arch_timer.c 13.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
/*
 * Copyright (C) 2012 ARM Ltd.
 * Author: Marc Zyngier <marc.zyngier@arm.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
 */

#include <linux/cpu.h>
#include <linux/kvm.h>
#include <linux/kvm_host.h>
#include <linux/interrupt.h>
23
#include <linux/irq.h>
24

25
#include <clocksource/arm_arch_timer.h>
26 27
#include <asm/arch_timer.h>

28 29
#include <kvm/arm_vgic.h>
#include <kvm/arm_arch_timer.h>
30

31 32
#include "trace.h"

33
static struct timecounter *timecounter;
34
static unsigned int host_vtimer_irq;
35
static u32 host_vtimer_irq_flags;
36

37 38 39 40 41
void kvm_timer_vcpu_put(struct kvm_vcpu *vcpu)
{
	vcpu->arch.timer_cpu.active_cleared_last = false;
}

42
static u64 kvm_phys_timer_read(void)
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
{
	return timecounter->cc->read(timecounter->cc);
}

static bool timer_is_armed(struct arch_timer_cpu *timer)
{
	return timer->armed;
}

/* timer_arm: as in "arm the timer", not as in ARM the company */
static void timer_arm(struct arch_timer_cpu *timer, u64 ns)
{
	timer->armed = true;
	hrtimer_start(&timer->timer, ktime_add_ns(ktime_get(), ns),
		      HRTIMER_MODE_ABS);
}

static void timer_disarm(struct arch_timer_cpu *timer)
{
	if (timer_is_armed(timer)) {
		hrtimer_cancel(&timer->timer);
		cancel_work_sync(&timer->expired);
		timer->armed = false;
	}
}

static irqreturn_t kvm_arch_timer_handler(int irq, void *dev_id)
{
	struct kvm_vcpu *vcpu = *(struct kvm_vcpu **)dev_id;

	/*
	 * We disable the timer in the world switch and let it be
	 * handled by kvm_timer_sync_hwstate(). Getting a timer
	 * interrupt at this point is a sure sign of some major
	 * breakage.
	 */
	pr_warn("Unexpected interrupt %d on vcpu %p\n", irq, vcpu);
	return IRQ_HANDLED;
}

83 84 85 86
/*
 * Work function for handling the backup timer that we schedule when a vcpu is
 * no longer running, but had a timer programmed to fire in the future.
 */
87 88 89 90 91
static void kvm_timer_inject_irq_work(struct work_struct *work)
{
	struct kvm_vcpu *vcpu;

	vcpu = container_of(work, struct kvm_vcpu, arch.timer_cpu.expired);
92

93 94 95 96 97
	/*
	 * If the vcpu is blocked we want to wake it up so that it will see
	 * the timer has expired when entering the guest.
	 */
	kvm_vcpu_kick(vcpu);
98 99
}

100 101
static u64 kvm_timer_compute_delta(struct kvm_vcpu *vcpu)
{
102
	u64 cval, now;
103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119

	cval = vcpu->arch.timer_cpu.cntv_cval;
	now = kvm_phys_timer_read() - vcpu->kvm->arch.timer.cntvoff;

	if (now < cval) {
		u64 ns;

		ns = cyclecounter_cyc2ns(timecounter->cc,
					 cval - now,
					 timecounter->mask,
					 &timecounter->frac);
		return ns;
	}

	return 0;
}

120 121 122
static enum hrtimer_restart kvm_timer_expire(struct hrtimer *hrt)
{
	struct arch_timer_cpu *timer;
123 124 125
	struct kvm_vcpu *vcpu;
	u64 ns;

126
	timer = container_of(hrt, struct arch_timer_cpu, timer);
127 128 129 130 131 132 133 134 135 136 137 138 139
	vcpu = container_of(timer, struct kvm_vcpu, arch.timer_cpu);

	/*
	 * Check that the timer has really expired from the guest's
	 * PoV (NTP on the host may have forced it to expire
	 * early). If we should have slept longer, restart it.
	 */
	ns = kvm_timer_compute_delta(vcpu);
	if (unlikely(ns)) {
		hrtimer_forward_now(hrt, ns_to_ktime(ns));
		return HRTIMER_RESTART;
	}

140
	schedule_work(&timer->expired);
141 142 143
	return HRTIMER_NORESTART;
}

144 145 146 147 148
static bool kvm_timer_irq_can_fire(struct kvm_vcpu *vcpu)
{
	struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;

	return !(timer->cntv_ctl & ARCH_TIMER_CTRL_IT_MASK) &&
149
		(timer->cntv_ctl & ARCH_TIMER_CTRL_ENABLE);
150 151
}

152 153 154
bool kvm_timer_should_fire(struct kvm_vcpu *vcpu)
{
	struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
155
	u64 cval, now;
156

157
	if (!kvm_timer_irq_can_fire(vcpu))
158 159 160 161 162 163 164 165
		return false;

	cval = timer->cntv_cval;
	now = kvm_phys_timer_read() - vcpu->kvm->arch.timer.cntvoff;

	return cval <= now;
}

166 167 168 169 170 171 172
static void kvm_timer_update_irq(struct kvm_vcpu *vcpu, bool new_level)
{
	int ret;
	struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;

	BUG_ON(!vgic_initialized(vcpu->kvm));

173
	timer->active_cleared_last = false;
174
	timer->irq.level = new_level;
175
	trace_kvm_timer_update_irq(vcpu->vcpu_id, timer->irq.irq,
176
				   timer->irq.level);
177
	ret = kvm_vgic_inject_mapped_irq(vcpu->kvm, vcpu->vcpu_id,
178
					 timer->irq.irq,
179 180 181 182 183 184 185 186
					 timer->irq.level);
	WARN_ON(ret);
}

/*
 * Check if there was a change in the timer state (should we raise or lower
 * the line level to the GIC).
 */
187
static int kvm_timer_update_state(struct kvm_vcpu *vcpu)
188 189 190 191 192 193 194 195 196
{
	struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;

	/*
	 * If userspace modified the timer registers via SET_ONE_REG before
	 * the vgic was initialized, we mustn't set the timer->irq.level value
	 * because the guest would never see the interrupt.  Instead wait
	 * until we call this function from kvm_timer_flush_hwstate.
	 */
197
	if (!vgic_initialized(vcpu->kvm) || !timer->enabled)
198
		return -ENODEV;
199 200 201

	if (kvm_timer_should_fire(vcpu) != timer->irq.level)
		kvm_timer_update_irq(vcpu, !timer->irq.level);
202 203

	return 0;
204 205
}

206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
/*
 * Schedule the background timer before calling kvm_vcpu_block, so that this
 * thread is removed from its waitqueue and made runnable when there's a timer
 * interrupt to handle.
 */
void kvm_timer_schedule(struct kvm_vcpu *vcpu)
{
	struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;

	BUG_ON(timer_is_armed(timer));

	/*
	 * No need to schedule a background timer if the guest timer has
	 * already expired, because kvm_vcpu_block will return before putting
	 * the thread to sleep.
	 */
	if (kvm_timer_should_fire(vcpu))
		return;

	/*
	 * If the timer is not capable of raising interrupts (disabled or
	 * masked), then there's no more work for us to do.
	 */
	if (!kvm_timer_irq_can_fire(vcpu))
		return;

	/*  The timer has not yet expired, schedule a background timer */
233
	timer_arm(timer, kvm_timer_compute_delta(vcpu));
234 235 236 237 238 239 240 241
}

void kvm_timer_unschedule(struct kvm_vcpu *vcpu)
{
	struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
	timer_disarm(timer);
}

242 243 244 245
/**
 * kvm_timer_flush_hwstate - prepare to move the virt timer to the cpu
 * @vcpu: The vcpu pointer
 *
246 247
 * Check if the virtual timer has expired while we were running in the host,
 * and inject an interrupt if that was the case.
248 249 250 251
 */
void kvm_timer_flush_hwstate(struct kvm_vcpu *vcpu)
{
	struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
252 253
	bool phys_active;
	int ret;
254

255 256
	if (kvm_timer_update_state(vcpu))
		return;
257 258

	/*
259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
	* If we enter the guest with the virtual input level to the VGIC
	* asserted, then we have already told the VGIC what we need to, and
	* we don't need to exit from the guest until the guest deactivates
	* the already injected interrupt, so therefore we should set the
	* hardware active state to prevent unnecessary exits from the guest.
	*
	* Also, if we enter the guest with the virtual timer interrupt active,
	* then it must be active on the physical distributor, because we set
	* the HW bit and the guest must be able to deactivate the virtual and
	* physical interrupt at the same time.
	*
	* Conversely, if the virtual input level is deasserted and the virtual
	* interrupt is not active, then always clear the hardware active state
	* to ensure that hardware interrupts from the timer triggers a guest
	* exit.
	*/
275
	phys_active = timer->irq.level ||
276
			kvm_vgic_map_is_active(vcpu, timer->irq.irq);
277

278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
	/*
	 * We want to avoid hitting the (re)distributor as much as
	 * possible, as this is a potentially expensive MMIO access
	 * (not to mention locks in the irq layer), and a solution for
	 * this is to cache the "active" state in memory.
	 *
	 * Things to consider: we cannot cache an "active set" state,
	 * because the HW can change this behind our back (it becomes
	 * "clear" in the HW). We must then restrict the caching to
	 * the "clear" state.
	 *
	 * The cache is invalidated on:
	 * - vcpu put, indicating that the HW cannot be trusted to be
	 *   in a sane state on the next vcpu load,
	 * - any change in the interrupt state
	 *
	 * Usage conditions:
	 * - cached value is "active clear"
	 * - value to be programmed is "active clear"
	 */
	if (timer->active_cleared_last && !phys_active)
		return;

301
	ret = irq_set_irqchip_state(host_vtimer_irq,
302 303 304
				    IRQCHIP_STATE_ACTIVE,
				    phys_active);
	WARN_ON(ret);
305 306

	timer->active_cleared_last = !phys_active;
307 308 309 310 311 312
}

/**
 * kvm_timer_sync_hwstate - sync timer state from cpu
 * @vcpu: The vcpu pointer
 *
313 314
 * Check if the virtual timer has expired while we were running in the guest,
 * and inject an interrupt if that was the case.
315 316 317 318 319 320 321
 */
void kvm_timer_sync_hwstate(struct kvm_vcpu *vcpu)
{
	struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;

	BUG_ON(timer_is_armed(timer));

322 323 324 325 326
	/*
	 * The guest could have modified the timer registers or the timer
	 * could have expired, update the timer state.
	 */
	kvm_timer_update_state(vcpu);
327 328
}

329 330
int kvm_timer_vcpu_reset(struct kvm_vcpu *vcpu,
			 const struct kvm_irq_level *irq)
331 332 333 334 335 336 337 338 339
{
	struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;

	/*
	 * The vcpu timer irq number cannot be determined in
	 * kvm_timer_vcpu_init() because it is called much before
	 * kvm_vcpu_set_target(). To handle this, we determine
	 * vcpu timer irq number when the vcpu is reset.
	 */
340
	timer->irq.irq = irq->irq;
341

342 343 344 345 346 347 348
	/*
	 * The bits in CNTV_CTL are architecturally reset to UNKNOWN for ARMv8
	 * and to 0 for ARMv7.  We provide an implementation that always
	 * resets the timer to be disabled and unmasked and is compliant with
	 * the ARMv7 architecture.
	 */
	timer->cntv_ctl = 0;
349
	kvm_timer_update_state(vcpu);
350

351
	return 0;
352 353
}

354 355 356 357 358 359 360 361 362 363 364
void kvm_timer_vcpu_init(struct kvm_vcpu *vcpu)
{
	struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;

	INIT_WORK(&timer->expired, kvm_timer_inject_irq_work);
	hrtimer_init(&timer->timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
	timer->timer.function = kvm_timer_expire;
}

static void kvm_timer_init_interrupt(void *info)
{
365
	enable_percpu_irq(host_vtimer_irq, host_vtimer_irq_flags);
366 367
}

368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384
int kvm_arm_timer_set_reg(struct kvm_vcpu *vcpu, u64 regid, u64 value)
{
	struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;

	switch (regid) {
	case KVM_REG_ARM_TIMER_CTL:
		timer->cntv_ctl = value;
		break;
	case KVM_REG_ARM_TIMER_CNT:
		vcpu->kvm->arch.timer.cntvoff = kvm_phys_timer_read() - value;
		break;
	case KVM_REG_ARM_TIMER_CVAL:
		timer->cntv_cval = value;
		break;
	default:
		return -1;
	}
385 386

	kvm_timer_update_state(vcpu);
387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403
	return 0;
}

u64 kvm_arm_timer_get_reg(struct kvm_vcpu *vcpu, u64 regid)
{
	struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;

	switch (regid) {
	case KVM_REG_ARM_TIMER_CTL:
		return timer->cntv_ctl;
	case KVM_REG_ARM_TIMER_CNT:
		return kvm_phys_timer_read() - vcpu->kvm->arch.timer.cntvoff;
	case KVM_REG_ARM_TIMER_CVAL:
		return timer->cntv_cval;
	}
	return (u64)-1;
}
404

405
static int kvm_timer_starting_cpu(unsigned int cpu)
406
{
407 408
	kvm_timer_init_interrupt(NULL);
	return 0;
409 410
}

411 412 413 414 415
static int kvm_timer_dying_cpu(unsigned int cpu)
{
	disable_percpu_irq(host_vtimer_irq);
	return 0;
}
416 417 418

int kvm_timer_hyp_init(void)
{
419
	struct arch_timer_kvm_info *info;
420 421
	int err;

422 423
	info = arch_timer_get_kvm_info();
	timecounter = &info->timecounter;
424

425 426 427 428 429
	if (!timecounter->cc) {
		kvm_err("kvm_arch_timer: uninitialized timecounter\n");
		return -ENODEV;
	}

430 431 432
	if (info->virtual_irq <= 0) {
		kvm_err("kvm_arch_timer: invalid virtual timer IRQ: %d\n",
			info->virtual_irq);
433 434
		return -ENODEV;
	}
435
	host_vtimer_irq = info->virtual_irq;
436

437 438 439 440 441 442 443 444
	host_vtimer_irq_flags = irq_get_trigger_type(host_vtimer_irq);
	if (host_vtimer_irq_flags != IRQF_TRIGGER_HIGH &&
	    host_vtimer_irq_flags != IRQF_TRIGGER_LOW) {
		kvm_err("Invalid trigger for IRQ%d, assuming level low\n",
			host_vtimer_irq);
		host_vtimer_irq_flags = IRQF_TRIGGER_LOW;
	}

445
	err = request_percpu_irq(host_vtimer_irq, kvm_arch_timer_handler,
446 447 448
				 "kvm guest timer", kvm_get_running_vcpus());
	if (err) {
		kvm_err("kvm_arch_timer: can't request interrupt %d (%d)\n",
449
			host_vtimer_irq, err);
450
		return err;
451 452
	}

453
	kvm_info("virtual timer IRQ%d\n", host_vtimer_irq);
454

455
	cpuhp_setup_state(CPUHP_AP_KVM_ARM_TIMER_STARTING,
T
Thomas Gleixner 已提交
456
			  "kvm/arm/timer:starting", kvm_timer_starting_cpu,
457
			  kvm_timer_dying_cpu);
458 459 460 461 462 463 464 465
	return err;
}

void kvm_timer_vcpu_terminate(struct kvm_vcpu *vcpu)
{
	struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;

	timer_disarm(timer);
466
	kvm_vgic_unmap_phys_irq(vcpu, timer->irq.irq);
467 468
}

469
int kvm_timer_enable(struct kvm_vcpu *vcpu)
470
{
471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502
	struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
	struct irq_desc *desc;
	struct irq_data *data;
	int phys_irq;
	int ret;

	if (timer->enabled)
		return 0;

	/*
	 * Find the physical IRQ number corresponding to the host_vtimer_irq
	 */
	desc = irq_to_desc(host_vtimer_irq);
	if (!desc) {
		kvm_err("%s: no interrupt descriptor\n", __func__);
		return -EINVAL;
	}

	data = irq_desc_get_irq_data(desc);
	while (data->parent_data)
		data = data->parent_data;

	phys_irq = data->hwirq;

	/*
	 * Tell the VGIC that the virtual interrupt is tied to a
	 * physical interrupt. We do that once per VCPU.
	 */
	ret = kvm_vgic_map_phys_irq(vcpu, timer->irq.irq, phys_irq);
	if (ret)
		return ret;

503
	timer->enabled = 1;
504 505

	return 0;
506
}
507

508 509 510
void kvm_timer_init(struct kvm *kvm)
{
	kvm->arch.timer.cntvoff = kvm_phys_timer_read();
511
}