arch_timer.c 24.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
/*
 * Copyright (C) 2012 ARM Ltd.
 * Author: Marc Zyngier <marc.zyngier@arm.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
 */

#include <linux/cpu.h>
#include <linux/kvm.h>
#include <linux/kvm_host.h>
#include <linux/interrupt.h>
23
#include <linux/irq.h>
24
#include <linux/uaccess.h>
25

26
#include <clocksource/arm_arch_timer.h>
27
#include <asm/arch_timer.h>
28
#include <asm/kvm_hyp.h>
29

30 31
#include <kvm/arm_vgic.h>
#include <kvm/arm_arch_timer.h>
32

33 34
#include "trace.h"

35
static struct timecounter *timecounter;
36
static unsigned int host_vtimer_irq;
37
static u32 host_vtimer_irq_flags;
38

39 40 41 42 43 44 45 46 47 48
static const struct kvm_irq_level default_ptimer_irq = {
	.irq	= 30,
	.level	= 1,
};

static const struct kvm_irq_level default_vtimer_irq = {
	.irq	= 27,
	.level	= 1,
};

49 50 51
static bool kvm_timer_irq_can_fire(struct arch_timer_context *timer_ctx);
static void kvm_timer_update_irq(struct kvm_vcpu *vcpu, bool new_level,
				 struct arch_timer_context *timer_ctx);
52

53
u64 kvm_phys_timer_read(void)
54 55 56 57
{
	return timecounter->cc->read(timecounter->cc);
}

58
static void soft_timer_start(struct hrtimer *hrt, u64 ns)
59
{
60
	hrtimer_start(hrt, ktime_add_ns(ktime_get(), ns),
61 62 63
		      HRTIMER_MODE_ABS);
}

64
static void soft_timer_cancel(struct hrtimer *hrt, struct work_struct *work)
65
{
66
	hrtimer_cancel(hrt);
67 68
	if (work)
		cancel_work_sync(work);
69 70
}

71
static void kvm_vtimer_update_mask_user(struct kvm_vcpu *vcpu)
72
{
73
	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
74 75

	/*
76 77 78 79 80 81 82
	 * When using a userspace irqchip with the architected timers, we must
	 * prevent continuously exiting from the guest, and therefore mask the
	 * physical interrupt by disabling it on the host interrupt controller
	 * when the virtual level is high, such that the guest can make
	 * forward progress.  Once we detect the output level being
	 * de-asserted, we unmask the interrupt again so that we exit from the
	 * guest when the timer fires.
83
	 */
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
	if (vtimer->irq.level)
		disable_percpu_irq(host_vtimer_irq);
	else
		enable_percpu_irq(host_vtimer_irq, 0);
}

static irqreturn_t kvm_arch_timer_handler(int irq, void *dev_id)
{
	struct kvm_vcpu *vcpu = *(struct kvm_vcpu **)dev_id;
	struct arch_timer_context *vtimer;

	if (!vcpu) {
		pr_warn_once("Spurious arch timer IRQ on non-VCPU thread\n");
		return IRQ_NONE;
	}
	vtimer = vcpu_vtimer(vcpu);

	if (!vtimer->irq.level) {
		vtimer->cnt_ctl = read_sysreg_el0(cntv_ctl);
		if (kvm_timer_irq_can_fire(vtimer))
			kvm_timer_update_irq(vcpu, true, vtimer);
	}

	if (unlikely(!irqchip_in_kernel(vcpu->kvm)))
		kvm_vtimer_update_mask_user(vcpu);

110 111 112
	return IRQ_HANDLED;
}

113 114 115 116
/*
 * Work function for handling the backup timer that we schedule when a vcpu is
 * no longer running, but had a timer programmed to fire in the future.
 */
117 118 119 120 121
static void kvm_timer_inject_irq_work(struct work_struct *work)
{
	struct kvm_vcpu *vcpu;

	vcpu = container_of(work, struct kvm_vcpu, arch.timer_cpu.expired);
122

123 124 125 126
	/*
	 * If the vcpu is blocked we want to wake it up so that it will see
	 * the timer has expired when entering the guest.
	 */
127
	kvm_vcpu_wake_up(vcpu);
128 129
}

130
static u64 kvm_timer_compute_delta(struct arch_timer_context *timer_ctx)
131
{
132
	u64 cval, now;
133

134 135
	cval = timer_ctx->cnt_cval;
	now = kvm_phys_timer_read() - timer_ctx->cntvoff;
136 137 138 139 140 141 142 143 144 145 146 147 148 149

	if (now < cval) {
		u64 ns;

		ns = cyclecounter_cyc2ns(timecounter->cc,
					 cval - now,
					 timecounter->mask,
					 &timecounter->frac);
		return ns;
	}

	return 0;
}

150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178
static bool kvm_timer_irq_can_fire(struct arch_timer_context *timer_ctx)
{
	return !(timer_ctx->cnt_ctl & ARCH_TIMER_CTRL_IT_MASK) &&
		(timer_ctx->cnt_ctl & ARCH_TIMER_CTRL_ENABLE);
}

/*
 * Returns the earliest expiration time in ns among guest timers.
 * Note that it will return 0 if none of timers can fire.
 */
static u64 kvm_timer_earliest_exp(struct kvm_vcpu *vcpu)
{
	u64 min_virt = ULLONG_MAX, min_phys = ULLONG_MAX;
	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
	struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);

	if (kvm_timer_irq_can_fire(vtimer))
		min_virt = kvm_timer_compute_delta(vtimer);

	if (kvm_timer_irq_can_fire(ptimer))
		min_phys = kvm_timer_compute_delta(ptimer);

	/* If none of timers can fire, then return 0 */
	if ((min_virt == ULLONG_MAX) && (min_phys == ULLONG_MAX))
		return 0;

	return min(min_virt, min_phys);
}

179
static enum hrtimer_restart kvm_bg_timer_expire(struct hrtimer *hrt)
180 181
{
	struct arch_timer_cpu *timer;
182 183 184
	struct kvm_vcpu *vcpu;
	u64 ns;

185
	timer = container_of(hrt, struct arch_timer_cpu, bg_timer);
186 187 188 189 190 191 192
	vcpu = container_of(timer, struct kvm_vcpu, arch.timer_cpu);

	/*
	 * Check that the timer has really expired from the guest's
	 * PoV (NTP on the host may have forced it to expire
	 * early). If we should have slept longer, restart it.
	 */
193
	ns = kvm_timer_earliest_exp(vcpu);
194 195 196 197 198
	if (unlikely(ns)) {
		hrtimer_forward_now(hrt, ns_to_ktime(ns));
		return HRTIMER_RESTART;
	}

199
	schedule_work(&timer->expired);
200 201 202
	return HRTIMER_NORESTART;
}

203 204
static enum hrtimer_restart kvm_phys_timer_expire(struct hrtimer *hrt)
{
205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
	struct arch_timer_context *ptimer;
	struct arch_timer_cpu *timer;
	struct kvm_vcpu *vcpu;
	u64 ns;

	timer = container_of(hrt, struct arch_timer_cpu, phys_timer);
	vcpu = container_of(timer, struct kvm_vcpu, arch.timer_cpu);
	ptimer = vcpu_ptimer(vcpu);

	/*
	 * Check that the timer has really expired from the guest's
	 * PoV (NTP on the host may have forced it to expire
	 * early). If not ready, schedule for a later time.
	 */
	ns = kvm_timer_compute_delta(ptimer);
	if (unlikely(ns)) {
		hrtimer_forward_now(hrt, ns_to_ktime(ns));
		return HRTIMER_RESTART;
	}

	kvm_timer_update_irq(vcpu, true, ptimer);
226 227 228
	return HRTIMER_NORESTART;
}

229
bool kvm_timer_should_fire(struct arch_timer_context *timer_ctx)
230
{
231
	u64 cval, now;
232

233
	if (!kvm_timer_irq_can_fire(timer_ctx))
234 235
		return false;

236 237
	cval = timer_ctx->cnt_cval;
	now = kvm_phys_timer_read() - timer_ctx->cntvoff;
238 239 240 241

	return cval <= now;
}

242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259
/*
 * Reflect the timer output level into the kvm_run structure
 */
void kvm_timer_update_run(struct kvm_vcpu *vcpu)
{
	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
	struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
	struct kvm_sync_regs *regs = &vcpu->run->s.regs;

	/* Populate the device bitmap with the timer states */
	regs->device_irq_level &= ~(KVM_ARM_DEV_EL1_VTIMER |
				    KVM_ARM_DEV_EL1_PTIMER);
	if (vtimer->irq.level)
		regs->device_irq_level |= KVM_ARM_DEV_EL1_VTIMER;
	if (ptimer->irq.level)
		regs->device_irq_level |= KVM_ARM_DEV_EL1_PTIMER;
}

260 261
static void kvm_timer_update_irq(struct kvm_vcpu *vcpu, bool new_level,
				 struct arch_timer_context *timer_ctx)
262 263 264
{
	int ret;

265 266 267
	timer_ctx->irq.level = new_level;
	trace_kvm_timer_update_irq(vcpu->vcpu_id, timer_ctx->irq.irq,
				   timer_ctx->irq.level);
268

269 270 271
	if (likely(irqchip_in_kernel(vcpu->kvm))) {
		ret = kvm_vgic_inject_irq(vcpu->kvm, vcpu->vcpu_id,
					  timer_ctx->irq.irq,
272 273
					  timer_ctx->irq.level,
					  timer_ctx);
274 275
		WARN_ON(ret);
	}
276 277
}

278
/* Schedule the background timer for the emulated timer. */
279
static void phys_timer_emulate(struct kvm_vcpu *vcpu)
280 281
{
	struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
282
	struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
283

284 285 286 287 288 289 290
	/*
	 * If the timer can fire now we have just raised the IRQ line and we
	 * don't need to have a soft timer scheduled for the future.  If the
	 * timer cannot fire at all, then we also don't need a soft timer.
	 */
	if (kvm_timer_should_fire(ptimer) || !kvm_timer_irq_can_fire(ptimer)) {
		soft_timer_cancel(&timer->phys_timer, NULL);
291
		return;
292
	}
293

294
	soft_timer_start(&timer->phys_timer, kvm_timer_compute_delta(ptimer));
295 296
}

297
/*
298 299 300
 * Check if there was a change in the timer state, so that we should either
 * raise or lower the line level to the GIC or schedule a background timer to
 * emulate the physical timer.
301
 */
302
static void kvm_timer_update_state(struct kvm_vcpu *vcpu)
303 304
{
	struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
305
	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
306
	struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
307

308
	if (unlikely(!timer->enabled))
309
		return;
310

311 312
	if (kvm_timer_should_fire(vtimer) != vtimer->irq.level)
		kvm_timer_update_irq(vcpu, !vtimer->irq.level, vtimer);
313

314 315
	if (kvm_timer_should_fire(ptimer) != ptimer->irq.level)
		kvm_timer_update_irq(vcpu, !ptimer->irq.level, ptimer);
316 317

	phys_timer_emulate(vcpu);
318 319
}

320
static void vtimer_save_state(struct kvm_vcpu *vcpu)
321 322 323
{
	struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
324 325 326 327 328 329
	unsigned long flags;

	local_irq_save(flags);

	if (!vtimer->loaded)
		goto out;
330 331 332 333 334 335 336 337

	if (timer->enabled) {
		vtimer->cnt_ctl = read_sysreg_el0(cntv_ctl);
		vtimer->cnt_cval = read_sysreg_el0(cntv_cval);
	}

	/* Disable the virtual timer */
	write_sysreg_el0(0, cntv_ctl);
338 339 340 341

	vtimer->loaded = false;
out:
	local_irq_restore(flags);
342 343
}

344 345 346 347 348 349 350 351
/*
 * Schedule the background timer before calling kvm_vcpu_block, so that this
 * thread is removed from its waitqueue and made runnable when there's a timer
 * interrupt to handle.
 */
void kvm_timer_schedule(struct kvm_vcpu *vcpu)
{
	struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
352
	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
353
	struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
354

355 356
	vtimer_save_state(vcpu);

357
	/*
358
	 * No need to schedule a background timer if any guest timer has
359 360 361
	 * already expired, because kvm_vcpu_block will return before putting
	 * the thread to sleep.
	 */
362
	if (kvm_timer_should_fire(vtimer) || kvm_timer_should_fire(ptimer))
363 364 365
		return;

	/*
366
	 * If both timers are not capable of raising interrupts (disabled or
367 368
	 * masked), then there's no more work for us to do.
	 */
369
	if (!kvm_timer_irq_can_fire(vtimer) && !kvm_timer_irq_can_fire(ptimer))
370 371
		return;

372 373 374 375
	/*
	 * The guest timers have not yet expired, schedule a background timer.
	 * Set the earliest expiration time among the guest timers.
	 */
376
	soft_timer_start(&timer->bg_timer, kvm_timer_earliest_exp(vcpu));
377 378
}

379
static void vtimer_restore_state(struct kvm_vcpu *vcpu)
380 381 382
{
	struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
383 384 385 386 387 388
	unsigned long flags;

	local_irq_save(flags);

	if (vtimer->loaded)
		goto out;
389 390 391 392 393 394

	if (timer->enabled) {
		write_sysreg_el0(vtimer->cnt_cval, cntv_cval);
		isb();
		write_sysreg_el0(vtimer->cnt_ctl, cntv_ctl);
	}
395 396 397 398

	vtimer->loaded = true;
out:
	local_irq_restore(flags);
399 400
}

401 402 403
void kvm_timer_unschedule(struct kvm_vcpu *vcpu)
{
	struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
404

405 406
	vtimer_restore_state(vcpu);

407
	soft_timer_cancel(&timer->bg_timer, &timer->expired);
408 409
}

410 411 412 413 414 415 416 417 418 419 420 421 422 423 424
static void set_cntvoff(u64 cntvoff)
{
	u32 low = lower_32_bits(cntvoff);
	u32 high = upper_32_bits(cntvoff);

	/*
	 * Since kvm_call_hyp doesn't fully support the ARM PCS especially on
	 * 32-bit systems, but rather passes register by register shifted one
	 * place (we put the function address in r0/x0), we cannot simply pass
	 * a 64-bit value as an argument, but have to split the value in two
	 * 32-bit halves.
	 */
	kvm_call_hyp(__kvm_timer_set_cntvoff, low, high);
}

425
static void kvm_timer_vcpu_load_vgic(struct kvm_vcpu *vcpu)
426
{
427
	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
428 429
	bool phys_active;
	int ret;
430

431
	phys_active = vtimer->irq.level ||
432
		      kvm_vgic_map_is_active(vcpu, vtimer->irq.irq);
433

434
	ret = irq_set_irqchip_state(host_vtimer_irq,
435 436 437
				    IRQCHIP_STATE_ACTIVE,
				    phys_active);
	WARN_ON(ret);
438
}
439

440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463
static void kvm_timer_vcpu_load_user(struct kvm_vcpu *vcpu)
{
	kvm_vtimer_update_mask_user(vcpu);
}

void kvm_timer_vcpu_load(struct kvm_vcpu *vcpu)
{
	struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);

	if (unlikely(!timer->enabled))
		return;

	if (unlikely(!irqchip_in_kernel(vcpu->kvm)))
		kvm_timer_vcpu_load_user(vcpu);
	else
		kvm_timer_vcpu_load_vgic(vcpu);

	set_cntvoff(vtimer->cntvoff);

	vtimer_restore_state(vcpu);

	if (has_vhe())
		disable_el1_phys_timer_access();
464 465 466

	/* Set the background timer for the physical timer emulation. */
	phys_timer_emulate(vcpu);
467 468
}

469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485
bool kvm_timer_should_notify_user(struct kvm_vcpu *vcpu)
{
	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
	struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
	struct kvm_sync_regs *sregs = &vcpu->run->s.regs;
	bool vlevel, plevel;

	if (likely(irqchip_in_kernel(vcpu->kvm)))
		return false;

	vlevel = sregs->device_irq_level & KVM_ARM_DEV_EL1_VTIMER;
	plevel = sregs->device_irq_level & KVM_ARM_DEV_EL1_PTIMER;

	return vtimer->irq.level != vlevel ||
	       ptimer->irq.level != plevel;
}

486 487 488
void kvm_timer_vcpu_put(struct kvm_vcpu *vcpu)
{
	struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
489

490 491 492 493 494 495 496 497
	if (unlikely(!timer->enabled))
		return;

	if (has_vhe())
		enable_el1_phys_timer_access();

	vtimer_save_state(vcpu);

498 499 500 501 502 503 504 505 506 507 508
	/*
	 * Cancel the physical timer emulation, because the only case where we
	 * need it after a vcpu_put is in the context of a sleeping VCPU, and
	 * in that case we already factor in the deadline for the physical
	 * timer when scheduling the bg_timer.
	 *
	 * In any case, we re-schedule the hrtimer for the physical timer when
	 * coming back to the VCPU thread in kvm_timer_vcpu_load().
	 */
	soft_timer_cancel(&timer->phys_timer, NULL);

509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539
	/*
	 * The kernel may decide to run userspace after calling vcpu_put, so
	 * we reset cntvoff to 0 to ensure a consistent read between user
	 * accesses to the virtual counter and kernel access to the physical
	 * counter.
	 */
	set_cntvoff(0);
}

static void unmask_vtimer_irq(struct kvm_vcpu *vcpu)
{
	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);

	if (unlikely(!irqchip_in_kernel(vcpu->kvm))) {
		kvm_vtimer_update_mask_user(vcpu);
		return;
	}

	/*
	 * If the guest disabled the timer without acking the interrupt, then
	 * we must make sure the physical and virtual active states are in
	 * sync by deactivating the physical interrupt, because otherwise we
	 * wouldn't see the next timer interrupt in the host.
	 */
	if (!kvm_vgic_map_is_active(vcpu, vtimer->irq.irq)) {
		int ret;
		ret = irq_set_irqchip_state(host_vtimer_irq,
					    IRQCHIP_STATE_ACTIVE,
					    false);
		WARN_ON(ret);
	}
540 541
}

542 543 544 545
/**
 * kvm_timer_sync_hwstate - sync timer state from cpu
 * @vcpu: The vcpu pointer
 *
546
 * Check if any of the timers have expired while we were running in the guest,
547
 * and inject an interrupt if that was the case.
548 549 550
 */
void kvm_timer_sync_hwstate(struct kvm_vcpu *vcpu)
{
551
	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
552

553
	/*
554 555 556
	 * If we entered the guest with the vtimer output asserted we have to
	 * check if the guest has modified the timer so that we should lower
	 * the line at this point.
557
	 */
558 559 560 561 562 563 564 565
	if (vtimer->irq.level) {
		vtimer->cnt_ctl = read_sysreg_el0(cntv_ctl);
		vtimer->cnt_cval = read_sysreg_el0(cntv_cval);
		if (!kvm_timer_should_fire(vtimer)) {
			kvm_timer_update_irq(vcpu, false, vtimer);
			unmask_vtimer_irq(vcpu);
		}
	}
566 567
}

568
int kvm_timer_vcpu_reset(struct kvm_vcpu *vcpu)
569
{
570
	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
571
	struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
572

573 574 575 576 577 578
	/*
	 * The bits in CNTV_CTL are architecturally reset to UNKNOWN for ARMv8
	 * and to 0 for ARMv7.  We provide an implementation that always
	 * resets the timer to be disabled and unmasked and is compliant with
	 * the ARMv7 architecture.
	 */
579
	vtimer->cnt_ctl = 0;
580
	ptimer->cnt_ctl = 0;
581
	kvm_timer_update_state(vcpu);
582

583
	return 0;
584 585
}

586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604
/* Make the updates of cntvoff for all vtimer contexts atomic */
static void update_vtimer_cntvoff(struct kvm_vcpu *vcpu, u64 cntvoff)
{
	int i;
	struct kvm *kvm = vcpu->kvm;
	struct kvm_vcpu *tmp;

	mutex_lock(&kvm->lock);
	kvm_for_each_vcpu(i, tmp, kvm)
		vcpu_vtimer(tmp)->cntvoff = cntvoff;

	/*
	 * When called from the vcpu create path, the CPU being created is not
	 * included in the loop above, so we just set it here as well.
	 */
	vcpu_vtimer(vcpu)->cntvoff = cntvoff;
	mutex_unlock(&kvm->lock);
}

605 606 607
void kvm_timer_vcpu_init(struct kvm_vcpu *vcpu)
{
	struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
608 609
	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
	struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
610

611 612
	/* Synchronize cntvoff across all vtimers of a VM. */
	update_vtimer_cntvoff(vcpu, kvm_phys_timer_read());
613
	vcpu_ptimer(vcpu)->cntvoff = 0;
614

615
	INIT_WORK(&timer->expired, kvm_timer_inject_irq_work);
616 617
	hrtimer_init(&timer->bg_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
	timer->bg_timer.function = kvm_bg_timer_expire;
618

619 620 621
	hrtimer_init(&timer->phys_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
	timer->phys_timer.function = kvm_phys_timer_expire;

622 623
	vtimer->irq.irq = default_vtimer_irq.irq;
	ptimer->irq.irq = default_ptimer_irq.irq;
624 625 626 627
}

static void kvm_timer_init_interrupt(void *info)
{
628
	enable_percpu_irq(host_vtimer_irq, host_vtimer_irq_flags);
629 630
}

631 632
int kvm_arm_timer_set_reg(struct kvm_vcpu *vcpu, u64 regid, u64 value)
{
633
	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
634
	struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
635 636 637

	switch (regid) {
	case KVM_REG_ARM_TIMER_CTL:
638
		vtimer->cnt_ctl = value & ~ARCH_TIMER_CTRL_IT_STAT;
639 640
		break;
	case KVM_REG_ARM_TIMER_CNT:
641
		update_vtimer_cntvoff(vcpu, kvm_phys_timer_read() - value);
642 643
		break;
	case KVM_REG_ARM_TIMER_CVAL:
644
		vtimer->cnt_cval = value;
645
		break;
646 647 648 649 650 651 652
	case KVM_REG_ARM_PTIMER_CTL:
		ptimer->cnt_ctl = value & ~ARCH_TIMER_CTRL_IT_STAT;
		break;
	case KVM_REG_ARM_PTIMER_CVAL:
		ptimer->cnt_cval = value;
		break;

653 654 655
	default:
		return -1;
	}
656 657

	kvm_timer_update_state(vcpu);
658 659 660
	return 0;
}

661 662 663 664 665 666 667 668 669 670 671 672 673 674
static u64 read_timer_ctl(struct arch_timer_context *timer)
{
	/*
	 * Set ISTATUS bit if it's expired.
	 * Note that according to ARMv8 ARM Issue A.k, ISTATUS bit is
	 * UNKNOWN when ENABLE bit is 0, so we chose to set ISTATUS bit
	 * regardless of ENABLE bit for our implementation convenience.
	 */
	if (!kvm_timer_compute_delta(timer))
		return timer->cnt_ctl | ARCH_TIMER_CTRL_IT_STAT;
	else
		return timer->cnt_ctl;
}

675 676
u64 kvm_arm_timer_get_reg(struct kvm_vcpu *vcpu, u64 regid)
{
677
	struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
678
	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
679 680 681

	switch (regid) {
	case KVM_REG_ARM_TIMER_CTL:
682
		return read_timer_ctl(vtimer);
683
	case KVM_REG_ARM_TIMER_CNT:
684
		return kvm_phys_timer_read() - vtimer->cntvoff;
685
	case KVM_REG_ARM_TIMER_CVAL:
686
		return vtimer->cnt_cval;
687 688 689 690 691 692
	case KVM_REG_ARM_PTIMER_CTL:
		return read_timer_ctl(ptimer);
	case KVM_REG_ARM_PTIMER_CVAL:
		return ptimer->cnt_cval;
	case KVM_REG_ARM_PTIMER_CNT:
		return kvm_phys_timer_read();
693 694 695
	}
	return (u64)-1;
}
696

697
static int kvm_timer_starting_cpu(unsigned int cpu)
698
{
699 700
	kvm_timer_init_interrupt(NULL);
	return 0;
701 702
}

703 704 705 706 707
static int kvm_timer_dying_cpu(unsigned int cpu)
{
	disable_percpu_irq(host_vtimer_irq);
	return 0;
}
708 709 710

int kvm_timer_hyp_init(void)
{
711
	struct arch_timer_kvm_info *info;
712 713
	int err;

714 715
	info = arch_timer_get_kvm_info();
	timecounter = &info->timecounter;
716

717 718 719 720 721
	if (!timecounter->cc) {
		kvm_err("kvm_arch_timer: uninitialized timecounter\n");
		return -ENODEV;
	}

722 723 724
	if (info->virtual_irq <= 0) {
		kvm_err("kvm_arch_timer: invalid virtual timer IRQ: %d\n",
			info->virtual_irq);
725 726
		return -ENODEV;
	}
727
	host_vtimer_irq = info->virtual_irq;
728

729 730 731 732 733 734 735 736
	host_vtimer_irq_flags = irq_get_trigger_type(host_vtimer_irq);
	if (host_vtimer_irq_flags != IRQF_TRIGGER_HIGH &&
	    host_vtimer_irq_flags != IRQF_TRIGGER_LOW) {
		kvm_err("Invalid trigger for IRQ%d, assuming level low\n",
			host_vtimer_irq);
		host_vtimer_irq_flags = IRQF_TRIGGER_LOW;
	}

737
	err = request_percpu_irq(host_vtimer_irq, kvm_arch_timer_handler,
738 739 740
				 "kvm guest timer", kvm_get_running_vcpus());
	if (err) {
		kvm_err("kvm_arch_timer: can't request interrupt %d (%d)\n",
741
			host_vtimer_irq, err);
742
		return err;
743 744
	}

745 746 747 748 749 750
	err = irq_set_vcpu_affinity(host_vtimer_irq, kvm_get_running_vcpus());
	if (err) {
		kvm_err("kvm_arch_timer: error setting vcpu affinity\n");
		goto out_free_irq;
	}

751
	kvm_info("virtual timer IRQ%d\n", host_vtimer_irq);
752

753
	cpuhp_setup_state(CPUHP_AP_KVM_ARM_TIMER_STARTING,
T
Thomas Gleixner 已提交
754
			  "kvm/arm/timer:starting", kvm_timer_starting_cpu,
755
			  kvm_timer_dying_cpu);
756 757 758
	return 0;
out_free_irq:
	free_percpu_irq(host_vtimer_irq, kvm_get_running_vcpus());
759 760 761 762 763 764
	return err;
}

void kvm_timer_vcpu_terminate(struct kvm_vcpu *vcpu)
{
	struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
765
	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
766

767
	soft_timer_cancel(&timer->bg_timer, &timer->expired);
768
	soft_timer_cancel(&timer->phys_timer, NULL);
769
	kvm_vgic_unmap_phys_irq(vcpu, vtimer->irq.irq);
770 771
}

772
static bool timer_irqs_are_valid(struct kvm_vcpu *vcpu)
773 774
{
	int vtimer_irq, ptimer_irq;
775
	int i, ret;
776 777

	vtimer_irq = vcpu_vtimer(vcpu)->irq.irq;
778 779 780
	ret = kvm_vgic_set_owner(vcpu, vtimer_irq, vcpu_vtimer(vcpu));
	if (ret)
		return false;
781

782 783 784
	ptimer_irq = vcpu_ptimer(vcpu)->irq.irq;
	ret = kvm_vgic_set_owner(vcpu, ptimer_irq, vcpu_ptimer(vcpu));
	if (ret)
785 786
		return false;

787
	kvm_for_each_vcpu(i, vcpu, vcpu->kvm) {
788 789 790 791 792 793 794 795
		if (vcpu_vtimer(vcpu)->irq.irq != vtimer_irq ||
		    vcpu_ptimer(vcpu)->irq.irq != ptimer_irq)
			return false;
	}

	return true;
}

796
int kvm_timer_enable(struct kvm_vcpu *vcpu)
797
{
798
	struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
799
	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
800 801 802 803 804 805 806 807
	struct irq_desc *desc;
	struct irq_data *data;
	int phys_irq;
	int ret;

	if (timer->enabled)
		return 0;

808 809 810 811 812 813 814
	/* Without a VGIC we do not map virtual IRQs to physical IRQs */
	if (!irqchip_in_kernel(vcpu->kvm))
		goto no_vgic;

	if (!vgic_initialized(vcpu->kvm))
		return -ENODEV;

815
	if (!timer_irqs_are_valid(vcpu)) {
816 817 818 819
		kvm_debug("incorrectly configured timer irqs\n");
		return -EINVAL;
	}

820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838
	/*
	 * Find the physical IRQ number corresponding to the host_vtimer_irq
	 */
	desc = irq_to_desc(host_vtimer_irq);
	if (!desc) {
		kvm_err("%s: no interrupt descriptor\n", __func__);
		return -EINVAL;
	}

	data = irq_desc_get_irq_data(desc);
	while (data->parent_data)
		data = data->parent_data;

	phys_irq = data->hwirq;

	/*
	 * Tell the VGIC that the virtual interrupt is tied to a
	 * physical interrupt. We do that once per VCPU.
	 */
839
	ret = kvm_vgic_map_phys_irq(vcpu, vtimer->irq.irq, phys_irq);
840 841 842
	if (ret)
		return ret;

843
no_vgic:
844
	timer->enabled = 1;
845
	return 0;
846
}
847

848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868
/*
 * On VHE system, we only need to configure trap on physical timer and counter
 * accesses in EL0 and EL1 once, not for every world switch.
 * The host kernel runs at EL2 with HCR_EL2.TGE == 1,
 * and this makes those bits have no effect for the host kernel execution.
 */
void kvm_timer_init_vhe(void)
{
	/* When HCR_EL2.E2H ==1, EL1PCEN and EL1PCTEN are shifted by 10 */
	u32 cnthctl_shift = 10;
	u64 val;

	/*
	 * Disallow physical timer access for the guest.
	 * Physical counter access is allowed.
	 */
	val = read_sysreg(cnthctl_el2);
	val &= ~(CNTHCTL_EL1PCEN << cnthctl_shift);
	val |= (CNTHCTL_EL1PCTEN << cnthctl_shift);
	write_sysreg(val, cnthctl_el2);
}
869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944

static void set_timer_irqs(struct kvm *kvm, int vtimer_irq, int ptimer_irq)
{
	struct kvm_vcpu *vcpu;
	int i;

	kvm_for_each_vcpu(i, vcpu, kvm) {
		vcpu_vtimer(vcpu)->irq.irq = vtimer_irq;
		vcpu_ptimer(vcpu)->irq.irq = ptimer_irq;
	}
}

int kvm_arm_timer_set_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr)
{
	int __user *uaddr = (int __user *)(long)attr->addr;
	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
	struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
	int irq;

	if (!irqchip_in_kernel(vcpu->kvm))
		return -EINVAL;

	if (get_user(irq, uaddr))
		return -EFAULT;

	if (!(irq_is_ppi(irq)))
		return -EINVAL;

	if (vcpu->arch.timer_cpu.enabled)
		return -EBUSY;

	switch (attr->attr) {
	case KVM_ARM_VCPU_TIMER_IRQ_VTIMER:
		set_timer_irqs(vcpu->kvm, irq, ptimer->irq.irq);
		break;
	case KVM_ARM_VCPU_TIMER_IRQ_PTIMER:
		set_timer_irqs(vcpu->kvm, vtimer->irq.irq, irq);
		break;
	default:
		return -ENXIO;
	}

	return 0;
}

int kvm_arm_timer_get_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr)
{
	int __user *uaddr = (int __user *)(long)attr->addr;
	struct arch_timer_context *timer;
	int irq;

	switch (attr->attr) {
	case KVM_ARM_VCPU_TIMER_IRQ_VTIMER:
		timer = vcpu_vtimer(vcpu);
		break;
	case KVM_ARM_VCPU_TIMER_IRQ_PTIMER:
		timer = vcpu_ptimer(vcpu);
		break;
	default:
		return -ENXIO;
	}

	irq = timer->irq.irq;
	return put_user(irq, uaddr);
}

int kvm_arm_timer_has_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr)
{
	switch (attr->attr) {
	case KVM_ARM_VCPU_TIMER_IRQ_VTIMER:
	case KVM_ARM_VCPU_TIMER_IRQ_PTIMER:
		return 0;
	}

	return -ENXIO;
}