intel_ringbuffer.h 20.6 KB
Newer Older
1 2 3
#ifndef _INTEL_RINGBUFFER_H_
#define _INTEL_RINGBUFFER_H_

4
#include <linux/hashtable.h>
5
#include "i915_gem_batch_pool.h"
6
#include "i915_gem_request.h"
7
#include "i915_gem_timeline.h"
8 9 10

#define I915_CMD_HASH_ORDER 9

11 12 13 14 15 16
/* Early gen2 devices have a cacheline of just 32 bytes, using 64 is overkill,
 * but keeps the logic simple. Indeed, the whole purpose of this macro is just
 * to give some inclination as to some of the magic values used in the various
 * workarounds!
 */
#define CACHELINE_BYTES 64
17
#define CACHELINE_DWORDS (CACHELINE_BYTES / sizeof(uint32_t))
18

19 20 21 22 23 24 25 26 27 28 29
/*
 * Gen2 BSpec "1. Programming Environment" / 1.4.4.6 "Ring Buffer Use"
 * Gen3 BSpec "vol1c Memory Interface Functions" / 2.3.4.5 "Ring Buffer Use"
 * Gen4+ BSpec "vol1c Memory Interface and Command Stream" / 5.3.4.5 "Ring Buffer Use"
 *
 * "If the Ring Buffer Head Pointer and the Tail Pointer are on the same
 * cacheline, the Head Pointer must not be greater than the Tail
 * Pointer."
 */
#define I915_RING_FREE_SPACE 64

30 31 32 33
struct intel_hw_status_page {
	struct i915_vma *vma;
	u32 *page_addr;
	u32 ggtt_offset;
34 35
};

36 37
#define I915_READ_TAIL(engine) I915_READ(RING_TAIL((engine)->mmio_base))
#define I915_WRITE_TAIL(engine, val) I915_WRITE(RING_TAIL((engine)->mmio_base), val)
38

39 40
#define I915_READ_START(engine) I915_READ(RING_START((engine)->mmio_base))
#define I915_WRITE_START(engine, val) I915_WRITE(RING_START((engine)->mmio_base), val)
41

42 43
#define I915_READ_HEAD(engine)  I915_READ(RING_HEAD((engine)->mmio_base))
#define I915_WRITE_HEAD(engine, val) I915_WRITE(RING_HEAD((engine)->mmio_base), val)
44

45 46
#define I915_READ_CTL(engine) I915_READ(RING_CTL((engine)->mmio_base))
#define I915_WRITE_CTL(engine, val) I915_WRITE(RING_CTL((engine)->mmio_base), val)
47

48 49
#define I915_READ_IMR(engine) I915_READ(RING_IMR((engine)->mmio_base))
#define I915_WRITE_IMR(engine, val) I915_WRITE(RING_IMR((engine)->mmio_base), val)
50

51 52
#define I915_READ_MODE(engine) I915_READ(RING_MI_MODE((engine)->mmio_base))
#define I915_WRITE_MODE(engine, val) I915_WRITE(RING_MI_MODE((engine)->mmio_base), val)
53

54 55 56
/* seqno size is actually only a uint32, but since we plan to use MI_FLUSH_DW to
 * do the writes, and that must have qw aligned offsets, simply pretend it's 8b.
 */
57 58 59
#define gen8_semaphore_seqno_size sizeof(uint64_t)
#define GEN8_SEMAPHORE_OFFSET(__from, __to)			     \
	(((__from) * I915_NUM_ENGINES  + (__to)) * gen8_semaphore_seqno_size)
60
#define GEN8_SIGNAL_OFFSET(__ring, to)			     \
61
	(dev_priv->semaphore->node.start + \
62
	 GEN8_SEMAPHORE_OFFSET((__ring)->id, (to)))
63
#define GEN8_WAIT_OFFSET(__ring, from)			     \
64
	(dev_priv->semaphore->node.start + \
65
	 GEN8_SEMAPHORE_OFFSET(from, (__ring)->id))
66

67
enum intel_engine_hangcheck_action {
68 69 70 71 72 73 74
	ENGINE_IDLE = 0,
	ENGINE_WAIT,
	ENGINE_ACTIVE_SEQNO,
	ENGINE_ACTIVE_HEAD,
	ENGINE_ACTIVE_SUBUNITS,
	ENGINE_WAIT_KICK,
	ENGINE_DEAD,
75
};
76

77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
static inline const char *
hangcheck_action_to_str(const enum intel_engine_hangcheck_action a)
{
	switch (a) {
	case ENGINE_IDLE:
		return "idle";
	case ENGINE_WAIT:
		return "wait";
	case ENGINE_ACTIVE_SEQNO:
		return "active seqno";
	case ENGINE_ACTIVE_HEAD:
		return "active head";
	case ENGINE_ACTIVE_SUBUNITS:
		return "active subunits";
	case ENGINE_WAIT_KICK:
		return "wait kick";
	case ENGINE_DEAD:
		return "dead";
	}

	return "unknown";
}
99

100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
#define I915_MAX_SLICES	3
#define I915_MAX_SUBSLICES 3

#define instdone_slice_mask(dev_priv__) \
	(INTEL_GEN(dev_priv__) == 7 ? \
	 1 : INTEL_INFO(dev_priv__)->sseu.slice_mask)

#define instdone_subslice_mask(dev_priv__) \
	(INTEL_GEN(dev_priv__) == 7 ? \
	 1 : INTEL_INFO(dev_priv__)->sseu.subslice_mask)

#define for_each_instdone_slice_subslice(dev_priv__, slice__, subslice__) \
	for ((slice__) = 0, (subslice__) = 0; \
	     (slice__) < I915_MAX_SLICES; \
	     (subslice__) = ((subslice__) + 1) < I915_MAX_SUBSLICES ? (subslice__) + 1 : 0, \
	       (slice__) += ((subslice__) == 0)) \
		for_each_if((BIT(slice__) & instdone_slice_mask(dev_priv__)) && \
			    (BIT(subslice__) & instdone_subslice_mask(dev_priv__)))

119 120 121 122
struct intel_instdone {
	u32 instdone;
	/* The following exist only in the RCS engine */
	u32 slice_common;
123 124
	u32 sampler[I915_MAX_SLICES][I915_MAX_SUBSLICES];
	u32 row[I915_MAX_SLICES][I915_MAX_SUBSLICES];
125 126
};

127
struct intel_engine_hangcheck {
128
	u64 acthd;
129
	u32 seqno;
130
	enum intel_engine_hangcheck_action action;
131
	unsigned long action_timestamp;
132
	int deadlock;
133
	struct intel_instdone instdone;
134
	bool stalled;
135 136
};

137
struct intel_ring {
138
	struct i915_vma *vma;
139
	void *vaddr;
140

141
	struct intel_engine_cs *engine;
142

143 144
	struct list_head request_list;

145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
	u32 head;
	u32 tail;
	int space;
	int size;
	int effective_size;

	/** We track the position of the requests in the ring buffer, and
	 * when each is retired we increment last_retired_head as the GPU
	 * must have finished processing the request and so we know we
	 * can advance the ringbuffer up to that position.
	 *
	 * last_retired_head is set to -1 after the value is consumed so
	 * we can detect new retirements.
	 */
	u32 last_retired_head;
};

162
struct i915_gem_context;
163
struct drm_i915_reg_table;
164

165 166 167 168 169 170 171 172 173 174 175
/*
 * we use a single page to load ctx workarounds so all of these
 * values are referred in terms of dwords
 *
 * struct i915_wa_ctx_bb:
 *  offset: specifies batch starting position, also helpful in case
 *    if we want to have multiple batches at different offsets based on
 *    some criteria. It is not a requirement at the moment but provides
 *    an option for future use.
 *  size: size of the batch in DWORDS
 */
176
struct i915_ctx_workarounds {
177 178 179 180
	struct i915_wa_ctx_bb {
		u32 offset;
		u32 size;
	} indirect_ctx, per_ctx;
181
	struct i915_vma *vma;
182 183
};

184
struct drm_i915_gem_request;
185
struct intel_render_state;
186

187 188
struct intel_engine_cs {
	struct drm_i915_private *i915;
189
	const char	*name;
190
	enum intel_engine_id {
191
		RCS = 0,
192
		BCS,
193 194 195
		VCS,
		VCS2,	/* Keep instances of the same type engine together. */
		VECS
196
	} id;
197
#define _VCS(n) (VCS + (n))
198
	unsigned int exec_id;
199 200 201 202 203 204 205 206
	enum intel_engine_hw_id {
		RCS_HW = 0,
		VCS_HW,
		BCS_HW,
		VECS_HW,
		VCS2_HW
	} hw_id;
	enum intel_engine_hw_id guc_id; /* XXX same as hw_id? */
207
	u32		mmio_base;
208
	unsigned int irq_shift;
209
	struct intel_ring *buffer;
210
	struct intel_timeline *timeline;
211

212 213
	struct intel_render_state *render_state;

214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
	/* Rather than have every client wait upon all user interrupts,
	 * with the herd waking after every interrupt and each doing the
	 * heavyweight seqno dance, we delegate the task (of being the
	 * bottom-half of the user interrupt) to the first client. After
	 * every interrupt, we wake up one client, who does the heavyweight
	 * coherent seqno read and either goes back to sleep (if incomplete),
	 * or wakes up all the completed clients in parallel, before then
	 * transferring the bottom-half status to the next client in the queue.
	 *
	 * Compared to walking the entire list of waiters in a single dedicated
	 * bottom-half, we reduce the latency of the first waiter by avoiding
	 * a context switch, but incur additional coherent seqno reads when
	 * following the chain of request breadcrumbs. Since it is most likely
	 * that we have a single client waiting on each seqno, then reducing
	 * the overhead of waking that client is much preferred.
	 */
	struct intel_breadcrumbs {
231
		struct task_struct __rcu *irq_seqno_bh; /* bh for interrupts */
232 233
		bool irq_posted;

234
		spinlock_t lock; /* protects the lists of requests; irqsafe */
235
		struct rb_root waiters; /* sorted by retirement, priority */
236
		struct rb_root signals; /* sorted by retirement */
237
		struct intel_wait *first_wait; /* oldest waiter by retirement */
238
		struct task_struct *signaler; /* used for fence signalling */
239
		struct drm_i915_gem_request *first_signal;
240
		struct timer_list fake_irq; /* used after a missed interrupt */
241 242 243
		struct timer_list hangcheck; /* detect missed interrupts */

		unsigned long timeout;
244 245 246

		bool irq_enabled : 1;
		bool rpm_wakelock : 1;
247 248
	} breadcrumbs;

249 250 251 252 253 254 255
	/*
	 * A pool of objects to use as shadow copies of client batch buffers
	 * when the command parser is enabled. Prevents the client from
	 * modifying the batch contents after software parsing.
	 */
	struct i915_gem_batch_pool batch_pool;

256
	struct intel_hw_status_page status_page;
257
	struct i915_ctx_workarounds wa_ctx;
258
	struct i915_vma *scratch;
259

260 261
	u32             irq_keep_mask; /* always keep these interrupts */
	u32		irq_enable_mask; /* bitmask to enable ring interrupt */
262 263
	void		(*irq_enable)(struct intel_engine_cs *engine);
	void		(*irq_disable)(struct intel_engine_cs *engine);
264

265
	int		(*init_hw)(struct intel_engine_cs *engine);
266 267
	void		(*reset_hw)(struct intel_engine_cs *engine,
				    struct drm_i915_gem_request *req);
268

269
	int		(*init_context)(struct drm_i915_gem_request *req);
270

271 272 273 274 275 276 277 278 279 280 281
	int		(*emit_flush)(struct drm_i915_gem_request *request,
				      u32 mode);
#define EMIT_INVALIDATE	BIT(0)
#define EMIT_FLUSH	BIT(1)
#define EMIT_BARRIER	(EMIT_INVALIDATE | EMIT_FLUSH)
	int		(*emit_bb_start)(struct drm_i915_gem_request *req,
					 u64 offset, u32 length,
					 unsigned int dispatch_flags);
#define I915_DISPATCH_SECURE BIT(0)
#define I915_DISPATCH_PINNED BIT(1)
#define I915_DISPATCH_RS     BIT(2)
C
Chris Wilson 已提交
282 283
	void		(*emit_breadcrumb)(struct drm_i915_gem_request *req,
					   u32 *out);
284
	int		emit_breadcrumb_sz;
285 286 287 288 289 290 291

	/* Pass the request to the hardware queue (e.g. directly into
	 * the legacy ringbuffer or to the end of an execlist).
	 *
	 * This is called from an atomic context with irqs disabled; must
	 * be irq safe.
	 */
292
	void		(*submit_request)(struct drm_i915_gem_request *req);
293

294 295 296 297 298 299 300 301 302
	/* Call when the priority on a request has changed and it and its
	 * dependencies may need rescheduling. Note the request itself may
	 * not be ready to run!
	 *
	 * Called under the struct_mutex.
	 */
	void		(*schedule)(struct drm_i915_gem_request *request,
				    int priority);

303 304 305 306 307 308
	/* Some chipsets are not quite as coherent as advertised and need
	 * an expensive kick to force a true read of the up-to-date seqno.
	 * However, the up-to-date seqno is not always required and the last
	 * seen value is good enough. Note that the seqno will always be
	 * monotonic, even if not coherent.
	 */
309 310
	void		(*irq_seqno_barrier)(struct intel_engine_cs *engine);
	void		(*cleanup)(struct intel_engine_cs *engine);
311

312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348
	/* GEN8 signal/wait table - never trust comments!
	 *	  signal to	signal to    signal to   signal to      signal to
	 *	    RCS		   VCS          BCS        VECS		 VCS2
	 *      --------------------------------------------------------------------
	 *  RCS | NOP (0x00) | VCS (0x08) | BCS (0x10) | VECS (0x18) | VCS2 (0x20) |
	 *	|-------------------------------------------------------------------
	 *  VCS | RCS (0x28) | NOP (0x30) | BCS (0x38) | VECS (0x40) | VCS2 (0x48) |
	 *	|-------------------------------------------------------------------
	 *  BCS | RCS (0x50) | VCS (0x58) | NOP (0x60) | VECS (0x68) | VCS2 (0x70) |
	 *	|-------------------------------------------------------------------
	 * VECS | RCS (0x78) | VCS (0x80) | BCS (0x88) |  NOP (0x90) | VCS2 (0x98) |
	 *	|-------------------------------------------------------------------
	 * VCS2 | RCS (0xa0) | VCS (0xa8) | BCS (0xb0) | VECS (0xb8) | NOP  (0xc0) |
	 *	|-------------------------------------------------------------------
	 *
	 * Generalization:
	 *  f(x, y) := (x->id * NUM_RINGS * seqno_size) + (seqno_size * y->id)
	 *  ie. transpose of g(x, y)
	 *
	 *	 sync from	sync from    sync from    sync from	sync from
	 *	    RCS		   VCS          BCS        VECS		 VCS2
	 *      --------------------------------------------------------------------
	 *  RCS | NOP (0x00) | VCS (0x28) | BCS (0x50) | VECS (0x78) | VCS2 (0xa0) |
	 *	|-------------------------------------------------------------------
	 *  VCS | RCS (0x08) | NOP (0x30) | BCS (0x58) | VECS (0x80) | VCS2 (0xa8) |
	 *	|-------------------------------------------------------------------
	 *  BCS | RCS (0x10) | VCS (0x38) | NOP (0x60) | VECS (0x88) | VCS2 (0xb0) |
	 *	|-------------------------------------------------------------------
	 * VECS | RCS (0x18) | VCS (0x40) | BCS (0x68) |  NOP (0x90) | VCS2 (0xb8) |
	 *	|-------------------------------------------------------------------
	 * VCS2 | RCS (0x20) | VCS (0x48) | BCS (0x70) | VECS (0x98) |  NOP (0xc0) |
	 *	|-------------------------------------------------------------------
	 *
	 * Generalization:
	 *  g(x, y) := (y->id * NUM_RINGS * seqno_size) + (seqno_size * x->id)
	 *  ie. transpose of f(x, y)
	 */
349
	struct {
350
		union {
351 352 353
#define GEN6_SEMAPHORE_LAST	VECS_HW
#define GEN6_NUM_SEMAPHORES	(GEN6_SEMAPHORE_LAST + 1)
#define GEN6_SEMAPHORES_MASK	GENMASK(GEN6_SEMAPHORE_LAST, 0)
354 355
			struct {
				/* our mbox written by others */
356
				u32		wait[GEN6_NUM_SEMAPHORES];
357
				/* mboxes this ring signals to */
358
				i915_reg_t	signal[GEN6_NUM_SEMAPHORES];
359
			} mbox;
360
			u64		signal_ggtt[I915_NUM_ENGINES];
361
		};
362 363

		/* AKA wait() */
364 365
		int	(*sync_to)(struct drm_i915_gem_request *req,
				   struct drm_i915_gem_request *signal);
C
Chris Wilson 已提交
366
		u32	*(*signal)(struct drm_i915_gem_request *req, u32 *out);
367
	} semaphore;
368

369
	/* Execlists */
370
	struct tasklet_struct irq_tasklet;
371 372 373 374
	struct execlist_port {
		struct drm_i915_gem_request *request;
		unsigned int count;
	} execlist_port[2];
375 376
	struct rb_root execlist_queue;
	struct rb_node *execlist_first;
377
	unsigned int fw_domains;
378
	bool disable_lite_restore_wa;
379
	bool preempt_wa;
380
	u32 ctx_desc_template;
381

382
	struct i915_gem_context *last_context;
383

384
	struct intel_engine_hangcheck hangcheck;
385

386 387
	bool needs_cmd_parser;

388
	/*
389
	 * Table of commands the command parser needs to know about
390
	 * for this engine.
391
	 */
392
	DECLARE_HASHTABLE(cmd_hash, I915_CMD_HASH_ORDER);
393 394 395 396

	/*
	 * Table of registers allowed in commands that read/write registers.
	 */
397 398
	const struct drm_i915_reg_table *reg_tables;
	int reg_table_count;
399 400 401 402 403

	/*
	 * Returns the bitmask for the length field of the specified command.
	 * Return 0 for an unrecognized/invalid command.
	 *
404
	 * If the command parser finds an entry for a command in the engine's
405
	 * cmd_tables, it gets the command's length based on the table entry.
406 407 408
	 * If not, it calls this function to determine the per-engine length
	 * field encoding for the command (i.e. different opcode ranges use
	 * certain bits to encode the command length in the header).
409 410
	 */
	u32 (*get_cmd_length_mask)(u32 cmd_header);
411 412
};

413
static inline unsigned
414
intel_engine_flag(const struct intel_engine_cs *engine)
415
{
416
	return 1 << engine->id;
417 418
}

419
static inline void
420
intel_flush_status_page(struct intel_engine_cs *engine, int reg)
421
{
422 423 424
	mb();
	clflush(&engine->status_page.page_addr[reg]);
	mb();
425 426
}

427
static inline u32
428
intel_read_status_page(struct intel_engine_cs *engine, int reg)
429
{
430
	/* Ensure that the compiler doesn't optimize away the load. */
431
	return READ_ONCE(engine->status_page.page_addr[reg]);
432 433
}

M
Mika Kuoppala 已提交
434
static inline void
435
intel_write_status_page(struct intel_engine_cs *engine,
M
Mika Kuoppala 已提交
436 437
			int reg, u32 value)
{
438
	engine->status_page.page_addr[reg] = value;
M
Mika Kuoppala 已提交
439 440
}

441
/*
C
Chris Wilson 已提交
442 443 444 445 446 447 448 449 450 451 452
 * Reads a dword out of the status page, which is written to from the command
 * queue by automatic updates, MI_REPORT_HEAD, MI_STORE_DATA_INDEX, or
 * MI_STORE_DATA_IMM.
 *
 * The following dwords have a reserved meaning:
 * 0x00: ISR copy, updated when an ISR bit not set in the HWSTAM changes.
 * 0x04: ring 0 head pointer
 * 0x05: ring 1 head pointer (915-class)
 * 0x06: ring 2 head pointer (915-class)
 * 0x10-0x1b: Context status DWords (GM45)
 * 0x1f: Last written status offset. (GM45)
453
 * 0x20-0x2f: Reserved (Gen6+)
C
Chris Wilson 已提交
454
 *
455
 * The area from dword 0x30 to 0x3ff is available for driver usage.
C
Chris Wilson 已提交
456
 */
457
#define I915_GEM_HWS_INDEX		0x30
458
#define I915_GEM_HWS_INDEX_ADDR (I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT)
459
#define I915_GEM_HWS_SCRATCH_INDEX	0x40
460
#define I915_GEM_HWS_SCRATCH_ADDR (I915_GEM_HWS_SCRATCH_INDEX << MI_STORE_DWORD_INDEX_SHIFT)
C
Chris Wilson 已提交
461

462 463
struct intel_ring *
intel_engine_create_ring(struct intel_engine_cs *engine, int size);
464 465
int intel_ring_pin(struct intel_ring *ring);
void intel_ring_unpin(struct intel_ring *ring);
466
void intel_ring_free(struct intel_ring *ring);
467

468 469
void intel_engine_stop(struct intel_engine_cs *engine);
void intel_engine_cleanup(struct intel_engine_cs *engine);
470

471 472
void intel_legacy_submission_resume(struct drm_i915_private *dev_priv);

473 474
int intel_ring_alloc_request_extras(struct drm_i915_gem_request *request);

475
int __must_check intel_ring_begin(struct drm_i915_gem_request *req, int n);
476
int __must_check intel_ring_cacheline_align(struct drm_i915_gem_request *req);
477

478
static inline void intel_ring_emit(struct intel_ring *ring, u32 data)
479
{
480 481
	*(uint32_t *)(ring->vaddr + ring->tail) = data;
	ring->tail += 4;
482 483
}

484
static inline void intel_ring_emit_reg(struct intel_ring *ring, i915_reg_t reg)
485
{
486
	intel_ring_emit(ring, i915_mmio_reg_offset(reg));
487
}
488

489
static inline void intel_ring_advance(struct intel_ring *ring)
490
{
491 492 493 494 495 496 497
	/* Dummy function.
	 *
	 * This serves as a placeholder in the code so that the reader
	 * can compare against the preceding intel_ring_begin() and
	 * check that the number of dwords emitted matches the space
	 * reserved for the command packet (i.e. the value passed to
	 * intel_ring_begin()).
498
	 */
499 500
}

C
Chris Wilson 已提交
501
static inline u32 intel_ring_offset(struct intel_ring *ring, void *addr)
502 503
{
	/* Don't write ring->size (equivalent to 0) as that hangs some GPUs. */
C
Chris Wilson 已提交
504 505
	u32 offset = addr - ring->vaddr;
	return offset & (ring->size - 1);
506
}
507

508
int __intel_ring_space(int head, int tail, int size);
509
void intel_ring_update_space(struct intel_ring *ring);
510

511
void intel_engine_init_global_seqno(struct intel_engine_cs *engine, u32 seqno);
512

513 514
void intel_engine_setup_common(struct intel_engine_cs *engine);
int intel_engine_init_common(struct intel_engine_cs *engine);
515
int intel_engine_create_scratch(struct intel_engine_cs *engine, int size);
516
void intel_engine_cleanup_common(struct intel_engine_cs *engine);
517

518 519 520 521 522
int intel_init_render_ring_buffer(struct intel_engine_cs *engine);
int intel_init_bsd_ring_buffer(struct intel_engine_cs *engine);
int intel_init_bsd2_ring_buffer(struct intel_engine_cs *engine);
int intel_init_blt_ring_buffer(struct intel_engine_cs *engine);
int intel_init_vebox_ring_buffer(struct intel_engine_cs *engine);
523

524
u64 intel_engine_get_active_head(struct intel_engine_cs *engine);
525 526
u64 intel_engine_get_last_batch_head(struct intel_engine_cs *engine);

527 528 529 530
static inline u32 intel_engine_get_seqno(struct intel_engine_cs *engine)
{
	return intel_read_status_page(engine, I915_GEM_HWS_INDEX);
}
531

532 533 534 535 536 537 538 539 540 541 542 543
static inline u32 intel_engine_last_submit(struct intel_engine_cs *engine)
{
	/* We are only peeking at the tail of the submit queue (and not the
	 * queue itself) in order to gain a hint as to the current active
	 * state of the engine. Callers are not expected to be taking
	 * engine->timeline->lock, nor are they expected to be concerned
	 * wtih serialising this hint with anything, so document it as
	 * a hint and nothing more.
	 */
	return READ_ONCE(engine->timeline->last_submitted_seqno);
}

544
int init_workarounds_ring(struct intel_engine_cs *engine);
545

546 547 548
void intel_engine_get_instdone(struct intel_engine_cs *engine,
			       struct intel_instdone *instdone);

549 550 551
/*
 * Arbitrary size for largest possible 'add request' sequence. The code paths
 * are complex and variable. Empirical measurement shows that the worst case
552 553 554
 * is BDW at 192 bytes (6 + 6 + 36 dwords), then ILK at 136 bytes. However,
 * we need to allocate double the largest single packet within that emission
 * to account for tail wraparound (so 6 + 6 + 72 dwords for BDW).
555
 */
556
#define MIN_SPACE_FOR_ADD_REQUEST 336
557

558 559
static inline u32 intel_hws_seqno_address(struct intel_engine_cs *engine)
{
560
	return engine->status_page.ggtt_offset + I915_GEM_HWS_INDEX_ADDR;
561 562
}

563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580
/* intel_breadcrumbs.c -- user interrupt bottom-half for waiters */
int intel_engine_init_breadcrumbs(struct intel_engine_cs *engine);

static inline void intel_wait_init(struct intel_wait *wait, u32 seqno)
{
	wait->tsk = current;
	wait->seqno = seqno;
}

static inline bool intel_wait_complete(const struct intel_wait *wait)
{
	return RB_EMPTY_NODE(&wait->node);
}

bool intel_engine_add_wait(struct intel_engine_cs *engine,
			   struct intel_wait *wait);
void intel_engine_remove_wait(struct intel_engine_cs *engine,
			      struct intel_wait *wait);
581
void intel_engine_enable_signaling(struct drm_i915_gem_request *request);
582

583
static inline bool intel_engine_has_waiter(const struct intel_engine_cs *engine)
584
{
585
	return rcu_access_pointer(engine->breadcrumbs.irq_seqno_bh);
586 587
}

588
static inline bool intel_engine_wakeup(const struct intel_engine_cs *engine)
589 590
{
	bool wakeup = false;
591

592
	/* Note that for this not to dangerously chase a dangling pointer,
593
	 * we must hold the rcu_read_lock here.
594 595 596 597 598
	 *
	 * Also note that tsk is likely to be in !TASK_RUNNING state so an
	 * early test for tsk->state != TASK_RUNNING before wake_up_process()
	 * is unlikely to be beneficial.
	 */
599 600 601 602 603 604 605 606 607 608
	if (intel_engine_has_waiter(engine)) {
		struct task_struct *tsk;

		rcu_read_lock();
		tsk = rcu_dereference(engine->breadcrumbs.irq_seqno_bh);
		if (tsk)
			wakeup = wake_up_process(tsk);
		rcu_read_unlock();
	}

609 610 611
	return wakeup;
}

612
void intel_engine_reset_breadcrumbs(struct intel_engine_cs *engine);
613
void intel_engine_fini_breadcrumbs(struct intel_engine_cs *engine);
614
unsigned int intel_breadcrumbs_busy(struct drm_i915_private *i915);
615

616
#endif /* _INTEL_RINGBUFFER_H_ */