arch_timer.c 24.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
/*
 * Copyright (C) 2012 ARM Ltd.
 * Author: Marc Zyngier <marc.zyngier@arm.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
 */

#include <linux/cpu.h>
#include <linux/kvm.h>
#include <linux/kvm_host.h>
#include <linux/interrupt.h>
23
#include <linux/irq.h>
24
#include <linux/uaccess.h>
25

26
#include <clocksource/arm_arch_timer.h>
27
#include <asm/arch_timer.h>
28
#include <asm/kvm_hyp.h>
29

30 31
#include <kvm/arm_vgic.h>
#include <kvm/arm_arch_timer.h>
32

33 34
#include "trace.h"

35
static struct timecounter *timecounter;
36
static unsigned int host_vtimer_irq;
37
static u32 host_vtimer_irq_flags;
38

39 40 41 42 43 44 45 46 47 48
static const struct kvm_irq_level default_ptimer_irq = {
	.irq	= 30,
	.level	= 1,
};

static const struct kvm_irq_level default_vtimer_irq = {
	.irq	= 27,
	.level	= 1,
};

49 50 51
static bool kvm_timer_irq_can_fire(struct arch_timer_context *timer_ctx);
static void kvm_timer_update_irq(struct kvm_vcpu *vcpu, bool new_level,
				 struct arch_timer_context *timer_ctx);
52
static bool kvm_timer_should_fire(struct arch_timer_context *timer_ctx);
53

54
u64 kvm_phys_timer_read(void)
55 56 57 58
{
	return timecounter->cc->read(timecounter->cc);
}

59
static void soft_timer_start(struct hrtimer *hrt, u64 ns)
60
{
61
	hrtimer_start(hrt, ktime_add_ns(ktime_get(), ns),
62 63 64
		      HRTIMER_MODE_ABS);
}

65
static void soft_timer_cancel(struct hrtimer *hrt, struct work_struct *work)
66
{
67
	hrtimer_cancel(hrt);
68 69
	if (work)
		cancel_work_sync(work);
70 71
}

72
static void kvm_vtimer_update_mask_user(struct kvm_vcpu *vcpu)
73
{
74
	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
75 76

	/*
77 78 79 80 81 82 83
	 * When using a userspace irqchip with the architected timers, we must
	 * prevent continuously exiting from the guest, and therefore mask the
	 * physical interrupt by disabling it on the host interrupt controller
	 * when the virtual level is high, such that the guest can make
	 * forward progress.  Once we detect the output level being
	 * de-asserted, we unmask the interrupt again so that we exit from the
	 * guest when the timer fires.
84
	 */
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
	if (vtimer->irq.level)
		disable_percpu_irq(host_vtimer_irq);
	else
		enable_percpu_irq(host_vtimer_irq, 0);
}

static irqreturn_t kvm_arch_timer_handler(int irq, void *dev_id)
{
	struct kvm_vcpu *vcpu = *(struct kvm_vcpu **)dev_id;
	struct arch_timer_context *vtimer;

	if (!vcpu) {
		pr_warn_once("Spurious arch timer IRQ on non-VCPU thread\n");
		return IRQ_NONE;
	}
	vtimer = vcpu_vtimer(vcpu);

	if (!vtimer->irq.level) {
		vtimer->cnt_ctl = read_sysreg_el0(cntv_ctl);
		if (kvm_timer_irq_can_fire(vtimer))
			kvm_timer_update_irq(vcpu, true, vtimer);
	}

	if (unlikely(!irqchip_in_kernel(vcpu->kvm)))
		kvm_vtimer_update_mask_user(vcpu);

111 112 113
	return IRQ_HANDLED;
}

114 115 116 117
/*
 * Work function for handling the backup timer that we schedule when a vcpu is
 * no longer running, but had a timer programmed to fire in the future.
 */
118 119 120 121 122
static void kvm_timer_inject_irq_work(struct work_struct *work)
{
	struct kvm_vcpu *vcpu;

	vcpu = container_of(work, struct kvm_vcpu, arch.timer_cpu.expired);
123

124 125 126 127
	/*
	 * If the vcpu is blocked we want to wake it up so that it will see
	 * the timer has expired when entering the guest.
	 */
128
	kvm_vcpu_wake_up(vcpu);
129 130
}

131
static u64 kvm_timer_compute_delta(struct arch_timer_context *timer_ctx)
132
{
133
	u64 cval, now;
134

135 136
	cval = timer_ctx->cnt_cval;
	now = kvm_phys_timer_read() - timer_ctx->cntvoff;
137 138 139 140 141 142 143 144 145 146 147 148 149 150

	if (now < cval) {
		u64 ns;

		ns = cyclecounter_cyc2ns(timecounter->cc,
					 cval - now,
					 timecounter->mask,
					 &timecounter->frac);
		return ns;
	}

	return 0;
}

151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
static bool kvm_timer_irq_can_fire(struct arch_timer_context *timer_ctx)
{
	return !(timer_ctx->cnt_ctl & ARCH_TIMER_CTRL_IT_MASK) &&
		(timer_ctx->cnt_ctl & ARCH_TIMER_CTRL_ENABLE);
}

/*
 * Returns the earliest expiration time in ns among guest timers.
 * Note that it will return 0 if none of timers can fire.
 */
static u64 kvm_timer_earliest_exp(struct kvm_vcpu *vcpu)
{
	u64 min_virt = ULLONG_MAX, min_phys = ULLONG_MAX;
	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
	struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);

	if (kvm_timer_irq_can_fire(vtimer))
		min_virt = kvm_timer_compute_delta(vtimer);

	if (kvm_timer_irq_can_fire(ptimer))
		min_phys = kvm_timer_compute_delta(ptimer);

	/* If none of timers can fire, then return 0 */
	if ((min_virt == ULLONG_MAX) && (min_phys == ULLONG_MAX))
		return 0;

	return min(min_virt, min_phys);
}

180
static enum hrtimer_restart kvm_bg_timer_expire(struct hrtimer *hrt)
181 182
{
	struct arch_timer_cpu *timer;
183 184 185
	struct kvm_vcpu *vcpu;
	u64 ns;

186
	timer = container_of(hrt, struct arch_timer_cpu, bg_timer);
187 188 189 190 191 192 193
	vcpu = container_of(timer, struct kvm_vcpu, arch.timer_cpu);

	/*
	 * Check that the timer has really expired from the guest's
	 * PoV (NTP on the host may have forced it to expire
	 * early). If we should have slept longer, restart it.
	 */
194
	ns = kvm_timer_earliest_exp(vcpu);
195 196 197 198 199
	if (unlikely(ns)) {
		hrtimer_forward_now(hrt, ns_to_ktime(ns));
		return HRTIMER_RESTART;
	}

200
	schedule_work(&timer->expired);
201 202 203
	return HRTIMER_NORESTART;
}

204 205
static enum hrtimer_restart kvm_phys_timer_expire(struct hrtimer *hrt)
{
206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
	struct arch_timer_context *ptimer;
	struct arch_timer_cpu *timer;
	struct kvm_vcpu *vcpu;
	u64 ns;

	timer = container_of(hrt, struct arch_timer_cpu, phys_timer);
	vcpu = container_of(timer, struct kvm_vcpu, arch.timer_cpu);
	ptimer = vcpu_ptimer(vcpu);

	/*
	 * Check that the timer has really expired from the guest's
	 * PoV (NTP on the host may have forced it to expire
	 * early). If not ready, schedule for a later time.
	 */
	ns = kvm_timer_compute_delta(ptimer);
	if (unlikely(ns)) {
		hrtimer_forward_now(hrt, ns_to_ktime(ns));
		return HRTIMER_RESTART;
	}

	kvm_timer_update_irq(vcpu, true, ptimer);
227 228 229
	return HRTIMER_NORESTART;
}

230
static bool kvm_timer_should_fire(struct arch_timer_context *timer_ctx)
231
{
232
	u64 cval, now;
233

234
	if (!kvm_timer_irq_can_fire(timer_ctx))
235 236
		return false;

237 238
	cval = timer_ctx->cnt_cval;
	now = kvm_phys_timer_read() - timer_ctx->cntvoff;
239 240 241 242

	return cval <= now;
}

243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261
bool kvm_timer_is_pending(struct kvm_vcpu *vcpu)
{
	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
	struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);

	if (vtimer->irq.level || ptimer->irq.level)
		return true;

	/*
	 * When this is called from withing the wait loop of kvm_vcpu_block(),
	 * the software view of the timer state is up to date (timer->loaded
	 * is false), and so we can simply check if the timer should fire now.
	 */
	if (!vtimer->loaded && kvm_timer_should_fire(vtimer))
		return true;

	return kvm_timer_should_fire(ptimer);
}

262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279
/*
 * Reflect the timer output level into the kvm_run structure
 */
void kvm_timer_update_run(struct kvm_vcpu *vcpu)
{
	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
	struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
	struct kvm_sync_regs *regs = &vcpu->run->s.regs;

	/* Populate the device bitmap with the timer states */
	regs->device_irq_level &= ~(KVM_ARM_DEV_EL1_VTIMER |
				    KVM_ARM_DEV_EL1_PTIMER);
	if (vtimer->irq.level)
		regs->device_irq_level |= KVM_ARM_DEV_EL1_VTIMER;
	if (ptimer->irq.level)
		regs->device_irq_level |= KVM_ARM_DEV_EL1_PTIMER;
}

280 281
static void kvm_timer_update_irq(struct kvm_vcpu *vcpu, bool new_level,
				 struct arch_timer_context *timer_ctx)
282 283 284
{
	int ret;

285 286 287
	timer_ctx->irq.level = new_level;
	trace_kvm_timer_update_irq(vcpu->vcpu_id, timer_ctx->irq.irq,
				   timer_ctx->irq.level);
288

289 290 291
	if (likely(irqchip_in_kernel(vcpu->kvm))) {
		ret = kvm_vgic_inject_irq(vcpu->kvm, vcpu->vcpu_id,
					  timer_ctx->irq.irq,
292 293
					  timer_ctx->irq.level,
					  timer_ctx);
294 295
		WARN_ON(ret);
	}
296 297
}

298
/* Schedule the background timer for the emulated timer. */
299
static void phys_timer_emulate(struct kvm_vcpu *vcpu)
300 301
{
	struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
302
	struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
303

304 305 306 307 308 309 310
	/*
	 * If the timer can fire now we have just raised the IRQ line and we
	 * don't need to have a soft timer scheduled for the future.  If the
	 * timer cannot fire at all, then we also don't need a soft timer.
	 */
	if (kvm_timer_should_fire(ptimer) || !kvm_timer_irq_can_fire(ptimer)) {
		soft_timer_cancel(&timer->phys_timer, NULL);
311
		return;
312
	}
313

314
	soft_timer_start(&timer->phys_timer, kvm_timer_compute_delta(ptimer));
315 316
}

317
/*
318 319 320
 * Check if there was a change in the timer state, so that we should either
 * raise or lower the line level to the GIC or schedule a background timer to
 * emulate the physical timer.
321
 */
322
static void kvm_timer_update_state(struct kvm_vcpu *vcpu)
323 324
{
	struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
325
	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
326
	struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
327

328
	if (unlikely(!timer->enabled))
329
		return;
330

331 332
	if (kvm_timer_should_fire(vtimer) != vtimer->irq.level)
		kvm_timer_update_irq(vcpu, !vtimer->irq.level, vtimer);
333

334 335
	if (kvm_timer_should_fire(ptimer) != ptimer->irq.level)
		kvm_timer_update_irq(vcpu, !ptimer->irq.level, ptimer);
336 337

	phys_timer_emulate(vcpu);
338 339
}

340
static void vtimer_save_state(struct kvm_vcpu *vcpu)
341 342 343
{
	struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
344 345 346 347 348 349
	unsigned long flags;

	local_irq_save(flags);

	if (!vtimer->loaded)
		goto out;
350 351 352 353 354 355 356 357

	if (timer->enabled) {
		vtimer->cnt_ctl = read_sysreg_el0(cntv_ctl);
		vtimer->cnt_cval = read_sysreg_el0(cntv_cval);
	}

	/* Disable the virtual timer */
	write_sysreg_el0(0, cntv_ctl);
358 359 360 361

	vtimer->loaded = false;
out:
	local_irq_restore(flags);
362 363
}

364 365 366 367 368 369 370 371
/*
 * Schedule the background timer before calling kvm_vcpu_block, so that this
 * thread is removed from its waitqueue and made runnable when there's a timer
 * interrupt to handle.
 */
void kvm_timer_schedule(struct kvm_vcpu *vcpu)
{
	struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
372
	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
373
	struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
374

375 376
	vtimer_save_state(vcpu);

377
	/*
378
	 * No need to schedule a background timer if any guest timer has
379 380 381
	 * already expired, because kvm_vcpu_block will return before putting
	 * the thread to sleep.
	 */
382
	if (kvm_timer_should_fire(vtimer) || kvm_timer_should_fire(ptimer))
383 384 385
		return;

	/*
386
	 * If both timers are not capable of raising interrupts (disabled or
387 388
	 * masked), then there's no more work for us to do.
	 */
389
	if (!kvm_timer_irq_can_fire(vtimer) && !kvm_timer_irq_can_fire(ptimer))
390 391
		return;

392 393 394 395
	/*
	 * The guest timers have not yet expired, schedule a background timer.
	 * Set the earliest expiration time among the guest timers.
	 */
396
	soft_timer_start(&timer->bg_timer, kvm_timer_earliest_exp(vcpu));
397 398
}

399
static void vtimer_restore_state(struct kvm_vcpu *vcpu)
400 401 402
{
	struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
403 404 405 406 407 408
	unsigned long flags;

	local_irq_save(flags);

	if (vtimer->loaded)
		goto out;
409 410 411 412 413 414

	if (timer->enabled) {
		write_sysreg_el0(vtimer->cnt_cval, cntv_cval);
		isb();
		write_sysreg_el0(vtimer->cnt_ctl, cntv_ctl);
	}
415 416 417 418

	vtimer->loaded = true;
out:
	local_irq_restore(flags);
419 420
}

421 422 423
void kvm_timer_unschedule(struct kvm_vcpu *vcpu)
{
	struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
424

425 426
	vtimer_restore_state(vcpu);

427
	soft_timer_cancel(&timer->bg_timer, &timer->expired);
428 429
}

430 431 432 433 434 435 436 437 438 439 440 441 442 443 444
static void set_cntvoff(u64 cntvoff)
{
	u32 low = lower_32_bits(cntvoff);
	u32 high = upper_32_bits(cntvoff);

	/*
	 * Since kvm_call_hyp doesn't fully support the ARM PCS especially on
	 * 32-bit systems, but rather passes register by register shifted one
	 * place (we put the function address in r0/x0), we cannot simply pass
	 * a 64-bit value as an argument, but have to split the value in two
	 * 32-bit halves.
	 */
	kvm_call_hyp(__kvm_timer_set_cntvoff, low, high);
}

445
static void kvm_timer_vcpu_load_vgic(struct kvm_vcpu *vcpu)
446
{
447
	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
448 449
	bool phys_active;
	int ret;
450

451
	phys_active = vtimer->irq.level ||
452
		      kvm_vgic_map_is_active(vcpu, vtimer->irq.irq);
453

454
	ret = irq_set_irqchip_state(host_vtimer_irq,
455 456 457
				    IRQCHIP_STATE_ACTIVE,
				    phys_active);
	WARN_ON(ret);
458
}
459

460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481
static void kvm_timer_vcpu_load_user(struct kvm_vcpu *vcpu)
{
	kvm_vtimer_update_mask_user(vcpu);
}

void kvm_timer_vcpu_load(struct kvm_vcpu *vcpu)
{
	struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);

	if (unlikely(!timer->enabled))
		return;

	if (unlikely(!irqchip_in_kernel(vcpu->kvm)))
		kvm_timer_vcpu_load_user(vcpu);
	else
		kvm_timer_vcpu_load_vgic(vcpu);

	set_cntvoff(vtimer->cntvoff);

	vtimer_restore_state(vcpu);

482 483
	/* Set the background timer for the physical timer emulation. */
	phys_timer_emulate(vcpu);
484 485
}

486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502
bool kvm_timer_should_notify_user(struct kvm_vcpu *vcpu)
{
	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
	struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
	struct kvm_sync_regs *sregs = &vcpu->run->s.regs;
	bool vlevel, plevel;

	if (likely(irqchip_in_kernel(vcpu->kvm)))
		return false;

	vlevel = sregs->device_irq_level & KVM_ARM_DEV_EL1_VTIMER;
	plevel = sregs->device_irq_level & KVM_ARM_DEV_EL1_PTIMER;

	return vtimer->irq.level != vlevel ||
	       ptimer->irq.level != plevel;
}

503 504 505
void kvm_timer_vcpu_put(struct kvm_vcpu *vcpu)
{
	struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
506

507 508 509 510 511
	if (unlikely(!timer->enabled))
		return;

	vtimer_save_state(vcpu);

512 513 514 515 516 517 518 519 520 521 522
	/*
	 * Cancel the physical timer emulation, because the only case where we
	 * need it after a vcpu_put is in the context of a sleeping VCPU, and
	 * in that case we already factor in the deadline for the physical
	 * timer when scheduling the bg_timer.
	 *
	 * In any case, we re-schedule the hrtimer for the physical timer when
	 * coming back to the VCPU thread in kvm_timer_vcpu_load().
	 */
	soft_timer_cancel(&timer->phys_timer, NULL);

523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553
	/*
	 * The kernel may decide to run userspace after calling vcpu_put, so
	 * we reset cntvoff to 0 to ensure a consistent read between user
	 * accesses to the virtual counter and kernel access to the physical
	 * counter.
	 */
	set_cntvoff(0);
}

static void unmask_vtimer_irq(struct kvm_vcpu *vcpu)
{
	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);

	if (unlikely(!irqchip_in_kernel(vcpu->kvm))) {
		kvm_vtimer_update_mask_user(vcpu);
		return;
	}

	/*
	 * If the guest disabled the timer without acking the interrupt, then
	 * we must make sure the physical and virtual active states are in
	 * sync by deactivating the physical interrupt, because otherwise we
	 * wouldn't see the next timer interrupt in the host.
	 */
	if (!kvm_vgic_map_is_active(vcpu, vtimer->irq.irq)) {
		int ret;
		ret = irq_set_irqchip_state(host_vtimer_irq,
					    IRQCHIP_STATE_ACTIVE,
					    false);
		WARN_ON(ret);
	}
554 555
}

556 557 558 559
/**
 * kvm_timer_sync_hwstate - sync timer state from cpu
 * @vcpu: The vcpu pointer
 *
560
 * Check if any of the timers have expired while we were running in the guest,
561
 * and inject an interrupt if that was the case.
562 563 564
 */
void kvm_timer_sync_hwstate(struct kvm_vcpu *vcpu)
{
565
	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
566

567
	/*
568 569 570
	 * If we entered the guest with the vtimer output asserted we have to
	 * check if the guest has modified the timer so that we should lower
	 * the line at this point.
571
	 */
572 573 574 575 576 577 578 579
	if (vtimer->irq.level) {
		vtimer->cnt_ctl = read_sysreg_el0(cntv_ctl);
		vtimer->cnt_cval = read_sysreg_el0(cntv_cval);
		if (!kvm_timer_should_fire(vtimer)) {
			kvm_timer_update_irq(vcpu, false, vtimer);
			unmask_vtimer_irq(vcpu);
		}
	}
580 581
}

582
int kvm_timer_vcpu_reset(struct kvm_vcpu *vcpu)
583
{
584
	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
585
	struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
586

587 588 589 590 591 592
	/*
	 * The bits in CNTV_CTL are architecturally reset to UNKNOWN for ARMv8
	 * and to 0 for ARMv7.  We provide an implementation that always
	 * resets the timer to be disabled and unmasked and is compliant with
	 * the ARMv7 architecture.
	 */
593
	vtimer->cnt_ctl = 0;
594
	ptimer->cnt_ctl = 0;
595
	kvm_timer_update_state(vcpu);
596

597
	return 0;
598 599
}

600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618
/* Make the updates of cntvoff for all vtimer contexts atomic */
static void update_vtimer_cntvoff(struct kvm_vcpu *vcpu, u64 cntvoff)
{
	int i;
	struct kvm *kvm = vcpu->kvm;
	struct kvm_vcpu *tmp;

	mutex_lock(&kvm->lock);
	kvm_for_each_vcpu(i, tmp, kvm)
		vcpu_vtimer(tmp)->cntvoff = cntvoff;

	/*
	 * When called from the vcpu create path, the CPU being created is not
	 * included in the loop above, so we just set it here as well.
	 */
	vcpu_vtimer(vcpu)->cntvoff = cntvoff;
	mutex_unlock(&kvm->lock);
}

619 620 621
void kvm_timer_vcpu_init(struct kvm_vcpu *vcpu)
{
	struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
622 623
	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
	struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
624

625 626
	/* Synchronize cntvoff across all vtimers of a VM. */
	update_vtimer_cntvoff(vcpu, kvm_phys_timer_read());
627
	vcpu_ptimer(vcpu)->cntvoff = 0;
628

629
	INIT_WORK(&timer->expired, kvm_timer_inject_irq_work);
630 631
	hrtimer_init(&timer->bg_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
	timer->bg_timer.function = kvm_bg_timer_expire;
632

633 634 635
	hrtimer_init(&timer->phys_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
	timer->phys_timer.function = kvm_phys_timer_expire;

636 637
	vtimer->irq.irq = default_vtimer_irq.irq;
	ptimer->irq.irq = default_ptimer_irq.irq;
638 639 640 641
}

static void kvm_timer_init_interrupt(void *info)
{
642
	enable_percpu_irq(host_vtimer_irq, host_vtimer_irq_flags);
643 644
}

645 646
int kvm_arm_timer_set_reg(struct kvm_vcpu *vcpu, u64 regid, u64 value)
{
647
	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
648
	struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
649 650 651

	switch (regid) {
	case KVM_REG_ARM_TIMER_CTL:
652
		vtimer->cnt_ctl = value & ~ARCH_TIMER_CTRL_IT_STAT;
653 654
		break;
	case KVM_REG_ARM_TIMER_CNT:
655
		update_vtimer_cntvoff(vcpu, kvm_phys_timer_read() - value);
656 657
		break;
	case KVM_REG_ARM_TIMER_CVAL:
658
		vtimer->cnt_cval = value;
659
		break;
660 661 662 663 664 665 666
	case KVM_REG_ARM_PTIMER_CTL:
		ptimer->cnt_ctl = value & ~ARCH_TIMER_CTRL_IT_STAT;
		break;
	case KVM_REG_ARM_PTIMER_CVAL:
		ptimer->cnt_cval = value;
		break;

667 668 669
	default:
		return -1;
	}
670 671

	kvm_timer_update_state(vcpu);
672 673 674
	return 0;
}

675 676 677 678 679 680 681 682 683 684 685 686 687 688
static u64 read_timer_ctl(struct arch_timer_context *timer)
{
	/*
	 * Set ISTATUS bit if it's expired.
	 * Note that according to ARMv8 ARM Issue A.k, ISTATUS bit is
	 * UNKNOWN when ENABLE bit is 0, so we chose to set ISTATUS bit
	 * regardless of ENABLE bit for our implementation convenience.
	 */
	if (!kvm_timer_compute_delta(timer))
		return timer->cnt_ctl | ARCH_TIMER_CTRL_IT_STAT;
	else
		return timer->cnt_ctl;
}

689 690
u64 kvm_arm_timer_get_reg(struct kvm_vcpu *vcpu, u64 regid)
{
691
	struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
692
	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
693 694 695

	switch (regid) {
	case KVM_REG_ARM_TIMER_CTL:
696
		return read_timer_ctl(vtimer);
697
	case KVM_REG_ARM_TIMER_CNT:
698
		return kvm_phys_timer_read() - vtimer->cntvoff;
699
	case KVM_REG_ARM_TIMER_CVAL:
700
		return vtimer->cnt_cval;
701 702 703 704 705 706
	case KVM_REG_ARM_PTIMER_CTL:
		return read_timer_ctl(ptimer);
	case KVM_REG_ARM_PTIMER_CVAL:
		return ptimer->cnt_cval;
	case KVM_REG_ARM_PTIMER_CNT:
		return kvm_phys_timer_read();
707 708 709
	}
	return (u64)-1;
}
710

711
static int kvm_timer_starting_cpu(unsigned int cpu)
712
{
713 714
	kvm_timer_init_interrupt(NULL);
	return 0;
715 716
}

717 718 719 720 721
static int kvm_timer_dying_cpu(unsigned int cpu)
{
	disable_percpu_irq(host_vtimer_irq);
	return 0;
}
722 723 724

int kvm_timer_hyp_init(void)
{
725
	struct arch_timer_kvm_info *info;
726 727
	int err;

728 729
	info = arch_timer_get_kvm_info();
	timecounter = &info->timecounter;
730

731 732 733 734 735
	if (!timecounter->cc) {
		kvm_err("kvm_arch_timer: uninitialized timecounter\n");
		return -ENODEV;
	}

736 737 738
	if (info->virtual_irq <= 0) {
		kvm_err("kvm_arch_timer: invalid virtual timer IRQ: %d\n",
			info->virtual_irq);
739 740
		return -ENODEV;
	}
741
	host_vtimer_irq = info->virtual_irq;
742

743 744 745 746 747 748 749 750
	host_vtimer_irq_flags = irq_get_trigger_type(host_vtimer_irq);
	if (host_vtimer_irq_flags != IRQF_TRIGGER_HIGH &&
	    host_vtimer_irq_flags != IRQF_TRIGGER_LOW) {
		kvm_err("Invalid trigger for IRQ%d, assuming level low\n",
			host_vtimer_irq);
		host_vtimer_irq_flags = IRQF_TRIGGER_LOW;
	}

751
	err = request_percpu_irq(host_vtimer_irq, kvm_arch_timer_handler,
752 753 754
				 "kvm guest timer", kvm_get_running_vcpus());
	if (err) {
		kvm_err("kvm_arch_timer: can't request interrupt %d (%d)\n",
755
			host_vtimer_irq, err);
756
		return err;
757 758
	}

759 760 761 762 763 764
	err = irq_set_vcpu_affinity(host_vtimer_irq, kvm_get_running_vcpus());
	if (err) {
		kvm_err("kvm_arch_timer: error setting vcpu affinity\n");
		goto out_free_irq;
	}

765
	kvm_info("virtual timer IRQ%d\n", host_vtimer_irq);
766

767
	cpuhp_setup_state(CPUHP_AP_KVM_ARM_TIMER_STARTING,
T
Thomas Gleixner 已提交
768
			  "kvm/arm/timer:starting", kvm_timer_starting_cpu,
769
			  kvm_timer_dying_cpu);
770 771 772
	return 0;
out_free_irq:
	free_percpu_irq(host_vtimer_irq, kvm_get_running_vcpus());
773 774 775 776 777 778
	return err;
}

void kvm_timer_vcpu_terminate(struct kvm_vcpu *vcpu)
{
	struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
779
	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
780

781
	soft_timer_cancel(&timer->bg_timer, &timer->expired);
782
	soft_timer_cancel(&timer->phys_timer, NULL);
783
	kvm_vgic_unmap_phys_irq(vcpu, vtimer->irq.irq);
784 785
}

786
static bool timer_irqs_are_valid(struct kvm_vcpu *vcpu)
787 788
{
	int vtimer_irq, ptimer_irq;
789
	int i, ret;
790 791

	vtimer_irq = vcpu_vtimer(vcpu)->irq.irq;
792 793 794
	ret = kvm_vgic_set_owner(vcpu, vtimer_irq, vcpu_vtimer(vcpu));
	if (ret)
		return false;
795

796 797 798
	ptimer_irq = vcpu_ptimer(vcpu)->irq.irq;
	ret = kvm_vgic_set_owner(vcpu, ptimer_irq, vcpu_ptimer(vcpu));
	if (ret)
799 800
		return false;

801
	kvm_for_each_vcpu(i, vcpu, vcpu->kvm) {
802 803 804 805 806 807 808 809
		if (vcpu_vtimer(vcpu)->irq.irq != vtimer_irq ||
		    vcpu_ptimer(vcpu)->irq.irq != ptimer_irq)
			return false;
	}

	return true;
}

810
int kvm_timer_enable(struct kvm_vcpu *vcpu)
811
{
812
	struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
813
	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
814 815 816 817 818
	int ret;

	if (timer->enabled)
		return 0;

819 820 821 822 823 824 825
	/* Without a VGIC we do not map virtual IRQs to physical IRQs */
	if (!irqchip_in_kernel(vcpu->kvm))
		goto no_vgic;

	if (!vgic_initialized(vcpu->kvm))
		return -ENODEV;

826
	if (!timer_irqs_are_valid(vcpu)) {
827 828 829 830
		kvm_debug("incorrectly configured timer irqs\n");
		return -EINVAL;
	}

831
	ret = kvm_vgic_map_phys_irq(vcpu, host_vtimer_irq, vtimer->irq.irq);
832 833 834
	if (ret)
		return ret;

835
no_vgic:
836
	preempt_disable();
837
	timer->enabled = 1;
838 839 840 841
	if (!irqchip_in_kernel(vcpu->kvm))
		kvm_timer_vcpu_load_user(vcpu);
	else
		kvm_timer_vcpu_load_vgic(vcpu);
842 843
	preempt_enable();

844
	return 0;
845
}
846

847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867
/*
 * On VHE system, we only need to configure trap on physical timer and counter
 * accesses in EL0 and EL1 once, not for every world switch.
 * The host kernel runs at EL2 with HCR_EL2.TGE == 1,
 * and this makes those bits have no effect for the host kernel execution.
 */
void kvm_timer_init_vhe(void)
{
	/* When HCR_EL2.E2H ==1, EL1PCEN and EL1PCTEN are shifted by 10 */
	u32 cnthctl_shift = 10;
	u64 val;

	/*
	 * Disallow physical timer access for the guest.
	 * Physical counter access is allowed.
	 */
	val = read_sysreg(cnthctl_el2);
	val &= ~(CNTHCTL_EL1PCEN << cnthctl_shift);
	val |= (CNTHCTL_EL1PCTEN << cnthctl_shift);
	write_sysreg(val, cnthctl_el2);
}
868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943

static void set_timer_irqs(struct kvm *kvm, int vtimer_irq, int ptimer_irq)
{
	struct kvm_vcpu *vcpu;
	int i;

	kvm_for_each_vcpu(i, vcpu, kvm) {
		vcpu_vtimer(vcpu)->irq.irq = vtimer_irq;
		vcpu_ptimer(vcpu)->irq.irq = ptimer_irq;
	}
}

int kvm_arm_timer_set_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr)
{
	int __user *uaddr = (int __user *)(long)attr->addr;
	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
	struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
	int irq;

	if (!irqchip_in_kernel(vcpu->kvm))
		return -EINVAL;

	if (get_user(irq, uaddr))
		return -EFAULT;

	if (!(irq_is_ppi(irq)))
		return -EINVAL;

	if (vcpu->arch.timer_cpu.enabled)
		return -EBUSY;

	switch (attr->attr) {
	case KVM_ARM_VCPU_TIMER_IRQ_VTIMER:
		set_timer_irqs(vcpu->kvm, irq, ptimer->irq.irq);
		break;
	case KVM_ARM_VCPU_TIMER_IRQ_PTIMER:
		set_timer_irqs(vcpu->kvm, vtimer->irq.irq, irq);
		break;
	default:
		return -ENXIO;
	}

	return 0;
}

int kvm_arm_timer_get_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr)
{
	int __user *uaddr = (int __user *)(long)attr->addr;
	struct arch_timer_context *timer;
	int irq;

	switch (attr->attr) {
	case KVM_ARM_VCPU_TIMER_IRQ_VTIMER:
		timer = vcpu_vtimer(vcpu);
		break;
	case KVM_ARM_VCPU_TIMER_IRQ_PTIMER:
		timer = vcpu_ptimer(vcpu);
		break;
	default:
		return -ENXIO;
	}

	irq = timer->irq.irq;
	return put_user(irq, uaddr);
}

int kvm_arm_timer_has_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr)
{
	switch (attr->attr) {
	case KVM_ARM_VCPU_TIMER_IRQ_VTIMER:
	case KVM_ARM_VCPU_TIMER_IRQ_PTIMER:
		return 0;
	}

	return -ENXIO;
}