arch_timer.c 13.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
/*
 * Copyright (C) 2012 ARM Ltd.
 * Author: Marc Zyngier <marc.zyngier@arm.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
 */

#include <linux/cpu.h>
#include <linux/kvm.h>
#include <linux/kvm_host.h>
#include <linux/interrupt.h>
23
#include <linux/irq.h>
24

25
#include <clocksource/arm_arch_timer.h>
26
#include <asm/arch_timer.h>
27
#include <asm/kvm_hyp.h>
28

29 30
#include <kvm/arm_vgic.h>
#include <kvm/arm_arch_timer.h>
31

32 33
#include "trace.h"

34
static struct timecounter *timecounter;
35
static unsigned int host_vtimer_irq;
36
static u32 host_vtimer_irq_flags;
37

38 39 40 41 42
void kvm_timer_vcpu_put(struct kvm_vcpu *vcpu)
{
	vcpu->arch.timer_cpu.active_cleared_last = false;
}

43
static u64 kvm_phys_timer_read(void)
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
{
	return timecounter->cc->read(timecounter->cc);
}

static bool timer_is_armed(struct arch_timer_cpu *timer)
{
	return timer->armed;
}

/* timer_arm: as in "arm the timer", not as in ARM the company */
static void timer_arm(struct arch_timer_cpu *timer, u64 ns)
{
	timer->armed = true;
	hrtimer_start(&timer->timer, ktime_add_ns(ktime_get(), ns),
		      HRTIMER_MODE_ABS);
}

static void timer_disarm(struct arch_timer_cpu *timer)
{
	if (timer_is_armed(timer)) {
		hrtimer_cancel(&timer->timer);
		cancel_work_sync(&timer->expired);
		timer->armed = false;
	}
}

static irqreturn_t kvm_arch_timer_handler(int irq, void *dev_id)
{
	struct kvm_vcpu *vcpu = *(struct kvm_vcpu **)dev_id;

	/*
	 * We disable the timer in the world switch and let it be
	 * handled by kvm_timer_sync_hwstate(). Getting a timer
	 * interrupt at this point is a sure sign of some major
	 * breakage.
	 */
	pr_warn("Unexpected interrupt %d on vcpu %p\n", irq, vcpu);
	return IRQ_HANDLED;
}

84 85 86 87
/*
 * Work function for handling the backup timer that we schedule when a vcpu is
 * no longer running, but had a timer programmed to fire in the future.
 */
88 89 90 91 92
static void kvm_timer_inject_irq_work(struct work_struct *work)
{
	struct kvm_vcpu *vcpu;

	vcpu = container_of(work, struct kvm_vcpu, arch.timer_cpu.expired);
93

94 95 96 97 98
	/*
	 * If the vcpu is blocked we want to wake it up so that it will see
	 * the timer has expired when entering the guest.
	 */
	kvm_vcpu_kick(vcpu);
99 100
}

101 102
static u64 kvm_timer_compute_delta(struct kvm_vcpu *vcpu)
{
103
	u64 cval, now;
104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120

	cval = vcpu->arch.timer_cpu.cntv_cval;
	now = kvm_phys_timer_read() - vcpu->kvm->arch.timer.cntvoff;

	if (now < cval) {
		u64 ns;

		ns = cyclecounter_cyc2ns(timecounter->cc,
					 cval - now,
					 timecounter->mask,
					 &timecounter->frac);
		return ns;
	}

	return 0;
}

121 122 123
static enum hrtimer_restart kvm_timer_expire(struct hrtimer *hrt)
{
	struct arch_timer_cpu *timer;
124 125 126
	struct kvm_vcpu *vcpu;
	u64 ns;

127
	timer = container_of(hrt, struct arch_timer_cpu, timer);
128 129 130 131 132 133 134 135 136 137 138 139 140
	vcpu = container_of(timer, struct kvm_vcpu, arch.timer_cpu);

	/*
	 * Check that the timer has really expired from the guest's
	 * PoV (NTP on the host may have forced it to expire
	 * early). If we should have slept longer, restart it.
	 */
	ns = kvm_timer_compute_delta(vcpu);
	if (unlikely(ns)) {
		hrtimer_forward_now(hrt, ns_to_ktime(ns));
		return HRTIMER_RESTART;
	}

141
	schedule_work(&timer->expired);
142 143 144
	return HRTIMER_NORESTART;
}

145 146 147 148 149
static bool kvm_timer_irq_can_fire(struct kvm_vcpu *vcpu)
{
	struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;

	return !(timer->cntv_ctl & ARCH_TIMER_CTRL_IT_MASK) &&
150
		(timer->cntv_ctl & ARCH_TIMER_CTRL_ENABLE);
151 152
}

153 154 155
bool kvm_timer_should_fire(struct kvm_vcpu *vcpu)
{
	struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
156
	u64 cval, now;
157

158
	if (!kvm_timer_irq_can_fire(vcpu))
159 160 161 162 163 164 165 166
		return false;

	cval = timer->cntv_cval;
	now = kvm_phys_timer_read() - vcpu->kvm->arch.timer.cntvoff;

	return cval <= now;
}

167 168 169 170 171 172 173
static void kvm_timer_update_irq(struct kvm_vcpu *vcpu, bool new_level)
{
	int ret;
	struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;

	BUG_ON(!vgic_initialized(vcpu->kvm));

174
	timer->active_cleared_last = false;
175
	timer->irq.level = new_level;
176
	trace_kvm_timer_update_irq(vcpu->vcpu_id, timer->irq.irq,
177
				   timer->irq.level);
178
	ret = kvm_vgic_inject_mapped_irq(vcpu->kvm, vcpu->vcpu_id,
179
					 timer->irq.irq,
180 181 182 183 184 185 186 187
					 timer->irq.level);
	WARN_ON(ret);
}

/*
 * Check if there was a change in the timer state (should we raise or lower
 * the line level to the GIC).
 */
188
static int kvm_timer_update_state(struct kvm_vcpu *vcpu)
189 190 191 192 193 194 195 196 197
{
	struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;

	/*
	 * If userspace modified the timer registers via SET_ONE_REG before
	 * the vgic was initialized, we mustn't set the timer->irq.level value
	 * because the guest would never see the interrupt.  Instead wait
	 * until we call this function from kvm_timer_flush_hwstate.
	 */
198
	if (!vgic_initialized(vcpu->kvm) || !timer->enabled)
199
		return -ENODEV;
200 201 202

	if (kvm_timer_should_fire(vcpu) != timer->irq.level)
		kvm_timer_update_irq(vcpu, !timer->irq.level);
203 204

	return 0;
205 206
}

207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
/*
 * Schedule the background timer before calling kvm_vcpu_block, so that this
 * thread is removed from its waitqueue and made runnable when there's a timer
 * interrupt to handle.
 */
void kvm_timer_schedule(struct kvm_vcpu *vcpu)
{
	struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;

	BUG_ON(timer_is_armed(timer));

	/*
	 * No need to schedule a background timer if the guest timer has
	 * already expired, because kvm_vcpu_block will return before putting
	 * the thread to sleep.
	 */
	if (kvm_timer_should_fire(vcpu))
		return;

	/*
	 * If the timer is not capable of raising interrupts (disabled or
	 * masked), then there's no more work for us to do.
	 */
	if (!kvm_timer_irq_can_fire(vcpu))
		return;

	/*  The timer has not yet expired, schedule a background timer */
234
	timer_arm(timer, kvm_timer_compute_delta(vcpu));
235 236 237 238 239 240 241 242
}

void kvm_timer_unschedule(struct kvm_vcpu *vcpu)
{
	struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
	timer_disarm(timer);
}

243 244 245 246
/**
 * kvm_timer_flush_hwstate - prepare to move the virt timer to the cpu
 * @vcpu: The vcpu pointer
 *
247 248
 * Check if the virtual timer has expired while we were running in the host,
 * and inject an interrupt if that was the case.
249 250 251 252
 */
void kvm_timer_flush_hwstate(struct kvm_vcpu *vcpu)
{
	struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
253 254
	bool phys_active;
	int ret;
255

256 257
	if (kvm_timer_update_state(vcpu))
		return;
258 259

	/*
260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275
	* If we enter the guest with the virtual input level to the VGIC
	* asserted, then we have already told the VGIC what we need to, and
	* we don't need to exit from the guest until the guest deactivates
	* the already injected interrupt, so therefore we should set the
	* hardware active state to prevent unnecessary exits from the guest.
	*
	* Also, if we enter the guest with the virtual timer interrupt active,
	* then it must be active on the physical distributor, because we set
	* the HW bit and the guest must be able to deactivate the virtual and
	* physical interrupt at the same time.
	*
	* Conversely, if the virtual input level is deasserted and the virtual
	* interrupt is not active, then always clear the hardware active state
	* to ensure that hardware interrupts from the timer triggers a guest
	* exit.
	*/
276
	phys_active = timer->irq.level ||
277
			kvm_vgic_map_is_active(vcpu, timer->irq.irq);
278

279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301
	/*
	 * We want to avoid hitting the (re)distributor as much as
	 * possible, as this is a potentially expensive MMIO access
	 * (not to mention locks in the irq layer), and a solution for
	 * this is to cache the "active" state in memory.
	 *
	 * Things to consider: we cannot cache an "active set" state,
	 * because the HW can change this behind our back (it becomes
	 * "clear" in the HW). We must then restrict the caching to
	 * the "clear" state.
	 *
	 * The cache is invalidated on:
	 * - vcpu put, indicating that the HW cannot be trusted to be
	 *   in a sane state on the next vcpu load,
	 * - any change in the interrupt state
	 *
	 * Usage conditions:
	 * - cached value is "active clear"
	 * - value to be programmed is "active clear"
	 */
	if (timer->active_cleared_last && !phys_active)
		return;

302
	ret = irq_set_irqchip_state(host_vtimer_irq,
303 304 305
				    IRQCHIP_STATE_ACTIVE,
				    phys_active);
	WARN_ON(ret);
306 307

	timer->active_cleared_last = !phys_active;
308 309 310 311 312 313
}

/**
 * kvm_timer_sync_hwstate - sync timer state from cpu
 * @vcpu: The vcpu pointer
 *
314 315
 * Check if the virtual timer has expired while we were running in the guest,
 * and inject an interrupt if that was the case.
316 317 318 319 320 321 322
 */
void kvm_timer_sync_hwstate(struct kvm_vcpu *vcpu)
{
	struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;

	BUG_ON(timer_is_armed(timer));

323 324 325 326 327
	/*
	 * The guest could have modified the timer registers or the timer
	 * could have expired, update the timer state.
	 */
	kvm_timer_update_state(vcpu);
328 329
}

330 331
int kvm_timer_vcpu_reset(struct kvm_vcpu *vcpu,
			 const struct kvm_irq_level *irq)
332 333 334 335 336 337 338 339 340
{
	struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;

	/*
	 * The vcpu timer irq number cannot be determined in
	 * kvm_timer_vcpu_init() because it is called much before
	 * kvm_vcpu_set_target(). To handle this, we determine
	 * vcpu timer irq number when the vcpu is reset.
	 */
341
	timer->irq.irq = irq->irq;
342

343 344 345 346 347 348 349
	/*
	 * The bits in CNTV_CTL are architecturally reset to UNKNOWN for ARMv8
	 * and to 0 for ARMv7.  We provide an implementation that always
	 * resets the timer to be disabled and unmasked and is compliant with
	 * the ARMv7 architecture.
	 */
	timer->cntv_ctl = 0;
350
	kvm_timer_update_state(vcpu);
351

352
	return 0;
353 354
}

355 356 357 358 359 360 361 362 363 364 365
void kvm_timer_vcpu_init(struct kvm_vcpu *vcpu)
{
	struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;

	INIT_WORK(&timer->expired, kvm_timer_inject_irq_work);
	hrtimer_init(&timer->timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
	timer->timer.function = kvm_timer_expire;
}

static void kvm_timer_init_interrupt(void *info)
{
366
	enable_percpu_irq(host_vtimer_irq, host_vtimer_irq_flags);
367 368
}

369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385
int kvm_arm_timer_set_reg(struct kvm_vcpu *vcpu, u64 regid, u64 value)
{
	struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;

	switch (regid) {
	case KVM_REG_ARM_TIMER_CTL:
		timer->cntv_ctl = value;
		break;
	case KVM_REG_ARM_TIMER_CNT:
		vcpu->kvm->arch.timer.cntvoff = kvm_phys_timer_read() - value;
		break;
	case KVM_REG_ARM_TIMER_CVAL:
		timer->cntv_cval = value;
		break;
	default:
		return -1;
	}
386 387

	kvm_timer_update_state(vcpu);
388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404
	return 0;
}

u64 kvm_arm_timer_get_reg(struct kvm_vcpu *vcpu, u64 regid)
{
	struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;

	switch (regid) {
	case KVM_REG_ARM_TIMER_CTL:
		return timer->cntv_ctl;
	case KVM_REG_ARM_TIMER_CNT:
		return kvm_phys_timer_read() - vcpu->kvm->arch.timer.cntvoff;
	case KVM_REG_ARM_TIMER_CVAL:
		return timer->cntv_cval;
	}
	return (u64)-1;
}
405

406
static int kvm_timer_starting_cpu(unsigned int cpu)
407
{
408 409
	kvm_timer_init_interrupt(NULL);
	return 0;
410 411
}

412 413 414 415 416
static int kvm_timer_dying_cpu(unsigned int cpu)
{
	disable_percpu_irq(host_vtimer_irq);
	return 0;
}
417 418 419

int kvm_timer_hyp_init(void)
{
420
	struct arch_timer_kvm_info *info;
421 422
	int err;

423 424
	info = arch_timer_get_kvm_info();
	timecounter = &info->timecounter;
425

426 427 428 429 430
	if (!timecounter->cc) {
		kvm_err("kvm_arch_timer: uninitialized timecounter\n");
		return -ENODEV;
	}

431 432 433
	if (info->virtual_irq <= 0) {
		kvm_err("kvm_arch_timer: invalid virtual timer IRQ: %d\n",
			info->virtual_irq);
434 435
		return -ENODEV;
	}
436
	host_vtimer_irq = info->virtual_irq;
437

438 439 440 441 442 443 444 445
	host_vtimer_irq_flags = irq_get_trigger_type(host_vtimer_irq);
	if (host_vtimer_irq_flags != IRQF_TRIGGER_HIGH &&
	    host_vtimer_irq_flags != IRQF_TRIGGER_LOW) {
		kvm_err("Invalid trigger for IRQ%d, assuming level low\n",
			host_vtimer_irq);
		host_vtimer_irq_flags = IRQF_TRIGGER_LOW;
	}

446
	err = request_percpu_irq(host_vtimer_irq, kvm_arch_timer_handler,
447 448 449
				 "kvm guest timer", kvm_get_running_vcpus());
	if (err) {
		kvm_err("kvm_arch_timer: can't request interrupt %d (%d)\n",
450
			host_vtimer_irq, err);
451
		return err;
452 453
	}

454
	kvm_info("virtual timer IRQ%d\n", host_vtimer_irq);
455

456
	cpuhp_setup_state(CPUHP_AP_KVM_ARM_TIMER_STARTING,
T
Thomas Gleixner 已提交
457
			  "kvm/arm/timer:starting", kvm_timer_starting_cpu,
458
			  kvm_timer_dying_cpu);
459 460 461 462 463 464 465 466
	return err;
}

void kvm_timer_vcpu_terminate(struct kvm_vcpu *vcpu)
{
	struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;

	timer_disarm(timer);
467
	kvm_vgic_unmap_phys_irq(vcpu, timer->irq.irq);
468 469
}

470
int kvm_timer_enable(struct kvm_vcpu *vcpu)
471
{
472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503
	struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
	struct irq_desc *desc;
	struct irq_data *data;
	int phys_irq;
	int ret;

	if (timer->enabled)
		return 0;

	/*
	 * Find the physical IRQ number corresponding to the host_vtimer_irq
	 */
	desc = irq_to_desc(host_vtimer_irq);
	if (!desc) {
		kvm_err("%s: no interrupt descriptor\n", __func__);
		return -EINVAL;
	}

	data = irq_desc_get_irq_data(desc);
	while (data->parent_data)
		data = data->parent_data;

	phys_irq = data->hwirq;

	/*
	 * Tell the VGIC that the virtual interrupt is tied to a
	 * physical interrupt. We do that once per VCPU.
	 */
	ret = kvm_vgic_map_phys_irq(vcpu, timer->irq.irq, phys_irq);
	if (ret)
		return ret;

504
	timer->enabled = 1;
505 506

	return 0;
507
}
508

509 510 511
void kvm_timer_init(struct kvm *kvm)
{
	kvm->arch.timer.cntvoff = kvm_phys_timer_read();
512
}
513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534

/*
 * On VHE system, we only need to configure trap on physical timer and counter
 * accesses in EL0 and EL1 once, not for every world switch.
 * The host kernel runs at EL2 with HCR_EL2.TGE == 1,
 * and this makes those bits have no effect for the host kernel execution.
 */
void kvm_timer_init_vhe(void)
{
	/* When HCR_EL2.E2H ==1, EL1PCEN and EL1PCTEN are shifted by 10 */
	u32 cnthctl_shift = 10;
	u64 val;

	/*
	 * Disallow physical timer access for the guest.
	 * Physical counter access is allowed.
	 */
	val = read_sysreg(cnthctl_el2);
	val &= ~(CNTHCTL_EL1PCEN << cnthctl_shift);
	val |= (CNTHCTL_EL1PCTEN << cnthctl_shift);
	write_sysreg(val, cnthctl_el2);
}