arch_timer.c 14.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
/*
 * Copyright (C) 2012 ARM Ltd.
 * Author: Marc Zyngier <marc.zyngier@arm.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
 */

#include <linux/cpu.h>
#include <linux/kvm.h>
#include <linux/kvm_host.h>
#include <linux/interrupt.h>
23
#include <linux/irq.h>
24

25
#include <clocksource/arm_arch_timer.h>
26
#include <asm/arch_timer.h>
27
#include <asm/kvm_hyp.h>
28

29 30
#include <kvm/arm_vgic.h>
#include <kvm/arm_arch_timer.h>
31

32 33
#include "trace.h"

34
static struct timecounter *timecounter;
35
static unsigned int host_vtimer_irq;
36
static u32 host_vtimer_irq_flags;
37

38 39
void kvm_timer_vcpu_put(struct kvm_vcpu *vcpu)
{
40
	vcpu_vtimer(vcpu)->active_cleared_last = false;
41 42
}

43
static u64 kvm_phys_timer_read(void)
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
{
	return timecounter->cc->read(timecounter->cc);
}

static bool timer_is_armed(struct arch_timer_cpu *timer)
{
	return timer->armed;
}

/* timer_arm: as in "arm the timer", not as in ARM the company */
static void timer_arm(struct arch_timer_cpu *timer, u64 ns)
{
	timer->armed = true;
	hrtimer_start(&timer->timer, ktime_add_ns(ktime_get(), ns),
		      HRTIMER_MODE_ABS);
}

static void timer_disarm(struct arch_timer_cpu *timer)
{
	if (timer_is_armed(timer)) {
		hrtimer_cancel(&timer->timer);
		cancel_work_sync(&timer->expired);
		timer->armed = false;
	}
}

static irqreturn_t kvm_arch_timer_handler(int irq, void *dev_id)
{
	struct kvm_vcpu *vcpu = *(struct kvm_vcpu **)dev_id;

	/*
	 * We disable the timer in the world switch and let it be
	 * handled by kvm_timer_sync_hwstate(). Getting a timer
	 * interrupt at this point is a sure sign of some major
	 * breakage.
	 */
	pr_warn("Unexpected interrupt %d on vcpu %p\n", irq, vcpu);
	return IRQ_HANDLED;
}

84 85 86 87
/*
 * Work function for handling the backup timer that we schedule when a vcpu is
 * no longer running, but had a timer programmed to fire in the future.
 */
88 89 90 91 92
static void kvm_timer_inject_irq_work(struct work_struct *work)
{
	struct kvm_vcpu *vcpu;

	vcpu = container_of(work, struct kvm_vcpu, arch.timer_cpu.expired);
93

94 95 96 97 98
	/*
	 * If the vcpu is blocked we want to wake it up so that it will see
	 * the timer has expired when entering the guest.
	 */
	kvm_vcpu_kick(vcpu);
99 100
}

101
static u64 kvm_timer_compute_delta(struct arch_timer_context *timer_ctx)
102
{
103
	u64 cval, now;
104

105 106
	cval = timer_ctx->cnt_cval;
	now = kvm_phys_timer_read() - timer_ctx->cntvoff;
107 108 109 110 111 112 113 114 115 116 117 118 119 120

	if (now < cval) {
		u64 ns;

		ns = cyclecounter_cyc2ns(timecounter->cc,
					 cval - now,
					 timecounter->mask,
					 &timecounter->frac);
		return ns;
	}

	return 0;
}

121 122 123
static enum hrtimer_restart kvm_timer_expire(struct hrtimer *hrt)
{
	struct arch_timer_cpu *timer;
124 125 126
	struct kvm_vcpu *vcpu;
	u64 ns;

127
	timer = container_of(hrt, struct arch_timer_cpu, timer);
128 129 130 131 132 133 134
	vcpu = container_of(timer, struct kvm_vcpu, arch.timer_cpu);

	/*
	 * Check that the timer has really expired from the guest's
	 * PoV (NTP on the host may have forced it to expire
	 * early). If we should have slept longer, restart it.
	 */
135
	ns = kvm_timer_compute_delta(vcpu_vtimer(vcpu));
136 137 138 139 140
	if (unlikely(ns)) {
		hrtimer_forward_now(hrt, ns_to_ktime(ns));
		return HRTIMER_RESTART;
	}

141
	schedule_work(&timer->expired);
142 143 144
	return HRTIMER_NORESTART;
}

145
static bool kvm_timer_irq_can_fire(struct arch_timer_context *timer_ctx)
146
{
147 148
	return !(timer_ctx->cnt_ctl & ARCH_TIMER_CTRL_IT_MASK) &&
		(timer_ctx->cnt_ctl & ARCH_TIMER_CTRL_ENABLE);
149 150
}

151
bool kvm_timer_should_fire(struct arch_timer_context *timer_ctx)
152
{
153
	u64 cval, now;
154

155
	if (!kvm_timer_irq_can_fire(timer_ctx))
156 157
		return false;

158 159
	cval = timer_ctx->cnt_cval;
	now = kvm_phys_timer_read() - timer_ctx->cntvoff;
160 161 162 163

	return cval <= now;
}

164 165
static void kvm_timer_update_irq(struct kvm_vcpu *vcpu, bool new_level,
				 struct arch_timer_context *timer_ctx)
166 167 168 169 170
{
	int ret;

	BUG_ON(!vgic_initialized(vcpu->kvm));

171 172 173 174
	timer_ctx->active_cleared_last = false;
	timer_ctx->irq.level = new_level;
	trace_kvm_timer_update_irq(vcpu->vcpu_id, timer_ctx->irq.irq,
				   timer_ctx->irq.level);
175

176 177
	ret = kvm_vgic_inject_irq(vcpu->kvm, vcpu->vcpu_id, timer_ctx->irq.irq,
				  timer_ctx->irq.level);
178 179 180 181 182 183 184
	WARN_ON(ret);
}

/*
 * Check if there was a change in the timer state (should we raise or lower
 * the line level to the GIC).
 */
185
static int kvm_timer_update_state(struct kvm_vcpu *vcpu)
186 187
{
	struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
188
	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
189
	struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
190 191 192

	/*
	 * If userspace modified the timer registers via SET_ONE_REG before
193
	 * the vgic was initialized, we mustn't set the vtimer->irq.level value
194 195 196
	 * because the guest would never see the interrupt.  Instead wait
	 * until we call this function from kvm_timer_flush_hwstate.
	 */
197
	if (!vgic_initialized(vcpu->kvm) || !timer->enabled)
198
		return -ENODEV;
199

200 201
	if (kvm_timer_should_fire(vtimer) != vtimer->irq.level)
		kvm_timer_update_irq(vcpu, !vtimer->irq.level, vtimer);
202

203 204 205
	if (kvm_timer_should_fire(ptimer) != ptimer->irq.level)
		kvm_timer_update_irq(vcpu, !ptimer->irq.level, ptimer);

206
	return 0;
207 208
}

209 210 211 212 213 214 215 216
/*
 * Schedule the background timer before calling kvm_vcpu_block, so that this
 * thread is removed from its waitqueue and made runnable when there's a timer
 * interrupt to handle.
 */
void kvm_timer_schedule(struct kvm_vcpu *vcpu)
{
	struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
217
	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
218 219 220 221 222 223 224 225

	BUG_ON(timer_is_armed(timer));

	/*
	 * No need to schedule a background timer if the guest timer has
	 * already expired, because kvm_vcpu_block will return before putting
	 * the thread to sleep.
	 */
226
	if (kvm_timer_should_fire(vtimer))
227 228 229 230 231 232
		return;

	/*
	 * If the timer is not capable of raising interrupts (disabled or
	 * masked), then there's no more work for us to do.
	 */
233
	if (!kvm_timer_irq_can_fire(vtimer))
234 235 236
		return;

	/*  The timer has not yet expired, schedule a background timer */
237
	timer_arm(timer, kvm_timer_compute_delta(vtimer));
238 239 240 241 242 243 244 245
}

void kvm_timer_unschedule(struct kvm_vcpu *vcpu)
{
	struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
	timer_disarm(timer);
}

246 247 248 249
/**
 * kvm_timer_flush_hwstate - prepare to move the virt timer to the cpu
 * @vcpu: The vcpu pointer
 *
250 251
 * Check if the virtual timer has expired while we were running in the host,
 * and inject an interrupt if that was the case.
252 253 254
 */
void kvm_timer_flush_hwstate(struct kvm_vcpu *vcpu)
{
255
	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
256 257
	bool phys_active;
	int ret;
258

259 260
	if (kvm_timer_update_state(vcpu))
		return;
261 262

	/*
263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278
	* If we enter the guest with the virtual input level to the VGIC
	* asserted, then we have already told the VGIC what we need to, and
	* we don't need to exit from the guest until the guest deactivates
	* the already injected interrupt, so therefore we should set the
	* hardware active state to prevent unnecessary exits from the guest.
	*
	* Also, if we enter the guest with the virtual timer interrupt active,
	* then it must be active on the physical distributor, because we set
	* the HW bit and the guest must be able to deactivate the virtual and
	* physical interrupt at the same time.
	*
	* Conversely, if the virtual input level is deasserted and the virtual
	* interrupt is not active, then always clear the hardware active state
	* to ensure that hardware interrupts from the timer triggers a guest
	* exit.
	*/
279 280
	phys_active = vtimer->irq.level ||
			kvm_vgic_map_is_active(vcpu, vtimer->irq.irq);
281

282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301
	/*
	 * We want to avoid hitting the (re)distributor as much as
	 * possible, as this is a potentially expensive MMIO access
	 * (not to mention locks in the irq layer), and a solution for
	 * this is to cache the "active" state in memory.
	 *
	 * Things to consider: we cannot cache an "active set" state,
	 * because the HW can change this behind our back (it becomes
	 * "clear" in the HW). We must then restrict the caching to
	 * the "clear" state.
	 *
	 * The cache is invalidated on:
	 * - vcpu put, indicating that the HW cannot be trusted to be
	 *   in a sane state on the next vcpu load,
	 * - any change in the interrupt state
	 *
	 * Usage conditions:
	 * - cached value is "active clear"
	 * - value to be programmed is "active clear"
	 */
302
	if (vtimer->active_cleared_last && !phys_active)
303 304
		return;

305
	ret = irq_set_irqchip_state(host_vtimer_irq,
306 307 308
				    IRQCHIP_STATE_ACTIVE,
				    phys_active);
	WARN_ON(ret);
309

310
	vtimer->active_cleared_last = !phys_active;
311 312 313 314 315 316
}

/**
 * kvm_timer_sync_hwstate - sync timer state from cpu
 * @vcpu: The vcpu pointer
 *
317 318
 * Check if the virtual timer has expired while we were running in the guest,
 * and inject an interrupt if that was the case.
319 320 321 322 323 324 325
 */
void kvm_timer_sync_hwstate(struct kvm_vcpu *vcpu)
{
	struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;

	BUG_ON(timer_is_armed(timer));

326 327 328 329 330
	/*
	 * The guest could have modified the timer registers or the timer
	 * could have expired, update the timer state.
	 */
	kvm_timer_update_state(vcpu);
331 332
}

333
int kvm_timer_vcpu_reset(struct kvm_vcpu *vcpu,
334 335
			 const struct kvm_irq_level *virt_irq,
			 const struct kvm_irq_level *phys_irq)
336
{
337
	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
338
	struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
339 340 341 342 343 344 345

	/*
	 * The vcpu timer irq number cannot be determined in
	 * kvm_timer_vcpu_init() because it is called much before
	 * kvm_vcpu_set_target(). To handle this, we determine
	 * vcpu timer irq number when the vcpu is reset.
	 */
346 347
	vtimer->irq.irq = virt_irq->irq;
	ptimer->irq.irq = phys_irq->irq;
348

349 350 351 352 353 354
	/*
	 * The bits in CNTV_CTL are architecturally reset to UNKNOWN for ARMv8
	 * and to 0 for ARMv7.  We provide an implementation that always
	 * resets the timer to be disabled and unmasked and is compliant with
	 * the ARMv7 architecture.
	 */
355
	vtimer->cnt_ctl = 0;
356
	ptimer->cnt_ctl = 0;
357
	kvm_timer_update_state(vcpu);
358

359
	return 0;
360 361
}

362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380
/* Make the updates of cntvoff for all vtimer contexts atomic */
static void update_vtimer_cntvoff(struct kvm_vcpu *vcpu, u64 cntvoff)
{
	int i;
	struct kvm *kvm = vcpu->kvm;
	struct kvm_vcpu *tmp;

	mutex_lock(&kvm->lock);
	kvm_for_each_vcpu(i, tmp, kvm)
		vcpu_vtimer(tmp)->cntvoff = cntvoff;

	/*
	 * When called from the vcpu create path, the CPU being created is not
	 * included in the loop above, so we just set it here as well.
	 */
	vcpu_vtimer(vcpu)->cntvoff = cntvoff;
	mutex_unlock(&kvm->lock);
}

381 382 383 384
void kvm_timer_vcpu_init(struct kvm_vcpu *vcpu)
{
	struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;

385 386
	/* Synchronize cntvoff across all vtimers of a VM. */
	update_vtimer_cntvoff(vcpu, kvm_phys_timer_read());
387
	vcpu_ptimer(vcpu)->cntvoff = 0;
388

389 390 391 392 393 394 395
	INIT_WORK(&timer->expired, kvm_timer_inject_irq_work);
	hrtimer_init(&timer->timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
	timer->timer.function = kvm_timer_expire;
}

static void kvm_timer_init_interrupt(void *info)
{
396
	enable_percpu_irq(host_vtimer_irq, host_vtimer_irq_flags);
397 398
}

399 400
int kvm_arm_timer_set_reg(struct kvm_vcpu *vcpu, u64 regid, u64 value)
{
401
	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
402 403 404

	switch (regid) {
	case KVM_REG_ARM_TIMER_CTL:
405
		vtimer->cnt_ctl = value;
406 407
		break;
	case KVM_REG_ARM_TIMER_CNT:
408
		update_vtimer_cntvoff(vcpu, kvm_phys_timer_read() - value);
409 410
		break;
	case KVM_REG_ARM_TIMER_CVAL:
411
		vtimer->cnt_cval = value;
412 413 414 415
		break;
	default:
		return -1;
	}
416 417

	kvm_timer_update_state(vcpu);
418 419 420 421 422
	return 0;
}

u64 kvm_arm_timer_get_reg(struct kvm_vcpu *vcpu, u64 regid)
{
423
	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
424 425 426

	switch (regid) {
	case KVM_REG_ARM_TIMER_CTL:
427
		return vtimer->cnt_ctl;
428
	case KVM_REG_ARM_TIMER_CNT:
429
		return kvm_phys_timer_read() - vtimer->cntvoff;
430
	case KVM_REG_ARM_TIMER_CVAL:
431
		return vtimer->cnt_cval;
432 433 434
	}
	return (u64)-1;
}
435

436
static int kvm_timer_starting_cpu(unsigned int cpu)
437
{
438 439
	kvm_timer_init_interrupt(NULL);
	return 0;
440 441
}

442 443 444 445 446
static int kvm_timer_dying_cpu(unsigned int cpu)
{
	disable_percpu_irq(host_vtimer_irq);
	return 0;
}
447 448 449

int kvm_timer_hyp_init(void)
{
450
	struct arch_timer_kvm_info *info;
451 452
	int err;

453 454
	info = arch_timer_get_kvm_info();
	timecounter = &info->timecounter;
455

456 457 458 459 460
	if (!timecounter->cc) {
		kvm_err("kvm_arch_timer: uninitialized timecounter\n");
		return -ENODEV;
	}

461 462 463
	if (info->virtual_irq <= 0) {
		kvm_err("kvm_arch_timer: invalid virtual timer IRQ: %d\n",
			info->virtual_irq);
464 465
		return -ENODEV;
	}
466
	host_vtimer_irq = info->virtual_irq;
467

468 469 470 471 472 473 474 475
	host_vtimer_irq_flags = irq_get_trigger_type(host_vtimer_irq);
	if (host_vtimer_irq_flags != IRQF_TRIGGER_HIGH &&
	    host_vtimer_irq_flags != IRQF_TRIGGER_LOW) {
		kvm_err("Invalid trigger for IRQ%d, assuming level low\n",
			host_vtimer_irq);
		host_vtimer_irq_flags = IRQF_TRIGGER_LOW;
	}

476
	err = request_percpu_irq(host_vtimer_irq, kvm_arch_timer_handler,
477 478 479
				 "kvm guest timer", kvm_get_running_vcpus());
	if (err) {
		kvm_err("kvm_arch_timer: can't request interrupt %d (%d)\n",
480
			host_vtimer_irq, err);
481
		return err;
482 483
	}

484
	kvm_info("virtual timer IRQ%d\n", host_vtimer_irq);
485

486
	cpuhp_setup_state(CPUHP_AP_KVM_ARM_TIMER_STARTING,
T
Thomas Gleixner 已提交
487
			  "kvm/arm/timer:starting", kvm_timer_starting_cpu,
488
			  kvm_timer_dying_cpu);
489 490 491 492 493 494
	return err;
}

void kvm_timer_vcpu_terminate(struct kvm_vcpu *vcpu)
{
	struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
495
	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
496 497

	timer_disarm(timer);
498
	kvm_vgic_unmap_phys_irq(vcpu, vtimer->irq.irq);
499 500
}

501
int kvm_timer_enable(struct kvm_vcpu *vcpu)
502
{
503
	struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
504
	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531
	struct irq_desc *desc;
	struct irq_data *data;
	int phys_irq;
	int ret;

	if (timer->enabled)
		return 0;

	/*
	 * Find the physical IRQ number corresponding to the host_vtimer_irq
	 */
	desc = irq_to_desc(host_vtimer_irq);
	if (!desc) {
		kvm_err("%s: no interrupt descriptor\n", __func__);
		return -EINVAL;
	}

	data = irq_desc_get_irq_data(desc);
	while (data->parent_data)
		data = data->parent_data;

	phys_irq = data->hwirq;

	/*
	 * Tell the VGIC that the virtual interrupt is tied to a
	 * physical interrupt. We do that once per VCPU.
	 */
532
	ret = kvm_vgic_map_phys_irq(vcpu, vtimer->irq.irq, phys_irq);
533 534 535
	if (ret)
		return ret;

536
	timer->enabled = 1;
537 538

	return 0;
539
}
540

541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561
/*
 * On VHE system, we only need to configure trap on physical timer and counter
 * accesses in EL0 and EL1 once, not for every world switch.
 * The host kernel runs at EL2 with HCR_EL2.TGE == 1,
 * and this makes those bits have no effect for the host kernel execution.
 */
void kvm_timer_init_vhe(void)
{
	/* When HCR_EL2.E2H ==1, EL1PCEN and EL1PCTEN are shifted by 10 */
	u32 cnthctl_shift = 10;
	u64 val;

	/*
	 * Disallow physical timer access for the guest.
	 * Physical counter access is allowed.
	 */
	val = read_sysreg(cnthctl_el2);
	val &= ~(CNTHCTL_EL1PCEN << cnthctl_shift);
	val |= (CNTHCTL_EL1PCTEN << cnthctl_shift);
	write_sysreg(val, cnthctl_el2);
}