arch_timer.c 24.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
/*
 * Copyright (C) 2012 ARM Ltd.
 * Author: Marc Zyngier <marc.zyngier@arm.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
 */

#include <linux/cpu.h>
#include <linux/kvm.h>
#include <linux/kvm_host.h>
#include <linux/interrupt.h>
23
#include <linux/irq.h>
24
#include <linux/uaccess.h>
25

26
#include <clocksource/arm_arch_timer.h>
27
#include <asm/arch_timer.h>
28
#include <asm/kvm_hyp.h>
29

30 31
#include <kvm/arm_vgic.h>
#include <kvm/arm_arch_timer.h>
32

33 34
#include "trace.h"

35
static struct timecounter *timecounter;
36
static unsigned int host_vtimer_irq;
37
static u32 host_vtimer_irq_flags;
38

39 40 41 42 43 44 45 46 47 48
static const struct kvm_irq_level default_ptimer_irq = {
	.irq	= 30,
	.level	= 1,
};

static const struct kvm_irq_level default_vtimer_irq = {
	.irq	= 27,
	.level	= 1,
};

49 50 51
static bool kvm_timer_irq_can_fire(struct arch_timer_context *timer_ctx);
static void kvm_timer_update_irq(struct kvm_vcpu *vcpu, bool new_level,
				 struct arch_timer_context *timer_ctx);
52
static bool kvm_timer_should_fire(struct arch_timer_context *timer_ctx);
53

54
u64 kvm_phys_timer_read(void)
55 56 57 58
{
	return timecounter->cc->read(timecounter->cc);
}

59
static void soft_timer_start(struct hrtimer *hrt, u64 ns)
60
{
61
	hrtimer_start(hrt, ktime_add_ns(ktime_get(), ns),
62 63 64
		      HRTIMER_MODE_ABS);
}

65
static void soft_timer_cancel(struct hrtimer *hrt, struct work_struct *work)
66
{
67
	hrtimer_cancel(hrt);
68 69
	if (work)
		cancel_work_sync(work);
70 71
}

72
static void kvm_vtimer_update_mask_user(struct kvm_vcpu *vcpu)
73
{
74
	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
75 76

	/*
77 78 79 80 81 82 83
	 * When using a userspace irqchip with the architected timers, we must
	 * prevent continuously exiting from the guest, and therefore mask the
	 * physical interrupt by disabling it on the host interrupt controller
	 * when the virtual level is high, such that the guest can make
	 * forward progress.  Once we detect the output level being
	 * de-asserted, we unmask the interrupt again so that we exit from the
	 * guest when the timer fires.
84
	 */
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
	if (vtimer->irq.level)
		disable_percpu_irq(host_vtimer_irq);
	else
		enable_percpu_irq(host_vtimer_irq, 0);
}

static irqreturn_t kvm_arch_timer_handler(int irq, void *dev_id)
{
	struct kvm_vcpu *vcpu = *(struct kvm_vcpu **)dev_id;
	struct arch_timer_context *vtimer;

	if (!vcpu) {
		pr_warn_once("Spurious arch timer IRQ on non-VCPU thread\n");
		return IRQ_NONE;
	}
	vtimer = vcpu_vtimer(vcpu);

102 103 104
	vtimer->cnt_ctl = read_sysreg_el0(cntv_ctl);
	if (kvm_timer_irq_can_fire(vtimer))
		kvm_timer_update_irq(vcpu, true, vtimer);
105 106 107 108

	if (unlikely(!irqchip_in_kernel(vcpu->kvm)))
		kvm_vtimer_update_mask_user(vcpu);

109 110 111
	return IRQ_HANDLED;
}

112 113 114 115
/*
 * Work function for handling the backup timer that we schedule when a vcpu is
 * no longer running, but had a timer programmed to fire in the future.
 */
116 117 118 119 120
static void kvm_timer_inject_irq_work(struct work_struct *work)
{
	struct kvm_vcpu *vcpu;

	vcpu = container_of(work, struct kvm_vcpu, arch.timer_cpu.expired);
121

122 123 124 125
	/*
	 * If the vcpu is blocked we want to wake it up so that it will see
	 * the timer has expired when entering the guest.
	 */
126
	kvm_vcpu_wake_up(vcpu);
127 128
}

129
static u64 kvm_timer_compute_delta(struct arch_timer_context *timer_ctx)
130
{
131
	u64 cval, now;
132

133 134
	cval = timer_ctx->cnt_cval;
	now = kvm_phys_timer_read() - timer_ctx->cntvoff;
135 136 137 138 139 140 141 142 143 144 145 146 147 148

	if (now < cval) {
		u64 ns;

		ns = cyclecounter_cyc2ns(timecounter->cc,
					 cval - now,
					 timecounter->mask,
					 &timecounter->frac);
		return ns;
	}

	return 0;
}

149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
static bool kvm_timer_irq_can_fire(struct arch_timer_context *timer_ctx)
{
	return !(timer_ctx->cnt_ctl & ARCH_TIMER_CTRL_IT_MASK) &&
		(timer_ctx->cnt_ctl & ARCH_TIMER_CTRL_ENABLE);
}

/*
 * Returns the earliest expiration time in ns among guest timers.
 * Note that it will return 0 if none of timers can fire.
 */
static u64 kvm_timer_earliest_exp(struct kvm_vcpu *vcpu)
{
	u64 min_virt = ULLONG_MAX, min_phys = ULLONG_MAX;
	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
	struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);

	if (kvm_timer_irq_can_fire(vtimer))
		min_virt = kvm_timer_compute_delta(vtimer);

	if (kvm_timer_irq_can_fire(ptimer))
		min_phys = kvm_timer_compute_delta(ptimer);

	/* If none of timers can fire, then return 0 */
	if ((min_virt == ULLONG_MAX) && (min_phys == ULLONG_MAX))
		return 0;

	return min(min_virt, min_phys);
}

178
static enum hrtimer_restart kvm_bg_timer_expire(struct hrtimer *hrt)
179 180
{
	struct arch_timer_cpu *timer;
181 182 183
	struct kvm_vcpu *vcpu;
	u64 ns;

184
	timer = container_of(hrt, struct arch_timer_cpu, bg_timer);
185 186 187 188 189 190 191
	vcpu = container_of(timer, struct kvm_vcpu, arch.timer_cpu);

	/*
	 * Check that the timer has really expired from the guest's
	 * PoV (NTP on the host may have forced it to expire
	 * early). If we should have slept longer, restart it.
	 */
192
	ns = kvm_timer_earliest_exp(vcpu);
193 194 195 196 197
	if (unlikely(ns)) {
		hrtimer_forward_now(hrt, ns_to_ktime(ns));
		return HRTIMER_RESTART;
	}

198
	schedule_work(&timer->expired);
199 200 201
	return HRTIMER_NORESTART;
}

202 203
static enum hrtimer_restart kvm_phys_timer_expire(struct hrtimer *hrt)
{
204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
	struct arch_timer_context *ptimer;
	struct arch_timer_cpu *timer;
	struct kvm_vcpu *vcpu;
	u64 ns;

	timer = container_of(hrt, struct arch_timer_cpu, phys_timer);
	vcpu = container_of(timer, struct kvm_vcpu, arch.timer_cpu);
	ptimer = vcpu_ptimer(vcpu);

	/*
	 * Check that the timer has really expired from the guest's
	 * PoV (NTP on the host may have forced it to expire
	 * early). If not ready, schedule for a later time.
	 */
	ns = kvm_timer_compute_delta(ptimer);
	if (unlikely(ns)) {
		hrtimer_forward_now(hrt, ns_to_ktime(ns));
		return HRTIMER_RESTART;
	}

	kvm_timer_update_irq(vcpu, true, ptimer);
225 226 227
	return HRTIMER_NORESTART;
}

228
static bool kvm_timer_should_fire(struct arch_timer_context *timer_ctx)
229
{
230
	u64 cval, now;
231

232
	if (!kvm_timer_irq_can_fire(timer_ctx))
233 234
		return false;

235 236
	cval = timer_ctx->cnt_cval;
	now = kvm_phys_timer_read() - timer_ctx->cntvoff;
237 238 239 240

	return cval <= now;
}

241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259
bool kvm_timer_is_pending(struct kvm_vcpu *vcpu)
{
	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
	struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);

	if (vtimer->irq.level || ptimer->irq.level)
		return true;

	/*
	 * When this is called from withing the wait loop of kvm_vcpu_block(),
	 * the software view of the timer state is up to date (timer->loaded
	 * is false), and so we can simply check if the timer should fire now.
	 */
	if (!vtimer->loaded && kvm_timer_should_fire(vtimer))
		return true;

	return kvm_timer_should_fire(ptimer);
}

260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
/*
 * Reflect the timer output level into the kvm_run structure
 */
void kvm_timer_update_run(struct kvm_vcpu *vcpu)
{
	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
	struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
	struct kvm_sync_regs *regs = &vcpu->run->s.regs;

	/* Populate the device bitmap with the timer states */
	regs->device_irq_level &= ~(KVM_ARM_DEV_EL1_VTIMER |
				    KVM_ARM_DEV_EL1_PTIMER);
	if (vtimer->irq.level)
		regs->device_irq_level |= KVM_ARM_DEV_EL1_VTIMER;
	if (ptimer->irq.level)
		regs->device_irq_level |= KVM_ARM_DEV_EL1_PTIMER;
}

278 279
static void kvm_timer_update_irq(struct kvm_vcpu *vcpu, bool new_level,
				 struct arch_timer_context *timer_ctx)
280 281 282
{
	int ret;

283 284 285
	timer_ctx->irq.level = new_level;
	trace_kvm_timer_update_irq(vcpu->vcpu_id, timer_ctx->irq.irq,
				   timer_ctx->irq.level);
286

287 288 289
	if (likely(irqchip_in_kernel(vcpu->kvm))) {
		ret = kvm_vgic_inject_irq(vcpu->kvm, vcpu->vcpu_id,
					  timer_ctx->irq.irq,
290 291
					  timer_ctx->irq.level,
					  timer_ctx);
292 293
		WARN_ON(ret);
	}
294 295
}

296
/* Schedule the background timer for the emulated timer. */
297
static void phys_timer_emulate(struct kvm_vcpu *vcpu)
298 299
{
	struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
300
	struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
301

302 303 304 305 306 307 308
	/*
	 * If the timer can fire now we have just raised the IRQ line and we
	 * don't need to have a soft timer scheduled for the future.  If the
	 * timer cannot fire at all, then we also don't need a soft timer.
	 */
	if (kvm_timer_should_fire(ptimer) || !kvm_timer_irq_can_fire(ptimer)) {
		soft_timer_cancel(&timer->phys_timer, NULL);
309
		return;
310
	}
311

312
	soft_timer_start(&timer->phys_timer, kvm_timer_compute_delta(ptimer));
313 314
}

315
/*
316 317 318
 * Check if there was a change in the timer state, so that we should either
 * raise or lower the line level to the GIC or schedule a background timer to
 * emulate the physical timer.
319
 */
320
static void kvm_timer_update_state(struct kvm_vcpu *vcpu)
321 322
{
	struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
323
	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
324
	struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
325
	bool level;
326

327
	if (unlikely(!timer->enabled))
328
		return;
329

330 331 332 333 334 335 336 337 338
	/*
	 * The vtimer virtual interrupt is a 'mapped' interrupt, meaning part
	 * of its lifecycle is offloaded to the hardware, and we therefore may
	 * not have lowered the irq.level value before having to signal a new
	 * interrupt, but have to signal an interrupt every time the level is
	 * asserted.
	 */
	level = kvm_timer_should_fire(vtimer);
	kvm_timer_update_irq(vcpu, level, vtimer);
339

340 341
	if (kvm_timer_should_fire(ptimer) != ptimer->irq.level)
		kvm_timer_update_irq(vcpu, !ptimer->irq.level, ptimer);
342 343

	phys_timer_emulate(vcpu);
344 345
}

346
static void vtimer_save_state(struct kvm_vcpu *vcpu)
347 348 349
{
	struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
350 351 352 353 354 355
	unsigned long flags;

	local_irq_save(flags);

	if (!vtimer->loaded)
		goto out;
356 357 358 359 360 361 362 363

	if (timer->enabled) {
		vtimer->cnt_ctl = read_sysreg_el0(cntv_ctl);
		vtimer->cnt_cval = read_sysreg_el0(cntv_cval);
	}

	/* Disable the virtual timer */
	write_sysreg_el0(0, cntv_ctl);
364 365 366 367

	vtimer->loaded = false;
out:
	local_irq_restore(flags);
368 369
}

370 371 372 373 374 375 376 377
/*
 * Schedule the background timer before calling kvm_vcpu_block, so that this
 * thread is removed from its waitqueue and made runnable when there's a timer
 * interrupt to handle.
 */
void kvm_timer_schedule(struct kvm_vcpu *vcpu)
{
	struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
378
	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
379
	struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
380

381 382
	vtimer_save_state(vcpu);

383
	/*
384
	 * No need to schedule a background timer if any guest timer has
385 386 387
	 * already expired, because kvm_vcpu_block will return before putting
	 * the thread to sleep.
	 */
388
	if (kvm_timer_should_fire(vtimer) || kvm_timer_should_fire(ptimer))
389 390 391
		return;

	/*
392
	 * If both timers are not capable of raising interrupts (disabled or
393 394
	 * masked), then there's no more work for us to do.
	 */
395
	if (!kvm_timer_irq_can_fire(vtimer) && !kvm_timer_irq_can_fire(ptimer))
396 397
		return;

398 399 400 401
	/*
	 * The guest timers have not yet expired, schedule a background timer.
	 * Set the earliest expiration time among the guest timers.
	 */
402
	soft_timer_start(&timer->bg_timer, kvm_timer_earliest_exp(vcpu));
403 404
}

405
static void vtimer_restore_state(struct kvm_vcpu *vcpu)
406 407 408
{
	struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
409 410 411 412 413 414
	unsigned long flags;

	local_irq_save(flags);

	if (vtimer->loaded)
		goto out;
415 416 417 418 419 420

	if (timer->enabled) {
		write_sysreg_el0(vtimer->cnt_cval, cntv_cval);
		isb();
		write_sysreg_el0(vtimer->cnt_ctl, cntv_ctl);
	}
421 422 423 424

	vtimer->loaded = true;
out:
	local_irq_restore(flags);
425 426
}

427 428 429
void kvm_timer_unschedule(struct kvm_vcpu *vcpu)
{
	struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
430

431 432
	vtimer_restore_state(vcpu);

433
	soft_timer_cancel(&timer->bg_timer, &timer->expired);
434 435
}

436 437 438 439 440 441 442 443 444 445 446 447 448 449 450
static void set_cntvoff(u64 cntvoff)
{
	u32 low = lower_32_bits(cntvoff);
	u32 high = upper_32_bits(cntvoff);

	/*
	 * Since kvm_call_hyp doesn't fully support the ARM PCS especially on
	 * 32-bit systems, but rather passes register by register shifted one
	 * place (we put the function address in r0/x0), we cannot simply pass
	 * a 64-bit value as an argument, but have to split the value in two
	 * 32-bit halves.
	 */
	kvm_call_hyp(__kvm_timer_set_cntvoff, low, high);
}

451
static void kvm_timer_vcpu_load_vgic(struct kvm_vcpu *vcpu)
452
{
453
	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
454 455
	bool phys_active;
	int ret;
456

457
	phys_active = vtimer->irq.level ||
458
		      kvm_vgic_map_is_active(vcpu, vtimer->irq.irq);
459

460
	ret = irq_set_irqchip_state(host_vtimer_irq,
461 462 463
				    IRQCHIP_STATE_ACTIVE,
				    phys_active);
	WARN_ON(ret);
464
}
465

466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487
static void kvm_timer_vcpu_load_user(struct kvm_vcpu *vcpu)
{
	kvm_vtimer_update_mask_user(vcpu);
}

void kvm_timer_vcpu_load(struct kvm_vcpu *vcpu)
{
	struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);

	if (unlikely(!timer->enabled))
		return;

	if (unlikely(!irqchip_in_kernel(vcpu->kvm)))
		kvm_timer_vcpu_load_user(vcpu);
	else
		kvm_timer_vcpu_load_vgic(vcpu);

	set_cntvoff(vtimer->cntvoff);

	vtimer_restore_state(vcpu);

488 489
	/* Set the background timer for the physical timer emulation. */
	phys_timer_emulate(vcpu);
490 491
}

492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508
bool kvm_timer_should_notify_user(struct kvm_vcpu *vcpu)
{
	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
	struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
	struct kvm_sync_regs *sregs = &vcpu->run->s.regs;
	bool vlevel, plevel;

	if (likely(irqchip_in_kernel(vcpu->kvm)))
		return false;

	vlevel = sregs->device_irq_level & KVM_ARM_DEV_EL1_VTIMER;
	plevel = sregs->device_irq_level & KVM_ARM_DEV_EL1_PTIMER;

	return vtimer->irq.level != vlevel ||
	       ptimer->irq.level != plevel;
}

509 510 511
void kvm_timer_vcpu_put(struct kvm_vcpu *vcpu)
{
	struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
512

513 514 515 516 517
	if (unlikely(!timer->enabled))
		return;

	vtimer_save_state(vcpu);

518 519 520 521 522 523 524 525 526 527 528
	/*
	 * Cancel the physical timer emulation, because the only case where we
	 * need it after a vcpu_put is in the context of a sleeping VCPU, and
	 * in that case we already factor in the deadline for the physical
	 * timer when scheduling the bg_timer.
	 *
	 * In any case, we re-schedule the hrtimer for the physical timer when
	 * coming back to the VCPU thread in kvm_timer_vcpu_load().
	 */
	soft_timer_cancel(&timer->phys_timer, NULL);

529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559
	/*
	 * The kernel may decide to run userspace after calling vcpu_put, so
	 * we reset cntvoff to 0 to ensure a consistent read between user
	 * accesses to the virtual counter and kernel access to the physical
	 * counter.
	 */
	set_cntvoff(0);
}

static void unmask_vtimer_irq(struct kvm_vcpu *vcpu)
{
	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);

	if (unlikely(!irqchip_in_kernel(vcpu->kvm))) {
		kvm_vtimer_update_mask_user(vcpu);
		return;
	}

	/*
	 * If the guest disabled the timer without acking the interrupt, then
	 * we must make sure the physical and virtual active states are in
	 * sync by deactivating the physical interrupt, because otherwise we
	 * wouldn't see the next timer interrupt in the host.
	 */
	if (!kvm_vgic_map_is_active(vcpu, vtimer->irq.irq)) {
		int ret;
		ret = irq_set_irqchip_state(host_vtimer_irq,
					    IRQCHIP_STATE_ACTIVE,
					    false);
		WARN_ON(ret);
	}
560 561
}

562 563 564 565
/**
 * kvm_timer_sync_hwstate - sync timer state from cpu
 * @vcpu: The vcpu pointer
 *
566
 * Check if any of the timers have expired while we were running in the guest,
567
 * and inject an interrupt if that was the case.
568 569 570
 */
void kvm_timer_sync_hwstate(struct kvm_vcpu *vcpu)
{
571
	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
572

573
	/*
574 575 576
	 * If we entered the guest with the vtimer output asserted we have to
	 * check if the guest has modified the timer so that we should lower
	 * the line at this point.
577
	 */
578 579 580 581 582 583 584 585
	if (vtimer->irq.level) {
		vtimer->cnt_ctl = read_sysreg_el0(cntv_ctl);
		vtimer->cnt_cval = read_sysreg_el0(cntv_cval);
		if (!kvm_timer_should_fire(vtimer)) {
			kvm_timer_update_irq(vcpu, false, vtimer);
			unmask_vtimer_irq(vcpu);
		}
	}
586 587
}

588
int kvm_timer_vcpu_reset(struct kvm_vcpu *vcpu)
589
{
590
	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
591
	struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
592

593 594 595 596 597 598
	/*
	 * The bits in CNTV_CTL are architecturally reset to UNKNOWN for ARMv8
	 * and to 0 for ARMv7.  We provide an implementation that always
	 * resets the timer to be disabled and unmasked and is compliant with
	 * the ARMv7 architecture.
	 */
599
	vtimer->cnt_ctl = 0;
600
	ptimer->cnt_ctl = 0;
601
	kvm_timer_update_state(vcpu);
602

603
	return 0;
604 605
}

606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624
/* Make the updates of cntvoff for all vtimer contexts atomic */
static void update_vtimer_cntvoff(struct kvm_vcpu *vcpu, u64 cntvoff)
{
	int i;
	struct kvm *kvm = vcpu->kvm;
	struct kvm_vcpu *tmp;

	mutex_lock(&kvm->lock);
	kvm_for_each_vcpu(i, tmp, kvm)
		vcpu_vtimer(tmp)->cntvoff = cntvoff;

	/*
	 * When called from the vcpu create path, the CPU being created is not
	 * included in the loop above, so we just set it here as well.
	 */
	vcpu_vtimer(vcpu)->cntvoff = cntvoff;
	mutex_unlock(&kvm->lock);
}

625 626 627
void kvm_timer_vcpu_init(struct kvm_vcpu *vcpu)
{
	struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
628 629
	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
	struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
630

631 632
	/* Synchronize cntvoff across all vtimers of a VM. */
	update_vtimer_cntvoff(vcpu, kvm_phys_timer_read());
633
	vcpu_ptimer(vcpu)->cntvoff = 0;
634

635
	INIT_WORK(&timer->expired, kvm_timer_inject_irq_work);
636 637
	hrtimer_init(&timer->bg_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
	timer->bg_timer.function = kvm_bg_timer_expire;
638

639 640 641
	hrtimer_init(&timer->phys_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
	timer->phys_timer.function = kvm_phys_timer_expire;

642 643
	vtimer->irq.irq = default_vtimer_irq.irq;
	ptimer->irq.irq = default_ptimer_irq.irq;
644 645 646 647
}

static void kvm_timer_init_interrupt(void *info)
{
648
	enable_percpu_irq(host_vtimer_irq, host_vtimer_irq_flags);
649 650
}

651 652
int kvm_arm_timer_set_reg(struct kvm_vcpu *vcpu, u64 regid, u64 value)
{
653
	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
654
	struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
655 656 657

	switch (regid) {
	case KVM_REG_ARM_TIMER_CTL:
658
		vtimer->cnt_ctl = value & ~ARCH_TIMER_CTRL_IT_STAT;
659 660
		break;
	case KVM_REG_ARM_TIMER_CNT:
661
		update_vtimer_cntvoff(vcpu, kvm_phys_timer_read() - value);
662 663
		break;
	case KVM_REG_ARM_TIMER_CVAL:
664
		vtimer->cnt_cval = value;
665
		break;
666 667 668 669 670 671 672
	case KVM_REG_ARM_PTIMER_CTL:
		ptimer->cnt_ctl = value & ~ARCH_TIMER_CTRL_IT_STAT;
		break;
	case KVM_REG_ARM_PTIMER_CVAL:
		ptimer->cnt_cval = value;
		break;

673 674 675
	default:
		return -1;
	}
676 677

	kvm_timer_update_state(vcpu);
678 679 680
	return 0;
}

681 682 683 684 685 686 687 688 689 690 691 692 693 694
static u64 read_timer_ctl(struct arch_timer_context *timer)
{
	/*
	 * Set ISTATUS bit if it's expired.
	 * Note that according to ARMv8 ARM Issue A.k, ISTATUS bit is
	 * UNKNOWN when ENABLE bit is 0, so we chose to set ISTATUS bit
	 * regardless of ENABLE bit for our implementation convenience.
	 */
	if (!kvm_timer_compute_delta(timer))
		return timer->cnt_ctl | ARCH_TIMER_CTRL_IT_STAT;
	else
		return timer->cnt_ctl;
}

695 696
u64 kvm_arm_timer_get_reg(struct kvm_vcpu *vcpu, u64 regid)
{
697
	struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
698
	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
699 700 701

	switch (regid) {
	case KVM_REG_ARM_TIMER_CTL:
702
		return read_timer_ctl(vtimer);
703
	case KVM_REG_ARM_TIMER_CNT:
704
		return kvm_phys_timer_read() - vtimer->cntvoff;
705
	case KVM_REG_ARM_TIMER_CVAL:
706
		return vtimer->cnt_cval;
707 708 709 710 711 712
	case KVM_REG_ARM_PTIMER_CTL:
		return read_timer_ctl(ptimer);
	case KVM_REG_ARM_PTIMER_CVAL:
		return ptimer->cnt_cval;
	case KVM_REG_ARM_PTIMER_CNT:
		return kvm_phys_timer_read();
713 714 715
	}
	return (u64)-1;
}
716

717
static int kvm_timer_starting_cpu(unsigned int cpu)
718
{
719 720
	kvm_timer_init_interrupt(NULL);
	return 0;
721 722
}

723 724 725 726 727
static int kvm_timer_dying_cpu(unsigned int cpu)
{
	disable_percpu_irq(host_vtimer_irq);
	return 0;
}
728 729 730

int kvm_timer_hyp_init(void)
{
731
	struct arch_timer_kvm_info *info;
732 733
	int err;

734 735
	info = arch_timer_get_kvm_info();
	timecounter = &info->timecounter;
736

737 738 739 740 741
	if (!timecounter->cc) {
		kvm_err("kvm_arch_timer: uninitialized timecounter\n");
		return -ENODEV;
	}

742 743 744
	if (info->virtual_irq <= 0) {
		kvm_err("kvm_arch_timer: invalid virtual timer IRQ: %d\n",
			info->virtual_irq);
745 746
		return -ENODEV;
	}
747
	host_vtimer_irq = info->virtual_irq;
748

749 750 751 752 753 754 755 756
	host_vtimer_irq_flags = irq_get_trigger_type(host_vtimer_irq);
	if (host_vtimer_irq_flags != IRQF_TRIGGER_HIGH &&
	    host_vtimer_irq_flags != IRQF_TRIGGER_LOW) {
		kvm_err("Invalid trigger for IRQ%d, assuming level low\n",
			host_vtimer_irq);
		host_vtimer_irq_flags = IRQF_TRIGGER_LOW;
	}

757
	err = request_percpu_irq(host_vtimer_irq, kvm_arch_timer_handler,
758 759 760
				 "kvm guest timer", kvm_get_running_vcpus());
	if (err) {
		kvm_err("kvm_arch_timer: can't request interrupt %d (%d)\n",
761
			host_vtimer_irq, err);
762
		return err;
763 764
	}

765 766 767 768 769 770
	err = irq_set_vcpu_affinity(host_vtimer_irq, kvm_get_running_vcpus());
	if (err) {
		kvm_err("kvm_arch_timer: error setting vcpu affinity\n");
		goto out_free_irq;
	}

771
	kvm_info("virtual timer IRQ%d\n", host_vtimer_irq);
772

773
	cpuhp_setup_state(CPUHP_AP_KVM_ARM_TIMER_STARTING,
T
Thomas Gleixner 已提交
774
			  "kvm/arm/timer:starting", kvm_timer_starting_cpu,
775
			  kvm_timer_dying_cpu);
776 777 778
	return 0;
out_free_irq:
	free_percpu_irq(host_vtimer_irq, kvm_get_running_vcpus());
779 780 781 782 783 784
	return err;
}

void kvm_timer_vcpu_terminate(struct kvm_vcpu *vcpu)
{
	struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
785
	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
786

787
	soft_timer_cancel(&timer->bg_timer, &timer->expired);
788
	soft_timer_cancel(&timer->phys_timer, NULL);
789
	kvm_vgic_unmap_phys_irq(vcpu, vtimer->irq.irq);
790 791
}

792
static bool timer_irqs_are_valid(struct kvm_vcpu *vcpu)
793 794
{
	int vtimer_irq, ptimer_irq;
795
	int i, ret;
796 797

	vtimer_irq = vcpu_vtimer(vcpu)->irq.irq;
798 799 800
	ret = kvm_vgic_set_owner(vcpu, vtimer_irq, vcpu_vtimer(vcpu));
	if (ret)
		return false;
801

802 803 804
	ptimer_irq = vcpu_ptimer(vcpu)->irq.irq;
	ret = kvm_vgic_set_owner(vcpu, ptimer_irq, vcpu_ptimer(vcpu));
	if (ret)
805 806
		return false;

807
	kvm_for_each_vcpu(i, vcpu, vcpu->kvm) {
808 809 810 811 812 813 814 815
		if (vcpu_vtimer(vcpu)->irq.irq != vtimer_irq ||
		    vcpu_ptimer(vcpu)->irq.irq != ptimer_irq)
			return false;
	}

	return true;
}

816
int kvm_timer_enable(struct kvm_vcpu *vcpu)
817
{
818
	struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
819
	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
820 821 822 823 824
	int ret;

	if (timer->enabled)
		return 0;

825 826 827 828 829 830 831
	/* Without a VGIC we do not map virtual IRQs to physical IRQs */
	if (!irqchip_in_kernel(vcpu->kvm))
		goto no_vgic;

	if (!vgic_initialized(vcpu->kvm))
		return -ENODEV;

832
	if (!timer_irqs_are_valid(vcpu)) {
833 834 835 836
		kvm_debug("incorrectly configured timer irqs\n");
		return -EINVAL;
	}

837 838
	ret = kvm_vgic_map_phys_irq(vcpu, host_vtimer_irq, vtimer->irq.irq,
				    NULL);
839 840 841
	if (ret)
		return ret;

842
no_vgic:
843
	preempt_disable();
844
	timer->enabled = 1;
845 846 847 848
	if (!irqchip_in_kernel(vcpu->kvm))
		kvm_timer_vcpu_load_user(vcpu);
	else
		kvm_timer_vcpu_load_vgic(vcpu);
849 850
	preempt_enable();

851
	return 0;
852
}
853

854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874
/*
 * On VHE system, we only need to configure trap on physical timer and counter
 * accesses in EL0 and EL1 once, not for every world switch.
 * The host kernel runs at EL2 with HCR_EL2.TGE == 1,
 * and this makes those bits have no effect for the host kernel execution.
 */
void kvm_timer_init_vhe(void)
{
	/* When HCR_EL2.E2H ==1, EL1PCEN and EL1PCTEN are shifted by 10 */
	u32 cnthctl_shift = 10;
	u64 val;

	/*
	 * Disallow physical timer access for the guest.
	 * Physical counter access is allowed.
	 */
	val = read_sysreg(cnthctl_el2);
	val &= ~(CNTHCTL_EL1PCEN << cnthctl_shift);
	val |= (CNTHCTL_EL1PCTEN << cnthctl_shift);
	write_sysreg(val, cnthctl_el2);
}
875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950

static void set_timer_irqs(struct kvm *kvm, int vtimer_irq, int ptimer_irq)
{
	struct kvm_vcpu *vcpu;
	int i;

	kvm_for_each_vcpu(i, vcpu, kvm) {
		vcpu_vtimer(vcpu)->irq.irq = vtimer_irq;
		vcpu_ptimer(vcpu)->irq.irq = ptimer_irq;
	}
}

int kvm_arm_timer_set_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr)
{
	int __user *uaddr = (int __user *)(long)attr->addr;
	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
	struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
	int irq;

	if (!irqchip_in_kernel(vcpu->kvm))
		return -EINVAL;

	if (get_user(irq, uaddr))
		return -EFAULT;

	if (!(irq_is_ppi(irq)))
		return -EINVAL;

	if (vcpu->arch.timer_cpu.enabled)
		return -EBUSY;

	switch (attr->attr) {
	case KVM_ARM_VCPU_TIMER_IRQ_VTIMER:
		set_timer_irqs(vcpu->kvm, irq, ptimer->irq.irq);
		break;
	case KVM_ARM_VCPU_TIMER_IRQ_PTIMER:
		set_timer_irqs(vcpu->kvm, vtimer->irq.irq, irq);
		break;
	default:
		return -ENXIO;
	}

	return 0;
}

int kvm_arm_timer_get_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr)
{
	int __user *uaddr = (int __user *)(long)attr->addr;
	struct arch_timer_context *timer;
	int irq;

	switch (attr->attr) {
	case KVM_ARM_VCPU_TIMER_IRQ_VTIMER:
		timer = vcpu_vtimer(vcpu);
		break;
	case KVM_ARM_VCPU_TIMER_IRQ_PTIMER:
		timer = vcpu_ptimer(vcpu);
		break;
	default:
		return -ENXIO;
	}

	irq = timer->irq.irq;
	return put_user(irq, uaddr);
}

int kvm_arm_timer_has_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr)
{
	switch (attr->attr) {
	case KVM_ARM_VCPU_TIMER_IRQ_VTIMER:
	case KVM_ARM_VCPU_TIMER_IRQ_PTIMER:
		return 0;
	}

	return -ENXIO;
}