (mon -= 2)) {
		mon += 12;	/* Puts Feb last since it has leap day */
396 397 398
		year -= 1;
	}

399
	return ((((time64_t)
400 401
		  (year/4 - year/100 + year/400 + 367*mon/12 + day) +
		  year*365 - 719499
402
	    )*24 + hour /* now have hours - midnight tomorrow handled here */
403 404 405
	  )*60 + min /* now have minutes */
	)*60 + sec; /* finally seconds */
}
406
EXPORT_SYMBOL(mktime64);
407

408 409 410 411 412 413 414 415 416 417 418
/**
 * set_normalized_timespec - set timespec sec and nsec parts and normalize
 *
 * @ts:		pointer to timespec variable to be set
 * @sec:	seconds to set
 * @nsec:	nanoseconds to set
 *
 * Set seconds and nanoseconds field of a timespec variable and
 * normalize to the timespec storage format
 *
 * Note: The tv_nsec part is always in the range of
419
 *	0 <= tv_nsec < NSEC_PER_SEC
420 421
 * For negative values only the tv_sec field is negative !
 */
422
void set_normalized_timespec(struct timespec *ts, time_t sec, s64 nsec)
423 424
{
	while (nsec >= NSEC_PER_SEC) {
425 426 427 428 429 430
		/*
		 * The following asm() prevents the compiler from
		 * optimising this loop into a modulo operation. See
		 * also __iter_div_u64_rem() in include/linux/time.h
		 */
		asm("" : "+rm"(nsec));
431 432 433 434
		nsec -= NSEC_PER_SEC;
		++sec;
	}
	while (nsec < 0) {
435
		asm("" : "+rm"(nsec));
436 437 438 439 440 441
		nsec += NSEC_PER_SEC;
		--sec;
	}
	ts->tv_sec = sec;
	ts->tv_nsec = nsec;
}
442
EXPORT_SYMBOL(set_normalized_timespec);
443

444 445 446 447 448 449
/**
 * ns_to_timespec - Convert nanoseconds to timespec
 * @nsec:       the nanoseconds value to be converted
 *
 * Returns the timespec representation of the nsec parameter.
 */
450
struct timespec ns_to_timespec(const s64 nsec)
451 452
{
	struct timespec ts;
R
Roman Zippel 已提交
453
	s32 rem;
454

455 456 457
	if (!nsec)
		return (struct timespec) {0, 0};

R
Roman Zippel 已提交
458 459 460 461 462 463
	ts.tv_sec = div_s64_rem(nsec, NSEC_PER_SEC, &rem);
	if (unlikely(rem < 0)) {
		ts.tv_sec--;
		rem += NSEC_PER_SEC;
	}
	ts.tv_nsec = rem;
464 465 466

	return ts;
}
467
EXPORT_SYMBOL(ns_to_timespec);
468 469 470 471 472 473 474

/**
 * ns_to_timeval - Convert nanoseconds to timeval
 * @nsec:       the nanoseconds value to be converted
 *
 * Returns the timeval representation of the nsec parameter.
 */
475
struct timeval ns_to_timeval(const s64 nsec)
476 477 478 479 480 481 482 483 484
{
	struct timespec ts = ns_to_timespec(nsec);
	struct timeval tv;

	tv.tv_sec = ts.tv_sec;
	tv.tv_usec = (suseconds_t) ts.tv_nsec / 1000;

	return tv;
}
485
EXPORT_SYMBOL(ns_to_timeval);
486

487 488 489 490 491 492 493 494 495 496 497 498
struct __kernel_old_timeval ns_to_kernel_old_timeval(const s64 nsec)
{
	struct timespec64 ts = ns_to_timespec64(nsec);
	struct __kernel_old_timeval tv;

	tv.tv_sec = ts.tv_sec;
	tv.tv_usec = (suseconds_t)ts.tv_nsec / 1000;

	return tv;
}
EXPORT_SYMBOL(ns_to_kernel_old_timeval);

499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558
/**
 * set_normalized_timespec - set timespec sec and nsec parts and normalize
 *
 * @ts:		pointer to timespec variable to be set
 * @sec:	seconds to set
 * @nsec:	nanoseconds to set
 *
 * Set seconds and nanoseconds field of a timespec variable and
 * normalize to the timespec storage format
 *
 * Note: The tv_nsec part is always in the range of
 *	0 <= tv_nsec < NSEC_PER_SEC
 * For negative values only the tv_sec field is negative !
 */
void set_normalized_timespec64(struct timespec64 *ts, time64_t sec, s64 nsec)
{
	while (nsec >= NSEC_PER_SEC) {
		/*
		 * The following asm() prevents the compiler from
		 * optimising this loop into a modulo operation. See
		 * also __iter_div_u64_rem() in include/linux/time.h
		 */
		asm("" : "+rm"(nsec));
		nsec -= NSEC_PER_SEC;
		++sec;
	}
	while (nsec < 0) {
		asm("" : "+rm"(nsec));
		nsec += NSEC_PER_SEC;
		--sec;
	}
	ts->tv_sec = sec;
	ts->tv_nsec = nsec;
}
EXPORT_SYMBOL(set_normalized_timespec64);

/**
 * ns_to_timespec64 - Convert nanoseconds to timespec64
 * @nsec:       the nanoseconds value to be converted
 *
 * Returns the timespec64 representation of the nsec parameter.
 */
struct timespec64 ns_to_timespec64(const s64 nsec)
{
	struct timespec64 ts;
	s32 rem;

	if (!nsec)
		return (struct timespec64) {0, 0};

	ts.tv_sec = div_s64_rem(nsec, NSEC_PER_SEC, &rem);
	if (unlikely(rem < 0)) {
		ts.tv_sec--;
		rem += NSEC_PER_SEC;
	}
	ts.tv_nsec = rem;

	return ts;
}
EXPORT_SYMBOL(ns_to_timespec64);
559

560 561 562 563 564
/**
 * msecs_to_jiffies: - convert milliseconds to jiffies
 * @m:	time in milliseconds
 *
 * conversion is done as follows:
565 566 567 568 569 570 571
 *
 * - negative values mean 'infinite timeout' (MAX_JIFFY_OFFSET)
 *
 * - 'too large' values [that would result in larger than
 *   MAX_JIFFY_OFFSET values] mean 'infinite timeout' too.
 *
 * - all other values are converted to jiffies by either multiplying
572 573 574
 *   the input value by a factor or dividing it with a factor and
 *   handling any 32-bit overflows.
 *   for the details see __msecs_to_jiffies()
575
 *
576 577 578 579 580 581 582
 * msecs_to_jiffies() checks for the passed in value being a constant
 * via __builtin_constant_p() allowing gcc to eliminate most of the
 * code, __msecs_to_jiffies() is called if the value passed does not
 * allow constant folding and the actual conversion must be done at
 * runtime.
 * the _msecs_to_jiffies helpers are the HZ dependent conversion
 * routines found in include/linux/jiffies.h
583
 */
584
unsigned long __msecs_to_jiffies(const unsigned int m)
585
{
586 587 588 589
	/*
	 * Negative value, means infinite timeout:
	 */
	if ((int)m < 0)
590
		return MAX_JIFFY_OFFSET;
591
	return _msecs_to_jiffies(m);
592
}
593
EXPORT_SYMBOL(__msecs_to_jiffies);
594

595
unsigned long __usecs_to_jiffies(const unsigned int u)
596 597 598
{
	if (u > jiffies_to_usecs(MAX_JIFFY_OFFSET))
		return MAX_JIFFY_OFFSET;
599
	return _usecs_to_jiffies(u);
600
}
601
EXPORT_SYMBOL(__usecs_to_jiffies);
602 603 604 605 606 607

/*
 * The TICK_NSEC - 1 rounds up the value to the next resolution.  Note
 * that a remainder subtract here would not do the right thing as the
 * resolution values don't fall on second boundries.  I.e. the line:
 * nsec -= nsec % TICK_NSEC; is NOT a correct resolution rounding.
608 609 610 611
 * Note that due to the small error in the multiplier here, this
 * rounding is incorrect for sufficiently large values of tv_nsec, but
 * well formed timespecs should have tv_nsec < NSEC_PER_SEC, so we're
 * OK.
612 613 614 615 616 617
 *
 * Rather, we just shift the bits off the right.
 *
 * The >> (NSEC_JIFFIE_SC - SEC_JIFFIE_SC) converts the scaled nsec
 * value to a scaled second value.
 */
618
static unsigned long
619
__timespec64_to_jiffies(u64 sec, long nsec)
620
{
621
	nsec = nsec + TICK_NSEC - 1;
622 623 624 625 626

	if (sec >= MAX_SEC_IN_JIFFIES){
		sec = MAX_SEC_IN_JIFFIES;
		nsec = 0;
	}
627
	return ((sec * SEC_CONVERSION) +
628 629 630 631
		(((u64)nsec * NSEC_CONVERSION) >>
		 (NSEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;

}
632

633 634
static unsigned long
__timespec_to_jiffies(unsigned long sec, long nsec)
635
{
636
	return __timespec64_to_jiffies((u64)sec, nsec);
637 638
}

639 640 641 642 643 644
unsigned long
timespec64_to_jiffies(const struct timespec64 *value)
{
	return __timespec64_to_jiffies(value->tv_sec, value->tv_nsec);
}
EXPORT_SYMBOL(timespec64_to_jiffies);
645 646

void
647
jiffies_to_timespec64(const unsigned long jiffies, struct timespec64 *value)
648 649 650 651 652
{
	/*
	 * Convert jiffies to nanoseconds and separate with
	 * one divide.
	 */
R
Roman Zippel 已提交
653 654 655 656
	u32 rem;
	value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC,
				    NSEC_PER_SEC, &rem);
	value->tv_nsec = rem;
657
}
658
EXPORT_SYMBOL(jiffies_to_timespec64);
659

660 661 662 663 664 665 666 667 668 669 670 671
/*
 * We could use a similar algorithm to timespec_to_jiffies (with a
 * different multiplier for usec instead of nsec). But this has a
 * problem with rounding: we can't exactly add TICK_NSEC - 1 to the
 * usec value, since it's not necessarily integral.
 *
 * We could instead round in the intermediate scaled representation
 * (i.e. in units of 1/2^(large scale) jiffies) but that's also
 * perilous: the scaling introduces a small positive error, which
 * combined with a division-rounding-upward (i.e. adding 2^(scale) - 1
 * units to the intermediate before shifting) leads to accidental
 * overflow and overestimates.
672
 *
673 674
 * At the cost of one additional multiplication by a constant, just
 * use the timespec implementation.
675 676 677 678
 */
unsigned long
timeval_to_jiffies(const struct timeval *value)
{
679 680
	return __timespec_to_jiffies(value->tv_sec,
				     value->tv_usec * NSEC_PER_USEC);
681
}
682
EXPORT_SYMBOL(timeval_to_jiffies);
683 684 685 686 687 688 689

void jiffies_to_timeval(const unsigned long jiffies, struct timeval *value)
{
	/*
	 * Convert jiffies to nanoseconds and separate with
	 * one divide.
	 */
R
Roman Zippel 已提交
690
	u32 rem;
691

R
Roman Zippel 已提交
692 693 694
	value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC,
				    NSEC_PER_SEC, &rem);
	value->tv_usec = rem / NSEC_PER_USEC;
695
}
696
EXPORT_SYMBOL(jiffies_to_timeval);
697 698 699 700

/*
 * Convert jiffies/jiffies_64 to clock_t and back.
 */
701
clock_t jiffies_to_clock_t(unsigned long x)
702 703
{
#if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
704 705 706
# if HZ < USER_HZ
	return x * (USER_HZ / HZ);
# else
707
	return x / (HZ / USER_HZ);
708
# endif
709
#else
R
Roman Zippel 已提交
710
	return div_u64((u64)x * TICK_NSEC, NSEC_PER_SEC / USER_HZ);
711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726
#endif
}
EXPORT_SYMBOL(jiffies_to_clock_t);

unsigned long clock_t_to_jiffies(unsigned long x)
{
#if (HZ % USER_HZ)==0
	if (x >= ~0UL / (HZ / USER_HZ))
		return ~0UL;
	return x * (HZ / USER_HZ);
#else
	/* Don't worry about loss of precision here .. */
	if (x >= ~0UL / HZ * USER_HZ)
		return ~0UL;

	/* .. but do try to contain it here */
R
Roman Zippel 已提交
727
	return div_u64((u64)x * HZ, USER_HZ);
728 729 730 731 732 733 734
#endif
}
EXPORT_SYMBOL(clock_t_to_jiffies);

u64 jiffies_64_to_clock_t(u64 x)
{
#if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
735
# if HZ < USER_HZ
R
Roman Zippel 已提交
736
	x = div_u64(x * USER_HZ, HZ);
737
# elif HZ > USER_HZ
R
Roman Zippel 已提交
738
	x = div_u64(x, HZ / USER_HZ);
739 740
# else
	/* Nothing to do */
741
# endif
742 743 744 745 746 747
#else
	/*
	 * There are better ways that don't overflow early,
	 * but even this doesn't overflow in hundreds of years
	 * in 64 bits, so..
	 */
R
Roman Zippel 已提交
748
	x = div_u64(x * TICK_NSEC, (NSEC_PER_SEC / USER_HZ));
749 750 751 752 753 754 755 756
#endif
	return x;
}
EXPORT_SYMBOL(jiffies_64_to_clock_t);

u64 nsec_to_clock_t(u64 x)
{
#if (NSEC_PER_SEC % USER_HZ) == 0
R
Roman Zippel 已提交
757
	return div_u64(x, NSEC_PER_SEC / USER_HZ);
758
#elif (USER_HZ % 512) == 0
R
Roman Zippel 已提交
759
	return div_u64(x * USER_HZ / 512, NSEC_PER_SEC / 512);
760 761 762 763 764 765
#else
	/*
         * max relative error 5.7e-8 (1.8s per year) for USER_HZ <= 1024,
         * overflow after 64.99 years.
         * exact for HZ=60, 72, 90, 120, 144, 180, 300, 600, 900, ...
         */
R
Roman Zippel 已提交
766
	return div_u64(x * 9, (9ull * NSEC_PER_SEC + (USER_HZ / 2)) / USER_HZ);
767 768 769
#endif
}

770 771 772 773 774 775 776 777 778 779
u64 jiffies64_to_nsecs(u64 j)
{
#if !(NSEC_PER_SEC % HZ)
	return (NSEC_PER_SEC / HZ) * j;
# else
	return div_u64(j * HZ_TO_NSEC_NUM, HZ_TO_NSEC_DEN);
#endif
}
EXPORT_SYMBOL(jiffies64_to_nsecs);

780
/**
781
 * nsecs_to_jiffies64 - Convert nsecs in u64 to jiffies64
782 783 784 785 786 787 788 789 790 791 792
 *
 * @n:	nsecs in u64
 *
 * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
 * And this doesn't return MAX_JIFFY_OFFSET since this function is designed
 * for scheduler, not for use in device drivers to calculate timeout value.
 *
 * note:
 *   NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
 *   ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
 */
793
u64 nsecs_to_jiffies64(u64 n)
794 795 796 797 798 799 800 801 802 803 804 805 806 807 808
{
#if (NSEC_PER_SEC % HZ) == 0
	/* Common case, HZ = 100, 128, 200, 250, 256, 500, 512, 1000 etc. */
	return div_u64(n, NSEC_PER_SEC / HZ);
#elif (HZ % 512) == 0
	/* overflow after 292 years if HZ = 1024 */
	return div_u64(n * HZ / 512, NSEC_PER_SEC / 512);
#else
	/*
	 * Generic case - optimized for cases where HZ is a multiple of 3.
	 * overflow after 64.99 years, exact for HZ = 60, 72, 90, 120 etc.
	 */
	return div_u64(n * 9, (9ull * NSEC_PER_SEC + HZ / 2) / HZ);
#endif
}
809
EXPORT_SYMBOL(nsecs_to_jiffies64);
810

811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827
/**
 * nsecs_to_jiffies - Convert nsecs in u64 to jiffies
 *
 * @n:	nsecs in u64
 *
 * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
 * And this doesn't return MAX_JIFFY_OFFSET since this function is designed
 * for scheduler, not for use in device drivers to calculate timeout value.
 *
 * note:
 *   NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
 *   ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
 */
unsigned long nsecs_to_jiffies(u64 n)
{
	return (unsigned long)nsecs_to_jiffies64(n);
}
828
EXPORT_SYMBOL_GPL(nsecs_to_jiffies);
829

830 831 832 833 834 835 836 837 838 839
/*
 * Add two timespec64 values and do a safety check for overflow.
 * It's assumed that both values are valid (>= 0).
 * And, each timespec64 is in normalized form.
 */
struct timespec64 timespec64_add_safe(const struct timespec64 lhs,
				const struct timespec64 rhs)
{
	struct timespec64 res;

840
	set_normalized_timespec64(&res, (timeu64_t) lhs.tv_sec + rhs.tv_sec,
841 842 843 844 845 846 847 848 849
			lhs.tv_nsec + rhs.tv_nsec);

	if (unlikely(res.tv_sec < lhs.tv_sec || res.tv_sec < rhs.tv_sec)) {
		res.tv_sec = TIME64_MAX;
		res.tv_nsec = 0;
	}

	return res;
}
850 851

int get_timespec64(struct timespec64 *ts,
852
		   const struct __kernel_timespec __user *uts)
853
{
854
	struct __kernel_timespec kts;
855 856 857 858 859 860 861
	int ret;

	ret = copy_from_user(&kts, uts, sizeof(kts));
	if (ret)
		return -EFAULT;

	ts->tv_sec = kts.tv_sec;
862 863 864 865 866

	/* Zero out the padding for 32 bit systems or in compat mode */
	if (IS_ENABLED(CONFIG_64BIT_TIME) && (!IS_ENABLED(CONFIG_64BIT) || in_compat_syscall()))
		kts.tv_nsec &= 0xFFFFFFFFUL;

867 868 869 870 871 872 873
	ts->tv_nsec = kts.tv_nsec;

	return 0;
}
EXPORT_SYMBOL_GPL(get_timespec64);

int put_timespec64(const struct timespec64 *ts,
874
		   struct __kernel_timespec __user *uts)
875
{
876
	struct __kernel_timespec kts = {
877 878 879
		.tv_sec = ts->tv_sec,
		.tv_nsec = ts->tv_nsec
	};
880

881 882 883
	return copy_to_user(uts, &kts, sizeof(kts)) ? -EFAULT : 0;
}
EXPORT_SYMBOL_GPL(put_timespec64);
884

885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928
int __compat_get_timespec64(struct timespec64 *ts64,
				   const struct compat_timespec __user *cts)
{
	struct compat_timespec ts;
	int ret;

	ret = copy_from_user(&ts, cts, sizeof(ts));
	if (ret)
		return -EFAULT;

	ts64->tv_sec = ts.tv_sec;
	ts64->tv_nsec = ts.tv_nsec;

	return 0;
}

int __compat_put_timespec64(const struct timespec64 *ts64,
				   struct compat_timespec __user *cts)
{
	struct compat_timespec ts = {
		.tv_sec = ts64->tv_sec,
		.tv_nsec = ts64->tv_nsec
	};
	return copy_to_user(cts, &ts, sizeof(ts)) ? -EFAULT : 0;
}

int compat_get_timespec64(struct timespec64 *ts, const void __user *uts)
{
	if (COMPAT_USE_64BIT_TIME)
		return copy_from_user(ts, uts, sizeof(*ts)) ? -EFAULT : 0;
	else
		return __compat_get_timespec64(ts, uts);
}
EXPORT_SYMBOL_GPL(compat_get_timespec64);

int compat_put_timespec64(const struct timespec64 *ts, void __user *uts)
{
	if (COMPAT_USE_64BIT_TIME)
		return copy_to_user(uts, ts, sizeof(*ts)) ? -EFAULT : 0;
	else
		return __compat_put_timespec64(ts, uts);
}
EXPORT_SYMBOL_GPL(compat_put_timespec64);

929
int get_itimerspec64(struct itimerspec64 *it,
930
			const struct __kernel_itimerspec __user *uit)
931 932 933 934 935 936 937 938 939 940 941 942 943 944
{
	int ret;

	ret = get_timespec64(&it->it_interval, &uit->it_interval);
	if (ret)
		return ret;

	ret = get_timespec64(&it->it_value, &uit->it_value);

	return ret;
}
EXPORT_SYMBOL_GPL(get_itimerspec64);

int put_itimerspec64(const struct itimerspec64 *it,
945
			struct __kernel_itimerspec __user *uit)
946 947 948 949 950 951 952 953 954 955 956 957
{
	int ret;

	ret = put_timespec64(&it->it_interval, &uit->it_interval);
	if (ret)
		return ret;

	ret = put_timespec64(&it->it_value, &uit->it_value);

	return ret;
}
EXPORT_SYMBOL_GPL(put_itimerspec64);