arch_timer.c 18.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
/*
 * Copyright (C) 2012 ARM Ltd.
 * Author: Marc Zyngier <marc.zyngier@arm.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
 */

#include <linux/cpu.h>
#include <linux/kvm.h>
#include <linux/kvm_host.h>
#include <linux/interrupt.h>
23
#include <linux/irq.h>
24

25
#include <clocksource/arm_arch_timer.h>
26
#include <asm/arch_timer.h>
27
#include <asm/kvm_hyp.h>
28

29 30
#include <kvm/arm_vgic.h>
#include <kvm/arm_arch_timer.h>
31

32 33
#include "trace.h"

34
static struct timecounter *timecounter;
35
static unsigned int host_vtimer_irq;
36
static u32 host_vtimer_irq_flags;
37

38 39
void kvm_timer_vcpu_put(struct kvm_vcpu *vcpu)
{
40
	vcpu_vtimer(vcpu)->active_cleared_last = false;
41 42
}

43
u64 kvm_phys_timer_read(void)
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
{
	return timecounter->cc->read(timecounter->cc);
}

static bool timer_is_armed(struct arch_timer_cpu *timer)
{
	return timer->armed;
}

/* timer_arm: as in "arm the timer", not as in ARM the company */
static void timer_arm(struct arch_timer_cpu *timer, u64 ns)
{
	timer->armed = true;
	hrtimer_start(&timer->timer, ktime_add_ns(ktime_get(), ns),
		      HRTIMER_MODE_ABS);
}

static void timer_disarm(struct arch_timer_cpu *timer)
{
	if (timer_is_armed(timer)) {
		hrtimer_cancel(&timer->timer);
		cancel_work_sync(&timer->expired);
		timer->armed = false;
	}
}

static irqreturn_t kvm_arch_timer_handler(int irq, void *dev_id)
{
	struct kvm_vcpu *vcpu = *(struct kvm_vcpu **)dev_id;

	/*
	 * We disable the timer in the world switch and let it be
	 * handled by kvm_timer_sync_hwstate(). Getting a timer
	 * interrupt at this point is a sure sign of some major
	 * breakage.
	 */
	pr_warn("Unexpected interrupt %d on vcpu %p\n", irq, vcpu);
	return IRQ_HANDLED;
}

84 85 86 87
/*
 * Work function for handling the backup timer that we schedule when a vcpu is
 * no longer running, but had a timer programmed to fire in the future.
 */
88 89 90 91 92
static void kvm_timer_inject_irq_work(struct work_struct *work)
{
	struct kvm_vcpu *vcpu;

	vcpu = container_of(work, struct kvm_vcpu, arch.timer_cpu.expired);
93

94 95 96 97 98
	/*
	 * If the vcpu is blocked we want to wake it up so that it will see
	 * the timer has expired when entering the guest.
	 */
	kvm_vcpu_kick(vcpu);
99 100
}

101
static u64 kvm_timer_compute_delta(struct arch_timer_context *timer_ctx)
102
{
103
	u64 cval, now;
104

105 106
	cval = timer_ctx->cnt_cval;
	now = kvm_phys_timer_read() - timer_ctx->cntvoff;
107 108 109 110 111 112 113 114 115 116 117 118 119 120

	if (now < cval) {
		u64 ns;

		ns = cyclecounter_cyc2ns(timecounter->cc,
					 cval - now,
					 timecounter->mask,
					 &timecounter->frac);
		return ns;
	}

	return 0;
}

121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
static bool kvm_timer_irq_can_fire(struct arch_timer_context *timer_ctx)
{
	return !(timer_ctx->cnt_ctl & ARCH_TIMER_CTRL_IT_MASK) &&
		(timer_ctx->cnt_ctl & ARCH_TIMER_CTRL_ENABLE);
}

/*
 * Returns the earliest expiration time in ns among guest timers.
 * Note that it will return 0 if none of timers can fire.
 */
static u64 kvm_timer_earliest_exp(struct kvm_vcpu *vcpu)
{
	u64 min_virt = ULLONG_MAX, min_phys = ULLONG_MAX;
	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
	struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);

	if (kvm_timer_irq_can_fire(vtimer))
		min_virt = kvm_timer_compute_delta(vtimer);

	if (kvm_timer_irq_can_fire(ptimer))
		min_phys = kvm_timer_compute_delta(ptimer);

	/* If none of timers can fire, then return 0 */
	if ((min_virt == ULLONG_MAX) && (min_phys == ULLONG_MAX))
		return 0;

	return min(min_virt, min_phys);
}

150 151 152
static enum hrtimer_restart kvm_timer_expire(struct hrtimer *hrt)
{
	struct arch_timer_cpu *timer;
153 154 155
	struct kvm_vcpu *vcpu;
	u64 ns;

156
	timer = container_of(hrt, struct arch_timer_cpu, timer);
157 158 159 160 161 162 163
	vcpu = container_of(timer, struct kvm_vcpu, arch.timer_cpu);

	/*
	 * Check that the timer has really expired from the guest's
	 * PoV (NTP on the host may have forced it to expire
	 * early). If we should have slept longer, restart it.
	 */
164
	ns = kvm_timer_earliest_exp(vcpu);
165 166 167 168 169
	if (unlikely(ns)) {
		hrtimer_forward_now(hrt, ns_to_ktime(ns));
		return HRTIMER_RESTART;
	}

170
	schedule_work(&timer->expired);
171 172 173
	return HRTIMER_NORESTART;
}

174
bool kvm_timer_should_fire(struct arch_timer_context *timer_ctx)
175
{
176
	u64 cval, now;
177

178
	if (!kvm_timer_irq_can_fire(timer_ctx))
179 180
		return false;

181 182
	cval = timer_ctx->cnt_cval;
	now = kvm_phys_timer_read() - timer_ctx->cntvoff;
183 184 185 186

	return cval <= now;
}

187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
/*
 * Reflect the timer output level into the kvm_run structure
 */
void kvm_timer_update_run(struct kvm_vcpu *vcpu)
{
	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
	struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
	struct kvm_sync_regs *regs = &vcpu->run->s.regs;

	/* Populate the device bitmap with the timer states */
	regs->device_irq_level &= ~(KVM_ARM_DEV_EL1_VTIMER |
				    KVM_ARM_DEV_EL1_PTIMER);
	if (vtimer->irq.level)
		regs->device_irq_level |= KVM_ARM_DEV_EL1_VTIMER;
	if (ptimer->irq.level)
		regs->device_irq_level |= KVM_ARM_DEV_EL1_PTIMER;
}

205 206
static void kvm_timer_update_irq(struct kvm_vcpu *vcpu, bool new_level,
				 struct arch_timer_context *timer_ctx)
207 208 209
{
	int ret;

210 211 212 213
	timer_ctx->active_cleared_last = false;
	timer_ctx->irq.level = new_level;
	trace_kvm_timer_update_irq(vcpu->vcpu_id, timer_ctx->irq.irq,
				   timer_ctx->irq.level);
214

215 216 217 218 219 220
	if (likely(irqchip_in_kernel(vcpu->kvm))) {
		ret = kvm_vgic_inject_irq(vcpu->kvm, vcpu->vcpu_id,
					  timer_ctx->irq.irq,
					  timer_ctx->irq.level);
		WARN_ON(ret);
	}
221 222 223 224 225 226
}

/*
 * Check if there was a change in the timer state (should we raise or lower
 * the line level to the GIC).
 */
227
static void kvm_timer_update_state(struct kvm_vcpu *vcpu)
228 229
{
	struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
230
	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
231
	struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
232 233 234

	/*
	 * If userspace modified the timer registers via SET_ONE_REG before
235
	 * the vgic was initialized, we mustn't set the vtimer->irq.level value
236 237 238
	 * because the guest would never see the interrupt.  Instead wait
	 * until we call this function from kvm_timer_flush_hwstate.
	 */
239
	if (unlikely(!timer->enabled))
240
		return;
241

242 243
	if (kvm_timer_should_fire(vtimer) != vtimer->irq.level)
		kvm_timer_update_irq(vcpu, !vtimer->irq.level, vtimer);
244

245 246
	if (kvm_timer_should_fire(ptimer) != ptimer->irq.level)
		kvm_timer_update_irq(vcpu, !ptimer->irq.level, ptimer);
247 248
}

249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
/* Schedule the background timer for the emulated timer. */
static void kvm_timer_emulate(struct kvm_vcpu *vcpu,
			      struct arch_timer_context *timer_ctx)
{
	struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;

	if (kvm_timer_should_fire(timer_ctx))
		return;

	if (!kvm_timer_irq_can_fire(timer_ctx))
		return;

	/*  The timer has not yet expired, schedule a background timer */
	timer_arm(timer, kvm_timer_compute_delta(timer_ctx));
}

265 266 267 268 269 270 271 272
/*
 * Schedule the background timer before calling kvm_vcpu_block, so that this
 * thread is removed from its waitqueue and made runnable when there's a timer
 * interrupt to handle.
 */
void kvm_timer_schedule(struct kvm_vcpu *vcpu)
{
	struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
273
	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
274
	struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
275 276 277 278

	BUG_ON(timer_is_armed(timer));

	/*
279
	 * No need to schedule a background timer if any guest timer has
280 281 282
	 * already expired, because kvm_vcpu_block will return before putting
	 * the thread to sleep.
	 */
283
	if (kvm_timer_should_fire(vtimer) || kvm_timer_should_fire(ptimer))
284 285 286
		return;

	/*
287
	 * If both timers are not capable of raising interrupts (disabled or
288 289
	 * masked), then there's no more work for us to do.
	 */
290
	if (!kvm_timer_irq_can_fire(vtimer) && !kvm_timer_irq_can_fire(ptimer))
291 292
		return;

293 294 295 296 297
	/*
	 * The guest timers have not yet expired, schedule a background timer.
	 * Set the earliest expiration time among the guest timers.
	 */
	timer_arm(timer, kvm_timer_earliest_exp(vcpu));
298 299 300 301 302 303 304 305
}

void kvm_timer_unschedule(struct kvm_vcpu *vcpu)
{
	struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
	timer_disarm(timer);
}

306
static void kvm_timer_flush_hwstate_vgic(struct kvm_vcpu *vcpu)
307
{
308
	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
309 310
	bool phys_active;
	int ret;
311

312
	/*
313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328
	* If we enter the guest with the virtual input level to the VGIC
	* asserted, then we have already told the VGIC what we need to, and
	* we don't need to exit from the guest until the guest deactivates
	* the already injected interrupt, so therefore we should set the
	* hardware active state to prevent unnecessary exits from the guest.
	*
	* Also, if we enter the guest with the virtual timer interrupt active,
	* then it must be active on the physical distributor, because we set
	* the HW bit and the guest must be able to deactivate the virtual and
	* physical interrupt at the same time.
	*
	* Conversely, if the virtual input level is deasserted and the virtual
	* interrupt is not active, then always clear the hardware active state
	* to ensure that hardware interrupts from the timer triggers a guest
	* exit.
	*/
329 330
	phys_active = vtimer->irq.level ||
			kvm_vgic_map_is_active(vcpu, vtimer->irq.irq);
331

332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351
	/*
	 * We want to avoid hitting the (re)distributor as much as
	 * possible, as this is a potentially expensive MMIO access
	 * (not to mention locks in the irq layer), and a solution for
	 * this is to cache the "active" state in memory.
	 *
	 * Things to consider: we cannot cache an "active set" state,
	 * because the HW can change this behind our back (it becomes
	 * "clear" in the HW). We must then restrict the caching to
	 * the "clear" state.
	 *
	 * The cache is invalidated on:
	 * - vcpu put, indicating that the HW cannot be trusted to be
	 *   in a sane state on the next vcpu load,
	 * - any change in the interrupt state
	 *
	 * Usage conditions:
	 * - cached value is "active clear"
	 * - value to be programmed is "active clear"
	 */
352
	if (vtimer->active_cleared_last && !phys_active)
353 354
		return;

355
	ret = irq_set_irqchip_state(host_vtimer_irq,
356 357 358
				    IRQCHIP_STATE_ACTIVE,
				    phys_active);
	WARN_ON(ret);
359

360
	vtimer->active_cleared_last = !phys_active;
361 362
}

363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423
bool kvm_timer_should_notify_user(struct kvm_vcpu *vcpu)
{
	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
	struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
	struct kvm_sync_regs *sregs = &vcpu->run->s.regs;
	bool vlevel, plevel;

	if (likely(irqchip_in_kernel(vcpu->kvm)))
		return false;

	vlevel = sregs->device_irq_level & KVM_ARM_DEV_EL1_VTIMER;
	plevel = sregs->device_irq_level & KVM_ARM_DEV_EL1_PTIMER;

	return vtimer->irq.level != vlevel ||
	       ptimer->irq.level != plevel;
}

static void kvm_timer_flush_hwstate_user(struct kvm_vcpu *vcpu)
{
	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);

	/*
	 * To prevent continuously exiting from the guest, we mask the
	 * physical interrupt such that the guest can make forward progress.
	 * Once we detect the output level being deasserted, we unmask the
	 * interrupt again so that we exit from the guest when the timer
	 * fires.
	*/
	if (vtimer->irq.level)
		disable_percpu_irq(host_vtimer_irq);
	else
		enable_percpu_irq(host_vtimer_irq, 0);
}

/**
 * kvm_timer_flush_hwstate - prepare timers before running the vcpu
 * @vcpu: The vcpu pointer
 *
 * Check if the virtual timer has expired while we were running in the host,
 * and inject an interrupt if that was the case, making sure the timer is
 * masked or disabled on the host so that we keep executing.  Also schedule a
 * software timer for the physical timer if it is enabled.
 */
void kvm_timer_flush_hwstate(struct kvm_vcpu *vcpu)
{
	struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;

	if (unlikely(!timer->enabled))
		return;

	kvm_timer_update_state(vcpu);

	/* Set the background timer for the physical timer emulation. */
	kvm_timer_emulate(vcpu, vcpu_ptimer(vcpu));

	if (unlikely(!irqchip_in_kernel(vcpu->kvm)))
		kvm_timer_flush_hwstate_user(vcpu);
	else
		kvm_timer_flush_hwstate_vgic(vcpu);
}

424 425 426 427
/**
 * kvm_timer_sync_hwstate - sync timer state from cpu
 * @vcpu: The vcpu pointer
 *
428
 * Check if any of the timers have expired while we were running in the guest,
429
 * and inject an interrupt if that was the case.
430 431 432 433 434
 */
void kvm_timer_sync_hwstate(struct kvm_vcpu *vcpu)
{
	struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;

435 436 437 438 439
	/*
	 * This is to cancel the background timer for the physical timer
	 * emulation if it is set.
	 */
	timer_disarm(timer);
440

441 442 443 444 445
	/*
	 * The guest could have modified the timer registers or the timer
	 * could have expired, update the timer state.
	 */
	kvm_timer_update_state(vcpu);
446 447
}

448
int kvm_timer_vcpu_reset(struct kvm_vcpu *vcpu,
449 450
			 const struct kvm_irq_level *virt_irq,
			 const struct kvm_irq_level *phys_irq)
451
{
452
	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
453
	struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
454 455 456 457 458 459 460

	/*
	 * The vcpu timer irq number cannot be determined in
	 * kvm_timer_vcpu_init() because it is called much before
	 * kvm_vcpu_set_target(). To handle this, we determine
	 * vcpu timer irq number when the vcpu is reset.
	 */
461 462
	vtimer->irq.irq = virt_irq->irq;
	ptimer->irq.irq = phys_irq->irq;
463

464 465 466 467 468 469
	/*
	 * The bits in CNTV_CTL are architecturally reset to UNKNOWN for ARMv8
	 * and to 0 for ARMv7.  We provide an implementation that always
	 * resets the timer to be disabled and unmasked and is compliant with
	 * the ARMv7 architecture.
	 */
470
	vtimer->cnt_ctl = 0;
471
	ptimer->cnt_ctl = 0;
472
	kvm_timer_update_state(vcpu);
473

474
	return 0;
475 476
}

477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495
/* Make the updates of cntvoff for all vtimer contexts atomic */
static void update_vtimer_cntvoff(struct kvm_vcpu *vcpu, u64 cntvoff)
{
	int i;
	struct kvm *kvm = vcpu->kvm;
	struct kvm_vcpu *tmp;

	mutex_lock(&kvm->lock);
	kvm_for_each_vcpu(i, tmp, kvm)
		vcpu_vtimer(tmp)->cntvoff = cntvoff;

	/*
	 * When called from the vcpu create path, the CPU being created is not
	 * included in the loop above, so we just set it here as well.
	 */
	vcpu_vtimer(vcpu)->cntvoff = cntvoff;
	mutex_unlock(&kvm->lock);
}

496 497 498 499
void kvm_timer_vcpu_init(struct kvm_vcpu *vcpu)
{
	struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;

500 501
	/* Synchronize cntvoff across all vtimers of a VM. */
	update_vtimer_cntvoff(vcpu, kvm_phys_timer_read());
502
	vcpu_ptimer(vcpu)->cntvoff = 0;
503

504 505 506 507 508 509 510
	INIT_WORK(&timer->expired, kvm_timer_inject_irq_work);
	hrtimer_init(&timer->timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
	timer->timer.function = kvm_timer_expire;
}

static void kvm_timer_init_interrupt(void *info)
{
511
	enable_percpu_irq(host_vtimer_irq, host_vtimer_irq_flags);
512 513
}

514 515
int kvm_arm_timer_set_reg(struct kvm_vcpu *vcpu, u64 regid, u64 value)
{
516
	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
517 518 519

	switch (regid) {
	case KVM_REG_ARM_TIMER_CTL:
520
		vtimer->cnt_ctl = value;
521 522
		break;
	case KVM_REG_ARM_TIMER_CNT:
523
		update_vtimer_cntvoff(vcpu, kvm_phys_timer_read() - value);
524 525
		break;
	case KVM_REG_ARM_TIMER_CVAL:
526
		vtimer->cnt_cval = value;
527 528 529 530
		break;
	default:
		return -1;
	}
531 532

	kvm_timer_update_state(vcpu);
533 534 535 536 537
	return 0;
}

u64 kvm_arm_timer_get_reg(struct kvm_vcpu *vcpu, u64 regid)
{
538
	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
539 540 541

	switch (regid) {
	case KVM_REG_ARM_TIMER_CTL:
542
		return vtimer->cnt_ctl;
543
	case KVM_REG_ARM_TIMER_CNT:
544
		return kvm_phys_timer_read() - vtimer->cntvoff;
545
	case KVM_REG_ARM_TIMER_CVAL:
546
		return vtimer->cnt_cval;
547 548 549
	}
	return (u64)-1;
}
550

551
static int kvm_timer_starting_cpu(unsigned int cpu)
552
{
553 554
	kvm_timer_init_interrupt(NULL);
	return 0;
555 556
}

557 558 559 560 561
static int kvm_timer_dying_cpu(unsigned int cpu)
{
	disable_percpu_irq(host_vtimer_irq);
	return 0;
}
562 563 564

int kvm_timer_hyp_init(void)
{
565
	struct arch_timer_kvm_info *info;
566 567
	int err;

568 569
	info = arch_timer_get_kvm_info();
	timecounter = &info->timecounter;
570

571 572 573 574 575
	if (!timecounter->cc) {
		kvm_err("kvm_arch_timer: uninitialized timecounter\n");
		return -ENODEV;
	}

576 577 578
	if (info->virtual_irq <= 0) {
		kvm_err("kvm_arch_timer: invalid virtual timer IRQ: %d\n",
			info->virtual_irq);
579 580
		return -ENODEV;
	}
581
	host_vtimer_irq = info->virtual_irq;
582

583 584 585 586 587 588 589 590
	host_vtimer_irq_flags = irq_get_trigger_type(host_vtimer_irq);
	if (host_vtimer_irq_flags != IRQF_TRIGGER_HIGH &&
	    host_vtimer_irq_flags != IRQF_TRIGGER_LOW) {
		kvm_err("Invalid trigger for IRQ%d, assuming level low\n",
			host_vtimer_irq);
		host_vtimer_irq_flags = IRQF_TRIGGER_LOW;
	}

591
	err = request_percpu_irq(host_vtimer_irq, kvm_arch_timer_handler,
592 593 594
				 "kvm guest timer", kvm_get_running_vcpus());
	if (err) {
		kvm_err("kvm_arch_timer: can't request interrupt %d (%d)\n",
595
			host_vtimer_irq, err);
596
		return err;
597 598
	}

599
	kvm_info("virtual timer IRQ%d\n", host_vtimer_irq);
600

601
	cpuhp_setup_state(CPUHP_AP_KVM_ARM_TIMER_STARTING,
T
Thomas Gleixner 已提交
602
			  "kvm/arm/timer:starting", kvm_timer_starting_cpu,
603
			  kvm_timer_dying_cpu);
604 605 606 607 608 609
	return err;
}

void kvm_timer_vcpu_terminate(struct kvm_vcpu *vcpu)
{
	struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
610
	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
611 612

	timer_disarm(timer);
613
	kvm_vgic_unmap_phys_irq(vcpu, vtimer->irq.irq);
614 615
}

616
int kvm_timer_enable(struct kvm_vcpu *vcpu)
617
{
618
	struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
619
	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
620 621 622 623 624 625 626 627
	struct irq_desc *desc;
	struct irq_data *data;
	int phys_irq;
	int ret;

	if (timer->enabled)
		return 0;

628 629 630 631 632 633 634
	/* Without a VGIC we do not map virtual IRQs to physical IRQs */
	if (!irqchip_in_kernel(vcpu->kvm))
		goto no_vgic;

	if (!vgic_initialized(vcpu->kvm))
		return -ENODEV;

635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653
	/*
	 * Find the physical IRQ number corresponding to the host_vtimer_irq
	 */
	desc = irq_to_desc(host_vtimer_irq);
	if (!desc) {
		kvm_err("%s: no interrupt descriptor\n", __func__);
		return -EINVAL;
	}

	data = irq_desc_get_irq_data(desc);
	while (data->parent_data)
		data = data->parent_data;

	phys_irq = data->hwirq;

	/*
	 * Tell the VGIC that the virtual interrupt is tied to a
	 * physical interrupt. We do that once per VCPU.
	 */
654
	ret = kvm_vgic_map_phys_irq(vcpu, vtimer->irq.irq, phys_irq);
655 656 657
	if (ret)
		return ret;

658
no_vgic:
659
	timer->enabled = 1;
660
	return 0;
661
}
662

663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683
/*
 * On VHE system, we only need to configure trap on physical timer and counter
 * accesses in EL0 and EL1 once, not for every world switch.
 * The host kernel runs at EL2 with HCR_EL2.TGE == 1,
 * and this makes those bits have no effect for the host kernel execution.
 */
void kvm_timer_init_vhe(void)
{
	/* When HCR_EL2.E2H ==1, EL1PCEN and EL1PCTEN are shifted by 10 */
	u32 cnthctl_shift = 10;
	u64 val;

	/*
	 * Disallow physical timer access for the guest.
	 * Physical counter access is allowed.
	 */
	val = read_sysreg(cnthctl_el2);
	val &= ~(CNTHCTL_EL1PCEN << cnthctl_shift);
	val |= (CNTHCTL_EL1PCTEN << cnthctl_shift);
	write_sysreg(val, cnthctl_el2);
}