intel_ringbuffer.h 19.3 KB
Newer Older
1 2 3
#ifndef _INTEL_RINGBUFFER_H_
#define _INTEL_RINGBUFFER_H_

4
#include <linux/hashtable.h>
5
#include "i915_gem_batch_pool.h"
6
#include "i915_gem_request.h"
7 8 9

#define I915_CMD_HASH_ORDER 9

10 11 12 13 14 15
/* Early gen2 devices have a cacheline of just 32 bytes, using 64 is overkill,
 * but keeps the logic simple. Indeed, the whole purpose of this macro is just
 * to give some inclination as to some of the magic values used in the various
 * workarounds!
 */
#define CACHELINE_BYTES 64
16
#define CACHELINE_DWORDS (CACHELINE_BYTES / sizeof(uint32_t))
17

18 19 20 21 22 23 24 25 26 27 28
/*
 * Gen2 BSpec "1. Programming Environment" / 1.4.4.6 "Ring Buffer Use"
 * Gen3 BSpec "vol1c Memory Interface Functions" / 2.3.4.5 "Ring Buffer Use"
 * Gen4+ BSpec "vol1c Memory Interface and Command Stream" / 5.3.4.5 "Ring Buffer Use"
 *
 * "If the Ring Buffer Head Pointer and the Tail Pointer are on the same
 * cacheline, the Head Pointer must not be greater than the Tail
 * Pointer."
 */
#define I915_RING_FREE_SPACE 64

29
struct  intel_hw_status_page {
30
	u32		*page_addr;
31
	unsigned int	gfx_addr;
32
	struct		drm_i915_gem_object *obj;
33 34
};

35 36
#define I915_READ_TAIL(engine) I915_READ(RING_TAIL((engine)->mmio_base))
#define I915_WRITE_TAIL(engine, val) I915_WRITE(RING_TAIL((engine)->mmio_base), val)
37

38 39
#define I915_READ_START(engine) I915_READ(RING_START((engine)->mmio_base))
#define I915_WRITE_START(engine, val) I915_WRITE(RING_START((engine)->mmio_base), val)
40

41 42
#define I915_READ_HEAD(engine)  I915_READ(RING_HEAD((engine)->mmio_base))
#define I915_WRITE_HEAD(engine, val) I915_WRITE(RING_HEAD((engine)->mmio_base), val)
43

44 45
#define I915_READ_CTL(engine) I915_READ(RING_CTL((engine)->mmio_base))
#define I915_WRITE_CTL(engine, val) I915_WRITE(RING_CTL((engine)->mmio_base), val)
46

47 48
#define I915_READ_IMR(engine) I915_READ(RING_IMR((engine)->mmio_base))
#define I915_WRITE_IMR(engine, val) I915_WRITE(RING_IMR((engine)->mmio_base), val)
49

50 51
#define I915_READ_MODE(engine) I915_READ(RING_MI_MODE((engine)->mmio_base))
#define I915_WRITE_MODE(engine, val) I915_WRITE(RING_MI_MODE((engine)->mmio_base), val)
52

53 54 55
/* seqno size is actually only a uint32, but since we plan to use MI_FLUSH_DW to
 * do the writes, and that must have qw aligned offsets, simply pretend it's 8b.
 */
56 57 58
#define gen8_semaphore_seqno_size sizeof(uint64_t)
#define GEN8_SEMAPHORE_OFFSET(__from, __to)			     \
	(((__from) * I915_NUM_ENGINES  + (__to)) * gen8_semaphore_seqno_size)
59 60
#define GEN8_SIGNAL_OFFSET(__ring, to)			     \
	(i915_gem_obj_ggtt_offset(dev_priv->semaphore_obj) + \
61
	 GEN8_SEMAPHORE_OFFSET((__ring)->id, (to)))
62 63
#define GEN8_WAIT_OFFSET(__ring, from)			     \
	(i915_gem_obj_ggtt_offset(dev_priv->semaphore_obj) + \
64
	 GEN8_SEMAPHORE_OFFSET(from, (__ring)->id))
65

66
enum intel_engine_hangcheck_action {
67
	HANGCHECK_IDLE = 0,
68 69 70 71 72
	HANGCHECK_WAIT,
	HANGCHECK_ACTIVE,
	HANGCHECK_KICK,
	HANGCHECK_HUNG,
};
73

74 75
#define HANGCHECK_SCORE_RING_HUNG 31

76
struct intel_engine_hangcheck {
77
	u64 acthd;
78
	u32 seqno;
79
	int score;
80
	enum intel_engine_hangcheck_action action;
81
	int deadlock;
82
	u32 instdone[I915_NUM_INSTDONE_REG];
83 84
};

85
struct intel_ring {
86
	struct drm_i915_gem_object *obj;
87
	void *vaddr;
88
	struct i915_vma *vma;
89

90
	struct intel_engine_cs *engine;
91
	struct list_head link;
92

93 94
	struct list_head request_list;

95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
	u32 head;
	u32 tail;
	int space;
	int size;
	int effective_size;

	/** We track the position of the requests in the ring buffer, and
	 * when each is retired we increment last_retired_head as the GPU
	 * must have finished processing the request and so we know we
	 * can advance the ringbuffer up to that position.
	 *
	 * last_retired_head is set to -1 after the value is consumed so
	 * we can detect new retirements.
	 */
	u32 last_retired_head;
};

112
struct i915_gem_context;
113
struct drm_i915_reg_table;
114

115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
/*
 * we use a single page to load ctx workarounds so all of these
 * values are referred in terms of dwords
 *
 * struct i915_wa_ctx_bb:
 *  offset: specifies batch starting position, also helpful in case
 *    if we want to have multiple batches at different offsets based on
 *    some criteria. It is not a requirement at the moment but provides
 *    an option for future use.
 *  size: size of the batch in DWORDS
 */
struct  i915_ctx_workarounds {
	struct i915_wa_ctx_bb {
		u32 offset;
		u32 size;
	} indirect_ctx, per_ctx;
	struct drm_i915_gem_object *obj;
};

134 135
struct drm_i915_gem_request;

136 137
struct intel_engine_cs {
	struct drm_i915_private *i915;
138
	const char	*name;
139
	enum intel_engine_id {
140
		RCS = 0,
141
		BCS,
142 143 144
		VCS,
		VCS2,	/* Keep instances of the same type engine together. */
		VECS
145
	} id;
146
#define I915_NUM_ENGINES 5
147
#define _VCS(n) (VCS + (n))
148
	unsigned int exec_id;
149 150
	unsigned int hw_id;
	unsigned int guc_id; /* XXX same as hw_id? */
151
	u64 fence_context;
152
	u32		mmio_base;
153
	unsigned int irq_shift;
154
	struct intel_ring *buffer;
155
	struct list_head buffers;
156

157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
	/* Rather than have every client wait upon all user interrupts,
	 * with the herd waking after every interrupt and each doing the
	 * heavyweight seqno dance, we delegate the task (of being the
	 * bottom-half of the user interrupt) to the first client. After
	 * every interrupt, we wake up one client, who does the heavyweight
	 * coherent seqno read and either goes back to sleep (if incomplete),
	 * or wakes up all the completed clients in parallel, before then
	 * transferring the bottom-half status to the next client in the queue.
	 *
	 * Compared to walking the entire list of waiters in a single dedicated
	 * bottom-half, we reduce the latency of the first waiter by avoiding
	 * a context switch, but incur additional coherent seqno reads when
	 * following the chain of request breadcrumbs. Since it is most likely
	 * that we have a single client waiting on each seqno, then reducing
	 * the overhead of waking that client is much preferred.
	 */
	struct intel_breadcrumbs {
174
		struct task_struct __rcu *irq_seqno_bh; /* bh for interrupts */
175 176
		bool irq_posted;

177 178
		spinlock_t lock; /* protects the lists of requests */
		struct rb_root waiters; /* sorted by retirement, priority */
179
		struct rb_root signals; /* sorted by retirement */
180
		struct intel_wait *first_wait; /* oldest waiter by retirement */
181
		struct task_struct *signaler; /* used for fence signalling */
182
		struct drm_i915_gem_request *first_signal;
183
		struct timer_list fake_irq; /* used after a missed interrupt */
184 185 186
		struct timer_list hangcheck; /* detect missed interrupts */

		unsigned long timeout;
187 188 189

		bool irq_enabled : 1;
		bool rpm_wakelock : 1;
190 191
	} breadcrumbs;

192 193 194 195 196 197 198
	/*
	 * A pool of objects to use as shadow copies of client batch buffers
	 * when the command parser is enabled. Prevents the client from
	 * modifying the batch contents after software parsing.
	 */
	struct i915_gem_batch_pool batch_pool;

199
	struct intel_hw_status_page status_page;
200
	struct i915_ctx_workarounds wa_ctx;
201

202 203
	u32             irq_keep_mask; /* always keep these interrupts */
	u32		irq_enable_mask; /* bitmask to enable ring interrupt */
204 205
	void		(*irq_enable)(struct intel_engine_cs *engine);
	void		(*irq_disable)(struct intel_engine_cs *engine);
206

207
	int		(*init_hw)(struct intel_engine_cs *engine);
208

209
	int		(*init_context)(struct drm_i915_gem_request *req);
210

211 212 213 214 215 216 217 218 219 220 221 222 223
	int		(*emit_flush)(struct drm_i915_gem_request *request,
				      u32 mode);
#define EMIT_INVALIDATE	BIT(0)
#define EMIT_FLUSH	BIT(1)
#define EMIT_BARRIER	(EMIT_INVALIDATE | EMIT_FLUSH)
	int		(*emit_bb_start)(struct drm_i915_gem_request *req,
					 u64 offset, u32 length,
					 unsigned int dispatch_flags);
#define I915_DISPATCH_SECURE BIT(0)
#define I915_DISPATCH_PINNED BIT(1)
#define I915_DISPATCH_RS     BIT(2)
	int		(*emit_request)(struct drm_i915_gem_request *req);
	void		(*submit_request)(struct drm_i915_gem_request *req);
224 225 226 227 228 229
	/* Some chipsets are not quite as coherent as advertised and need
	 * an expensive kick to force a true read of the up-to-date seqno.
	 * However, the up-to-date seqno is not always required and the last
	 * seen value is good enough. Note that the seqno will always be
	 * monotonic, even if not coherent.
	 */
230 231
	void		(*irq_seqno_barrier)(struct intel_engine_cs *engine);
	void		(*cleanup)(struct intel_engine_cs *engine);
232

233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
	/* GEN8 signal/wait table - never trust comments!
	 *	  signal to	signal to    signal to   signal to      signal to
	 *	    RCS		   VCS          BCS        VECS		 VCS2
	 *      --------------------------------------------------------------------
	 *  RCS | NOP (0x00) | VCS (0x08) | BCS (0x10) | VECS (0x18) | VCS2 (0x20) |
	 *	|-------------------------------------------------------------------
	 *  VCS | RCS (0x28) | NOP (0x30) | BCS (0x38) | VECS (0x40) | VCS2 (0x48) |
	 *	|-------------------------------------------------------------------
	 *  BCS | RCS (0x50) | VCS (0x58) | NOP (0x60) | VECS (0x68) | VCS2 (0x70) |
	 *	|-------------------------------------------------------------------
	 * VECS | RCS (0x78) | VCS (0x80) | BCS (0x88) |  NOP (0x90) | VCS2 (0x98) |
	 *	|-------------------------------------------------------------------
	 * VCS2 | RCS (0xa0) | VCS (0xa8) | BCS (0xb0) | VECS (0xb8) | NOP  (0xc0) |
	 *	|-------------------------------------------------------------------
	 *
	 * Generalization:
	 *  f(x, y) := (x->id * NUM_RINGS * seqno_size) + (seqno_size * y->id)
	 *  ie. transpose of g(x, y)
	 *
	 *	 sync from	sync from    sync from    sync from	sync from
	 *	    RCS		   VCS          BCS        VECS		 VCS2
	 *      --------------------------------------------------------------------
	 *  RCS | NOP (0x00) | VCS (0x28) | BCS (0x50) | VECS (0x78) | VCS2 (0xa0) |
	 *	|-------------------------------------------------------------------
	 *  VCS | RCS (0x08) | NOP (0x30) | BCS (0x58) | VECS (0x80) | VCS2 (0xa8) |
	 *	|-------------------------------------------------------------------
	 *  BCS | RCS (0x10) | VCS (0x38) | NOP (0x60) | VECS (0x88) | VCS2 (0xb0) |
	 *	|-------------------------------------------------------------------
	 * VECS | RCS (0x18) | VCS (0x40) | BCS (0x68) |  NOP (0x90) | VCS2 (0xb8) |
	 *	|-------------------------------------------------------------------
	 * VCS2 | RCS (0x20) | VCS (0x48) | BCS (0x70) | VECS (0x98) |  NOP (0xc0) |
	 *	|-------------------------------------------------------------------
	 *
	 * Generalization:
	 *  g(x, y) := (y->id * NUM_RINGS * seqno_size) + (seqno_size * x->id)
	 *  ie. transpose of f(x, y)
	 */
270
	struct {
271
		u32	sync_seqno[I915_NUM_ENGINES-1];
272

273 274 275
		union {
			struct {
				/* our mbox written by others */
276
				u32		wait[I915_NUM_ENGINES];
277
				/* mboxes this ring signals to */
278
				i915_reg_t	signal[I915_NUM_ENGINES];
279
			} mbox;
280
			u64		signal_ggtt[I915_NUM_ENGINES];
281
		};
282 283

		/* AKA wait() */
284 285 286
		int	(*sync_to)(struct drm_i915_gem_request *req,
				   struct drm_i915_gem_request *signal);
		int	(*signal)(struct drm_i915_gem_request *req);
287
	} semaphore;
288

289
	/* Execlists */
290 291
	struct tasklet_struct irq_tasklet;
	spinlock_t execlist_lock; /* used inside tasklet, use spin_lock_bh */
292
	struct list_head execlist_queue;
293
	unsigned int fw_domains;
294 295
	unsigned int next_context_status_buffer;
	unsigned int idle_lite_restore_wa;
296 297
	bool disable_lite_restore_wa;
	u32 ctx_desc_template;
298

299 300 301 302 303 304
	/**
	 * List of breadcrumbs associated with GPU requests currently
	 * outstanding.
	 */
	struct list_head request_list;

305 306 307 308 309 310 311
	/**
	 * Seqno of request most recently submitted to request_list.
	 * Used exclusively by hang checker to avoid grabbing lock while
	 * inspecting request list.
	 */
	u32 last_submitted_seqno;

312 313
	/* An RCU guarded pointer to the last request. No reference is
	 * held to the request, users must carefully acquire a reference to
314
	 * the request using i915_gem_active_get_rcu(), or hold the
315 316 317 318
	 * struct_mutex.
	 */
	struct i915_gem_active last_request;

319
	struct i915_gem_context *last_context;
320

321
	struct intel_engine_hangcheck hangcheck;
322

323 324 325 326
	struct {
		struct drm_i915_gem_object *obj;
		u32 gtt_offset;
	} scratch;
327

328 329
	bool needs_cmd_parser;

330
	/*
331
	 * Table of commands the command parser needs to know about
332
	 * for this engine.
333
	 */
334
	DECLARE_HASHTABLE(cmd_hash, I915_CMD_HASH_ORDER);
335 336 337 338

	/*
	 * Table of registers allowed in commands that read/write registers.
	 */
339 340
	const struct drm_i915_reg_table *reg_tables;
	int reg_table_count;
341 342 343 344 345

	/*
	 * Returns the bitmask for the length field of the specified command.
	 * Return 0 for an unrecognized/invalid command.
	 *
346
	 * If the command parser finds an entry for a command in the engine's
347
	 * cmd_tables, it gets the command's length based on the table entry.
348 349 350
	 * If not, it calls this function to determine the per-engine length
	 * field encoding for the command (i.e. different opcode ranges use
	 * certain bits to encode the command length in the header).
351 352
	 */
	u32 (*get_cmd_length_mask)(u32 cmd_header);
353 354
};

355
static inline bool
356
intel_engine_initialized(const struct intel_engine_cs *engine)
357
{
358
	return engine->i915 != NULL;
359
}
360

361
static inline unsigned
362
intel_engine_flag(const struct intel_engine_cs *engine)
363
{
364
	return 1 << engine->id;
365 366
}

367
static inline u32
368 369
intel_engine_sync_index(struct intel_engine_cs *engine,
			struct intel_engine_cs *other)
370 371 372 373
{
	int idx;

	/*
R
Rodrigo Vivi 已提交
374 375 376 377 378
	 * rcs -> 0 = vcs, 1 = bcs, 2 = vecs, 3 = vcs2;
	 * vcs -> 0 = bcs, 1 = vecs, 2 = vcs2, 3 = rcs;
	 * bcs -> 0 = vecs, 1 = vcs2. 2 = rcs, 3 = vcs;
	 * vecs -> 0 = vcs2, 1 = rcs, 2 = vcs, 3 = bcs;
	 * vcs2 -> 0 = rcs, 1 = vcs, 2 = bcs, 3 = vecs;
379 380
	 */

381
	idx = (other - engine) - 1;
382
	if (idx < 0)
383
		idx += I915_NUM_ENGINES;
384 385 386 387

	return idx;
}

388
static inline void
389
intel_flush_status_page(struct intel_engine_cs *engine, int reg)
390
{
391 392 393
	mb();
	clflush(&engine->status_page.page_addr[reg]);
	mb();
394 395
}

396
static inline u32
397
intel_read_status_page(struct intel_engine_cs *engine, int reg)
398
{
399
	/* Ensure that the compiler doesn't optimize away the load. */
400
	return READ_ONCE(engine->status_page.page_addr[reg]);
401 402
}

M
Mika Kuoppala 已提交
403
static inline void
404
intel_write_status_page(struct intel_engine_cs *engine,
M
Mika Kuoppala 已提交
405 406
			int reg, u32 value)
{
407
	engine->status_page.page_addr[reg] = value;
M
Mika Kuoppala 已提交
408 409
}

410
/*
C
Chris Wilson 已提交
411 412 413 414 415 416 417 418 419 420 421
 * Reads a dword out of the status page, which is written to from the command
 * queue by automatic updates, MI_REPORT_HEAD, MI_STORE_DATA_INDEX, or
 * MI_STORE_DATA_IMM.
 *
 * The following dwords have a reserved meaning:
 * 0x00: ISR copy, updated when an ISR bit not set in the HWSTAM changes.
 * 0x04: ring 0 head pointer
 * 0x05: ring 1 head pointer (915-class)
 * 0x06: ring 2 head pointer (915-class)
 * 0x10-0x1b: Context status DWords (GM45)
 * 0x1f: Last written status offset. (GM45)
422
 * 0x20-0x2f: Reserved (Gen6+)
C
Chris Wilson 已提交
423
 *
424
 * The area from dword 0x30 to 0x3ff is available for driver usage.
C
Chris Wilson 已提交
425
 */
426
#define I915_GEM_HWS_INDEX		0x30
427
#define I915_GEM_HWS_INDEX_ADDR (I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT)
428
#define I915_GEM_HWS_SCRATCH_INDEX	0x40
429
#define I915_GEM_HWS_SCRATCH_ADDR (I915_GEM_HWS_SCRATCH_INDEX << MI_STORE_DWORD_INDEX_SHIFT)
C
Chris Wilson 已提交
430

431 432
struct intel_ring *
intel_engine_create_ring(struct intel_engine_cs *engine, int size);
433 434
int intel_ring_pin(struct intel_ring *ring);
void intel_ring_unpin(struct intel_ring *ring);
435
void intel_ring_free(struct intel_ring *ring);
436

437 438
void intel_engine_stop(struct intel_engine_cs *engine);
void intel_engine_cleanup(struct intel_engine_cs *engine);
439

440 441
int intel_ring_alloc_request_extras(struct drm_i915_gem_request *request);

442
int __must_check intel_ring_begin(struct drm_i915_gem_request *req, int n);
443
int __must_check intel_ring_cacheline_align(struct drm_i915_gem_request *req);
444

445
static inline void intel_ring_emit(struct intel_ring *ring, u32 data)
446
{
447 448
	*(uint32_t *)(ring->vaddr + ring->tail) = data;
	ring->tail += 4;
449 450
}

451
static inline void intel_ring_emit_reg(struct intel_ring *ring, i915_reg_t reg)
452
{
453
	intel_ring_emit(ring, i915_mmio_reg_offset(reg));
454
}
455

456
static inline void intel_ring_advance(struct intel_ring *ring)
457
{
458 459 460 461 462 463 464
	/* Dummy function.
	 *
	 * This serves as a placeholder in the code so that the reader
	 * can compare against the preceding intel_ring_begin() and
	 * check that the number of dwords emitted matches the space
	 * reserved for the command packet (i.e. the value passed to
	 * intel_ring_begin()).
465
	 */
466 467 468 469 470 471
}

static inline u32 intel_ring_offset(struct intel_ring *ring, u32 value)
{
	/* Don't write ring->size (equivalent to 0) as that hangs some GPUs. */
	return value & (ring->size - 1);
472
}
473

474
int __intel_ring_space(int head, int tail, int size);
475
void intel_ring_update_space(struct intel_ring *ring);
476

477
void intel_engine_init_seqno(struct intel_engine_cs *engine, u32 seqno);
478

479
int intel_init_pipe_control(struct intel_engine_cs *engine, int size);
480
void intel_fini_pipe_control(struct intel_engine_cs *engine);
481

482 483
void intel_engine_setup_common(struct intel_engine_cs *engine);
int intel_engine_init_common(struct intel_engine_cs *engine);
484
void intel_engine_cleanup_common(struct intel_engine_cs *engine);
485

486 487 488 489 490 491 492 493
static inline int intel_engine_idle(struct intel_engine_cs *engine,
				    bool interruptible)
{
	/* Wait upon the last request to be completed */
	return i915_gem_active_wait_unlocked(&engine->last_request,
					     interruptible, NULL, NULL);
}

494 495 496 497 498
int intel_init_render_ring_buffer(struct intel_engine_cs *engine);
int intel_init_bsd_ring_buffer(struct intel_engine_cs *engine);
int intel_init_bsd2_ring_buffer(struct intel_engine_cs *engine);
int intel_init_blt_ring_buffer(struct intel_engine_cs *engine);
int intel_init_vebox_ring_buffer(struct intel_engine_cs *engine);
499

500
u64 intel_engine_get_active_head(struct intel_engine_cs *engine);
501 502 503 504
static inline u32 intel_engine_get_seqno(struct intel_engine_cs *engine)
{
	return intel_read_status_page(engine, I915_GEM_HWS_INDEX);
}
505

506
int init_workarounds_ring(struct intel_engine_cs *engine);
507

508 509 510
/*
 * Arbitrary size for largest possible 'add request' sequence. The code paths
 * are complex and variable. Empirical measurement shows that the worst case
511 512 513
 * is BDW at 192 bytes (6 + 6 + 36 dwords), then ILK at 136 bytes. However,
 * we need to allocate double the largest single packet within that emission
 * to account for tail wraparound (so 6 + 6 + 72 dwords for BDW).
514
 */
515
#define MIN_SPACE_FOR_ADD_REQUEST 336
516

517 518 519 520 521
static inline u32 intel_hws_seqno_address(struct intel_engine_cs *engine)
{
	return engine->status_page.gfx_addr + I915_GEM_HWS_INDEX_ADDR;
}

522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539
/* intel_breadcrumbs.c -- user interrupt bottom-half for waiters */
int intel_engine_init_breadcrumbs(struct intel_engine_cs *engine);

static inline void intel_wait_init(struct intel_wait *wait, u32 seqno)
{
	wait->tsk = current;
	wait->seqno = seqno;
}

static inline bool intel_wait_complete(const struct intel_wait *wait)
{
	return RB_EMPTY_NODE(&wait->node);
}

bool intel_engine_add_wait(struct intel_engine_cs *engine,
			   struct intel_wait *wait);
void intel_engine_remove_wait(struct intel_engine_cs *engine,
			      struct intel_wait *wait);
540
void intel_engine_enable_signaling(struct drm_i915_gem_request *request);
541

542
static inline bool intel_engine_has_waiter(const struct intel_engine_cs *engine)
543
{
544
	return rcu_access_pointer(engine->breadcrumbs.irq_seqno_bh);
545 546
}

547
static inline bool intel_engine_wakeup(const struct intel_engine_cs *engine)
548 549
{
	bool wakeup = false;
550

551
	/* Note that for this not to dangerously chase a dangling pointer,
552
	 * we must hold the rcu_read_lock here.
553 554 555 556 557
	 *
	 * Also note that tsk is likely to be in !TASK_RUNNING state so an
	 * early test for tsk->state != TASK_RUNNING before wake_up_process()
	 * is unlikely to be beneficial.
	 */
558 559 560 561 562 563 564 565 566 567
	if (intel_engine_has_waiter(engine)) {
		struct task_struct *tsk;

		rcu_read_lock();
		tsk = rcu_dereference(engine->breadcrumbs.irq_seqno_bh);
		if (tsk)
			wakeup = wake_up_process(tsk);
		rcu_read_unlock();
	}

568 569 570 571 572
	return wakeup;
}

void intel_engine_fini_breadcrumbs(struct intel_engine_cs *engine);
unsigned int intel_kick_waiters(struct drm_i915_private *i915);
573
unsigned int intel_kick_signalers(struct drm_i915_private *i915);
574

575 576 577 578 579
static inline bool intel_engine_is_active(struct intel_engine_cs *engine)
{
	return i915_gem_active_isset(&engine->last_request);
}

580
#endif /* _INTEL_RINGBUFFER_H_ */