intel_ringbuffer.h 33.4 KB
Newer Older
1 2 3
#ifndef _INTEL_RINGBUFFER_H_
#define _INTEL_RINGBUFFER_H_

4
#include <linux/hashtable.h>
5
#include "i915_gem_batch_pool.h"
6
#include "i915_gem_request.h"
7
#include "i915_gem_timeline.h"
8
#include "i915_pmu.h"
9
#include "i915_selftest.h"
10

11 12
struct drm_printer;

13 14
#define I915_CMD_HASH_ORDER 9

15 16 17 18 19 20
/* Early gen2 devices have a cacheline of just 32 bytes, using 64 is overkill,
 * but keeps the logic simple. Indeed, the whole purpose of this macro is just
 * to give some inclination as to some of the magic values used in the various
 * workarounds!
 */
#define CACHELINE_BYTES 64
21
#define CACHELINE_DWORDS (CACHELINE_BYTES / sizeof(uint32_t))
22

23 24 25 26
struct intel_hw_status_page {
	struct i915_vma *vma;
	u32 *page_addr;
	u32 ggtt_offset;
27 28
};

29 30
#define I915_READ_TAIL(engine) I915_READ(RING_TAIL((engine)->mmio_base))
#define I915_WRITE_TAIL(engine, val) I915_WRITE(RING_TAIL((engine)->mmio_base), val)
31

32 33
#define I915_READ_START(engine) I915_READ(RING_START((engine)->mmio_base))
#define I915_WRITE_START(engine, val) I915_WRITE(RING_START((engine)->mmio_base), val)
34

35 36
#define I915_READ_HEAD(engine)  I915_READ(RING_HEAD((engine)->mmio_base))
#define I915_WRITE_HEAD(engine, val) I915_WRITE(RING_HEAD((engine)->mmio_base), val)
37

38 39
#define I915_READ_CTL(engine) I915_READ(RING_CTL((engine)->mmio_base))
#define I915_WRITE_CTL(engine, val) I915_WRITE(RING_CTL((engine)->mmio_base), val)
40

41 42
#define I915_READ_IMR(engine) I915_READ(RING_IMR((engine)->mmio_base))
#define I915_WRITE_IMR(engine, val) I915_WRITE(RING_IMR((engine)->mmio_base), val)
43

44 45
#define I915_READ_MODE(engine) I915_READ(RING_MI_MODE((engine)->mmio_base))
#define I915_WRITE_MODE(engine, val) I915_WRITE(RING_MI_MODE((engine)->mmio_base), val)
46

47 48 49
/* seqno size is actually only a uint32, but since we plan to use MI_FLUSH_DW to
 * do the writes, and that must have qw aligned offsets, simply pretend it's 8b.
 */
50
enum intel_engine_hangcheck_action {
51 52 53 54 55 56 57
	ENGINE_IDLE = 0,
	ENGINE_WAIT,
	ENGINE_ACTIVE_SEQNO,
	ENGINE_ACTIVE_HEAD,
	ENGINE_ACTIVE_SUBUNITS,
	ENGINE_WAIT_KICK,
	ENGINE_DEAD,
58
};
59

60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
static inline const char *
hangcheck_action_to_str(const enum intel_engine_hangcheck_action a)
{
	switch (a) {
	case ENGINE_IDLE:
		return "idle";
	case ENGINE_WAIT:
		return "wait";
	case ENGINE_ACTIVE_SEQNO:
		return "active seqno";
	case ENGINE_ACTIVE_HEAD:
		return "active head";
	case ENGINE_ACTIVE_SUBUNITS:
		return "active subunits";
	case ENGINE_WAIT_KICK:
		return "wait kick";
	case ENGINE_DEAD:
		return "dead";
	}

	return "unknown";
}
82

83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
#define I915_MAX_SLICES	3
#define I915_MAX_SUBSLICES 3

#define instdone_slice_mask(dev_priv__) \
	(INTEL_GEN(dev_priv__) == 7 ? \
	 1 : INTEL_INFO(dev_priv__)->sseu.slice_mask)

#define instdone_subslice_mask(dev_priv__) \
	(INTEL_GEN(dev_priv__) == 7 ? \
	 1 : INTEL_INFO(dev_priv__)->sseu.subslice_mask)

#define for_each_instdone_slice_subslice(dev_priv__, slice__, subslice__) \
	for ((slice__) = 0, (subslice__) = 0; \
	     (slice__) < I915_MAX_SLICES; \
	     (subslice__) = ((subslice__) + 1) < I915_MAX_SUBSLICES ? (subslice__) + 1 : 0, \
	       (slice__) += ((subslice__) == 0)) \
		for_each_if((BIT(slice__) & instdone_slice_mask(dev_priv__)) && \
			    (BIT(subslice__) & instdone_subslice_mask(dev_priv__)))

102 103 104 105
struct intel_instdone {
	u32 instdone;
	/* The following exist only in the RCS engine */
	u32 slice_common;
106 107
	u32 sampler[I915_MAX_SLICES][I915_MAX_SUBSLICES];
	u32 row[I915_MAX_SLICES][I915_MAX_SUBSLICES];
108 109
};

110
struct intel_engine_hangcheck {
111
	u64 acthd;
112
	u32 seqno;
113
	enum intel_engine_hangcheck_action action;
114
	unsigned long action_timestamp;
115
	int deadlock;
116
	struct intel_instdone instdone;
117
	struct drm_i915_gem_request *active_request;
118
	bool stalled;
119 120
};

121
struct intel_ring {
122
	struct i915_vma *vma;
123
	void *vaddr;
124

125 126
	struct list_head request_list;

127 128
	u32 head;
	u32 tail;
129
	u32 emit;
130

131 132 133
	u32 space;
	u32 size;
	u32 effective_size;
134 135
};

136
struct i915_gem_context;
137
struct drm_i915_reg_table;
138

139 140 141 142 143 144 145 146 147 148 149
/*
 * we use a single page to load ctx workarounds so all of these
 * values are referred in terms of dwords
 *
 * struct i915_wa_ctx_bb:
 *  offset: specifies batch starting position, also helpful in case
 *    if we want to have multiple batches at different offsets based on
 *    some criteria. It is not a requirement at the moment but provides
 *    an option for future use.
 *  size: size of the batch in DWORDS
 */
150
struct i915_ctx_workarounds {
151 152 153 154
	struct i915_wa_ctx_bb {
		u32 offset;
		u32 size;
	} indirect_ctx, per_ctx;
155
	struct i915_vma *vma;
156 157
};

158 159
struct drm_i915_gem_request;

160 161 162 163 164 165 166 167 168 169 170 171 172
/*
 * Engine IDs definitions.
 * Keep instances of the same type engine together.
 */
enum intel_engine_id {
	RCS = 0,
	BCS,
	VCS,
	VCS2,
#define _VCS(n) (VCS + (n))
	VECS
};

173 174 175 176 177 178
struct i915_priolist {
	struct rb_node node;
	struct list_head requests;
	int priority;
};

179 180 181 182 183 184 185 186
/**
 * struct intel_engine_execlists - execlist submission queue and port state
 *
 * The struct intel_engine_execlists represents the combined logical state of
 * driver and the hardware state for execlist mode of submission.
 */
struct intel_engine_execlists {
	/**
187
	 * @tasklet: softirq tasklet for bottom handler
188
	 */
189
	struct tasklet_struct tasklet;
190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222

	/**
	 * @default_priolist: priority list for I915_PRIORITY_NORMAL
	 */
	struct i915_priolist default_priolist;

	/**
	 * @no_priolist: priority lists disabled
	 */
	bool no_priolist;

	/**
	 * @port: execlist port states
	 *
	 * For each hardware ELSP (ExecList Submission Port) we keep
	 * track of the last request and the number of times we submitted
	 * that port to hw. We then count the number of times the hw reports
	 * a context completion or preemption. As only one context can
	 * be active on hw, we limit resubmission of context to port[0]. This
	 * is called Lite Restore, of the context.
	 */
	struct execlist_port {
		/**
		 * @request_count: combined request and submission count
		 */
		struct drm_i915_gem_request *request_count;
#define EXECLIST_COUNT_BITS 2
#define port_request(p) ptr_mask_bits((p)->request_count, EXECLIST_COUNT_BITS)
#define port_count(p) ptr_unmask_bits((p)->request_count, EXECLIST_COUNT_BITS)
#define port_pack(rq, count) ptr_pack_bits(rq, count, EXECLIST_COUNT_BITS)
#define port_unpack(p, count) ptr_unpack_bits((p)->request_count, count, EXECLIST_COUNT_BITS)
#define port_set(p, packed) ((p)->request_count = (packed))
#define port_isset(p) ((p)->request_count)
223
#define port_index(p, execlists) ((p) - (execlists)->port)
224 225 226 227 228

		/**
		 * @context_id: context ID for port
		 */
		GEM_DEBUG_DECL(u32 context_id);
229 230 231 232

#define EXECLIST_MAX_PORTS 2
	} port[EXECLIST_MAX_PORTS];

C
Chris Wilson 已提交
233
	/**
234 235 236 237 238 239 240
	 * @active: is the HW active? We consider the HW as active after
	 * submitting any context for execution and until we have seen the
	 * last context completion event. After that, we do not expect any
	 * more events until we submit, and so can park the HW.
	 *
	 * As we have a small number of different sources from which we feed
	 * the HW, we track the state of each inside a single bitfield.
C
Chris Wilson 已提交
241
	 */
242 243 244
	unsigned int active;
#define EXECLISTS_ACTIVE_USER 0
#define EXECLISTS_ACTIVE_PREEMPT 1
245
#define EXECLISTS_ACTIVE_HWACK 2
C
Chris Wilson 已提交
246

247 248 249 250
	/**
	 * @port_mask: number of execlist ports - 1
	 */
	unsigned int port_mask;
251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277

	/**
	 * @queue: queue of requests, in priority lists
	 */
	struct rb_root queue;

	/**
	 * @first: leftmost level in priority @queue
	 */
	struct rb_node *first;

	/**
	 * @fw_domains: forcewake domains for irq tasklet
	 */
	unsigned int fw_domains;

	/**
	 * @csb_head: context status buffer head
	 */
	unsigned int csb_head;

	/**
	 * @csb_use_mmio: access csb through mmio, instead of hwsp
	 */
	bool csb_use_mmio;
};

278 279
#define INTEL_ENGINE_CS_MAX_NAME 8

280 281
struct intel_engine_cs {
	struct drm_i915_private *i915;
282
	char name[INTEL_ENGINE_CS_MAX_NAME];
283

284 285
	enum intel_engine_id id;
	unsigned int hw_id;
286
	unsigned int guc_id;
287

288 289 290
	u8 uabi_id;
	u8 uabi_class;

291 292
	u8 class;
	u8 instance;
293 294
	u32 context_size;
	u32 mmio_base;
295
	unsigned int irq_shift;
296

297
	struct intel_ring *buffer;
298
	struct intel_timeline *timeline;
299

300
	struct drm_i915_gem_object *default_state;
301

302
	atomic_t irq_count;
303 304
	unsigned long irq_posted;
#define ENGINE_IRQ_BREADCRUMB 0
305
#define ENGINE_IRQ_EXECLIST 1
306

307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323
	/* Rather than have every client wait upon all user interrupts,
	 * with the herd waking after every interrupt and each doing the
	 * heavyweight seqno dance, we delegate the task (of being the
	 * bottom-half of the user interrupt) to the first client. After
	 * every interrupt, we wake up one client, who does the heavyweight
	 * coherent seqno read and either goes back to sleep (if incomplete),
	 * or wakes up all the completed clients in parallel, before then
	 * transferring the bottom-half status to the next client in the queue.
	 *
	 * Compared to walking the entire list of waiters in a single dedicated
	 * bottom-half, we reduce the latency of the first waiter by avoiding
	 * a context switch, but incur additional coherent seqno reads when
	 * following the chain of request breadcrumbs. Since it is most likely
	 * that we have a single client waiting on each seqno, then reducing
	 * the overhead of waking that client is much preferred.
	 */
	struct intel_breadcrumbs {
324 325 326 327
		spinlock_t irq_lock; /* protects irq_*; irqsafe */
		struct intel_wait *irq_wait; /* oldest waiter by retirement */

		spinlock_t rb_lock; /* protects the rb and wraps irq_lock */
328
		struct rb_root waiters; /* sorted by retirement, priority */
329 330
		struct rb_root signals; /* sorted by retirement */
		struct task_struct *signaler; /* used for fence signalling */
331
		struct drm_i915_gem_request __rcu *first_signal;
332
		struct timer_list fake_irq; /* used after a missed interrupt */
333 334
		struct timer_list hangcheck; /* detect missed interrupts */

335
		unsigned int hangcheck_interrupts;
336
		unsigned int irq_enabled;
337

338
		bool irq_armed : 1;
339
		I915_SELFTEST_DECLARE(bool mock : 1);
340 341
	} breadcrumbs;

342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360
	struct {
		/**
		 * @enable: Bitmask of enable sample events on this engine.
		 *
		 * Bits correspond to sample event types, for instance
		 * I915_SAMPLE_QUEUED is bit 0 etc.
		 */
		u32 enable;
		/**
		 * @enable_count: Reference count for the enabled samplers.
		 *
		 * Index number corresponds to the bit number from @enable.
		 */
		unsigned int enable_count[I915_PMU_SAMPLE_BITS];
		/**
		 * @sample: Counter values for sampling events.
		 *
		 * Our internal timer stores the current counters in this field.
		 */
361
#define I915_ENGINE_SAMPLE_MAX (I915_SAMPLE_SEMA + 1)
362
		struct i915_pmu_sample sample[I915_ENGINE_SAMPLE_MAX];
363 364 365 366 367 368 369 370 371 372 373 374 375 376
		/**
		 * @busy_stats: Has enablement of engine stats tracking been
		 * 		requested.
		 */
		bool busy_stats;
		/**
		 * @disable_busy_stats: Work item for busy stats disabling.
		 *
		 * Same as with @enable_busy_stats action, with the difference
		 * that we delay it in case there are rapid enable-disable
		 * actions, which can happen during tool startup (like perf
		 * stat).
		 */
		struct delayed_work disable_busy_stats;
377 378
	} pmu;

379 380 381 382 383 384 385
	/*
	 * A pool of objects to use as shadow copies of client batch buffers
	 * when the command parser is enabled. Prevents the client from
	 * modifying the batch contents after software parsing.
	 */
	struct i915_gem_batch_pool batch_pool;

386
	struct intel_hw_status_page status_page;
387
	struct i915_ctx_workarounds wa_ctx;
388
	struct i915_vma *scratch;
389

390 391
	u32             irq_keep_mask; /* always keep these interrupts */
	u32		irq_enable_mask; /* bitmask to enable ring interrupt */
392 393
	void		(*irq_enable)(struct intel_engine_cs *engine);
	void		(*irq_disable)(struct intel_engine_cs *engine);
394

395
	int		(*init_hw)(struct intel_engine_cs *engine);
396 397
	void		(*reset_hw)(struct intel_engine_cs *engine,
				    struct drm_i915_gem_request *req);
398

399 400 401
	void		(*park)(struct intel_engine_cs *engine);
	void		(*unpark)(struct intel_engine_cs *engine);

402 403
	void		(*set_default_submission)(struct intel_engine_cs *engine);

404 405
	struct intel_ring *(*context_pin)(struct intel_engine_cs *engine,
					  struct i915_gem_context *ctx);
406 407
	void		(*context_unpin)(struct intel_engine_cs *engine,
					 struct i915_gem_context *ctx);
408
	int		(*request_alloc)(struct drm_i915_gem_request *req);
409
	int		(*init_context)(struct drm_i915_gem_request *req);
410

411 412 413 414 415 416 417 418 419 420 421
	int		(*emit_flush)(struct drm_i915_gem_request *request,
				      u32 mode);
#define EMIT_INVALIDATE	BIT(0)
#define EMIT_FLUSH	BIT(1)
#define EMIT_BARRIER	(EMIT_INVALIDATE | EMIT_FLUSH)
	int		(*emit_bb_start)(struct drm_i915_gem_request *req,
					 u64 offset, u32 length,
					 unsigned int dispatch_flags);
#define I915_DISPATCH_SECURE BIT(0)
#define I915_DISPATCH_PINNED BIT(1)
#define I915_DISPATCH_RS     BIT(2)
C
Chris Wilson 已提交
422
	void		(*emit_breadcrumb)(struct drm_i915_gem_request *req,
423
					   u32 *cs);
424
	int		emit_breadcrumb_sz;
425 426 427 428 429 430 431

	/* Pass the request to the hardware queue (e.g. directly into
	 * the legacy ringbuffer or to the end of an execlist).
	 *
	 * This is called from an atomic context with irqs disabled; must
	 * be irq safe.
	 */
432
	void		(*submit_request)(struct drm_i915_gem_request *req);
433

434 435 436 437 438 439 440 441 442
	/* Call when the priority on a request has changed and it and its
	 * dependencies may need rescheduling. Note the request itself may
	 * not be ready to run!
	 *
	 * Called under the struct_mutex.
	 */
	void		(*schedule)(struct drm_i915_gem_request *request,
				    int priority);

443 444 445 446 447 448 449 450
	/*
	 * Cancel all requests on the hardware, or queued for execution.
	 * This should only cancel the ready requests that have been
	 * submitted to the engine (via the engine->submit_request callback).
	 * This is called when marking the device as wedged.
	 */
	void		(*cancel_requests)(struct intel_engine_cs *engine);

451 452 453 454 455 456
	/* Some chipsets are not quite as coherent as advertised and need
	 * an expensive kick to force a true read of the up-to-date seqno.
	 * However, the up-to-date seqno is not always required and the last
	 * seen value is good enough. Note that the seqno will always be
	 * monotonic, even if not coherent.
	 */
457 458
	void		(*irq_seqno_barrier)(struct intel_engine_cs *engine);
	void		(*cleanup)(struct intel_engine_cs *engine);
459

460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496
	/* GEN8 signal/wait table - never trust comments!
	 *	  signal to	signal to    signal to   signal to      signal to
	 *	    RCS		   VCS          BCS        VECS		 VCS2
	 *      --------------------------------------------------------------------
	 *  RCS | NOP (0x00) | VCS (0x08) | BCS (0x10) | VECS (0x18) | VCS2 (0x20) |
	 *	|-------------------------------------------------------------------
	 *  VCS | RCS (0x28) | NOP (0x30) | BCS (0x38) | VECS (0x40) | VCS2 (0x48) |
	 *	|-------------------------------------------------------------------
	 *  BCS | RCS (0x50) | VCS (0x58) | NOP (0x60) | VECS (0x68) | VCS2 (0x70) |
	 *	|-------------------------------------------------------------------
	 * VECS | RCS (0x78) | VCS (0x80) | BCS (0x88) |  NOP (0x90) | VCS2 (0x98) |
	 *	|-------------------------------------------------------------------
	 * VCS2 | RCS (0xa0) | VCS (0xa8) | BCS (0xb0) | VECS (0xb8) | NOP  (0xc0) |
	 *	|-------------------------------------------------------------------
	 *
	 * Generalization:
	 *  f(x, y) := (x->id * NUM_RINGS * seqno_size) + (seqno_size * y->id)
	 *  ie. transpose of g(x, y)
	 *
	 *	 sync from	sync from    sync from    sync from	sync from
	 *	    RCS		   VCS          BCS        VECS		 VCS2
	 *      --------------------------------------------------------------------
	 *  RCS | NOP (0x00) | VCS (0x28) | BCS (0x50) | VECS (0x78) | VCS2 (0xa0) |
	 *	|-------------------------------------------------------------------
	 *  VCS | RCS (0x08) | NOP (0x30) | BCS (0x58) | VECS (0x80) | VCS2 (0xa8) |
	 *	|-------------------------------------------------------------------
	 *  BCS | RCS (0x10) | VCS (0x38) | NOP (0x60) | VECS (0x88) | VCS2 (0xb0) |
	 *	|-------------------------------------------------------------------
	 * VECS | RCS (0x18) | VCS (0x40) | BCS (0x68) |  NOP (0x90) | VCS2 (0xb8) |
	 *	|-------------------------------------------------------------------
	 * VCS2 | RCS (0x20) | VCS (0x48) | BCS (0x70) | VECS (0x98) |  NOP (0xc0) |
	 *	|-------------------------------------------------------------------
	 *
	 * Generalization:
	 *  g(x, y) := (y->id * NUM_RINGS * seqno_size) + (seqno_size * x->id)
	 *  ie. transpose of f(x, y)
	 */
497
	struct {
498 499 500
#define GEN6_SEMAPHORE_LAST	VECS_HW
#define GEN6_NUM_SEMAPHORES	(GEN6_SEMAPHORE_LAST + 1)
#define GEN6_SEMAPHORES_MASK	GENMASK(GEN6_SEMAPHORE_LAST, 0)
501 502 503 504 505 506
		struct {
			/* our mbox written by others */
			u32		wait[GEN6_NUM_SEMAPHORES];
			/* mboxes this ring signals to */
			i915_reg_t	signal[GEN6_NUM_SEMAPHORES];
		} mbox;
507 508

		/* AKA wait() */
509 510
		int	(*sync_to)(struct drm_i915_gem_request *req,
				   struct drm_i915_gem_request *signal);
511
		u32	*(*signal)(struct drm_i915_gem_request *req, u32 *cs);
512
	} semaphore;
513

514
	struct intel_engine_execlists execlists;
515

516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533
	/* Contexts are pinned whilst they are active on the GPU. The last
	 * context executed remains active whilst the GPU is idle - the
	 * switch away and write to the context object only occurs on the
	 * next execution.  Contexts are only unpinned on retirement of the
	 * following request ensuring that we can always write to the object
	 * on the context switch even after idling. Across suspend, we switch
	 * to the kernel context and trash it as the save may not happen
	 * before the hardware is powered down.
	 */
	struct i915_gem_context *last_retired_context;

	/* We track the current MI_SET_CONTEXT in order to eliminate
	 * redudant context switches. This presumes that requests are not
	 * reordered! Or when they are the tracking is updated along with
	 * the emission of individual requests into the legacy command
	 * stream (ring).
	 */
	struct i915_gem_context *legacy_active_context;
534
	struct i915_hw_ppgtt *legacy_active_ppgtt;
535

536 537 538
	/* status_notifier: list of callbacks for context-switch changes */
	struct atomic_notifier_head context_status_notifier;

539
	struct intel_engine_hangcheck hangcheck;
540

541 542
	bool needs_cmd_parser;

543
	/*
544
	 * Table of commands the command parser needs to know about
545
	 * for this engine.
546
	 */
547
	DECLARE_HASHTABLE(cmd_hash, I915_CMD_HASH_ORDER);
548 549 550 551

	/*
	 * Table of registers allowed in commands that read/write registers.
	 */
552 553
	const struct drm_i915_reg_table *reg_tables;
	int reg_table_count;
554 555 556 557 558

	/*
	 * Returns the bitmask for the length field of the specified command.
	 * Return 0 for an unrecognized/invalid command.
	 *
559
	 * If the command parser finds an entry for a command in the engine's
560
	 * cmd_tables, it gets the command's length based on the table entry.
561 562 563
	 * If not, it calls this function to determine the per-engine length
	 * field encoding for the command (i.e. different opcode ranges use
	 * certain bits to encode the command length in the header).
564 565
	 */
	u32 (*get_cmd_length_mask)(u32 cmd_header);
566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597

	struct {
		/**
		 * @lock: Lock protecting the below fields.
		 */
		spinlock_t lock;
		/**
		 * @enabled: Reference count indicating number of listeners.
		 */
		unsigned int enabled;
		/**
		 * @active: Number of contexts currently scheduled in.
		 */
		unsigned int active;
		/**
		 * @enabled_at: Timestamp when busy stats were enabled.
		 */
		ktime_t enabled_at;
		/**
		 * @start: Timestamp of the last idle to active transition.
		 *
		 * Idle is defined as active == 0, active is active > 0.
		 */
		ktime_t start;
		/**
		 * @total: Total time this engine was busy.
		 *
		 * Accumulated time not counting the most recent block in cases
		 * where engine is currently busy (active > 0).
		 */
		ktime_t total;
	} stats;
598 599
};

600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620
static inline void
execlists_set_active(struct intel_engine_execlists *execlists,
		     unsigned int bit)
{
	__set_bit(bit, (unsigned long *)&execlists->active);
}

static inline void
execlists_clear_active(struct intel_engine_execlists *execlists,
		       unsigned int bit)
{
	__clear_bit(bit, (unsigned long *)&execlists->active);
}

static inline bool
execlists_is_active(const struct intel_engine_execlists *execlists,
		    unsigned int bit)
{
	return test_bit(bit, (unsigned long *)&execlists->active);
}

621 622 623 624 625 626
void
execlists_cancel_port_requests(struct intel_engine_execlists * const execlists);

void
execlists_unwind_incomplete_requests(struct intel_engine_execlists *execlists);

627 628 629 630 631 632
static inline unsigned int
execlists_num_ports(const struct intel_engine_execlists * const execlists)
{
	return execlists->port_mask + 1;
}

633 634 635 636
static inline void
execlists_port_complete(struct intel_engine_execlists * const execlists,
			struct execlist_port * const port)
{
637
	const unsigned int m = execlists->port_mask;
638 639

	GEM_BUG_ON(port_index(port, execlists) != 0);
640
	GEM_BUG_ON(!execlists_is_active(execlists, EXECLISTS_ACTIVE_USER));
641

642 643
	memmove(port, port + 1, m * sizeof(struct execlist_port));
	memset(port + m, 0, sizeof(struct execlist_port));
644 645
}

646
static inline unsigned int
647
intel_engine_flag(const struct intel_engine_cs *engine)
648
{
649
	return BIT(engine->id);
650 651
}

652
static inline u32
653
intel_read_status_page(struct intel_engine_cs *engine, int reg)
654
{
655
	/* Ensure that the compiler doesn't optimize away the load. */
656
	return READ_ONCE(engine->status_page.page_addr[reg]);
657 658
}

M
Mika Kuoppala 已提交
659
static inline void
660
intel_write_status_page(struct intel_engine_cs *engine, int reg, u32 value)
M
Mika Kuoppala 已提交
661
{
662 663 664 665 666 667 668 669 670 671 672 673 674 675
	/* Writing into the status page should be done sparingly. Since
	 * we do when we are uncertain of the device state, we take a bit
	 * of extra paranoia to try and ensure that the HWS takes the value
	 * we give and that it doesn't end up trapped inside the CPU!
	 */
	if (static_cpu_has(X86_FEATURE_CLFLUSH)) {
		mb();
		clflush(&engine->status_page.page_addr[reg]);
		engine->status_page.page_addr[reg] = value;
		clflush(&engine->status_page.page_addr[reg]);
		mb();
	} else {
		WRITE_ONCE(engine->status_page.page_addr[reg], value);
	}
M
Mika Kuoppala 已提交
676 677
}

678
/*
C
Chris Wilson 已提交
679 680 681 682 683 684 685 686 687 688 689
 * Reads a dword out of the status page, which is written to from the command
 * queue by automatic updates, MI_REPORT_HEAD, MI_STORE_DATA_INDEX, or
 * MI_STORE_DATA_IMM.
 *
 * The following dwords have a reserved meaning:
 * 0x00: ISR copy, updated when an ISR bit not set in the HWSTAM changes.
 * 0x04: ring 0 head pointer
 * 0x05: ring 1 head pointer (915-class)
 * 0x06: ring 2 head pointer (915-class)
 * 0x10-0x1b: Context status DWords (GM45)
 * 0x1f: Last written status offset. (GM45)
690
 * 0x20-0x2f: Reserved (Gen6+)
C
Chris Wilson 已提交
691
 *
692
 * The area from dword 0x30 to 0x3ff is available for driver usage.
C
Chris Wilson 已提交
693
 */
694
#define I915_GEM_HWS_INDEX		0x30
695
#define I915_GEM_HWS_INDEX_ADDR (I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT)
696 697
#define I915_GEM_HWS_PREEMPT_INDEX	0x32
#define I915_GEM_HWS_PREEMPT_ADDR (I915_GEM_HWS_PREEMPT_INDEX << MI_STORE_DWORD_INDEX_SHIFT)
698
#define I915_GEM_HWS_SCRATCH_INDEX	0x40
699
#define I915_GEM_HWS_SCRATCH_ADDR (I915_GEM_HWS_SCRATCH_INDEX << MI_STORE_DWORD_INDEX_SHIFT)
C
Chris Wilson 已提交
700

701
#define I915_HWS_CSB_BUF0_INDEX		0x10
702 703
#define I915_HWS_CSB_WRITE_INDEX	0x1f
#define CNL_HWS_CSB_WRITE_INDEX		0x2f
704

705 706
struct intel_ring *
intel_engine_create_ring(struct intel_engine_cs *engine, int size);
707 708 709
int intel_ring_pin(struct intel_ring *ring,
		   struct drm_i915_private *i915,
		   unsigned int offset_bias);
710
void intel_ring_reset(struct intel_ring *ring, u32 tail);
711
unsigned int intel_ring_update_space(struct intel_ring *ring);
712
void intel_ring_unpin(struct intel_ring *ring);
713
void intel_ring_free(struct intel_ring *ring);
714

715 716
void intel_engine_stop(struct intel_engine_cs *engine);
void intel_engine_cleanup(struct intel_engine_cs *engine);
717

718 719
void intel_legacy_submission_resume(struct drm_i915_private *dev_priv);

720
int __must_check intel_ring_cacheline_align(struct drm_i915_gem_request *req);
721

722
int intel_ring_wait_for_space(struct intel_ring *ring, unsigned int bytes);
723 724
u32 __must_check *intel_ring_begin(struct drm_i915_gem_request *req,
				   unsigned int n);
725

726 727
static inline void
intel_ring_advance(struct drm_i915_gem_request *req, u32 *cs)
728
{
729 730 731 732 733 734 735
	/* Dummy function.
	 *
	 * This serves as a placeholder in the code so that the reader
	 * can compare against the preceding intel_ring_begin() and
	 * check that the number of dwords emitted matches the space
	 * reserved for the command packet (i.e. the value passed to
	 * intel_ring_begin()).
736
	 */
737
	GEM_BUG_ON((req->ring->vaddr + req->ring->emit) != cs);
738 739
}

740
static inline u32
741 742 743 744 745 746 747
intel_ring_wrap(const struct intel_ring *ring, u32 pos)
{
	return pos & (ring->size - 1);
}

static inline u32
intel_ring_offset(const struct drm_i915_gem_request *req, void *addr)
748 749
{
	/* Don't write ring->size (equivalent to 0) as that hangs some GPUs. */
750 751
	u32 offset = addr - req->ring->vaddr;
	GEM_BUG_ON(offset > req->ring->size);
752
	return intel_ring_wrap(req->ring, offset);
753
}
754

755 756 757 758 759 760 761 762 763
static inline void
assert_ring_tail_valid(const struct intel_ring *ring, unsigned int tail)
{
	/* We could combine these into a single tail operation, but keeping
	 * them as seperate tests will help identify the cause should one
	 * ever fire.
	 */
	GEM_BUG_ON(!IS_ALIGNED(tail, 8));
	GEM_BUG_ON(tail >= ring->size);
764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782

	/*
	 * "Ring Buffer Use"
	 *	Gen2 BSpec "1. Programming Environment" / 1.4.4.6
	 *	Gen3 BSpec "1c Memory Interface Functions" / 2.3.4.5
	 *	Gen4+ BSpec "1c Memory Interface and Command Stream" / 5.3.4.5
	 * "If the Ring Buffer Head Pointer and the Tail Pointer are on the
	 * same cacheline, the Head Pointer must not be greater than the Tail
	 * Pointer."
	 *
	 * We use ring->head as the last known location of the actual RING_HEAD,
	 * it may have advanced but in the worst case it is equally the same
	 * as ring->head and so we should never program RING_TAIL to advance
	 * into the same cacheline as ring->head.
	 */
#define cacheline(a) round_down(a, CACHELINE_BYTES)
	GEM_BUG_ON(cacheline(tail) == cacheline(ring->head) &&
		   tail < ring->head);
#undef cacheline
783 784
}

785 786 787 788 789 790 791 792 793 794 795 796 797
static inline unsigned int
intel_ring_set_tail(struct intel_ring *ring, unsigned int tail)
{
	/* Whilst writes to the tail are strictly order, there is no
	 * serialisation between readers and the writers. The tail may be
	 * read by i915_gem_request_retire() just as it is being updated
	 * by execlists, as although the breadcrumb is complete, the context
	 * switch hasn't been seen.
	 */
	assert_ring_tail_valid(ring, tail);
	ring->tail = tail;
	return tail;
}
798

799
void intel_engine_init_global_seqno(struct intel_engine_cs *engine, u32 seqno);
800

801 802
void intel_engine_setup_common(struct intel_engine_cs *engine);
int intel_engine_init_common(struct intel_engine_cs *engine);
803
int intel_engine_create_scratch(struct intel_engine_cs *engine, int size);
804
void intel_engine_cleanup_common(struct intel_engine_cs *engine);
805

806 807 808 809
int intel_init_render_ring_buffer(struct intel_engine_cs *engine);
int intel_init_bsd_ring_buffer(struct intel_engine_cs *engine);
int intel_init_blt_ring_buffer(struct intel_engine_cs *engine);
int intel_init_vebox_ring_buffer(struct intel_engine_cs *engine);
810

811
u64 intel_engine_get_active_head(struct intel_engine_cs *engine);
812 813
u64 intel_engine_get_last_batch_head(struct intel_engine_cs *engine);

814 815 816 817
static inline u32 intel_engine_get_seqno(struct intel_engine_cs *engine)
{
	return intel_read_status_page(engine, I915_GEM_HWS_INDEX);
}
818

819 820 821 822 823 824 825 826 827
static inline u32 intel_engine_last_submit(struct intel_engine_cs *engine)
{
	/* We are only peeking at the tail of the submit queue (and not the
	 * queue itself) in order to gain a hint as to the current active
	 * state of the engine. Callers are not expected to be taking
	 * engine->timeline->lock, nor are they expected to be concerned
	 * wtih serialising this hint with anything, so document it as
	 * a hint and nothing more.
	 */
828
	return READ_ONCE(engine->timeline->seqno);
829 830
}

831
int init_workarounds_ring(struct intel_engine_cs *engine);
832
int intel_ring_workarounds_emit(struct drm_i915_gem_request *req);
833

834 835 836
void intel_engine_get_instdone(struct intel_engine_cs *engine,
			       struct intel_instdone *instdone);

837 838 839
/*
 * Arbitrary size for largest possible 'add request' sequence. The code paths
 * are complex and variable. Empirical measurement shows that the worst case
840 841 842
 * is BDW at 192 bytes (6 + 6 + 36 dwords), then ILK at 136 bytes. However,
 * we need to allocate double the largest single packet within that emission
 * to account for tail wraparound (so 6 + 6 + 72 dwords for BDW).
843
 */
844
#define MIN_SPACE_FOR_ADD_REQUEST 336
845

846 847
static inline u32 intel_hws_seqno_address(struct intel_engine_cs *engine)
{
848
	return engine->status_page.ggtt_offset + I915_GEM_HWS_INDEX_ADDR;
849 850
}

851 852 853 854 855
static inline u32 intel_hws_preempt_done_address(struct intel_engine_cs *engine)
{
	return engine->status_page.ggtt_offset + I915_GEM_HWS_PREEMPT_ADDR;
}

856 857 858
/* intel_breadcrumbs.c -- user interrupt bottom-half for waiters */
int intel_engine_init_breadcrumbs(struct intel_engine_cs *engine);

859 860
static inline void intel_wait_init(struct intel_wait *wait,
				   struct drm_i915_gem_request *rq)
861 862
{
	wait->tsk = current;
863
	wait->request = rq;
864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879
}

static inline void intel_wait_init_for_seqno(struct intel_wait *wait, u32 seqno)
{
	wait->tsk = current;
	wait->seqno = seqno;
}

static inline bool intel_wait_has_seqno(const struct intel_wait *wait)
{
	return wait->seqno;
}

static inline bool
intel_wait_update_seqno(struct intel_wait *wait, u32 seqno)
{
880
	wait->seqno = seqno;
881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901
	return intel_wait_has_seqno(wait);
}

static inline bool
intel_wait_update_request(struct intel_wait *wait,
			  const struct drm_i915_gem_request *rq)
{
	return intel_wait_update_seqno(wait, i915_gem_request_global_seqno(rq));
}

static inline bool
intel_wait_check_seqno(const struct intel_wait *wait, u32 seqno)
{
	return wait->seqno == seqno;
}

static inline bool
intel_wait_check_request(const struct intel_wait *wait,
			 const struct drm_i915_gem_request *rq)
{
	return intel_wait_check_seqno(wait, i915_gem_request_global_seqno(rq));
902 903 904 905 906 907 908 909 910 911 912
}

static inline bool intel_wait_complete(const struct intel_wait *wait)
{
	return RB_EMPTY_NODE(&wait->node);
}

bool intel_engine_add_wait(struct intel_engine_cs *engine,
			   struct intel_wait *wait);
void intel_engine_remove_wait(struct intel_engine_cs *engine,
			      struct intel_wait *wait);
913 914
void intel_engine_enable_signaling(struct drm_i915_gem_request *request,
				   bool wakeup);
915
void intel_engine_cancel_signaling(struct drm_i915_gem_request *request);
916

917
static inline bool intel_engine_has_waiter(const struct intel_engine_cs *engine)
918
{
919
	return READ_ONCE(engine->breadcrumbs.irq_wait);
920 921
}

922 923
unsigned int intel_engine_wakeup(struct intel_engine_cs *engine);
#define ENGINE_WAKEUP_WAITER BIT(0)
924 925
#define ENGINE_WAKEUP_ASLEEP BIT(1)

926 927 928
void intel_engine_pin_breadcrumbs_irq(struct intel_engine_cs *engine);
void intel_engine_unpin_breadcrumbs_irq(struct intel_engine_cs *engine);

929 930
void __intel_engine_disarm_breadcrumbs(struct intel_engine_cs *engine);
void intel_engine_disarm_breadcrumbs(struct intel_engine_cs *engine);
931

932
void intel_engine_reset_breadcrumbs(struct intel_engine_cs *engine);
933
void intel_engine_fini_breadcrumbs(struct intel_engine_cs *engine);
934
bool intel_breadcrumbs_busy(struct intel_engine_cs *engine);
935

936 937 938 939 940 941 942 943 944 945 946
static inline u32 *gen8_emit_pipe_control(u32 *batch, u32 flags, u32 offset)
{
	memset(batch, 0, 6 * sizeof(u32));

	batch[0] = GFX_OP_PIPE_CONTROL(6);
	batch[1] = flags;
	batch[2] = offset;

	return batch + 6;
}

947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984
static inline u32 *
gen8_emit_ggtt_write_rcs(u32 *cs, u32 value, u32 gtt_offset)
{
	/* We're using qword write, offset should be aligned to 8 bytes. */
	GEM_BUG_ON(!IS_ALIGNED(gtt_offset, 8));

	/* w/a for post sync ops following a GPGPU operation we
	 * need a prior CS_STALL, which is emitted by the flush
	 * following the batch.
	 */
	*cs++ = GFX_OP_PIPE_CONTROL(6);
	*cs++ = PIPE_CONTROL_GLOBAL_GTT_IVB | PIPE_CONTROL_CS_STALL |
		PIPE_CONTROL_QW_WRITE;
	*cs++ = gtt_offset;
	*cs++ = 0;
	*cs++ = value;
	/* We're thrashing one dword of HWS. */
	*cs++ = 0;

	return cs;
}

static inline u32 *
gen8_emit_ggtt_write(u32 *cs, u32 value, u32 gtt_offset)
{
	/* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
	GEM_BUG_ON(gtt_offset & (1 << 5));
	/* Offset should be aligned to 8 bytes for both (QW/DW) write types */
	GEM_BUG_ON(!IS_ALIGNED(gtt_offset, 8));

	*cs++ = (MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW;
	*cs++ = gtt_offset | MI_FLUSH_DW_USE_GTT;
	*cs++ = 0;
	*cs++ = value;

	return cs;
}

985
bool intel_engine_is_idle(struct intel_engine_cs *engine);
986
bool intel_engines_are_idle(struct drm_i915_private *dev_priv);
987

988 989
bool intel_engine_has_kernel_context(const struct intel_engine_cs *engine);

990 991 992
void intel_engines_park(struct drm_i915_private *i915);
void intel_engines_unpark(struct drm_i915_private *i915);

993
void intel_engines_reset_default_submission(struct drm_i915_private *i915);
994
unsigned int intel_engines_has_context_isolation(struct drm_i915_private *i915);
995

996
bool intel_engine_can_store_dword(struct intel_engine_cs *engine);
997

998 999
void intel_engine_dump(struct intel_engine_cs *engine, struct drm_printer *p);

1000 1001 1002
struct intel_engine_cs *
intel_engine_lookup_user(struct drm_i915_private *i915, u8 class, u8 instance);

1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062
static inline void intel_engine_context_in(struct intel_engine_cs *engine)
{
	unsigned long flags;

	if (READ_ONCE(engine->stats.enabled) == 0)
		return;

	spin_lock_irqsave(&engine->stats.lock, flags);

	if (engine->stats.enabled > 0) {
		if (engine->stats.active++ == 0)
			engine->stats.start = ktime_get();
		GEM_BUG_ON(engine->stats.active == 0);
	}

	spin_unlock_irqrestore(&engine->stats.lock, flags);
}

static inline void intel_engine_context_out(struct intel_engine_cs *engine)
{
	unsigned long flags;

	if (READ_ONCE(engine->stats.enabled) == 0)
		return;

	spin_lock_irqsave(&engine->stats.lock, flags);

	if (engine->stats.enabled > 0) {
		ktime_t last;

		if (engine->stats.active && --engine->stats.active == 0) {
			/*
			 * Decrement the active context count and in case GPU
			 * is now idle add up to the running total.
			 */
			last = ktime_sub(ktime_get(), engine->stats.start);

			engine->stats.total = ktime_add(engine->stats.total,
							last);
		} else if (engine->stats.active == 0) {
			/*
			 * After turning on engine stats, context out might be
			 * the first event in which case we account from the
			 * time stats gathering was turned on.
			 */
			last = ktime_sub(ktime_get(), engine->stats.enabled_at);

			engine->stats.total = ktime_add(engine->stats.total,
							last);
		}
	}

	spin_unlock_irqrestore(&engine->stats.lock, flags);
}

int intel_enable_engine_stats(struct intel_engine_cs *engine);
void intel_disable_engine_stats(struct intel_engine_cs *engine);

ktime_t intel_engine_get_busy_time(struct intel_engine_cs *engine);

1063
#endif /* _INTEL_RINGBUFFER_H_ */