arch_timer.c 21.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
/*
 * Copyright (C) 2012 ARM Ltd.
 * Author: Marc Zyngier <marc.zyngier@arm.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
 */

#include <linux/cpu.h>
#include <linux/kvm.h>
#include <linux/kvm_host.h>
#include <linux/interrupt.h>
23
#include <linux/irq.h>
24
#include <linux/uaccess.h>
25

26
#include <clocksource/arm_arch_timer.h>
27
#include <asm/arch_timer.h>
28
#include <asm/kvm_hyp.h>
29

30 31
#include <kvm/arm_vgic.h>
#include <kvm/arm_arch_timer.h>
32

33 34
#include "trace.h"

35
static struct timecounter *timecounter;
36
static unsigned int host_vtimer_irq;
37
static u32 host_vtimer_irq_flags;
38

39 40 41 42 43 44 45 46 47 48
static const struct kvm_irq_level default_ptimer_irq = {
	.irq	= 30,
	.level	= 1,
};

static const struct kvm_irq_level default_vtimer_irq = {
	.irq	= 27,
	.level	= 1,
};

49 50
void kvm_timer_vcpu_put(struct kvm_vcpu *vcpu)
{
51
	vcpu_vtimer(vcpu)->active_cleared_last = false;
52 53
}

54
u64 kvm_phys_timer_read(void)
55 56 57 58
{
	return timecounter->cc->read(timecounter->cc);
}

59
static void soft_timer_start(struct hrtimer *hrt, u64 ns)
60
{
61
	hrtimer_start(hrt, ktime_add_ns(ktime_get(), ns),
62 63 64
		      HRTIMER_MODE_ABS);
}

65
static void soft_timer_cancel(struct hrtimer *hrt, struct work_struct *work)
66
{
67
	hrtimer_cancel(hrt);
68 69
	if (work)
		cancel_work_sync(work);
70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
}

static irqreturn_t kvm_arch_timer_handler(int irq, void *dev_id)
{
	struct kvm_vcpu *vcpu = *(struct kvm_vcpu **)dev_id;

	/*
	 * We disable the timer in the world switch and let it be
	 * handled by kvm_timer_sync_hwstate(). Getting a timer
	 * interrupt at this point is a sure sign of some major
	 * breakage.
	 */
	pr_warn("Unexpected interrupt %d on vcpu %p\n", irq, vcpu);
	return IRQ_HANDLED;
}

86 87 88 89
/*
 * Work function for handling the backup timer that we schedule when a vcpu is
 * no longer running, but had a timer programmed to fire in the future.
 */
90 91 92 93 94
static void kvm_timer_inject_irq_work(struct work_struct *work)
{
	struct kvm_vcpu *vcpu;

	vcpu = container_of(work, struct kvm_vcpu, arch.timer_cpu.expired);
95

96 97 98 99
	/*
	 * If the vcpu is blocked we want to wake it up so that it will see
	 * the timer has expired when entering the guest.
	 */
100
	kvm_vcpu_wake_up(vcpu);
101 102
}

103
static u64 kvm_timer_compute_delta(struct arch_timer_context *timer_ctx)
104
{
105
	u64 cval, now;
106

107 108
	cval = timer_ctx->cnt_cval;
	now = kvm_phys_timer_read() - timer_ctx->cntvoff;
109 110 111 112 113 114 115 116 117 118 119 120 121 122

	if (now < cval) {
		u64 ns;

		ns = cyclecounter_cyc2ns(timecounter->cc,
					 cval - now,
					 timecounter->mask,
					 &timecounter->frac);
		return ns;
	}

	return 0;
}

123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
static bool kvm_timer_irq_can_fire(struct arch_timer_context *timer_ctx)
{
	return !(timer_ctx->cnt_ctl & ARCH_TIMER_CTRL_IT_MASK) &&
		(timer_ctx->cnt_ctl & ARCH_TIMER_CTRL_ENABLE);
}

/*
 * Returns the earliest expiration time in ns among guest timers.
 * Note that it will return 0 if none of timers can fire.
 */
static u64 kvm_timer_earliest_exp(struct kvm_vcpu *vcpu)
{
	u64 min_virt = ULLONG_MAX, min_phys = ULLONG_MAX;
	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
	struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);

	if (kvm_timer_irq_can_fire(vtimer))
		min_virt = kvm_timer_compute_delta(vtimer);

	if (kvm_timer_irq_can_fire(ptimer))
		min_phys = kvm_timer_compute_delta(ptimer);

	/* If none of timers can fire, then return 0 */
	if ((min_virt == ULLONG_MAX) && (min_phys == ULLONG_MAX))
		return 0;

	return min(min_virt, min_phys);
}

152
static enum hrtimer_restart kvm_bg_timer_expire(struct hrtimer *hrt)
153 154
{
	struct arch_timer_cpu *timer;
155 156 157
	struct kvm_vcpu *vcpu;
	u64 ns;

158
	timer = container_of(hrt, struct arch_timer_cpu, bg_timer);
159 160 161 162 163 164 165
	vcpu = container_of(timer, struct kvm_vcpu, arch.timer_cpu);

	/*
	 * Check that the timer has really expired from the guest's
	 * PoV (NTP on the host may have forced it to expire
	 * early). If we should have slept longer, restart it.
	 */
166
	ns = kvm_timer_earliest_exp(vcpu);
167 168 169 170 171
	if (unlikely(ns)) {
		hrtimer_forward_now(hrt, ns_to_ktime(ns));
		return HRTIMER_RESTART;
	}

172
	schedule_work(&timer->expired);
173 174 175
	return HRTIMER_NORESTART;
}

176 177 178 179 180 181
static enum hrtimer_restart kvm_phys_timer_expire(struct hrtimer *hrt)
{
	WARN(1, "Timer only used to ensure guest exit - unexpected event.");
	return HRTIMER_NORESTART;
}

182
bool kvm_timer_should_fire(struct arch_timer_context *timer_ctx)
183
{
184
	u64 cval, now;
185

186
	if (!kvm_timer_irq_can_fire(timer_ctx))
187 188
		return false;

189 190
	cval = timer_ctx->cnt_cval;
	now = kvm_phys_timer_read() - timer_ctx->cntvoff;
191 192 193 194

	return cval <= now;
}

195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
/*
 * Reflect the timer output level into the kvm_run structure
 */
void kvm_timer_update_run(struct kvm_vcpu *vcpu)
{
	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
	struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
	struct kvm_sync_regs *regs = &vcpu->run->s.regs;

	/* Populate the device bitmap with the timer states */
	regs->device_irq_level &= ~(KVM_ARM_DEV_EL1_VTIMER |
				    KVM_ARM_DEV_EL1_PTIMER);
	if (vtimer->irq.level)
		regs->device_irq_level |= KVM_ARM_DEV_EL1_VTIMER;
	if (ptimer->irq.level)
		regs->device_irq_level |= KVM_ARM_DEV_EL1_PTIMER;
}

213 214
static void kvm_timer_update_irq(struct kvm_vcpu *vcpu, bool new_level,
				 struct arch_timer_context *timer_ctx)
215 216 217
{
	int ret;

218 219 220 221
	timer_ctx->active_cleared_last = false;
	timer_ctx->irq.level = new_level;
	trace_kvm_timer_update_irq(vcpu->vcpu_id, timer_ctx->irq.irq,
				   timer_ctx->irq.level);
222

223 224 225
	if (likely(irqchip_in_kernel(vcpu->kvm))) {
		ret = kvm_vgic_inject_irq(vcpu->kvm, vcpu->vcpu_id,
					  timer_ctx->irq.irq,
226 227
					  timer_ctx->irq.level,
					  timer_ctx);
228 229
		WARN_ON(ret);
	}
230 231 232 233 234 235
}

/*
 * Check if there was a change in the timer state (should we raise or lower
 * the line level to the GIC).
 */
236
static void kvm_timer_update_state(struct kvm_vcpu *vcpu)
237 238
{
	struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
239
	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
240
	struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
241 242 243

	/*
	 * If userspace modified the timer registers via SET_ONE_REG before
244
	 * the vgic was initialized, we mustn't set the vtimer->irq.level value
245 246 247
	 * because the guest would never see the interrupt.  Instead wait
	 * until we call this function from kvm_timer_flush_hwstate.
	 */
248
	if (unlikely(!timer->enabled))
249
		return;
250

251 252
	if (kvm_timer_should_fire(vtimer) != vtimer->irq.level)
		kvm_timer_update_irq(vcpu, !vtimer->irq.level, vtimer);
253

254 255
	if (kvm_timer_should_fire(ptimer) != ptimer->irq.level)
		kvm_timer_update_irq(vcpu, !ptimer->irq.level, ptimer);
256 257
}

258
/* Schedule the background timer for the emulated timer. */
259
static void phys_timer_emulate(struct kvm_vcpu *vcpu,
260 261 262 263 264 265 266 267 268 269 270
			      struct arch_timer_context *timer_ctx)
{
	struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;

	if (kvm_timer_should_fire(timer_ctx))
		return;

	if (!kvm_timer_irq_can_fire(timer_ctx))
		return;

	/*  The timer has not yet expired, schedule a background timer */
271
	soft_timer_start(&timer->phys_timer, kvm_timer_compute_delta(timer_ctx));
272 273
}

274 275 276 277 278 279 280 281
/*
 * Schedule the background timer before calling kvm_vcpu_block, so that this
 * thread is removed from its waitqueue and made runnable when there's a timer
 * interrupt to handle.
 */
void kvm_timer_schedule(struct kvm_vcpu *vcpu)
{
	struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
282
	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
283
	struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
284 285

	/*
286
	 * No need to schedule a background timer if any guest timer has
287 288 289
	 * already expired, because kvm_vcpu_block will return before putting
	 * the thread to sleep.
	 */
290
	if (kvm_timer_should_fire(vtimer) || kvm_timer_should_fire(ptimer))
291 292 293
		return;

	/*
294
	 * If both timers are not capable of raising interrupts (disabled or
295 296
	 * masked), then there's no more work for us to do.
	 */
297
	if (!kvm_timer_irq_can_fire(vtimer) && !kvm_timer_irq_can_fire(ptimer))
298 299
		return;

300 301 302 303
	/*
	 * The guest timers have not yet expired, schedule a background timer.
	 * Set the earliest expiration time among the guest timers.
	 */
304
	soft_timer_start(&timer->bg_timer, kvm_timer_earliest_exp(vcpu));
305 306 307 308 309
}

void kvm_timer_unschedule(struct kvm_vcpu *vcpu)
{
	struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
310

311
	soft_timer_cancel(&timer->bg_timer, &timer->expired);
312 313
}

314
static void kvm_timer_flush_hwstate_vgic(struct kvm_vcpu *vcpu)
315
{
316
	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
317 318
	bool phys_active;
	int ret;
319

320
	/*
321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336
	* If we enter the guest with the virtual input level to the VGIC
	* asserted, then we have already told the VGIC what we need to, and
	* we don't need to exit from the guest until the guest deactivates
	* the already injected interrupt, so therefore we should set the
	* hardware active state to prevent unnecessary exits from the guest.
	*
	* Also, if we enter the guest with the virtual timer interrupt active,
	* then it must be active on the physical distributor, because we set
	* the HW bit and the guest must be able to deactivate the virtual and
	* physical interrupt at the same time.
	*
	* Conversely, if the virtual input level is deasserted and the virtual
	* interrupt is not active, then always clear the hardware active state
	* to ensure that hardware interrupts from the timer triggers a guest
	* exit.
	*/
337 338
	phys_active = vtimer->irq.level ||
			kvm_vgic_map_is_active(vcpu, vtimer->irq.irq);
339

340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359
	/*
	 * We want to avoid hitting the (re)distributor as much as
	 * possible, as this is a potentially expensive MMIO access
	 * (not to mention locks in the irq layer), and a solution for
	 * this is to cache the "active" state in memory.
	 *
	 * Things to consider: we cannot cache an "active set" state,
	 * because the HW can change this behind our back (it becomes
	 * "clear" in the HW). We must then restrict the caching to
	 * the "clear" state.
	 *
	 * The cache is invalidated on:
	 * - vcpu put, indicating that the HW cannot be trusted to be
	 *   in a sane state on the next vcpu load,
	 * - any change in the interrupt state
	 *
	 * Usage conditions:
	 * - cached value is "active clear"
	 * - value to be programmed is "active clear"
	 */
360
	if (vtimer->active_cleared_last && !phys_active)
361 362
		return;

363
	ret = irq_set_irqchip_state(host_vtimer_irq,
364 365 366
				    IRQCHIP_STATE_ACTIVE,
				    phys_active);
	WARN_ON(ret);
367

368
	vtimer->active_cleared_last = !phys_active;
369 370
}

371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423
bool kvm_timer_should_notify_user(struct kvm_vcpu *vcpu)
{
	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
	struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
	struct kvm_sync_regs *sregs = &vcpu->run->s.regs;
	bool vlevel, plevel;

	if (likely(irqchip_in_kernel(vcpu->kvm)))
		return false;

	vlevel = sregs->device_irq_level & KVM_ARM_DEV_EL1_VTIMER;
	plevel = sregs->device_irq_level & KVM_ARM_DEV_EL1_PTIMER;

	return vtimer->irq.level != vlevel ||
	       ptimer->irq.level != plevel;
}

static void kvm_timer_flush_hwstate_user(struct kvm_vcpu *vcpu)
{
	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);

	/*
	 * To prevent continuously exiting from the guest, we mask the
	 * physical interrupt such that the guest can make forward progress.
	 * Once we detect the output level being deasserted, we unmask the
	 * interrupt again so that we exit from the guest when the timer
	 * fires.
	*/
	if (vtimer->irq.level)
		disable_percpu_irq(host_vtimer_irq);
	else
		enable_percpu_irq(host_vtimer_irq, 0);
}

/**
 * kvm_timer_flush_hwstate - prepare timers before running the vcpu
 * @vcpu: The vcpu pointer
 *
 * Check if the virtual timer has expired while we were running in the host,
 * and inject an interrupt if that was the case, making sure the timer is
 * masked or disabled on the host so that we keep executing.  Also schedule a
 * software timer for the physical timer if it is enabled.
 */
void kvm_timer_flush_hwstate(struct kvm_vcpu *vcpu)
{
	struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;

	if (unlikely(!timer->enabled))
		return;

	kvm_timer_update_state(vcpu);

	/* Set the background timer for the physical timer emulation. */
424
	phys_timer_emulate(vcpu, vcpu_ptimer(vcpu));
425 426 427 428 429 430 431

	if (unlikely(!irqchip_in_kernel(vcpu->kvm)))
		kvm_timer_flush_hwstate_user(vcpu);
	else
		kvm_timer_flush_hwstate_vgic(vcpu);
}

432 433 434 435
/**
 * kvm_timer_sync_hwstate - sync timer state from cpu
 * @vcpu: The vcpu pointer
 *
436
 * Check if any of the timers have expired while we were running in the guest,
437
 * and inject an interrupt if that was the case.
438 439 440 441 442
 */
void kvm_timer_sync_hwstate(struct kvm_vcpu *vcpu)
{
	struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;

443 444 445 446
	/*
	 * This is to cancel the background timer for the physical timer
	 * emulation if it is set.
	 */
447
	soft_timer_cancel(&timer->phys_timer, NULL);
448

449 450 451 452 453
	/*
	 * The guest could have modified the timer registers or the timer
	 * could have expired, update the timer state.
	 */
	kvm_timer_update_state(vcpu);
454 455
}

456
int kvm_timer_vcpu_reset(struct kvm_vcpu *vcpu)
457
{
458
	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
459
	struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
460

461 462 463 464 465 466
	/*
	 * The bits in CNTV_CTL are architecturally reset to UNKNOWN for ARMv8
	 * and to 0 for ARMv7.  We provide an implementation that always
	 * resets the timer to be disabled and unmasked and is compliant with
	 * the ARMv7 architecture.
	 */
467
	vtimer->cnt_ctl = 0;
468
	ptimer->cnt_ctl = 0;
469
	kvm_timer_update_state(vcpu);
470

471
	return 0;
472 473
}

474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492
/* Make the updates of cntvoff for all vtimer contexts atomic */
static void update_vtimer_cntvoff(struct kvm_vcpu *vcpu, u64 cntvoff)
{
	int i;
	struct kvm *kvm = vcpu->kvm;
	struct kvm_vcpu *tmp;

	mutex_lock(&kvm->lock);
	kvm_for_each_vcpu(i, tmp, kvm)
		vcpu_vtimer(tmp)->cntvoff = cntvoff;

	/*
	 * When called from the vcpu create path, the CPU being created is not
	 * included in the loop above, so we just set it here as well.
	 */
	vcpu_vtimer(vcpu)->cntvoff = cntvoff;
	mutex_unlock(&kvm->lock);
}

493 494 495
void kvm_timer_vcpu_init(struct kvm_vcpu *vcpu)
{
	struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
496 497
	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
	struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
498

499 500
	/* Synchronize cntvoff across all vtimers of a VM. */
	update_vtimer_cntvoff(vcpu, kvm_phys_timer_read());
501
	vcpu_ptimer(vcpu)->cntvoff = 0;
502

503
	INIT_WORK(&timer->expired, kvm_timer_inject_irq_work);
504 505
	hrtimer_init(&timer->bg_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
	timer->bg_timer.function = kvm_bg_timer_expire;
506

507 508 509
	hrtimer_init(&timer->phys_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
	timer->phys_timer.function = kvm_phys_timer_expire;

510 511
	vtimer->irq.irq = default_vtimer_irq.irq;
	ptimer->irq.irq = default_ptimer_irq.irq;
512 513 514 515
}

static void kvm_timer_init_interrupt(void *info)
{
516
	enable_percpu_irq(host_vtimer_irq, host_vtimer_irq_flags);
517 518
}

519 520
int kvm_arm_timer_set_reg(struct kvm_vcpu *vcpu, u64 regid, u64 value)
{
521
	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
522 523 524

	switch (regid) {
	case KVM_REG_ARM_TIMER_CTL:
525
		vtimer->cnt_ctl = value;
526 527
		break;
	case KVM_REG_ARM_TIMER_CNT:
528
		update_vtimer_cntvoff(vcpu, kvm_phys_timer_read() - value);
529 530
		break;
	case KVM_REG_ARM_TIMER_CVAL:
531
		vtimer->cnt_cval = value;
532 533 534 535
		break;
	default:
		return -1;
	}
536 537

	kvm_timer_update_state(vcpu);
538 539 540 541 542
	return 0;
}

u64 kvm_arm_timer_get_reg(struct kvm_vcpu *vcpu, u64 regid)
{
543
	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
544 545 546

	switch (regid) {
	case KVM_REG_ARM_TIMER_CTL:
547
		return vtimer->cnt_ctl;
548
	case KVM_REG_ARM_TIMER_CNT:
549
		return kvm_phys_timer_read() - vtimer->cntvoff;
550
	case KVM_REG_ARM_TIMER_CVAL:
551
		return vtimer->cnt_cval;
552 553 554
	}
	return (u64)-1;
}
555

556
static int kvm_timer_starting_cpu(unsigned int cpu)
557
{
558 559
	kvm_timer_init_interrupt(NULL);
	return 0;
560 561
}

562 563 564 565 566
static int kvm_timer_dying_cpu(unsigned int cpu)
{
	disable_percpu_irq(host_vtimer_irq);
	return 0;
}
567 568 569

int kvm_timer_hyp_init(void)
{
570
	struct arch_timer_kvm_info *info;
571 572
	int err;

573 574
	info = arch_timer_get_kvm_info();
	timecounter = &info->timecounter;
575

576 577 578 579 580
	if (!timecounter->cc) {
		kvm_err("kvm_arch_timer: uninitialized timecounter\n");
		return -ENODEV;
	}

581 582 583
	if (info->virtual_irq <= 0) {
		kvm_err("kvm_arch_timer: invalid virtual timer IRQ: %d\n",
			info->virtual_irq);
584 585
		return -ENODEV;
	}
586
	host_vtimer_irq = info->virtual_irq;
587

588 589 590 591 592 593 594 595
	host_vtimer_irq_flags = irq_get_trigger_type(host_vtimer_irq);
	if (host_vtimer_irq_flags != IRQF_TRIGGER_HIGH &&
	    host_vtimer_irq_flags != IRQF_TRIGGER_LOW) {
		kvm_err("Invalid trigger for IRQ%d, assuming level low\n",
			host_vtimer_irq);
		host_vtimer_irq_flags = IRQF_TRIGGER_LOW;
	}

596
	err = request_percpu_irq(host_vtimer_irq, kvm_arch_timer_handler,
597 598 599
				 "kvm guest timer", kvm_get_running_vcpus());
	if (err) {
		kvm_err("kvm_arch_timer: can't request interrupt %d (%d)\n",
600
			host_vtimer_irq, err);
601
		return err;
602 603
	}

604
	kvm_info("virtual timer IRQ%d\n", host_vtimer_irq);
605

606
	cpuhp_setup_state(CPUHP_AP_KVM_ARM_TIMER_STARTING,
T
Thomas Gleixner 已提交
607
			  "kvm/arm/timer:starting", kvm_timer_starting_cpu,
608
			  kvm_timer_dying_cpu);
609 610 611 612 613 614
	return err;
}

void kvm_timer_vcpu_terminate(struct kvm_vcpu *vcpu)
{
	struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
615
	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
616

617
	soft_timer_cancel(&timer->bg_timer, &timer->expired);
618
	soft_timer_cancel(&timer->phys_timer, NULL);
619
	kvm_vgic_unmap_phys_irq(vcpu, vtimer->irq.irq);
620 621
}

622
static bool timer_irqs_are_valid(struct kvm_vcpu *vcpu)
623 624
{
	int vtimer_irq, ptimer_irq;
625
	int i, ret;
626 627

	vtimer_irq = vcpu_vtimer(vcpu)->irq.irq;
628 629 630
	ret = kvm_vgic_set_owner(vcpu, vtimer_irq, vcpu_vtimer(vcpu));
	if (ret)
		return false;
631

632 633 634
	ptimer_irq = vcpu_ptimer(vcpu)->irq.irq;
	ret = kvm_vgic_set_owner(vcpu, ptimer_irq, vcpu_ptimer(vcpu));
	if (ret)
635 636
		return false;

637
	kvm_for_each_vcpu(i, vcpu, vcpu->kvm) {
638 639 640 641 642 643 644 645
		if (vcpu_vtimer(vcpu)->irq.irq != vtimer_irq ||
		    vcpu_ptimer(vcpu)->irq.irq != ptimer_irq)
			return false;
	}

	return true;
}

646
int kvm_timer_enable(struct kvm_vcpu *vcpu)
647
{
648
	struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
649
	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
650 651 652 653 654 655 656 657
	struct irq_desc *desc;
	struct irq_data *data;
	int phys_irq;
	int ret;

	if (timer->enabled)
		return 0;

658 659 660 661 662 663 664
	/* Without a VGIC we do not map virtual IRQs to physical IRQs */
	if (!irqchip_in_kernel(vcpu->kvm))
		goto no_vgic;

	if (!vgic_initialized(vcpu->kvm))
		return -ENODEV;

665
	if (!timer_irqs_are_valid(vcpu)) {
666 667 668 669
		kvm_debug("incorrectly configured timer irqs\n");
		return -EINVAL;
	}

670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688
	/*
	 * Find the physical IRQ number corresponding to the host_vtimer_irq
	 */
	desc = irq_to_desc(host_vtimer_irq);
	if (!desc) {
		kvm_err("%s: no interrupt descriptor\n", __func__);
		return -EINVAL;
	}

	data = irq_desc_get_irq_data(desc);
	while (data->parent_data)
		data = data->parent_data;

	phys_irq = data->hwirq;

	/*
	 * Tell the VGIC that the virtual interrupt is tied to a
	 * physical interrupt. We do that once per VCPU.
	 */
689
	ret = kvm_vgic_map_phys_irq(vcpu, vtimer->irq.irq, phys_irq);
690 691 692
	if (ret)
		return ret;

693
no_vgic:
694
	timer->enabled = 1;
695
	return 0;
696
}
697

698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718
/*
 * On VHE system, we only need to configure trap on physical timer and counter
 * accesses in EL0 and EL1 once, not for every world switch.
 * The host kernel runs at EL2 with HCR_EL2.TGE == 1,
 * and this makes those bits have no effect for the host kernel execution.
 */
void kvm_timer_init_vhe(void)
{
	/* When HCR_EL2.E2H ==1, EL1PCEN and EL1PCTEN are shifted by 10 */
	u32 cnthctl_shift = 10;
	u64 val;

	/*
	 * Disallow physical timer access for the guest.
	 * Physical counter access is allowed.
	 */
	val = read_sysreg(cnthctl_el2);
	val &= ~(CNTHCTL_EL1PCEN << cnthctl_shift);
	val |= (CNTHCTL_EL1PCTEN << cnthctl_shift);
	write_sysreg(val, cnthctl_el2);
}
719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794

static void set_timer_irqs(struct kvm *kvm, int vtimer_irq, int ptimer_irq)
{
	struct kvm_vcpu *vcpu;
	int i;

	kvm_for_each_vcpu(i, vcpu, kvm) {
		vcpu_vtimer(vcpu)->irq.irq = vtimer_irq;
		vcpu_ptimer(vcpu)->irq.irq = ptimer_irq;
	}
}

int kvm_arm_timer_set_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr)
{
	int __user *uaddr = (int __user *)(long)attr->addr;
	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
	struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
	int irq;

	if (!irqchip_in_kernel(vcpu->kvm))
		return -EINVAL;

	if (get_user(irq, uaddr))
		return -EFAULT;

	if (!(irq_is_ppi(irq)))
		return -EINVAL;

	if (vcpu->arch.timer_cpu.enabled)
		return -EBUSY;

	switch (attr->attr) {
	case KVM_ARM_VCPU_TIMER_IRQ_VTIMER:
		set_timer_irqs(vcpu->kvm, irq, ptimer->irq.irq);
		break;
	case KVM_ARM_VCPU_TIMER_IRQ_PTIMER:
		set_timer_irqs(vcpu->kvm, vtimer->irq.irq, irq);
		break;
	default:
		return -ENXIO;
	}

	return 0;
}

int kvm_arm_timer_get_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr)
{
	int __user *uaddr = (int __user *)(long)attr->addr;
	struct arch_timer_context *timer;
	int irq;

	switch (attr->attr) {
	case KVM_ARM_VCPU_TIMER_IRQ_VTIMER:
		timer = vcpu_vtimer(vcpu);
		break;
	case KVM_ARM_VCPU_TIMER_IRQ_PTIMER:
		timer = vcpu_ptimer(vcpu);
		break;
	default:
		return -ENXIO;
	}

	irq = timer->irq.irq;
	return put_user(irq, uaddr);
}

int kvm_arm_timer_has_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr)
{
	switch (attr->attr) {
	case KVM_ARM_VCPU_TIMER_IRQ_VTIMER:
	case KVM_ARM_VCPU_TIMER_IRQ_PTIMER:
		return 0;
	}

	return -ENXIO;
}