time.c 20.8 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11
/*
 *  linux/kernel/time.c
 *
 *  Copyright (C) 1991, 1992  Linus Torvalds
 *
 *  This file contains the interface functions for the various
 *  time related system calls: time, stime, gettimeofday, settimeofday,
 *			       adjtime
 */
/*
 * Modification history kernel/time.c
D
Daniel Walker 已提交
12
 *
L
Linus Torvalds 已提交
13
 * 1993-09-02    Philip Gladstone
14
 *      Created file with time related functions from sched/core.c and adjtimex()
L
Linus Torvalds 已提交
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
 * 1993-10-08    Torsten Duwe
 *      adjtime interface update and CMOS clock write code
 * 1995-08-13    Torsten Duwe
 *      kernel PLL updated to 1994-12-13 specs (rfc-1589)
 * 1999-01-16    Ulrich Windl
 *	Introduced error checking for many cases in adjtimex().
 *	Updated NTP code according to technical memorandum Jan '96
 *	"A Kernel Model for Precision Timekeeping" by Dave Mills
 *	Allow time_constant larger than MAXTC(6) for NTP v4 (MAXTC == 10)
 *	(Even though the technical memorandum forbids it)
 * 2004-07-14	 Christoph Lameter
 *	Added getnstimeofday to allow the posix timer functions to return
 *	with nanosecond accuracy
 */

30
#include <linux/export.h>
L
Linus Torvalds 已提交
31
#include <linux/timex.h>
32
#include <linux/capability.h>
33
#include <linux/timekeeper_internal.h>
L
Linus Torvalds 已提交
34 35 36 37
#include <linux/errno.h>
#include <linux/syscalls.h>
#include <linux/security.h>
#include <linux/fs.h>
R
Roman Zippel 已提交
38
#include <linux/math64.h>
39
#include <linux/ptrace.h>
L
Linus Torvalds 已提交
40 41 42 43

#include <asm/uaccess.h>
#include <asm/unistd.h>

44
#include <generated/timeconst.h>
45
#include "timekeeping.h"
46

D
Daniel Walker 已提交
47
/*
L
Linus Torvalds 已提交
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
 * The timezone where the local system is located.  Used as a default by some
 * programs who obtain this value by using gettimeofday.
 */
struct timezone sys_tz;

EXPORT_SYMBOL(sys_tz);

#ifdef __ARCH_WANT_SYS_TIME

/*
 * sys_time() can be implemented in user-level using
 * sys_gettimeofday().  Is this for backwards compatibility?  If so,
 * why not move it into the appropriate arch directory (for those
 * architectures that need it).
 */
63
SYSCALL_DEFINE1(time, time_t __user *, tloc)
L
Linus Torvalds 已提交
64
{
I
Ingo Molnar 已提交
65
	time_t i = get_seconds();
L
Linus Torvalds 已提交
66 67

	if (tloc) {
L
Linus Torvalds 已提交
68
		if (put_user(i,tloc))
69
			return -EFAULT;
L
Linus Torvalds 已提交
70
	}
71
	force_successful_syscall_return();
L
Linus Torvalds 已提交
72 73 74 75 76 77 78 79 80
	return i;
}

/*
 * sys_stime() can be implemented in user-level using
 * sys_settimeofday().  Is this for backwards compatibility?  If so,
 * why not move it into the appropriate arch directory (for those
 * architectures that need it).
 */
D
Daniel Walker 已提交
81

82
SYSCALL_DEFINE1(stime, time_t __user *, tptr)
L
Linus Torvalds 已提交
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
{
	struct timespec tv;
	int err;

	if (get_user(tv.tv_sec, tptr))
		return -EFAULT;

	tv.tv_nsec = 0;

	err = security_settime(&tv, NULL);
	if (err)
		return err;

	do_settimeofday(&tv);
	return 0;
}

#endif /* __ARCH_WANT_SYS_TIME */

102 103
SYSCALL_DEFINE2(gettimeofday, struct timeval __user *, tv,
		struct timezone __user *, tz)
L
Linus Torvalds 已提交
104 105 106 107 108 109 110 111 112 113 114 115 116 117
{
	if (likely(tv != NULL)) {
		struct timeval ktv;
		do_gettimeofday(&ktv);
		if (copy_to_user(tv, &ktv, sizeof(ktv)))
			return -EFAULT;
	}
	if (unlikely(tz != NULL)) {
		if (copy_to_user(tz, &sys_tz, sizeof(sys_tz)))
			return -EFAULT;
	}
	return 0;
}

118 119 120 121 122 123
/*
 * Indicates if there is an offset between the system clock and the hardware
 * clock/persistent clock/rtc.
 */
int persistent_clock_is_local;

L
Linus Torvalds 已提交
124 125 126
/*
 * Adjust the time obtained from the CMOS to be UTC time instead of
 * local time.
D
Daniel Walker 已提交
127
 *
L
Linus Torvalds 已提交
128 129
 * This is ugly, but preferable to the alternatives.  Otherwise we
 * would either need to write a program to do it in /etc/rc (and risk
D
Daniel Walker 已提交
130
 * confusion if the program gets run more than once; it would also be
L
Linus Torvalds 已提交
131 132 133
 * hard to make the program warp the clock precisely n hours)  or
 * compile in the timezone information into the kernel.  Bad, bad....
 *
134
 *						- TYT, 1992-01-01
L
Linus Torvalds 已提交
135 136 137 138 139
 *
 * The best thing to do is to keep the CMOS clock in universal time (UTC)
 * as real UNIX machines always do it. This avoids all headaches about
 * daylight saving times and warping kernel clocks.
 */
140
static inline void warp_clock(void)
L
Linus Torvalds 已提交
141
{
142 143
	if (sys_tz.tz_minuteswest != 0) {
		struct timespec adjust;
144

145
		persistent_clock_is_local = 1;
146 147 148
		adjust.tv_sec = sys_tz.tz_minuteswest * 60;
		adjust.tv_nsec = 0;
		timekeeping_inject_offset(&adjust);
149
	}
L
Linus Torvalds 已提交
150 151 152 153 154 155 156 157 158 159 160 161 162
}

/*
 * In case for some reason the CMOS clock has not already been running
 * in UTC, but in some local time: The first time we set the timezone,
 * we will warp the clock so that it is ticking UTC time instead of
 * local time. Presumably, if someone is setting the timezone then we
 * are running in an environment where the programs understand about
 * timezones. This should be done at boot time in the /etc/rc script,
 * as soon as possible, so that the clock can be set right. Otherwise,
 * various programs will get confused when the clock gets warped.
 */

163
int do_sys_settimeofday64(const struct timespec64 *tv, const struct timezone *tz)
L
Linus Torvalds 已提交
164 165 166 167
{
	static int firsttime = 1;
	int error = 0;

168
	if (tv && !timespec64_valid(tv))
169 170
		return -EINVAL;

171
	error = security_settime64(tv, tz);
L
Linus Torvalds 已提交
172 173 174 175
	if (error)
		return error;

	if (tz) {
176 177 178 179
		/* Verify we're witin the +-15 hrs range */
		if (tz->tz_minuteswest > 15*60 || tz->tz_minuteswest < -15*60)
			return -EINVAL;

L
Linus Torvalds 已提交
180
		sys_tz = *tz;
181
		update_vsyscall_tz();
L
Linus Torvalds 已提交
182 183 184 185 186 187 188
		if (firsttime) {
			firsttime = 0;
			if (!tv)
				warp_clock();
		}
	}
	if (tv)
189
		return do_settimeofday64(tv);
L
Linus Torvalds 已提交
190 191 192
	return 0;
}

193 194
SYSCALL_DEFINE2(settimeofday, struct timeval __user *, tv,
		struct timezone __user *, tz)
L
Linus Torvalds 已提交
195 196 197 198 199 200 201 202
{
	struct timeval user_tv;
	struct timespec	new_ts;
	struct timezone new_tz;

	if (tv) {
		if (copy_from_user(&user_tv, tv, sizeof(*tv)))
			return -EFAULT;
203 204 205 206

		if (!timeval_valid(&user_tv))
			return -EINVAL;

L
Linus Torvalds 已提交
207 208 209 210 211 212 213 214 215 216 217
		new_ts.tv_sec = user_tv.tv_sec;
		new_ts.tv_nsec = user_tv.tv_usec * NSEC_PER_USEC;
	}
	if (tz) {
		if (copy_from_user(&new_tz, tz, sizeof(*tz)))
			return -EFAULT;
	}

	return do_sys_settimeofday(tv ? &new_ts : NULL, tz ? &new_tz : NULL);
}

218
SYSCALL_DEFINE1(adjtimex, struct timex __user *, txc_p)
L
Linus Torvalds 已提交
219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
{
	struct timex txc;		/* Local copy of parameter */
	int ret;

	/* Copy the user data space into the kernel copy
	 * structure. But bear in mind that the structures
	 * may change
	 */
	if(copy_from_user(&txc, txc_p, sizeof(struct timex)))
		return -EFAULT;
	ret = do_adjtimex(&txc);
	return copy_to_user(txc_p, &txc, sizeof(struct timex)) ? -EFAULT : ret;
}

/**
 * current_fs_time - Return FS time
 * @sb: Superblock.
 *
237
 * Return the current time truncated to the time granularity supported by
L
Linus Torvalds 已提交
238 239 240 241 242 243 244 245 246
 * the fs.
 */
struct timespec current_fs_time(struct super_block *sb)
{
	struct timespec now = current_kernel_time();
	return timespec_trunc(now, sb->s_time_gran);
}
EXPORT_SYMBOL(current_fs_time);

E
Eric Dumazet 已提交
247 248 249 250 251 252
/*
 * Convert jiffies to milliseconds and back.
 *
 * Avoid unnecessary multiplications/divisions in the
 * two most common HZ cases:
 */
253
unsigned int jiffies_to_msecs(const unsigned long j)
E
Eric Dumazet 已提交
254 255 256 257 258 259
{
#if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
	return (MSEC_PER_SEC / HZ) * j;
#elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
	return (j + (HZ / MSEC_PER_SEC) - 1)/(HZ / MSEC_PER_SEC);
#else
260
# if BITS_PER_LONG == 32
261
	return (HZ_TO_MSEC_MUL32 * j) >> HZ_TO_MSEC_SHR32;
262 263 264
# else
	return (j * HZ_TO_MSEC_NUM) / HZ_TO_MSEC_DEN;
# endif
E
Eric Dumazet 已提交
265 266 267 268
#endif
}
EXPORT_SYMBOL(jiffies_to_msecs);

269
unsigned int jiffies_to_usecs(const unsigned long j)
E
Eric Dumazet 已提交
270
{
271 272 273 274 275 276 277
	/*
	 * Hz usually doesn't go much further MSEC_PER_SEC.
	 * jiffies_to_usecs() and usecs_to_jiffies() depend on that.
	 */
	BUILD_BUG_ON(HZ > USEC_PER_SEC);

#if !(USEC_PER_SEC % HZ)
E
Eric Dumazet 已提交
278 279
	return (USEC_PER_SEC / HZ) * j;
#else
280
# if BITS_PER_LONG == 32
281
	return (HZ_TO_USEC_MUL32 * j) >> HZ_TO_USEC_SHR32;
282 283 284
# else
	return (j * HZ_TO_USEC_NUM) / HZ_TO_USEC_DEN;
# endif
E
Eric Dumazet 已提交
285 286 287 288
#endif
}
EXPORT_SYMBOL(jiffies_to_usecs);

L
Linus Torvalds 已提交
289
/**
290
 * timespec_trunc - Truncate timespec to a granularity
L
Linus Torvalds 已提交
291
 * @t: Timespec
292
 * @gran: Granularity in ns.
L
Linus Torvalds 已提交
293
 *
294 295
 * Truncate a timespec to a granularity. Always rounds down. gran must
 * not be 0 nor greater than a second (NSEC_PER_SEC, or 10^9 ns).
L
Linus Torvalds 已提交
296 297 298
 */
struct timespec timespec_trunc(struct timespec t, unsigned gran)
{
299 300
	/* Avoid division in the common cases 1 ns and 1 s. */
	if (gran == 1) {
L
Linus Torvalds 已提交
301
		/* nothing */
302
	} else if (gran == NSEC_PER_SEC) {
L
Linus Torvalds 已提交
303
		t.tv_nsec = 0;
304
	} else if (gran > 1 && gran < NSEC_PER_SEC) {
L
Linus Torvalds 已提交
305
		t.tv_nsec -= t.tv_nsec % gran;
306 307
	} else {
		WARN(1, "illegal file time granularity: %u", gran);
L
Linus Torvalds 已提交
308 309 310 311 312
	}
	return t;
}
EXPORT_SYMBOL(timespec_trunc);

313 314 315
/*
 * mktime64 - Converts date to seconds.
 * Converts Gregorian date to seconds since 1970-01-01 00:00:00.
316 317 318 319 320 321 322 323 324
 * Assumes input in normal date format, i.e. 1980-12-31 23:59:59
 * => year=1980, mon=12, day=31, hour=23, min=59, sec=59.
 *
 * [For the Julian calendar (which was used in Russia before 1917,
 * Britain & colonies before 1752, anywhere else before 1582,
 * and is still in use by some communities) leave out the
 * -year/100+year/400 terms, and add 10.]
 *
 * This algorithm was first published by Gauss (I think).
325 326 327 328 329 330 331
 *
 * A leap second can be indicated by calling this function with sec as
 * 60 (allowable under ISO 8601).  The leap second is treated the same
 * as the following second since they don't exist in UNIX time.
 *
 * An encoding of midnight at the end of the day as 24:00:00 - ie. midnight
 * tomorrow - (allowable under ISO 8601) is supported.
332
 */
333 334 335
time64_t mktime64(const unsigned int year0, const unsigned int mon0,
		const unsigned int day, const unsigned int hour,
		const unsigned int min, const unsigned int sec)
336
{
337 338 339 340 341
	unsigned int mon = mon0, year = year0;

	/* 1..12 -> 11,12,1..10 */
	if (0 >= (int) (mon -= 2)) {
		mon += 12;	/* Puts Feb last since it has leap day */
342 343 344
		year -= 1;
	}

345
	return ((((time64_t)
346 347
		  (year/4 - year/100 + year/400 + 367*mon/12 + day) +
		  year*365 - 719499
348
	    )*24 + hour /* now have hours - midnight tomorrow handled here */
349 350 351
	  )*60 + min /* now have minutes */
	)*60 + sec; /* finally seconds */
}
352
EXPORT_SYMBOL(mktime64);
353

354 355 356 357 358 359 360 361 362 363 364
/**
 * set_normalized_timespec - set timespec sec and nsec parts and normalize
 *
 * @ts:		pointer to timespec variable to be set
 * @sec:	seconds to set
 * @nsec:	nanoseconds to set
 *
 * Set seconds and nanoseconds field of a timespec variable and
 * normalize to the timespec storage format
 *
 * Note: The tv_nsec part is always in the range of
365
 *	0 <= tv_nsec < NSEC_PER_SEC
366 367
 * For negative values only the tv_sec field is negative !
 */
368
void set_normalized_timespec(struct timespec *ts, time_t sec, s64 nsec)
369 370
{
	while (nsec >= NSEC_PER_SEC) {
371 372 373 374 375 376
		/*
		 * The following asm() prevents the compiler from
		 * optimising this loop into a modulo operation. See
		 * also __iter_div_u64_rem() in include/linux/time.h
		 */
		asm("" : "+rm"(nsec));
377 378 379 380
		nsec -= NSEC_PER_SEC;
		++sec;
	}
	while (nsec < 0) {
381
		asm("" : "+rm"(nsec));
382 383 384 385 386 387
		nsec += NSEC_PER_SEC;
		--sec;
	}
	ts->tv_sec = sec;
	ts->tv_nsec = nsec;
}
388
EXPORT_SYMBOL(set_normalized_timespec);
389

390 391 392 393 394 395
/**
 * ns_to_timespec - Convert nanoseconds to timespec
 * @nsec:       the nanoseconds value to be converted
 *
 * Returns the timespec representation of the nsec parameter.
 */
396
struct timespec ns_to_timespec(const s64 nsec)
397 398
{
	struct timespec ts;
R
Roman Zippel 已提交
399
	s32 rem;
400

401 402 403
	if (!nsec)
		return (struct timespec) {0, 0};

R
Roman Zippel 已提交
404 405 406 407 408 409
	ts.tv_sec = div_s64_rem(nsec, NSEC_PER_SEC, &rem);
	if (unlikely(rem < 0)) {
		ts.tv_sec--;
		rem += NSEC_PER_SEC;
	}
	ts.tv_nsec = rem;
410 411 412

	return ts;
}
413
EXPORT_SYMBOL(ns_to_timespec);
414 415 416 417 418 419 420

/**
 * ns_to_timeval - Convert nanoseconds to timeval
 * @nsec:       the nanoseconds value to be converted
 *
 * Returns the timeval representation of the nsec parameter.
 */
421
struct timeval ns_to_timeval(const s64 nsec)
422 423 424 425 426 427 428 429 430
{
	struct timespec ts = ns_to_timespec(nsec);
	struct timeval tv;

	tv.tv_sec = ts.tv_sec;
	tv.tv_usec = (suseconds_t) ts.tv_nsec / 1000;

	return tv;
}
431
EXPORT_SYMBOL(ns_to_timeval);
432

433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494
#if BITS_PER_LONG == 32
/**
 * set_normalized_timespec - set timespec sec and nsec parts and normalize
 *
 * @ts:		pointer to timespec variable to be set
 * @sec:	seconds to set
 * @nsec:	nanoseconds to set
 *
 * Set seconds and nanoseconds field of a timespec variable and
 * normalize to the timespec storage format
 *
 * Note: The tv_nsec part is always in the range of
 *	0 <= tv_nsec < NSEC_PER_SEC
 * For negative values only the tv_sec field is negative !
 */
void set_normalized_timespec64(struct timespec64 *ts, time64_t sec, s64 nsec)
{
	while (nsec >= NSEC_PER_SEC) {
		/*
		 * The following asm() prevents the compiler from
		 * optimising this loop into a modulo operation. See
		 * also __iter_div_u64_rem() in include/linux/time.h
		 */
		asm("" : "+rm"(nsec));
		nsec -= NSEC_PER_SEC;
		++sec;
	}
	while (nsec < 0) {
		asm("" : "+rm"(nsec));
		nsec += NSEC_PER_SEC;
		--sec;
	}
	ts->tv_sec = sec;
	ts->tv_nsec = nsec;
}
EXPORT_SYMBOL(set_normalized_timespec64);

/**
 * ns_to_timespec64 - Convert nanoseconds to timespec64
 * @nsec:       the nanoseconds value to be converted
 *
 * Returns the timespec64 representation of the nsec parameter.
 */
struct timespec64 ns_to_timespec64(const s64 nsec)
{
	struct timespec64 ts;
	s32 rem;

	if (!nsec)
		return (struct timespec64) {0, 0};

	ts.tv_sec = div_s64_rem(nsec, NSEC_PER_SEC, &rem);
	if (unlikely(rem < 0)) {
		ts.tv_sec--;
		rem += NSEC_PER_SEC;
	}
	ts.tv_nsec = rem;

	return ts;
}
EXPORT_SYMBOL(ns_to_timespec64);
#endif
495 496 497 498 499
/**
 * msecs_to_jiffies: - convert milliseconds to jiffies
 * @m:	time in milliseconds
 *
 * conversion is done as follows:
500 501 502 503 504 505 506
 *
 * - negative values mean 'infinite timeout' (MAX_JIFFY_OFFSET)
 *
 * - 'too large' values [that would result in larger than
 *   MAX_JIFFY_OFFSET values] mean 'infinite timeout' too.
 *
 * - all other values are converted to jiffies by either multiplying
507 508 509
 *   the input value by a factor or dividing it with a factor and
 *   handling any 32-bit overflows.
 *   for the details see __msecs_to_jiffies()
510
 *
511 512 513 514 515 516 517
 * msecs_to_jiffies() checks for the passed in value being a constant
 * via __builtin_constant_p() allowing gcc to eliminate most of the
 * code, __msecs_to_jiffies() is called if the value passed does not
 * allow constant folding and the actual conversion must be done at
 * runtime.
 * the _msecs_to_jiffies helpers are the HZ dependent conversion
 * routines found in include/linux/jiffies.h
518
 */
519
unsigned long __msecs_to_jiffies(const unsigned int m)
520
{
521 522 523 524
	/*
	 * Negative value, means infinite timeout:
	 */
	if ((int)m < 0)
525
		return MAX_JIFFY_OFFSET;
526
	return _msecs_to_jiffies(m);
527
}
528
EXPORT_SYMBOL(__msecs_to_jiffies);
529

530
unsigned long __usecs_to_jiffies(const unsigned int u)
531 532 533
{
	if (u > jiffies_to_usecs(MAX_JIFFY_OFFSET))
		return MAX_JIFFY_OFFSET;
534
	return _usecs_to_jiffies(u);
535
}
536
EXPORT_SYMBOL(__usecs_to_jiffies);
537 538 539 540 541 542

/*
 * The TICK_NSEC - 1 rounds up the value to the next resolution.  Note
 * that a remainder subtract here would not do the right thing as the
 * resolution values don't fall on second boundries.  I.e. the line:
 * nsec -= nsec % TICK_NSEC; is NOT a correct resolution rounding.
543 544 545 546
 * Note that due to the small error in the multiplier here, this
 * rounding is incorrect for sufficiently large values of tv_nsec, but
 * well formed timespecs should have tv_nsec < NSEC_PER_SEC, so we're
 * OK.
547 548 549 550 551 552
 *
 * Rather, we just shift the bits off the right.
 *
 * The >> (NSEC_JIFFIE_SC - SEC_JIFFIE_SC) converts the scaled nsec
 * value to a scaled second value.
 */
553
static unsigned long
554
__timespec64_to_jiffies(u64 sec, long nsec)
555
{
556
	nsec = nsec + TICK_NSEC - 1;
557 558 559 560 561

	if (sec >= MAX_SEC_IN_JIFFIES){
		sec = MAX_SEC_IN_JIFFIES;
		nsec = 0;
	}
562
	return ((sec * SEC_CONVERSION) +
563 564 565 566
		(((u64)nsec * NSEC_CONVERSION) >>
		 (NSEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;

}
567

568 569
static unsigned long
__timespec_to_jiffies(unsigned long sec, long nsec)
570
{
571
	return __timespec64_to_jiffies((u64)sec, nsec);
572 573
}

574 575 576 577 578 579
unsigned long
timespec64_to_jiffies(const struct timespec64 *value)
{
	return __timespec64_to_jiffies(value->tv_sec, value->tv_nsec);
}
EXPORT_SYMBOL(timespec64_to_jiffies);
580 581

void
582
jiffies_to_timespec64(const unsigned long jiffies, struct timespec64 *value)
583 584 585 586 587
{
	/*
	 * Convert jiffies to nanoseconds and separate with
	 * one divide.
	 */
R
Roman Zippel 已提交
588 589 590 591
	u32 rem;
	value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC,
				    NSEC_PER_SEC, &rem);
	value->tv_nsec = rem;
592
}
593
EXPORT_SYMBOL(jiffies_to_timespec64);
594

595 596 597 598 599 600 601 602 603 604 605 606
/*
 * We could use a similar algorithm to timespec_to_jiffies (with a
 * different multiplier for usec instead of nsec). But this has a
 * problem with rounding: we can't exactly add TICK_NSEC - 1 to the
 * usec value, since it's not necessarily integral.
 *
 * We could instead round in the intermediate scaled representation
 * (i.e. in units of 1/2^(large scale) jiffies) but that's also
 * perilous: the scaling introduces a small positive error, which
 * combined with a division-rounding-upward (i.e. adding 2^(scale) - 1
 * units to the intermediate before shifting) leads to accidental
 * overflow and overestimates.
607
 *
608 609
 * At the cost of one additional multiplication by a constant, just
 * use the timespec implementation.
610 611 612 613
 */
unsigned long
timeval_to_jiffies(const struct timeval *value)
{
614 615
	return __timespec_to_jiffies(value->tv_sec,
				     value->tv_usec * NSEC_PER_USEC);
616
}
617
EXPORT_SYMBOL(timeval_to_jiffies);
618 619 620 621 622 623 624

void jiffies_to_timeval(const unsigned long jiffies, struct timeval *value)
{
	/*
	 * Convert jiffies to nanoseconds and separate with
	 * one divide.
	 */
R
Roman Zippel 已提交
625
	u32 rem;
626

R
Roman Zippel 已提交
627 628 629
	value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC,
				    NSEC_PER_SEC, &rem);
	value->tv_usec = rem / NSEC_PER_USEC;
630
}
631
EXPORT_SYMBOL(jiffies_to_timeval);
632 633 634 635

/*
 * Convert jiffies/jiffies_64 to clock_t and back.
 */
636
clock_t jiffies_to_clock_t(unsigned long x)
637 638
{
#if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
639 640 641
# if HZ < USER_HZ
	return x * (USER_HZ / HZ);
# else
642
	return x / (HZ / USER_HZ);
643
# endif
644
#else
R
Roman Zippel 已提交
645
	return div_u64((u64)x * TICK_NSEC, NSEC_PER_SEC / USER_HZ);
646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661
#endif
}
EXPORT_SYMBOL(jiffies_to_clock_t);

unsigned long clock_t_to_jiffies(unsigned long x)
{
#if (HZ % USER_HZ)==0
	if (x >= ~0UL / (HZ / USER_HZ))
		return ~0UL;
	return x * (HZ / USER_HZ);
#else
	/* Don't worry about loss of precision here .. */
	if (x >= ~0UL / HZ * USER_HZ)
		return ~0UL;

	/* .. but do try to contain it here */
R
Roman Zippel 已提交
662
	return div_u64((u64)x * HZ, USER_HZ);
663 664 665 666 667 668 669
#endif
}
EXPORT_SYMBOL(clock_t_to_jiffies);

u64 jiffies_64_to_clock_t(u64 x)
{
#if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
670
# if HZ < USER_HZ
R
Roman Zippel 已提交
671
	x = div_u64(x * USER_HZ, HZ);
672
# elif HZ > USER_HZ
R
Roman Zippel 已提交
673
	x = div_u64(x, HZ / USER_HZ);
674 675
# else
	/* Nothing to do */
676
# endif
677 678 679 680 681 682
#else
	/*
	 * There are better ways that don't overflow early,
	 * but even this doesn't overflow in hundreds of years
	 * in 64 bits, so..
	 */
R
Roman Zippel 已提交
683
	x = div_u64(x * TICK_NSEC, (NSEC_PER_SEC / USER_HZ));
684 685 686 687 688 689 690 691
#endif
	return x;
}
EXPORT_SYMBOL(jiffies_64_to_clock_t);

u64 nsec_to_clock_t(u64 x)
{
#if (NSEC_PER_SEC % USER_HZ) == 0
R
Roman Zippel 已提交
692
	return div_u64(x, NSEC_PER_SEC / USER_HZ);
693
#elif (USER_HZ % 512) == 0
R
Roman Zippel 已提交
694
	return div_u64(x * USER_HZ / 512, NSEC_PER_SEC / 512);
695 696 697 698 699 700
#else
	/*
         * max relative error 5.7e-8 (1.8s per year) for USER_HZ <= 1024,
         * overflow after 64.99 years.
         * exact for HZ=60, 72, 90, 120, 144, 180, 300, 600, 900, ...
         */
R
Roman Zippel 已提交
701
	return div_u64(x * 9, (9ull * NSEC_PER_SEC + (USER_HZ / 2)) / USER_HZ);
702 703 704
#endif
}

705
/**
706
 * nsecs_to_jiffies64 - Convert nsecs in u64 to jiffies64
707 708 709 710 711 712 713 714 715 716 717
 *
 * @n:	nsecs in u64
 *
 * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
 * And this doesn't return MAX_JIFFY_OFFSET since this function is designed
 * for scheduler, not for use in device drivers to calculate timeout value.
 *
 * note:
 *   NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
 *   ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
 */
718
u64 nsecs_to_jiffies64(u64 n)
719 720 721 722 723 724 725 726 727 728 729 730 731 732 733
{
#if (NSEC_PER_SEC % HZ) == 0
	/* Common case, HZ = 100, 128, 200, 250, 256, 500, 512, 1000 etc. */
	return div_u64(n, NSEC_PER_SEC / HZ);
#elif (HZ % 512) == 0
	/* overflow after 292 years if HZ = 1024 */
	return div_u64(n * HZ / 512, NSEC_PER_SEC / 512);
#else
	/*
	 * Generic case - optimized for cases where HZ is a multiple of 3.
	 * overflow after 64.99 years, exact for HZ = 60, 72, 90, 120 etc.
	 */
	return div_u64(n * 9, (9ull * NSEC_PER_SEC + HZ / 2) / HZ);
#endif
}
734
EXPORT_SYMBOL(nsecs_to_jiffies64);
735

736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752
/**
 * nsecs_to_jiffies - Convert nsecs in u64 to jiffies
 *
 * @n:	nsecs in u64
 *
 * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
 * And this doesn't return MAX_JIFFY_OFFSET since this function is designed
 * for scheduler, not for use in device drivers to calculate timeout value.
 *
 * note:
 *   NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
 *   ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
 */
unsigned long nsecs_to_jiffies(u64 n)
{
	return (unsigned long)nsecs_to_jiffies64(n);
}
753
EXPORT_SYMBOL_GPL(nsecs_to_jiffies);
754

755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771
/*
 * Add two timespec values and do a safety check for overflow.
 * It's assumed that both values are valid (>= 0)
 */
struct timespec timespec_add_safe(const struct timespec lhs,
				  const struct timespec rhs)
{
	struct timespec res;

	set_normalized_timespec(&res, lhs.tv_sec + rhs.tv_sec,
				lhs.tv_nsec + rhs.tv_nsec);

	if (res.tv_sec < lhs.tv_sec || res.tv_sec < rhs.tv_sec)
		res.tv_sec = TIME_T_MAX;

	return res;
}
772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792

/*
 * Add two timespec64 values and do a safety check for overflow.
 * It's assumed that both values are valid (>= 0).
 * And, each timespec64 is in normalized form.
 */
struct timespec64 timespec64_add_safe(const struct timespec64 lhs,
				const struct timespec64 rhs)
{
	struct timespec64 res;

	set_normalized_timespec64(&res, lhs.tv_sec + rhs.tv_sec,
			lhs.tv_nsec + rhs.tv_nsec);

	if (unlikely(res.tv_sec < lhs.tv_sec || res.tv_sec < rhs.tv_sec)) {
		res.tv_sec = TIME64_MAX;
		res.tv_nsec = 0;
	}

	return res;
}