intel_ringbuffer.h 33.6 KB
Newer Older
1
/* SPDX-License-Identifier: GPL-2.0 */
2 3 4
#ifndef _INTEL_RINGBUFFER_H_
#define _INTEL_RINGBUFFER_H_

5
#include <linux/hashtable.h>
6
#include "i915_gem_batch_pool.h"
7
#include "i915_gem_request.h"
8
#include "i915_gem_timeline.h"
9
#include "i915_pmu.h"
10
#include "i915_selftest.h"
11

12 13
struct drm_printer;

14 15
#define I915_CMD_HASH_ORDER 9

16 17 18 19 20 21
/* Early gen2 devices have a cacheline of just 32 bytes, using 64 is overkill,
 * but keeps the logic simple. Indeed, the whole purpose of this macro is just
 * to give some inclination as to some of the magic values used in the various
 * workarounds!
 */
#define CACHELINE_BYTES 64
22
#define CACHELINE_DWORDS (CACHELINE_BYTES / sizeof(uint32_t))
23

24 25 26 27
struct intel_hw_status_page {
	struct i915_vma *vma;
	u32 *page_addr;
	u32 ggtt_offset;
28 29
};

30 31
#define I915_READ_TAIL(engine) I915_READ(RING_TAIL((engine)->mmio_base))
#define I915_WRITE_TAIL(engine, val) I915_WRITE(RING_TAIL((engine)->mmio_base), val)
32

33 34
#define I915_READ_START(engine) I915_READ(RING_START((engine)->mmio_base))
#define I915_WRITE_START(engine, val) I915_WRITE(RING_START((engine)->mmio_base), val)
35

36 37
#define I915_READ_HEAD(engine)  I915_READ(RING_HEAD((engine)->mmio_base))
#define I915_WRITE_HEAD(engine, val) I915_WRITE(RING_HEAD((engine)->mmio_base), val)
38

39 40
#define I915_READ_CTL(engine) I915_READ(RING_CTL((engine)->mmio_base))
#define I915_WRITE_CTL(engine, val) I915_WRITE(RING_CTL((engine)->mmio_base), val)
41

42 43
#define I915_READ_IMR(engine) I915_READ(RING_IMR((engine)->mmio_base))
#define I915_WRITE_IMR(engine, val) I915_WRITE(RING_IMR((engine)->mmio_base), val)
44

45 46
#define I915_READ_MODE(engine) I915_READ(RING_MI_MODE((engine)->mmio_base))
#define I915_WRITE_MODE(engine, val) I915_WRITE(RING_MI_MODE((engine)->mmio_base), val)
47

48 49 50
/* seqno size is actually only a uint32, but since we plan to use MI_FLUSH_DW to
 * do the writes, and that must have qw aligned offsets, simply pretend it's 8b.
 */
51
enum intel_engine_hangcheck_action {
52 53 54 55 56 57 58
	ENGINE_IDLE = 0,
	ENGINE_WAIT,
	ENGINE_ACTIVE_SEQNO,
	ENGINE_ACTIVE_HEAD,
	ENGINE_ACTIVE_SUBUNITS,
	ENGINE_WAIT_KICK,
	ENGINE_DEAD,
59
};
60

61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
static inline const char *
hangcheck_action_to_str(const enum intel_engine_hangcheck_action a)
{
	switch (a) {
	case ENGINE_IDLE:
		return "idle";
	case ENGINE_WAIT:
		return "wait";
	case ENGINE_ACTIVE_SEQNO:
		return "active seqno";
	case ENGINE_ACTIVE_HEAD:
		return "active head";
	case ENGINE_ACTIVE_SUBUNITS:
		return "active subunits";
	case ENGINE_WAIT_KICK:
		return "wait kick";
	case ENGINE_DEAD:
		return "dead";
	}

	return "unknown";
}
83

84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
#define I915_MAX_SLICES	3
#define I915_MAX_SUBSLICES 3

#define instdone_slice_mask(dev_priv__) \
	(INTEL_GEN(dev_priv__) == 7 ? \
	 1 : INTEL_INFO(dev_priv__)->sseu.slice_mask)

#define instdone_subslice_mask(dev_priv__) \
	(INTEL_GEN(dev_priv__) == 7 ? \
	 1 : INTEL_INFO(dev_priv__)->sseu.subslice_mask)

#define for_each_instdone_slice_subslice(dev_priv__, slice__, subslice__) \
	for ((slice__) = 0, (subslice__) = 0; \
	     (slice__) < I915_MAX_SLICES; \
	     (subslice__) = ((subslice__) + 1) < I915_MAX_SUBSLICES ? (subslice__) + 1 : 0, \
	       (slice__) += ((subslice__) == 0)) \
		for_each_if((BIT(slice__) & instdone_slice_mask(dev_priv__)) && \
			    (BIT(subslice__) & instdone_subslice_mask(dev_priv__)))

103 104 105 106
struct intel_instdone {
	u32 instdone;
	/* The following exist only in the RCS engine */
	u32 slice_common;
107 108
	u32 sampler[I915_MAX_SLICES][I915_MAX_SUBSLICES];
	u32 row[I915_MAX_SLICES][I915_MAX_SUBSLICES];
109 110
};

111
struct intel_engine_hangcheck {
112
	u64 acthd;
113
	u32 seqno;
114
	enum intel_engine_hangcheck_action action;
115
	unsigned long action_timestamp;
116
	int deadlock;
117
	struct intel_instdone instdone;
118
	struct drm_i915_gem_request *active_request;
119
	bool stalled;
120 121
};

122
struct intel_ring {
123
	struct i915_vma *vma;
124
	void *vaddr;
125

126 127
	struct list_head request_list;

128 129
	u32 head;
	u32 tail;
130
	u32 emit;
131

132 133 134
	u32 space;
	u32 size;
	u32 effective_size;
135 136
};

137
struct i915_gem_context;
138
struct drm_i915_reg_table;
139

140 141 142 143 144 145 146 147 148 149 150
/*
 * we use a single page to load ctx workarounds so all of these
 * values are referred in terms of dwords
 *
 * struct i915_wa_ctx_bb:
 *  offset: specifies batch starting position, also helpful in case
 *    if we want to have multiple batches at different offsets based on
 *    some criteria. It is not a requirement at the moment but provides
 *    an option for future use.
 *  size: size of the batch in DWORDS
 */
151
struct i915_ctx_workarounds {
152 153 154 155
	struct i915_wa_ctx_bb {
		u32 offset;
		u32 size;
	} indirect_ctx, per_ctx;
156
	struct i915_vma *vma;
157 158
};

159 160
struct drm_i915_gem_request;

161 162 163 164 165 166 167 168 169 170 171 172 173
/*
 * Engine IDs definitions.
 * Keep instances of the same type engine together.
 */
enum intel_engine_id {
	RCS = 0,
	BCS,
	VCS,
	VCS2,
#define _VCS(n) (VCS + (n))
	VECS
};

174 175 176 177 178 179
struct i915_priolist {
	struct rb_node node;
	struct list_head requests;
	int priority;
};

180 181 182 183 184 185 186 187
/**
 * struct intel_engine_execlists - execlist submission queue and port state
 *
 * The struct intel_engine_execlists represents the combined logical state of
 * driver and the hardware state for execlist mode of submission.
 */
struct intel_engine_execlists {
	/**
188
	 * @tasklet: softirq tasklet for bottom handler
189
	 */
190
	struct tasklet_struct tasklet;
191 192 193 194 195 196 197 198 199 200 201

	/**
	 * @default_priolist: priority list for I915_PRIORITY_NORMAL
	 */
	struct i915_priolist default_priolist;

	/**
	 * @no_priolist: priority lists disabled
	 */
	bool no_priolist;

202 203 204 205 206
	/**
	 * @elsp: the ExecList Submission Port register
	 */
	u32 __iomem *elsp;

207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
	/**
	 * @port: execlist port states
	 *
	 * For each hardware ELSP (ExecList Submission Port) we keep
	 * track of the last request and the number of times we submitted
	 * that port to hw. We then count the number of times the hw reports
	 * a context completion or preemption. As only one context can
	 * be active on hw, we limit resubmission of context to port[0]. This
	 * is called Lite Restore, of the context.
	 */
	struct execlist_port {
		/**
		 * @request_count: combined request and submission count
		 */
		struct drm_i915_gem_request *request_count;
#define EXECLIST_COUNT_BITS 2
#define port_request(p) ptr_mask_bits((p)->request_count, EXECLIST_COUNT_BITS)
#define port_count(p) ptr_unmask_bits((p)->request_count, EXECLIST_COUNT_BITS)
#define port_pack(rq, count) ptr_pack_bits(rq, count, EXECLIST_COUNT_BITS)
#define port_unpack(p, count) ptr_unpack_bits((p)->request_count, count, EXECLIST_COUNT_BITS)
#define port_set(p, packed) ((p)->request_count = (packed))
#define port_isset(p) ((p)->request_count)
229
#define port_index(p, execlists) ((p) - (execlists)->port)
230 231 232 233 234

		/**
		 * @context_id: context ID for port
		 */
		GEM_DEBUG_DECL(u32 context_id);
235 236 237 238

#define EXECLIST_MAX_PORTS 2
	} port[EXECLIST_MAX_PORTS];

C
Chris Wilson 已提交
239
	/**
240 241 242 243 244 245 246
	 * @active: is the HW active? We consider the HW as active after
	 * submitting any context for execution and until we have seen the
	 * last context completion event. After that, we do not expect any
	 * more events until we submit, and so can park the HW.
	 *
	 * As we have a small number of different sources from which we feed
	 * the HW, we track the state of each inside a single bitfield.
C
Chris Wilson 已提交
247
	 */
248 249 250
	unsigned int active;
#define EXECLISTS_ACTIVE_USER 0
#define EXECLISTS_ACTIVE_PREEMPT 1
251
#define EXECLISTS_ACTIVE_HWACK 2
C
Chris Wilson 已提交
252

253 254 255 256
	/**
	 * @port_mask: number of execlist ports - 1
	 */
	unsigned int port_mask;
257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281

	/**
	 * @queue: queue of requests, in priority lists
	 */
	struct rb_root queue;

	/**
	 * @first: leftmost level in priority @queue
	 */
	struct rb_node *first;

	/**
	 * @fw_domains: forcewake domains for irq tasklet
	 */
	unsigned int fw_domains;

	/**
	 * @csb_head: context status buffer head
	 */
	unsigned int csb_head;

	/**
	 * @csb_use_mmio: access csb through mmio, instead of hwsp
	 */
	bool csb_use_mmio;
282 283 284 285 286

	/**
	 * @preempt_complete_status: expected CSB upon completing preemption
	 */
	u32 preempt_complete_status;
287 288
};

289 290
#define INTEL_ENGINE_CS_MAX_NAME 8

291 292
struct intel_engine_cs {
	struct drm_i915_private *i915;
293
	char name[INTEL_ENGINE_CS_MAX_NAME];
294

295 296
	enum intel_engine_id id;
	unsigned int hw_id;
297
	unsigned int guc_id;
298

299 300 301
	u8 uabi_id;
	u8 uabi_class;

302 303
	u8 class;
	u8 instance;
304 305
	u32 context_size;
	u32 mmio_base;
306
	unsigned int irq_shift;
307

308
	struct intel_ring *buffer;
309
	struct intel_timeline *timeline;
310

311
	struct drm_i915_gem_object *default_state;
312

313
	atomic_t irq_count;
314 315
	unsigned long irq_posted;
#define ENGINE_IRQ_BREADCRUMB 0
316
#define ENGINE_IRQ_EXECLIST 1
317

318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334
	/* Rather than have every client wait upon all user interrupts,
	 * with the herd waking after every interrupt and each doing the
	 * heavyweight seqno dance, we delegate the task (of being the
	 * bottom-half of the user interrupt) to the first client. After
	 * every interrupt, we wake up one client, who does the heavyweight
	 * coherent seqno read and either goes back to sleep (if incomplete),
	 * or wakes up all the completed clients in parallel, before then
	 * transferring the bottom-half status to the next client in the queue.
	 *
	 * Compared to walking the entire list of waiters in a single dedicated
	 * bottom-half, we reduce the latency of the first waiter by avoiding
	 * a context switch, but incur additional coherent seqno reads when
	 * following the chain of request breadcrumbs. Since it is most likely
	 * that we have a single client waiting on each seqno, then reducing
	 * the overhead of waking that client is much preferred.
	 */
	struct intel_breadcrumbs {
335 336 337 338
		spinlock_t irq_lock; /* protects irq_*; irqsafe */
		struct intel_wait *irq_wait; /* oldest waiter by retirement */

		spinlock_t rb_lock; /* protects the rb and wraps irq_lock */
339
		struct rb_root waiters; /* sorted by retirement, priority */
340 341
		struct rb_root signals; /* sorted by retirement */
		struct task_struct *signaler; /* used for fence signalling */
342
		struct drm_i915_gem_request __rcu *first_signal;
343
		struct timer_list fake_irq; /* used after a missed interrupt */
344 345
		struct timer_list hangcheck; /* detect missed interrupts */

346
		unsigned int hangcheck_interrupts;
347
		unsigned int irq_enabled;
348

349
		bool irq_armed : 1;
350
		I915_SELFTEST_DECLARE(bool mock : 1);
351 352
	} breadcrumbs;

353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371
	struct {
		/**
		 * @enable: Bitmask of enable sample events on this engine.
		 *
		 * Bits correspond to sample event types, for instance
		 * I915_SAMPLE_QUEUED is bit 0 etc.
		 */
		u32 enable;
		/**
		 * @enable_count: Reference count for the enabled samplers.
		 *
		 * Index number corresponds to the bit number from @enable.
		 */
		unsigned int enable_count[I915_PMU_SAMPLE_BITS];
		/**
		 * @sample: Counter values for sampling events.
		 *
		 * Our internal timer stores the current counters in this field.
		 */
372
#define I915_ENGINE_SAMPLE_MAX (I915_SAMPLE_SEMA + 1)
373 374 375
		struct i915_pmu_sample sample[I915_ENGINE_SAMPLE_MAX];
	} pmu;

376 377 378 379 380 381 382
	/*
	 * A pool of objects to use as shadow copies of client batch buffers
	 * when the command parser is enabled. Prevents the client from
	 * modifying the batch contents after software parsing.
	 */
	struct i915_gem_batch_pool batch_pool;

383
	struct intel_hw_status_page status_page;
384
	struct i915_ctx_workarounds wa_ctx;
385
	struct i915_vma *scratch;
386

387 388
	u32             irq_keep_mask; /* always keep these interrupts */
	u32		irq_enable_mask; /* bitmask to enable ring interrupt */
389 390
	void		(*irq_enable)(struct intel_engine_cs *engine);
	void		(*irq_disable)(struct intel_engine_cs *engine);
391

392
	int		(*init_hw)(struct intel_engine_cs *engine);
393 394
	void		(*reset_hw)(struct intel_engine_cs *engine,
				    struct drm_i915_gem_request *req);
395

396 397 398
	void		(*park)(struct intel_engine_cs *engine);
	void		(*unpark)(struct intel_engine_cs *engine);

399 400
	void		(*set_default_submission)(struct intel_engine_cs *engine);

401 402
	struct intel_ring *(*context_pin)(struct intel_engine_cs *engine,
					  struct i915_gem_context *ctx);
403 404
	void		(*context_unpin)(struct intel_engine_cs *engine,
					 struct i915_gem_context *ctx);
405
	int		(*request_alloc)(struct drm_i915_gem_request *req);
406
	int		(*init_context)(struct drm_i915_gem_request *req);
407

408 409 410 411 412 413 414 415 416 417 418
	int		(*emit_flush)(struct drm_i915_gem_request *request,
				      u32 mode);
#define EMIT_INVALIDATE	BIT(0)
#define EMIT_FLUSH	BIT(1)
#define EMIT_BARRIER	(EMIT_INVALIDATE | EMIT_FLUSH)
	int		(*emit_bb_start)(struct drm_i915_gem_request *req,
					 u64 offset, u32 length,
					 unsigned int dispatch_flags);
#define I915_DISPATCH_SECURE BIT(0)
#define I915_DISPATCH_PINNED BIT(1)
#define I915_DISPATCH_RS     BIT(2)
C
Chris Wilson 已提交
419
	void		(*emit_breadcrumb)(struct drm_i915_gem_request *req,
420
					   u32 *cs);
421
	int		emit_breadcrumb_sz;
422 423 424 425 426 427 428

	/* Pass the request to the hardware queue (e.g. directly into
	 * the legacy ringbuffer or to the end of an execlist).
	 *
	 * This is called from an atomic context with irqs disabled; must
	 * be irq safe.
	 */
429
	void		(*submit_request)(struct drm_i915_gem_request *req);
430

431 432 433 434 435 436 437 438 439
	/* Call when the priority on a request has changed and it and its
	 * dependencies may need rescheduling. Note the request itself may
	 * not be ready to run!
	 *
	 * Called under the struct_mutex.
	 */
	void		(*schedule)(struct drm_i915_gem_request *request,
				    int priority);

440 441 442 443 444 445 446 447
	/*
	 * Cancel all requests on the hardware, or queued for execution.
	 * This should only cancel the ready requests that have been
	 * submitted to the engine (via the engine->submit_request callback).
	 * This is called when marking the device as wedged.
	 */
	void		(*cancel_requests)(struct intel_engine_cs *engine);

448 449 450 451 452 453
	/* Some chipsets are not quite as coherent as advertised and need
	 * an expensive kick to force a true read of the up-to-date seqno.
	 * However, the up-to-date seqno is not always required and the last
	 * seen value is good enough. Note that the seqno will always be
	 * monotonic, even if not coherent.
	 */
454 455
	void		(*irq_seqno_barrier)(struct intel_engine_cs *engine);
	void		(*cleanup)(struct intel_engine_cs *engine);
456

457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493
	/* GEN8 signal/wait table - never trust comments!
	 *	  signal to	signal to    signal to   signal to      signal to
	 *	    RCS		   VCS          BCS        VECS		 VCS2
	 *      --------------------------------------------------------------------
	 *  RCS | NOP (0x00) | VCS (0x08) | BCS (0x10) | VECS (0x18) | VCS2 (0x20) |
	 *	|-------------------------------------------------------------------
	 *  VCS | RCS (0x28) | NOP (0x30) | BCS (0x38) | VECS (0x40) | VCS2 (0x48) |
	 *	|-------------------------------------------------------------------
	 *  BCS | RCS (0x50) | VCS (0x58) | NOP (0x60) | VECS (0x68) | VCS2 (0x70) |
	 *	|-------------------------------------------------------------------
	 * VECS | RCS (0x78) | VCS (0x80) | BCS (0x88) |  NOP (0x90) | VCS2 (0x98) |
	 *	|-------------------------------------------------------------------
	 * VCS2 | RCS (0xa0) | VCS (0xa8) | BCS (0xb0) | VECS (0xb8) | NOP  (0xc0) |
	 *	|-------------------------------------------------------------------
	 *
	 * Generalization:
	 *  f(x, y) := (x->id * NUM_RINGS * seqno_size) + (seqno_size * y->id)
	 *  ie. transpose of g(x, y)
	 *
	 *	 sync from	sync from    sync from    sync from	sync from
	 *	    RCS		   VCS          BCS        VECS		 VCS2
	 *      --------------------------------------------------------------------
	 *  RCS | NOP (0x00) | VCS (0x28) | BCS (0x50) | VECS (0x78) | VCS2 (0xa0) |
	 *	|-------------------------------------------------------------------
	 *  VCS | RCS (0x08) | NOP (0x30) | BCS (0x58) | VECS (0x80) | VCS2 (0xa8) |
	 *	|-------------------------------------------------------------------
	 *  BCS | RCS (0x10) | VCS (0x38) | NOP (0x60) | VECS (0x88) | VCS2 (0xb0) |
	 *	|-------------------------------------------------------------------
	 * VECS | RCS (0x18) | VCS (0x40) | BCS (0x68) |  NOP (0x90) | VCS2 (0xb8) |
	 *	|-------------------------------------------------------------------
	 * VCS2 | RCS (0x20) | VCS (0x48) | BCS (0x70) | VECS (0x98) |  NOP (0xc0) |
	 *	|-------------------------------------------------------------------
	 *
	 * Generalization:
	 *  g(x, y) := (y->id * NUM_RINGS * seqno_size) + (seqno_size * x->id)
	 *  ie. transpose of f(x, y)
	 */
494
	struct {
495 496 497
#define GEN6_SEMAPHORE_LAST	VECS_HW
#define GEN6_NUM_SEMAPHORES	(GEN6_SEMAPHORE_LAST + 1)
#define GEN6_SEMAPHORES_MASK	GENMASK(GEN6_SEMAPHORE_LAST, 0)
498 499 500 501 502 503
		struct {
			/* our mbox written by others */
			u32		wait[GEN6_NUM_SEMAPHORES];
			/* mboxes this ring signals to */
			i915_reg_t	signal[GEN6_NUM_SEMAPHORES];
		} mbox;
504 505

		/* AKA wait() */
506 507
		int	(*sync_to)(struct drm_i915_gem_request *req,
				   struct drm_i915_gem_request *signal);
508
		u32	*(*signal)(struct drm_i915_gem_request *req, u32 *cs);
509
	} semaphore;
510

511
	struct intel_engine_execlists execlists;
512

513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530
	/* Contexts are pinned whilst they are active on the GPU. The last
	 * context executed remains active whilst the GPU is idle - the
	 * switch away and write to the context object only occurs on the
	 * next execution.  Contexts are only unpinned on retirement of the
	 * following request ensuring that we can always write to the object
	 * on the context switch even after idling. Across suspend, we switch
	 * to the kernel context and trash it as the save may not happen
	 * before the hardware is powered down.
	 */
	struct i915_gem_context *last_retired_context;

	/* We track the current MI_SET_CONTEXT in order to eliminate
	 * redudant context switches. This presumes that requests are not
	 * reordered! Or when they are the tracking is updated along with
	 * the emission of individual requests into the legacy command
	 * stream (ring).
	 */
	struct i915_gem_context *legacy_active_context;
531
	struct i915_hw_ppgtt *legacy_active_ppgtt;
532

533 534 535
	/* status_notifier: list of callbacks for context-switch changes */
	struct atomic_notifier_head context_status_notifier;

536
	struct intel_engine_hangcheck hangcheck;
537

538
#define I915_ENGINE_NEEDS_CMD_PARSER BIT(0)
539
#define I915_ENGINE_SUPPORTS_STATS   BIT(1)
540
	unsigned int flags;
541

542
	/*
543
	 * Table of commands the command parser needs to know about
544
	 * for this engine.
545
	 */
546
	DECLARE_HASHTABLE(cmd_hash, I915_CMD_HASH_ORDER);
547 548 549 550

	/*
	 * Table of registers allowed in commands that read/write registers.
	 */
551 552
	const struct drm_i915_reg_table *reg_tables;
	int reg_table_count;
553 554 555 556 557

	/*
	 * Returns the bitmask for the length field of the specified command.
	 * Return 0 for an unrecognized/invalid command.
	 *
558
	 * If the command parser finds an entry for a command in the engine's
559
	 * cmd_tables, it gets the command's length based on the table entry.
560 561 562
	 * If not, it calls this function to determine the per-engine length
	 * field encoding for the command (i.e. different opcode ranges use
	 * certain bits to encode the command length in the header).
563 564
	 */
	u32 (*get_cmd_length_mask)(u32 cmd_header);
565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596

	struct {
		/**
		 * @lock: Lock protecting the below fields.
		 */
		spinlock_t lock;
		/**
		 * @enabled: Reference count indicating number of listeners.
		 */
		unsigned int enabled;
		/**
		 * @active: Number of contexts currently scheduled in.
		 */
		unsigned int active;
		/**
		 * @enabled_at: Timestamp when busy stats were enabled.
		 */
		ktime_t enabled_at;
		/**
		 * @start: Timestamp of the last idle to active transition.
		 *
		 * Idle is defined as active == 0, active is active > 0.
		 */
		ktime_t start;
		/**
		 * @total: Total time this engine was busy.
		 *
		 * Accumulated time not counting the most recent block in cases
		 * where engine is currently busy (active > 0).
		 */
		ktime_t total;
	} stats;
597 598
};

599 600 601 602 603
static inline bool intel_engine_needs_cmd_parser(struct intel_engine_cs *engine)
{
	return engine->flags & I915_ENGINE_NEEDS_CMD_PARSER;
}

604 605 606 607 608
static inline bool intel_engine_supports_stats(struct intel_engine_cs *engine)
{
	return engine->flags & I915_ENGINE_SUPPORTS_STATS;
}

609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629
static inline void
execlists_set_active(struct intel_engine_execlists *execlists,
		     unsigned int bit)
{
	__set_bit(bit, (unsigned long *)&execlists->active);
}

static inline void
execlists_clear_active(struct intel_engine_execlists *execlists,
		       unsigned int bit)
{
	__clear_bit(bit, (unsigned long *)&execlists->active);
}

static inline bool
execlists_is_active(const struct intel_engine_execlists *execlists,
		    unsigned int bit)
{
	return test_bit(bit, (unsigned long *)&execlists->active);
}

630 631 632 633 634 635
void
execlists_cancel_port_requests(struct intel_engine_execlists * const execlists);

void
execlists_unwind_incomplete_requests(struct intel_engine_execlists *execlists);

636 637 638 639 640 641
static inline unsigned int
execlists_num_ports(const struct intel_engine_execlists * const execlists)
{
	return execlists->port_mask + 1;
}

642 643 644 645
static inline void
execlists_port_complete(struct intel_engine_execlists * const execlists,
			struct execlist_port * const port)
{
646
	const unsigned int m = execlists->port_mask;
647 648

	GEM_BUG_ON(port_index(port, execlists) != 0);
649
	GEM_BUG_ON(!execlists_is_active(execlists, EXECLISTS_ACTIVE_USER));
650

651 652
	memmove(port, port + 1, m * sizeof(struct execlist_port));
	memset(port + m, 0, sizeof(struct execlist_port));
653 654
}

655
static inline unsigned int
656
intel_engine_flag(const struct intel_engine_cs *engine)
657
{
658
	return BIT(engine->id);
659 660
}

661
static inline u32
662
intel_read_status_page(const struct intel_engine_cs *engine, int reg)
663
{
664
	/* Ensure that the compiler doesn't optimize away the load. */
665
	return READ_ONCE(engine->status_page.page_addr[reg]);
666 667
}

M
Mika Kuoppala 已提交
668
static inline void
669
intel_write_status_page(struct intel_engine_cs *engine, int reg, u32 value)
M
Mika Kuoppala 已提交
670
{
671 672 673 674 675 676 677 678 679 680 681 682 683 684
	/* Writing into the status page should be done sparingly. Since
	 * we do when we are uncertain of the device state, we take a bit
	 * of extra paranoia to try and ensure that the HWS takes the value
	 * we give and that it doesn't end up trapped inside the CPU!
	 */
	if (static_cpu_has(X86_FEATURE_CLFLUSH)) {
		mb();
		clflush(&engine->status_page.page_addr[reg]);
		engine->status_page.page_addr[reg] = value;
		clflush(&engine->status_page.page_addr[reg]);
		mb();
	} else {
		WRITE_ONCE(engine->status_page.page_addr[reg], value);
	}
M
Mika Kuoppala 已提交
685 686
}

687
/*
C
Chris Wilson 已提交
688 689 690 691 692 693 694 695 696 697 698
 * Reads a dword out of the status page, which is written to from the command
 * queue by automatic updates, MI_REPORT_HEAD, MI_STORE_DATA_INDEX, or
 * MI_STORE_DATA_IMM.
 *
 * The following dwords have a reserved meaning:
 * 0x00: ISR copy, updated when an ISR bit not set in the HWSTAM changes.
 * 0x04: ring 0 head pointer
 * 0x05: ring 1 head pointer (915-class)
 * 0x06: ring 2 head pointer (915-class)
 * 0x10-0x1b: Context status DWords (GM45)
 * 0x1f: Last written status offset. (GM45)
699
 * 0x20-0x2f: Reserved (Gen6+)
C
Chris Wilson 已提交
700
 *
701
 * The area from dword 0x30 to 0x3ff is available for driver usage.
C
Chris Wilson 已提交
702
 */
703
#define I915_GEM_HWS_INDEX		0x30
704
#define I915_GEM_HWS_INDEX_ADDR (I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT)
705 706
#define I915_GEM_HWS_PREEMPT_INDEX	0x32
#define I915_GEM_HWS_PREEMPT_ADDR (I915_GEM_HWS_PREEMPT_INDEX << MI_STORE_DWORD_INDEX_SHIFT)
707
#define I915_GEM_HWS_SCRATCH_INDEX	0x40
708
#define I915_GEM_HWS_SCRATCH_ADDR (I915_GEM_HWS_SCRATCH_INDEX << MI_STORE_DWORD_INDEX_SHIFT)
C
Chris Wilson 已提交
709

710
#define I915_HWS_CSB_BUF0_INDEX		0x10
711 712
#define I915_HWS_CSB_WRITE_INDEX	0x1f
#define CNL_HWS_CSB_WRITE_INDEX		0x2f
713

714 715
struct intel_ring *
intel_engine_create_ring(struct intel_engine_cs *engine, int size);
716 717 718
int intel_ring_pin(struct intel_ring *ring,
		   struct drm_i915_private *i915,
		   unsigned int offset_bias);
719
void intel_ring_reset(struct intel_ring *ring, u32 tail);
720
unsigned int intel_ring_update_space(struct intel_ring *ring);
721
void intel_ring_unpin(struct intel_ring *ring);
722
void intel_ring_free(struct intel_ring *ring);
723

724 725
void intel_engine_stop(struct intel_engine_cs *engine);
void intel_engine_cleanup(struct intel_engine_cs *engine);
726

727 728
void intel_legacy_submission_resume(struct drm_i915_private *dev_priv);

729
int __must_check intel_ring_cacheline_align(struct drm_i915_gem_request *req);
730

731
int intel_ring_wait_for_space(struct intel_ring *ring, unsigned int bytes);
732 733
u32 __must_check *intel_ring_begin(struct drm_i915_gem_request *req,
				   unsigned int n);
734

735 736
static inline void
intel_ring_advance(struct drm_i915_gem_request *req, u32 *cs)
737
{
738 739 740 741 742 743 744
	/* Dummy function.
	 *
	 * This serves as a placeholder in the code so that the reader
	 * can compare against the preceding intel_ring_begin() and
	 * check that the number of dwords emitted matches the space
	 * reserved for the command packet (i.e. the value passed to
	 * intel_ring_begin()).
745
	 */
746
	GEM_BUG_ON((req->ring->vaddr + req->ring->emit) != cs);
747 748
}

749
static inline u32
750 751 752 753 754 755 756
intel_ring_wrap(const struct intel_ring *ring, u32 pos)
{
	return pos & (ring->size - 1);
}

static inline u32
intel_ring_offset(const struct drm_i915_gem_request *req, void *addr)
757 758
{
	/* Don't write ring->size (equivalent to 0) as that hangs some GPUs. */
759 760
	u32 offset = addr - req->ring->vaddr;
	GEM_BUG_ON(offset > req->ring->size);
761
	return intel_ring_wrap(req->ring, offset);
762
}
763

764 765 766 767 768 769 770 771 772
static inline void
assert_ring_tail_valid(const struct intel_ring *ring, unsigned int tail)
{
	/* We could combine these into a single tail operation, but keeping
	 * them as seperate tests will help identify the cause should one
	 * ever fire.
	 */
	GEM_BUG_ON(!IS_ALIGNED(tail, 8));
	GEM_BUG_ON(tail >= ring->size);
773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791

	/*
	 * "Ring Buffer Use"
	 *	Gen2 BSpec "1. Programming Environment" / 1.4.4.6
	 *	Gen3 BSpec "1c Memory Interface Functions" / 2.3.4.5
	 *	Gen4+ BSpec "1c Memory Interface and Command Stream" / 5.3.4.5
	 * "If the Ring Buffer Head Pointer and the Tail Pointer are on the
	 * same cacheline, the Head Pointer must not be greater than the Tail
	 * Pointer."
	 *
	 * We use ring->head as the last known location of the actual RING_HEAD,
	 * it may have advanced but in the worst case it is equally the same
	 * as ring->head and so we should never program RING_TAIL to advance
	 * into the same cacheline as ring->head.
	 */
#define cacheline(a) round_down(a, CACHELINE_BYTES)
	GEM_BUG_ON(cacheline(tail) == cacheline(ring->head) &&
		   tail < ring->head);
#undef cacheline
792 793
}

794 795 796 797 798 799 800 801 802 803 804 805 806
static inline unsigned int
intel_ring_set_tail(struct intel_ring *ring, unsigned int tail)
{
	/* Whilst writes to the tail are strictly order, there is no
	 * serialisation between readers and the writers. The tail may be
	 * read by i915_gem_request_retire() just as it is being updated
	 * by execlists, as although the breadcrumb is complete, the context
	 * switch hasn't been seen.
	 */
	assert_ring_tail_valid(ring, tail);
	ring->tail = tail;
	return tail;
}
807

808
void intel_engine_init_global_seqno(struct intel_engine_cs *engine, u32 seqno);
809

810 811
void intel_engine_setup_common(struct intel_engine_cs *engine);
int intel_engine_init_common(struct intel_engine_cs *engine);
812
int intel_engine_create_scratch(struct intel_engine_cs *engine, int size);
813
void intel_engine_cleanup_common(struct intel_engine_cs *engine);
814

815 816 817 818
int intel_init_render_ring_buffer(struct intel_engine_cs *engine);
int intel_init_bsd_ring_buffer(struct intel_engine_cs *engine);
int intel_init_blt_ring_buffer(struct intel_engine_cs *engine);
int intel_init_vebox_ring_buffer(struct intel_engine_cs *engine);
819

820 821
u64 intel_engine_get_active_head(const struct intel_engine_cs *engine);
u64 intel_engine_get_last_batch_head(const struct intel_engine_cs *engine);
822

823 824 825 826
static inline u32 intel_engine_get_seqno(struct intel_engine_cs *engine)
{
	return intel_read_status_page(engine, I915_GEM_HWS_INDEX);
}
827

828 829 830 831 832 833 834 835 836
static inline u32 intel_engine_last_submit(struct intel_engine_cs *engine)
{
	/* We are only peeking at the tail of the submit queue (and not the
	 * queue itself) in order to gain a hint as to the current active
	 * state of the engine. Callers are not expected to be taking
	 * engine->timeline->lock, nor are they expected to be concerned
	 * wtih serialising this hint with anything, so document it as
	 * a hint and nothing more.
	 */
837
	return READ_ONCE(engine->timeline->seqno);
838 839
}

840
int init_workarounds_ring(struct intel_engine_cs *engine);
841
int intel_ring_workarounds_emit(struct drm_i915_gem_request *req);
842

843 844 845
void intel_engine_get_instdone(struct intel_engine_cs *engine,
			       struct intel_instdone *instdone);

846 847 848
/*
 * Arbitrary size for largest possible 'add request' sequence. The code paths
 * are complex and variable. Empirical measurement shows that the worst case
849 850 851
 * is BDW at 192 bytes (6 + 6 + 36 dwords), then ILK at 136 bytes. However,
 * we need to allocate double the largest single packet within that emission
 * to account for tail wraparound (so 6 + 6 + 72 dwords for BDW).
852
 */
853
#define MIN_SPACE_FOR_ADD_REQUEST 336
854

855 856
static inline u32 intel_hws_seqno_address(struct intel_engine_cs *engine)
{
857
	return engine->status_page.ggtt_offset + I915_GEM_HWS_INDEX_ADDR;
858 859
}

860 861 862 863 864
static inline u32 intel_hws_preempt_done_address(struct intel_engine_cs *engine)
{
	return engine->status_page.ggtt_offset + I915_GEM_HWS_PREEMPT_ADDR;
}

865 866 867
/* intel_breadcrumbs.c -- user interrupt bottom-half for waiters */
int intel_engine_init_breadcrumbs(struct intel_engine_cs *engine);

868 869
static inline void intel_wait_init(struct intel_wait *wait,
				   struct drm_i915_gem_request *rq)
870 871
{
	wait->tsk = current;
872
	wait->request = rq;
873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888
}

static inline void intel_wait_init_for_seqno(struct intel_wait *wait, u32 seqno)
{
	wait->tsk = current;
	wait->seqno = seqno;
}

static inline bool intel_wait_has_seqno(const struct intel_wait *wait)
{
	return wait->seqno;
}

static inline bool
intel_wait_update_seqno(struct intel_wait *wait, u32 seqno)
{
889
	wait->seqno = seqno;
890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910
	return intel_wait_has_seqno(wait);
}

static inline bool
intel_wait_update_request(struct intel_wait *wait,
			  const struct drm_i915_gem_request *rq)
{
	return intel_wait_update_seqno(wait, i915_gem_request_global_seqno(rq));
}

static inline bool
intel_wait_check_seqno(const struct intel_wait *wait, u32 seqno)
{
	return wait->seqno == seqno;
}

static inline bool
intel_wait_check_request(const struct intel_wait *wait,
			 const struct drm_i915_gem_request *rq)
{
	return intel_wait_check_seqno(wait, i915_gem_request_global_seqno(rq));
911 912 913 914 915 916 917 918 919 920 921
}

static inline bool intel_wait_complete(const struct intel_wait *wait)
{
	return RB_EMPTY_NODE(&wait->node);
}

bool intel_engine_add_wait(struct intel_engine_cs *engine,
			   struct intel_wait *wait);
void intel_engine_remove_wait(struct intel_engine_cs *engine,
			      struct intel_wait *wait);
922 923
void intel_engine_enable_signaling(struct drm_i915_gem_request *request,
				   bool wakeup);
924
void intel_engine_cancel_signaling(struct drm_i915_gem_request *request);
925

926
static inline bool intel_engine_has_waiter(const struct intel_engine_cs *engine)
927
{
928
	return READ_ONCE(engine->breadcrumbs.irq_wait);
929 930
}

931 932
unsigned int intel_engine_wakeup(struct intel_engine_cs *engine);
#define ENGINE_WAKEUP_WAITER BIT(0)
933 934
#define ENGINE_WAKEUP_ASLEEP BIT(1)

935 936 937
void intel_engine_pin_breadcrumbs_irq(struct intel_engine_cs *engine);
void intel_engine_unpin_breadcrumbs_irq(struct intel_engine_cs *engine);

938 939
void __intel_engine_disarm_breadcrumbs(struct intel_engine_cs *engine);
void intel_engine_disarm_breadcrumbs(struct intel_engine_cs *engine);
940

941
void intel_engine_reset_breadcrumbs(struct intel_engine_cs *engine);
942
void intel_engine_fini_breadcrumbs(struct intel_engine_cs *engine);
943
bool intel_breadcrumbs_busy(struct intel_engine_cs *engine);
944

945 946 947 948 949 950 951 952 953 954 955
static inline u32 *gen8_emit_pipe_control(u32 *batch, u32 flags, u32 offset)
{
	memset(batch, 0, 6 * sizeof(u32));

	batch[0] = GFX_OP_PIPE_CONTROL(6);
	batch[1] = flags;
	batch[2] = offset;

	return batch + 6;
}

956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993
static inline u32 *
gen8_emit_ggtt_write_rcs(u32 *cs, u32 value, u32 gtt_offset)
{
	/* We're using qword write, offset should be aligned to 8 bytes. */
	GEM_BUG_ON(!IS_ALIGNED(gtt_offset, 8));

	/* w/a for post sync ops following a GPGPU operation we
	 * need a prior CS_STALL, which is emitted by the flush
	 * following the batch.
	 */
	*cs++ = GFX_OP_PIPE_CONTROL(6);
	*cs++ = PIPE_CONTROL_GLOBAL_GTT_IVB | PIPE_CONTROL_CS_STALL |
		PIPE_CONTROL_QW_WRITE;
	*cs++ = gtt_offset;
	*cs++ = 0;
	*cs++ = value;
	/* We're thrashing one dword of HWS. */
	*cs++ = 0;

	return cs;
}

static inline u32 *
gen8_emit_ggtt_write(u32 *cs, u32 value, u32 gtt_offset)
{
	/* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
	GEM_BUG_ON(gtt_offset & (1 << 5));
	/* Offset should be aligned to 8 bytes for both (QW/DW) write types */
	GEM_BUG_ON(!IS_ALIGNED(gtt_offset, 8));

	*cs++ = (MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW;
	*cs++ = gtt_offset | MI_FLUSH_DW_USE_GTT;
	*cs++ = 0;
	*cs++ = value;

	return cs;
}

994
bool intel_engine_is_idle(struct intel_engine_cs *engine);
995
bool intel_engines_are_idle(struct drm_i915_private *dev_priv);
996

997 998
bool intel_engine_has_kernel_context(const struct intel_engine_cs *engine);

999 1000 1001
void intel_engines_park(struct drm_i915_private *i915);
void intel_engines_unpark(struct drm_i915_private *i915);

1002
void intel_engines_reset_default_submission(struct drm_i915_private *i915);
1003
unsigned int intel_engines_has_context_isolation(struct drm_i915_private *i915);
1004

1005
bool intel_engine_can_store_dword(struct intel_engine_cs *engine);
1006

1007 1008 1009 1010
__printf(3, 4)
void intel_engine_dump(struct intel_engine_cs *engine,
		       struct drm_printer *m,
		       const char *header, ...);
1011

1012 1013 1014
struct intel_engine_cs *
intel_engine_lookup_user(struct drm_i915_private *i915, u8 class, u8 instance);

1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074
static inline void intel_engine_context_in(struct intel_engine_cs *engine)
{
	unsigned long flags;

	if (READ_ONCE(engine->stats.enabled) == 0)
		return;

	spin_lock_irqsave(&engine->stats.lock, flags);

	if (engine->stats.enabled > 0) {
		if (engine->stats.active++ == 0)
			engine->stats.start = ktime_get();
		GEM_BUG_ON(engine->stats.active == 0);
	}

	spin_unlock_irqrestore(&engine->stats.lock, flags);
}

static inline void intel_engine_context_out(struct intel_engine_cs *engine)
{
	unsigned long flags;

	if (READ_ONCE(engine->stats.enabled) == 0)
		return;

	spin_lock_irqsave(&engine->stats.lock, flags);

	if (engine->stats.enabled > 0) {
		ktime_t last;

		if (engine->stats.active && --engine->stats.active == 0) {
			/*
			 * Decrement the active context count and in case GPU
			 * is now idle add up to the running total.
			 */
			last = ktime_sub(ktime_get(), engine->stats.start);

			engine->stats.total = ktime_add(engine->stats.total,
							last);
		} else if (engine->stats.active == 0) {
			/*
			 * After turning on engine stats, context out might be
			 * the first event in which case we account from the
			 * time stats gathering was turned on.
			 */
			last = ktime_sub(ktime_get(), engine->stats.enabled_at);

			engine->stats.total = ktime_add(engine->stats.total,
							last);
		}
	}

	spin_unlock_irqrestore(&engine->stats.lock, flags);
}

int intel_enable_engine_stats(struct intel_engine_cs *engine);
void intel_disable_engine_stats(struct intel_engine_cs *engine);

ktime_t intel_engine_get_busy_time(struct intel_engine_cs *engine);

1075
#endif /* _INTEL_RINGBUFFER_H_ */