intel_ringbuffer.h 23.8 KB
Newer Older
1 2 3
#ifndef _INTEL_RINGBUFFER_H_
#define _INTEL_RINGBUFFER_H_

4
#include <linux/hashtable.h>
5
#include "i915_gem_batch_pool.h"
6
#include "i915_gem_request.h"
7
#include "i915_gem_timeline.h"
8
#include "i915_selftest.h"
9 10 11

#define I915_CMD_HASH_ORDER 9

12 13 14 15 16 17
/* Early gen2 devices have a cacheline of just 32 bytes, using 64 is overkill,
 * but keeps the logic simple. Indeed, the whole purpose of this macro is just
 * to give some inclination as to some of the magic values used in the various
 * workarounds!
 */
#define CACHELINE_BYTES 64
18
#define CACHELINE_DWORDS (CACHELINE_BYTES / sizeof(uint32_t))
19

20 21 22 23 24 25 26 27 28 29 30
/*
 * Gen2 BSpec "1. Programming Environment" / 1.4.4.6 "Ring Buffer Use"
 * Gen3 BSpec "vol1c Memory Interface Functions" / 2.3.4.5 "Ring Buffer Use"
 * Gen4+ BSpec "vol1c Memory Interface and Command Stream" / 5.3.4.5 "Ring Buffer Use"
 *
 * "If the Ring Buffer Head Pointer and the Tail Pointer are on the same
 * cacheline, the Head Pointer must not be greater than the Tail
 * Pointer."
 */
#define I915_RING_FREE_SPACE 64

31 32 33 34
struct intel_hw_status_page {
	struct i915_vma *vma;
	u32 *page_addr;
	u32 ggtt_offset;
35 36
};

37 38
#define I915_READ_TAIL(engine) I915_READ(RING_TAIL((engine)->mmio_base))
#define I915_WRITE_TAIL(engine, val) I915_WRITE(RING_TAIL((engine)->mmio_base), val)
39

40 41
#define I915_READ_START(engine) I915_READ(RING_START((engine)->mmio_base))
#define I915_WRITE_START(engine, val) I915_WRITE(RING_START((engine)->mmio_base), val)
42

43 44
#define I915_READ_HEAD(engine)  I915_READ(RING_HEAD((engine)->mmio_base))
#define I915_WRITE_HEAD(engine, val) I915_WRITE(RING_HEAD((engine)->mmio_base), val)
45

46 47
#define I915_READ_CTL(engine) I915_READ(RING_CTL((engine)->mmio_base))
#define I915_WRITE_CTL(engine, val) I915_WRITE(RING_CTL((engine)->mmio_base), val)
48

49 50
#define I915_READ_IMR(engine) I915_READ(RING_IMR((engine)->mmio_base))
#define I915_WRITE_IMR(engine, val) I915_WRITE(RING_IMR((engine)->mmio_base), val)
51

52 53
#define I915_READ_MODE(engine) I915_READ(RING_MI_MODE((engine)->mmio_base))
#define I915_WRITE_MODE(engine, val) I915_WRITE(RING_MI_MODE((engine)->mmio_base), val)
54

55 56 57
/* seqno size is actually only a uint32, but since we plan to use MI_FLUSH_DW to
 * do the writes, and that must have qw aligned offsets, simply pretend it's 8b.
 */
58 59 60
#define gen8_semaphore_seqno_size sizeof(uint64_t)
#define GEN8_SEMAPHORE_OFFSET(__from, __to)			     \
	(((__from) * I915_NUM_ENGINES  + (__to)) * gen8_semaphore_seqno_size)
61
#define GEN8_SIGNAL_OFFSET(__ring, to)			     \
62
	(dev_priv->semaphore->node.start + \
63
	 GEN8_SEMAPHORE_OFFSET((__ring)->id, (to)))
64
#define GEN8_WAIT_OFFSET(__ring, from)			     \
65
	(dev_priv->semaphore->node.start + \
66
	 GEN8_SEMAPHORE_OFFSET(from, (__ring)->id))
67

68
enum intel_engine_hangcheck_action {
69 70 71 72 73 74 75
	ENGINE_IDLE = 0,
	ENGINE_WAIT,
	ENGINE_ACTIVE_SEQNO,
	ENGINE_ACTIVE_HEAD,
	ENGINE_ACTIVE_SUBUNITS,
	ENGINE_WAIT_KICK,
	ENGINE_DEAD,
76
};
77

78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
static inline const char *
hangcheck_action_to_str(const enum intel_engine_hangcheck_action a)
{
	switch (a) {
	case ENGINE_IDLE:
		return "idle";
	case ENGINE_WAIT:
		return "wait";
	case ENGINE_ACTIVE_SEQNO:
		return "active seqno";
	case ENGINE_ACTIVE_HEAD:
		return "active head";
	case ENGINE_ACTIVE_SUBUNITS:
		return "active subunits";
	case ENGINE_WAIT_KICK:
		return "wait kick";
	case ENGINE_DEAD:
		return "dead";
	}

	return "unknown";
}
100

101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
#define I915_MAX_SLICES	3
#define I915_MAX_SUBSLICES 3

#define instdone_slice_mask(dev_priv__) \
	(INTEL_GEN(dev_priv__) == 7 ? \
	 1 : INTEL_INFO(dev_priv__)->sseu.slice_mask)

#define instdone_subslice_mask(dev_priv__) \
	(INTEL_GEN(dev_priv__) == 7 ? \
	 1 : INTEL_INFO(dev_priv__)->sseu.subslice_mask)

#define for_each_instdone_slice_subslice(dev_priv__, slice__, subslice__) \
	for ((slice__) = 0, (subslice__) = 0; \
	     (slice__) < I915_MAX_SLICES; \
	     (subslice__) = ((subslice__) + 1) < I915_MAX_SUBSLICES ? (subslice__) + 1 : 0, \
	       (slice__) += ((subslice__) == 0)) \
		for_each_if((BIT(slice__) & instdone_slice_mask(dev_priv__)) && \
			    (BIT(subslice__) & instdone_subslice_mask(dev_priv__)))

120 121 122 123
struct intel_instdone {
	u32 instdone;
	/* The following exist only in the RCS engine */
	u32 slice_common;
124 125
	u32 sampler[I915_MAX_SLICES][I915_MAX_SUBSLICES];
	u32 row[I915_MAX_SLICES][I915_MAX_SUBSLICES];
126 127
};

128
struct intel_engine_hangcheck {
129
	u64 acthd;
130
	u32 seqno;
131
	enum intel_engine_hangcheck_action action;
132
	unsigned long action_timestamp;
133
	int deadlock;
134
	struct intel_instdone instdone;
135
	bool stalled;
136 137
};

138
struct intel_ring {
139
	struct i915_vma *vma;
140
	void *vaddr;
141

142 143
	struct list_head request_list;

144 145
	u32 head;
	u32 tail;
146
	u32 emit;
147

148 149 150 151 152
	int space;
	int size;
	int effective_size;
};

153
struct i915_gem_context;
154
struct drm_i915_reg_table;
155

156 157 158 159 160 161 162 163 164 165 166
/*
 * we use a single page to load ctx workarounds so all of these
 * values are referred in terms of dwords
 *
 * struct i915_wa_ctx_bb:
 *  offset: specifies batch starting position, also helpful in case
 *    if we want to have multiple batches at different offsets based on
 *    some criteria. It is not a requirement at the moment but provides
 *    an option for future use.
 *  size: size of the batch in DWORDS
 */
167
struct i915_ctx_workarounds {
168 169 170 171
	struct i915_wa_ctx_bb {
		u32 offset;
		u32 size;
	} indirect_ctx, per_ctx;
172
	struct i915_vma *vma;
173 174
};

175
struct drm_i915_gem_request;
176
struct intel_render_state;
177

178 179 180 181 182 183 184 185 186 187 188 189 190
/*
 * Engine IDs definitions.
 * Keep instances of the same type engine together.
 */
enum intel_engine_id {
	RCS = 0,
	BCS,
	VCS,
	VCS2,
#define _VCS(n) (VCS + (n))
	VECS
};

191 192
#define INTEL_ENGINE_CS_MAX_NAME 8

193 194
struct intel_engine_cs {
	struct drm_i915_private *i915;
195
	char name[INTEL_ENGINE_CS_MAX_NAME];
196
	enum intel_engine_id id;
197
	unsigned int uabi_id;
198
	unsigned int hw_id;
199
	unsigned int guc_id;
200 201 202

	u8 class;
	u8 instance;
203 204
	u32 context_size;
	u32 mmio_base;
205
	unsigned int irq_shift;
206

207
	struct intel_ring *buffer;
208
	struct intel_timeline *timeline;
209

210 211
	struct intel_render_state *render_state;

212
	atomic_t irq_count;
213 214
	unsigned long irq_posted;
#define ENGINE_IRQ_BREADCRUMB 0
215
#define ENGINE_IRQ_EXECLIST 1
216

217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
	/* Rather than have every client wait upon all user interrupts,
	 * with the herd waking after every interrupt and each doing the
	 * heavyweight seqno dance, we delegate the task (of being the
	 * bottom-half of the user interrupt) to the first client. After
	 * every interrupt, we wake up one client, who does the heavyweight
	 * coherent seqno read and either goes back to sleep (if incomplete),
	 * or wakes up all the completed clients in parallel, before then
	 * transferring the bottom-half status to the next client in the queue.
	 *
	 * Compared to walking the entire list of waiters in a single dedicated
	 * bottom-half, we reduce the latency of the first waiter by avoiding
	 * a context switch, but incur additional coherent seqno reads when
	 * following the chain of request breadcrumbs. Since it is most likely
	 * that we have a single client waiting on each seqno, then reducing
	 * the overhead of waking that client is much preferred.
	 */
	struct intel_breadcrumbs {
234 235 236 237
		spinlock_t irq_lock; /* protects irq_*; irqsafe */
		struct intel_wait *irq_wait; /* oldest waiter by retirement */

		spinlock_t rb_lock; /* protects the rb and wraps irq_lock */
238
		struct rb_root waiters; /* sorted by retirement, priority */
239 240
		struct rb_root signals; /* sorted by retirement */
		struct task_struct *signaler; /* used for fence signalling */
241
		struct drm_i915_gem_request __rcu *first_signal;
242
		struct timer_list fake_irq; /* used after a missed interrupt */
243 244
		struct timer_list hangcheck; /* detect missed interrupts */

245
		unsigned int hangcheck_interrupts;
246

247
		bool irq_armed : 1;
248
		bool irq_enabled : 1;
249
		I915_SELFTEST_DECLARE(bool mock : 1);
250 251
	} breadcrumbs;

252 253 254 255 256 257 258
	/*
	 * A pool of objects to use as shadow copies of client batch buffers
	 * when the command parser is enabled. Prevents the client from
	 * modifying the batch contents after software parsing.
	 */
	struct i915_gem_batch_pool batch_pool;

259
	struct intel_hw_status_page status_page;
260
	struct i915_ctx_workarounds wa_ctx;
261
	struct i915_vma *scratch;
262

263 264
	u32             irq_keep_mask; /* always keep these interrupts */
	u32		irq_enable_mask; /* bitmask to enable ring interrupt */
265 266
	void		(*irq_enable)(struct intel_engine_cs *engine);
	void		(*irq_disable)(struct intel_engine_cs *engine);
267

268
	int		(*init_hw)(struct intel_engine_cs *engine);
269 270
	void		(*reset_hw)(struct intel_engine_cs *engine,
				    struct drm_i915_gem_request *req);
271

272 273
	void		(*set_default_submission)(struct intel_engine_cs *engine);

274 275 276 277
	int		(*context_pin)(struct intel_engine_cs *engine,
				       struct i915_gem_context *ctx);
	void		(*context_unpin)(struct intel_engine_cs *engine,
					 struct i915_gem_context *ctx);
278
	int		(*request_alloc)(struct drm_i915_gem_request *req);
279
	int		(*init_context)(struct drm_i915_gem_request *req);
280

281 282 283 284 285 286 287 288 289 290 291
	int		(*emit_flush)(struct drm_i915_gem_request *request,
				      u32 mode);
#define EMIT_INVALIDATE	BIT(0)
#define EMIT_FLUSH	BIT(1)
#define EMIT_BARRIER	(EMIT_INVALIDATE | EMIT_FLUSH)
	int		(*emit_bb_start)(struct drm_i915_gem_request *req,
					 u64 offset, u32 length,
					 unsigned int dispatch_flags);
#define I915_DISPATCH_SECURE BIT(0)
#define I915_DISPATCH_PINNED BIT(1)
#define I915_DISPATCH_RS     BIT(2)
C
Chris Wilson 已提交
292
	void		(*emit_breadcrumb)(struct drm_i915_gem_request *req,
293
					   u32 *cs);
294
	int		emit_breadcrumb_sz;
295 296 297 298 299 300 301

	/* Pass the request to the hardware queue (e.g. directly into
	 * the legacy ringbuffer or to the end of an execlist).
	 *
	 * This is called from an atomic context with irqs disabled; must
	 * be irq safe.
	 */
302
	void		(*submit_request)(struct drm_i915_gem_request *req);
303

304 305 306 307 308 309 310 311 312
	/* Call when the priority on a request has changed and it and its
	 * dependencies may need rescheduling. Note the request itself may
	 * not be ready to run!
	 *
	 * Called under the struct_mutex.
	 */
	void		(*schedule)(struct drm_i915_gem_request *request,
				    int priority);

313 314 315 316 317 318
	/* Some chipsets are not quite as coherent as advertised and need
	 * an expensive kick to force a true read of the up-to-date seqno.
	 * However, the up-to-date seqno is not always required and the last
	 * seen value is good enough. Note that the seqno will always be
	 * monotonic, even if not coherent.
	 */
319 320
	void		(*irq_seqno_barrier)(struct intel_engine_cs *engine);
	void		(*cleanup)(struct intel_engine_cs *engine);
321

322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358
	/* GEN8 signal/wait table - never trust comments!
	 *	  signal to	signal to    signal to   signal to      signal to
	 *	    RCS		   VCS          BCS        VECS		 VCS2
	 *      --------------------------------------------------------------------
	 *  RCS | NOP (0x00) | VCS (0x08) | BCS (0x10) | VECS (0x18) | VCS2 (0x20) |
	 *	|-------------------------------------------------------------------
	 *  VCS | RCS (0x28) | NOP (0x30) | BCS (0x38) | VECS (0x40) | VCS2 (0x48) |
	 *	|-------------------------------------------------------------------
	 *  BCS | RCS (0x50) | VCS (0x58) | NOP (0x60) | VECS (0x68) | VCS2 (0x70) |
	 *	|-------------------------------------------------------------------
	 * VECS | RCS (0x78) | VCS (0x80) | BCS (0x88) |  NOP (0x90) | VCS2 (0x98) |
	 *	|-------------------------------------------------------------------
	 * VCS2 | RCS (0xa0) | VCS (0xa8) | BCS (0xb0) | VECS (0xb8) | NOP  (0xc0) |
	 *	|-------------------------------------------------------------------
	 *
	 * Generalization:
	 *  f(x, y) := (x->id * NUM_RINGS * seqno_size) + (seqno_size * y->id)
	 *  ie. transpose of g(x, y)
	 *
	 *	 sync from	sync from    sync from    sync from	sync from
	 *	    RCS		   VCS          BCS        VECS		 VCS2
	 *      --------------------------------------------------------------------
	 *  RCS | NOP (0x00) | VCS (0x28) | BCS (0x50) | VECS (0x78) | VCS2 (0xa0) |
	 *	|-------------------------------------------------------------------
	 *  VCS | RCS (0x08) | NOP (0x30) | BCS (0x58) | VECS (0x80) | VCS2 (0xa8) |
	 *	|-------------------------------------------------------------------
	 *  BCS | RCS (0x10) | VCS (0x38) | NOP (0x60) | VECS (0x88) | VCS2 (0xb0) |
	 *	|-------------------------------------------------------------------
	 * VECS | RCS (0x18) | VCS (0x40) | BCS (0x68) |  NOP (0x90) | VCS2 (0xb8) |
	 *	|-------------------------------------------------------------------
	 * VCS2 | RCS (0x20) | VCS (0x48) | BCS (0x70) | VECS (0x98) |  NOP (0xc0) |
	 *	|-------------------------------------------------------------------
	 *
	 * Generalization:
	 *  g(x, y) := (y->id * NUM_RINGS * seqno_size) + (seqno_size * x->id)
	 *  ie. transpose of f(x, y)
	 */
359
	struct {
360
		union {
361 362 363
#define GEN6_SEMAPHORE_LAST	VECS_HW
#define GEN6_NUM_SEMAPHORES	(GEN6_SEMAPHORE_LAST + 1)
#define GEN6_SEMAPHORES_MASK	GENMASK(GEN6_SEMAPHORE_LAST, 0)
364 365
			struct {
				/* our mbox written by others */
366
				u32		wait[GEN6_NUM_SEMAPHORES];
367
				/* mboxes this ring signals to */
368
				i915_reg_t	signal[GEN6_NUM_SEMAPHORES];
369
			} mbox;
370
			u64		signal_ggtt[I915_NUM_ENGINES];
371
		};
372 373

		/* AKA wait() */
374 375
		int	(*sync_to)(struct drm_i915_gem_request *req,
				   struct drm_i915_gem_request *signal);
376
		u32	*(*signal)(struct drm_i915_gem_request *req, u32 *cs);
377
	} semaphore;
378

379
	/* Execlists */
380
	struct tasklet_struct irq_tasklet;
381 382 383
	struct execlist_port {
		struct drm_i915_gem_request *request;
		unsigned int count;
384
		GEM_DEBUG_DECL(u32 context_id);
385
	} execlist_port[2];
386 387
	struct rb_root execlist_queue;
	struct rb_node *execlist_first;
388
	unsigned int fw_domains;
389

390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407
	/* Contexts are pinned whilst they are active on the GPU. The last
	 * context executed remains active whilst the GPU is idle - the
	 * switch away and write to the context object only occurs on the
	 * next execution.  Contexts are only unpinned on retirement of the
	 * following request ensuring that we can always write to the object
	 * on the context switch even after idling. Across suspend, we switch
	 * to the kernel context and trash it as the save may not happen
	 * before the hardware is powered down.
	 */
	struct i915_gem_context *last_retired_context;

	/* We track the current MI_SET_CONTEXT in order to eliminate
	 * redudant context switches. This presumes that requests are not
	 * reordered! Or when they are the tracking is updated along with
	 * the emission of individual requests into the legacy command
	 * stream (ring).
	 */
	struct i915_gem_context *legacy_active_context;
408

409 410 411
	/* status_notifier: list of callbacks for context-switch changes */
	struct atomic_notifier_head context_status_notifier;

412
	struct intel_engine_hangcheck hangcheck;
413

414 415
	bool needs_cmd_parser;

416
	/*
417
	 * Table of commands the command parser needs to know about
418
	 * for this engine.
419
	 */
420
	DECLARE_HASHTABLE(cmd_hash, I915_CMD_HASH_ORDER);
421 422 423 424

	/*
	 * Table of registers allowed in commands that read/write registers.
	 */
425 426
	const struct drm_i915_reg_table *reg_tables;
	int reg_table_count;
427 428 429 430 431

	/*
	 * Returns the bitmask for the length field of the specified command.
	 * Return 0 for an unrecognized/invalid command.
	 *
432
	 * If the command parser finds an entry for a command in the engine's
433
	 * cmd_tables, it gets the command's length based on the table entry.
434 435 436
	 * If not, it calls this function to determine the per-engine length
	 * field encoding for the command (i.e. different opcode ranges use
	 * certain bits to encode the command length in the header).
437 438
	 */
	u32 (*get_cmd_length_mask)(u32 cmd_header);
439 440
};

441
static inline unsigned int
442
intel_engine_flag(const struct intel_engine_cs *engine)
443
{
444
	return BIT(engine->id);
445 446
}

447
static inline u32
448
intel_read_status_page(struct intel_engine_cs *engine, int reg)
449
{
450
	/* Ensure that the compiler doesn't optimize away the load. */
451
	return READ_ONCE(engine->status_page.page_addr[reg]);
452 453
}

M
Mika Kuoppala 已提交
454
static inline void
455
intel_write_status_page(struct intel_engine_cs *engine, int reg, u32 value)
M
Mika Kuoppala 已提交
456
{
457 458 459 460 461 462 463 464 465 466 467 468 469 470
	/* Writing into the status page should be done sparingly. Since
	 * we do when we are uncertain of the device state, we take a bit
	 * of extra paranoia to try and ensure that the HWS takes the value
	 * we give and that it doesn't end up trapped inside the CPU!
	 */
	if (static_cpu_has(X86_FEATURE_CLFLUSH)) {
		mb();
		clflush(&engine->status_page.page_addr[reg]);
		engine->status_page.page_addr[reg] = value;
		clflush(&engine->status_page.page_addr[reg]);
		mb();
	} else {
		WRITE_ONCE(engine->status_page.page_addr[reg], value);
	}
M
Mika Kuoppala 已提交
471 472
}

473
/*
C
Chris Wilson 已提交
474 475 476 477 478 479 480 481 482 483 484
 * Reads a dword out of the status page, which is written to from the command
 * queue by automatic updates, MI_REPORT_HEAD, MI_STORE_DATA_INDEX, or
 * MI_STORE_DATA_IMM.
 *
 * The following dwords have a reserved meaning:
 * 0x00: ISR copy, updated when an ISR bit not set in the HWSTAM changes.
 * 0x04: ring 0 head pointer
 * 0x05: ring 1 head pointer (915-class)
 * 0x06: ring 2 head pointer (915-class)
 * 0x10-0x1b: Context status DWords (GM45)
 * 0x1f: Last written status offset. (GM45)
485
 * 0x20-0x2f: Reserved (Gen6+)
C
Chris Wilson 已提交
486
 *
487
 * The area from dword 0x30 to 0x3ff is available for driver usage.
C
Chris Wilson 已提交
488
 */
489
#define I915_GEM_HWS_INDEX		0x30
490
#define I915_GEM_HWS_INDEX_ADDR (I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT)
491
#define I915_GEM_HWS_SCRATCH_INDEX	0x40
492
#define I915_GEM_HWS_SCRATCH_ADDR (I915_GEM_HWS_SCRATCH_INDEX << MI_STORE_DWORD_INDEX_SHIFT)
C
Chris Wilson 已提交
493

494 495
struct intel_ring *
intel_engine_create_ring(struct intel_engine_cs *engine, int size);
496 497 498
int intel_ring_pin(struct intel_ring *ring,
		   struct drm_i915_private *i915,
		   unsigned int offset_bias);
499 500
void intel_ring_reset(struct intel_ring *ring, u32 tail);
void intel_ring_update_space(struct intel_ring *ring);
501
void intel_ring_unpin(struct intel_ring *ring);
502
void intel_ring_free(struct intel_ring *ring);
503

504 505
void intel_engine_stop(struct intel_engine_cs *engine);
void intel_engine_cleanup(struct intel_engine_cs *engine);
506

507 508
void intel_legacy_submission_resume(struct drm_i915_private *dev_priv);

509
int __must_check intel_ring_cacheline_align(struct drm_i915_gem_request *req);
510

511
u32 __must_check *intel_ring_begin(struct drm_i915_gem_request *req, int n);
512

513 514
static inline void
intel_ring_advance(struct drm_i915_gem_request *req, u32 *cs)
515
{
516 517 518 519 520 521 522
	/* Dummy function.
	 *
	 * This serves as a placeholder in the code so that the reader
	 * can compare against the preceding intel_ring_begin() and
	 * check that the number of dwords emitted matches the space
	 * reserved for the command packet (i.e. the value passed to
	 * intel_ring_begin()).
523
	 */
524
	GEM_BUG_ON((req->ring->vaddr + req->ring->emit) != cs);
525 526
}

527
static inline u32
528 529 530 531 532 533 534
intel_ring_wrap(const struct intel_ring *ring, u32 pos)
{
	return pos & (ring->size - 1);
}

static inline u32
intel_ring_offset(const struct drm_i915_gem_request *req, void *addr)
535 536
{
	/* Don't write ring->size (equivalent to 0) as that hangs some GPUs. */
537 538
	u32 offset = addr - req->ring->vaddr;
	GEM_BUG_ON(offset > req->ring->size);
539
	return intel_ring_wrap(req->ring, offset);
540
}
541

542 543 544 545 546 547 548 549 550 551 552
static inline void
assert_ring_tail_valid(const struct intel_ring *ring, unsigned int tail)
{
	/* We could combine these into a single tail operation, but keeping
	 * them as seperate tests will help identify the cause should one
	 * ever fire.
	 */
	GEM_BUG_ON(!IS_ALIGNED(tail, 8));
	GEM_BUG_ON(tail >= ring->size);
}

553 554 555 556 557 558 559 560 561 562 563 564 565
static inline unsigned int
intel_ring_set_tail(struct intel_ring *ring, unsigned int tail)
{
	/* Whilst writes to the tail are strictly order, there is no
	 * serialisation between readers and the writers. The tail may be
	 * read by i915_gem_request_retire() just as it is being updated
	 * by execlists, as although the breadcrumb is complete, the context
	 * switch hasn't been seen.
	 */
	assert_ring_tail_valid(ring, tail);
	ring->tail = tail;
	return tail;
}
566

567
void intel_engine_init_global_seqno(struct intel_engine_cs *engine, u32 seqno);
568

569 570
void intel_engine_setup_common(struct intel_engine_cs *engine);
int intel_engine_init_common(struct intel_engine_cs *engine);
571
int intel_engine_create_scratch(struct intel_engine_cs *engine, int size);
572
void intel_engine_cleanup_common(struct intel_engine_cs *engine);
573

574 575 576 577
int intel_init_render_ring_buffer(struct intel_engine_cs *engine);
int intel_init_bsd_ring_buffer(struct intel_engine_cs *engine);
int intel_init_blt_ring_buffer(struct intel_engine_cs *engine);
int intel_init_vebox_ring_buffer(struct intel_engine_cs *engine);
578

579
u64 intel_engine_get_active_head(struct intel_engine_cs *engine);
580 581
u64 intel_engine_get_last_batch_head(struct intel_engine_cs *engine);

582 583 584 585
static inline u32 intel_engine_get_seqno(struct intel_engine_cs *engine)
{
	return intel_read_status_page(engine, I915_GEM_HWS_INDEX);
}
586

587 588 589 590 591 592 593 594 595
static inline u32 intel_engine_last_submit(struct intel_engine_cs *engine)
{
	/* We are only peeking at the tail of the submit queue (and not the
	 * queue itself) in order to gain a hint as to the current active
	 * state of the engine. Callers are not expected to be taking
	 * engine->timeline->lock, nor are they expected to be concerned
	 * wtih serialising this hint with anything, so document it as
	 * a hint and nothing more.
	 */
596
	return READ_ONCE(engine->timeline->seqno);
597 598
}

599
int init_workarounds_ring(struct intel_engine_cs *engine);
600
int intel_ring_workarounds_emit(struct drm_i915_gem_request *req);
601

602 603 604
void intel_engine_get_instdone(struct intel_engine_cs *engine,
			       struct intel_instdone *instdone);

605 606 607
/*
 * Arbitrary size for largest possible 'add request' sequence. The code paths
 * are complex and variable. Empirical measurement shows that the worst case
608 609 610
 * is BDW at 192 bytes (6 + 6 + 36 dwords), then ILK at 136 bytes. However,
 * we need to allocate double the largest single packet within that emission
 * to account for tail wraparound (so 6 + 6 + 72 dwords for BDW).
611
 */
612
#define MIN_SPACE_FOR_ADD_REQUEST 336
613

614 615
static inline u32 intel_hws_seqno_address(struct intel_engine_cs *engine)
{
616
	return engine->status_page.ggtt_offset + I915_GEM_HWS_INDEX_ADDR;
617 618
}

619 620 621
/* intel_breadcrumbs.c -- user interrupt bottom-half for waiters */
int intel_engine_init_breadcrumbs(struct intel_engine_cs *engine);

622 623
static inline void intel_wait_init(struct intel_wait *wait,
				   struct drm_i915_gem_request *rq)
624 625
{
	wait->tsk = current;
626
	wait->request = rq;
627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642
}

static inline void intel_wait_init_for_seqno(struct intel_wait *wait, u32 seqno)
{
	wait->tsk = current;
	wait->seqno = seqno;
}

static inline bool intel_wait_has_seqno(const struct intel_wait *wait)
{
	return wait->seqno;
}

static inline bool
intel_wait_update_seqno(struct intel_wait *wait, u32 seqno)
{
643
	wait->seqno = seqno;
644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664
	return intel_wait_has_seqno(wait);
}

static inline bool
intel_wait_update_request(struct intel_wait *wait,
			  const struct drm_i915_gem_request *rq)
{
	return intel_wait_update_seqno(wait, i915_gem_request_global_seqno(rq));
}

static inline bool
intel_wait_check_seqno(const struct intel_wait *wait, u32 seqno)
{
	return wait->seqno == seqno;
}

static inline bool
intel_wait_check_request(const struct intel_wait *wait,
			 const struct drm_i915_gem_request *rq)
{
	return intel_wait_check_seqno(wait, i915_gem_request_global_seqno(rq));
665 666 667 668 669 670 671 672 673 674 675
}

static inline bool intel_wait_complete(const struct intel_wait *wait)
{
	return RB_EMPTY_NODE(&wait->node);
}

bool intel_engine_add_wait(struct intel_engine_cs *engine,
			   struct intel_wait *wait);
void intel_engine_remove_wait(struct intel_engine_cs *engine,
			      struct intel_wait *wait);
676 677
void intel_engine_enable_signaling(struct drm_i915_gem_request *request,
				   bool wakeup);
678
void intel_engine_cancel_signaling(struct drm_i915_gem_request *request);
679

680
static inline bool intel_engine_has_waiter(const struct intel_engine_cs *engine)
681
{
682
	return READ_ONCE(engine->breadcrumbs.irq_wait);
683 684
}

685 686
unsigned int intel_engine_wakeup(struct intel_engine_cs *engine);
#define ENGINE_WAKEUP_WAITER BIT(0)
687 688 689 690
#define ENGINE_WAKEUP_ASLEEP BIT(1)

void __intel_engine_disarm_breadcrumbs(struct intel_engine_cs *engine);
void intel_engine_disarm_breadcrumbs(struct intel_engine_cs *engine);
691

692
void intel_engine_reset_breadcrumbs(struct intel_engine_cs *engine);
693
void intel_engine_fini_breadcrumbs(struct intel_engine_cs *engine);
694
bool intel_breadcrumbs_busy(struct intel_engine_cs *engine);
695

696 697 698 699 700 701 702 703 704 705 706
static inline u32 *gen8_emit_pipe_control(u32 *batch, u32 flags, u32 offset)
{
	memset(batch, 0, 6 * sizeof(u32));

	batch[0] = GFX_OP_PIPE_CONTROL(6);
	batch[1] = flags;
	batch[2] = offset;

	return batch + 6;
}

707
bool intel_engine_is_idle(struct intel_engine_cs *engine);
708
bool intel_engines_are_idle(struct drm_i915_private *dev_priv);
709

710 711
void intel_engines_reset_default_submission(struct drm_i915_private *i915);

712
#endif /* _INTEL_RINGBUFFER_H_ */