cpufeature.c 59.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 * Contains CPU feature definitions
 *
 * Copyright (C) 2015 ARM Ltd.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 */

19
#define pr_fmt(fmt) "CPU features: " fmt
20

21
#include <linux/bsearch.h>
22
#include <linux/cpumask.h>
23
#include <linux/sort.h>
24
#include <linux/stop_machine.h>
25
#include <linux/types.h>
26
#include <linux/mm.h>
27
#include <linux/cpu.h>
28 29
#include <asm/cpu.h>
#include <asm/cpufeature.h>
30
#include <asm/cpu_ops.h>
31
#include <asm/fpsimd.h>
32
#include <asm/mmu_context.h>
33
#include <asm/processor.h>
34
#include <asm/sysreg.h>
35
#include <asm/traps.h>
36
#include <asm/virt.h>
37

38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
unsigned long elf_hwcap __read_mostly;
EXPORT_SYMBOL_GPL(elf_hwcap);

#ifdef CONFIG_COMPAT
#define COMPAT_ELF_HWCAP_DEFAULT	\
				(COMPAT_HWCAP_HALF|COMPAT_HWCAP_THUMB|\
				 COMPAT_HWCAP_FAST_MULT|COMPAT_HWCAP_EDSP|\
				 COMPAT_HWCAP_TLS|COMPAT_HWCAP_VFP|\
				 COMPAT_HWCAP_VFPv3|COMPAT_HWCAP_VFPv4|\
				 COMPAT_HWCAP_NEON|COMPAT_HWCAP_IDIV|\
				 COMPAT_HWCAP_LPAE)
unsigned int compat_elf_hwcap __read_mostly = COMPAT_ELF_HWCAP_DEFAULT;
unsigned int compat_elf_hwcap2 __read_mostly;
#endif

DECLARE_BITMAP(cpu_hwcaps, ARM64_NCAPS);
54
EXPORT_SYMBOL(cpu_hwcaps);
55

56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
/*
 * Flag to indicate if we have computed the system wide
 * capabilities based on the boot time active CPUs. This
 * will be used to determine if a new booting CPU should
 * go through the verification process to make sure that it
 * supports the system capabilities, without using a hotplug
 * notifier.
 */
static bool sys_caps_initialised;

static inline void set_sys_caps_initialised(void)
{
	sys_caps_initialised = true;
}

71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
static int dump_cpu_hwcaps(struct notifier_block *self, unsigned long v, void *p)
{
	/* file-wide pr_fmt adds "CPU features: " prefix */
	pr_emerg("0x%*pb\n", ARM64_NCAPS, &cpu_hwcaps);
	return 0;
}

static struct notifier_block cpu_hwcaps_notifier = {
	.notifier_call = dump_cpu_hwcaps
};

static int __init register_cpu_hwcaps_dumper(void)
{
	atomic_notifier_chain_register(&panic_notifier_list,
				       &cpu_hwcaps_notifier);
	return 0;
}
__initcall(register_cpu_hwcaps_dumper);

90 91 92
DEFINE_STATIC_KEY_ARRAY_FALSE(cpu_hwcap_keys, ARM64_NCAPS);
EXPORT_SYMBOL(cpu_hwcap_keys);

93
#define __ARM64_FTR_BITS(SIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
94
	{						\
95
		.sign = SIGNED,				\
96
		.visible = VISIBLE,			\
97 98 99 100 101 102 103
		.strict = STRICT,			\
		.type = TYPE,				\
		.shift = SHIFT,				\
		.width = WIDTH,				\
		.safe_val = SAFE_VAL,			\
	}

104
/* Define a feature with unsigned values */
105 106
#define ARM64_FTR_BITS(VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
	__ARM64_FTR_BITS(FTR_UNSIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
107

108
/* Define a feature with a signed value */
109 110
#define S_ARM64_FTR_BITS(VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
	__ARM64_FTR_BITS(FTR_SIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
111

112 113 114 115 116
#define ARM64_FTR_END					\
	{						\
		.width = 0,				\
	}

117 118
/* meta feature for alternatives */
static bool __maybe_unused
119 120
cpufeature_pan_not_uao(const struct arm64_cpu_capabilities *entry, int __unused);

121

122 123 124 125
/*
 * NOTE: Any changes to the visibility of features should be kept in
 * sync with the documentation of the CPU feature register ABI.
 */
126
static const struct arm64_ftr_bits ftr_id_aa64isar0[] = {
127
	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_TS_SHIFT, 4, 0),
128
	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_FHM_SHIFT, 4, 0),
129 130 131 132 133
	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_DP_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SM4_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SM3_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA3_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_RDM_SHIFT, 4, 0),
134 135 136 137 138
	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_ATOMICS_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_CRC32_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA2_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA1_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_AES_SHIFT, 4, 0),
139 140 141
	ARM64_FTR_END,
};

142
static const struct arm64_ftr_bits ftr_id_aa64isar1[] = {
143 144 145 146
	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_LRCPC_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_FCMA_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_JSCVT_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_DPB_SHIFT, 4, 0),
147 148 149
	ARM64_FTR_END,
};

150
static const struct arm64_ftr_bits ftr_id_aa64pfr0[] = {
151
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_CSV3_SHIFT, 4, 0),
152
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_CSV2_SHIFT, 4, 0),
153
	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_DIT_SHIFT, 4, 0),
154 155
	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
				   FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_SVE_SHIFT, 4, 0),
156
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_RAS_SHIFT, 4, 0),
157
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_GIC_SHIFT, 4, 0),
158 159
	S_ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_ASIMD_SHIFT, 4, ID_AA64PFR0_ASIMD_NI),
	S_ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_FP_SHIFT, 4, ID_AA64PFR0_FP_NI),
160
	/* Linux doesn't care about the EL3 */
161 162 163 164
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL3_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL2_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_SHIFT, 4, ID_AA64PFR0_EL1_64BIT_ONLY),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL0_SHIFT, 4, ID_AA64PFR0_EL0_64BIT_ONLY),
165 166 167
	ARM64_FTR_END,
};

168 169 170 171 172
static const struct arm64_ftr_bits ftr_id_aa64pfr1[] = {
	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_SSBS_SHIFT, 4, ID_AA64PFR1_SSBS_PSTATE_NI),
	ARM64_FTR_END,
};

173
static const struct arm64_ftr_bits ftr_id_aa64mmfr0[] = {
174 175 176 177 178 179 180 181 182 183 184
	/*
	 * We already refuse to boot CPUs that don't support our configured
	 * page size, so we can only detect mismatches for a page size other
	 * than the one we're currently using. Unfortunately, SoCs like this
	 * exist in the wild so, even though we don't like it, we'll have to go
	 * along with it and treat them as non-strict.
	 */
	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_TGRAN4_SHIFT, 4, ID_AA64MMFR0_TGRAN4_NI),
	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_TGRAN64_SHIFT, 4, ID_AA64MMFR0_TGRAN64_NI),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_TGRAN16_SHIFT, 4, ID_AA64MMFR0_TGRAN16_NI),

185
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_BIGENDEL0_SHIFT, 4, 0),
186
	/* Linux shouldn't care about secure memory */
187 188 189
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_SNSMEM_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_BIGENDEL_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_ASID_SHIFT, 4, 0),
190 191 192 193
	/*
	 * Differing PARange is fine as long as all peripherals and memory are mapped
	 * within the minimum PARange of all CPUs
	 */
194
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_PARANGE_SHIFT, 4, 0),
195 196 197
	ARM64_FTR_END,
};

198
static const struct arm64_ftr_bits ftr_id_aa64mmfr1[] = {
199
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_PAN_SHIFT, 4, 0),
200 201 202 203 204
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_LOR_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_HPD_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_VHE_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_VMIDBITS_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_HADBS_SHIFT, 4, 0),
205 206 207
	ARM64_FTR_END,
};

208
static const struct arm64_ftr_bits ftr_id_aa64mmfr2[] = {
209
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_FWB_SHIFT, 4, 0),
210
	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_AT_SHIFT, 4, 0),
211 212 213 214 215
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_LVA_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_IESB_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_LSM_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_UAO_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_CNP_SHIFT, 4, 0),
216 217 218
	ARM64_FTR_END,
};

219
static const struct arm64_ftr_bits ftr_ctr[] = {
220 221 222
	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, 31, 1, 1), /* RES1 */
	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_DIC_SHIFT, 1, 1),
	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_IDC_SHIFT, 1, 1),
223 224
	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_HIGHER_OR_ZERO_SAFE, CTR_CWG_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_HIGHER_OR_ZERO_SAFE, CTR_ERG_SHIFT, 4, 0),
225
	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_DMINLINE_SHIFT, 4, 1),
226 227
	/*
	 * Linux can handle differing I-cache policies. Userspace JITs will
228
	 * make use of *minLine.
229
	 * If we have differing I-cache policies, report it as the weakest - VIPT.
230
	 */
231
	ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_EXACT, 14, 2, ICACHE_POLICY_VIPT),	/* L1Ip */
232
	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_IMINLINE_SHIFT, 4, 0),
233 234 235
	ARM64_FTR_END,
};

236 237 238 239 240
struct arm64_ftr_reg arm64_ftr_reg_ctrel0 = {
	.name		= "SYS_CTR_EL0",
	.ftr_bits	= ftr_ctr
};

241
static const struct arm64_ftr_bits ftr_id_mmfr0[] = {
242 243
	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0xf),	/* InnerShr */
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0),	/* FCSE */
244
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, 20, 4, 0),	/* AuxReg */
245 246 247 248 249
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),	/* TCM */
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),	/* ShareLvl */
	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0xf),	/* OuterShr */
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),	/* PMSA */
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),	/* VMSA */
250 251 252
	ARM64_FTR_END,
};

253
static const struct arm64_ftr_bits ftr_id_aa64dfr0[] = {
254 255 256 257 258
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 36, 28, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64DFR0_PMSVER_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_CTX_CMPS_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_WRPS_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_BRPS_SHIFT, 4, 0),
259 260 261
	/*
	 * We can instantiate multiple PMU instances with different levels
	 * of support.
262 263 264 265
	 */
	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64DFR0_PMUVER_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64DFR0_TRACEVER_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64DFR0_DEBUGVER_SHIFT, 4, 0x6),
266 267 268
	ARM64_FTR_END,
};

269
static const struct arm64_ftr_bits ftr_mvfr2[] = {
270 271
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),		/* FPMisc */
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),		/* SIMDMisc */
272 273 274
	ARM64_FTR_END,
};

275
static const struct arm64_ftr_bits ftr_dczid[] = {
276 277
	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, 4, 1, 1),		/* DZP */
	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),	/* BS */
278 279 280 281
	ARM64_FTR_END,
};


282
static const struct arm64_ftr_bits ftr_id_isar5[] = {
283 284 285 286 287 288
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_RDM_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_CRC32_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_SHA2_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_SHA1_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_AES_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_SEVL_SHIFT, 4, 0),
289 290 291
	ARM64_FTR_END,
};

292
static const struct arm64_ftr_bits ftr_id_mmfr4[] = {
293
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),	/* ac2 */
294 295 296
	ARM64_FTR_END,
};

297
static const struct arm64_ftr_bits ftr_id_pfr0[] = {
298 299 300 301
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),		/* State3 */
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),		/* State2 */
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),		/* State1 */
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),		/* State0 */
302 303 304
	ARM64_FTR_END,
};

305
static const struct arm64_ftr_bits ftr_id_dfr0[] = {
306 307 308 309 310 311 312 313
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0),
	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0xf),	/* PerfMon */
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),
314 315 316
	ARM64_FTR_END,
};

317 318 319 320 321 322
static const struct arm64_ftr_bits ftr_zcr[] = {
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE,
		ZCR_ELx_LEN_SHIFT, ZCR_ELx_LEN_SIZE, 0),	/* LEN */
	ARM64_FTR_END,
};

323 324 325 326 327 328
/*
 * Common ftr bits for a 32bit register with all hidden, strict
 * attributes, with 4bit feature fields and a default safe value of
 * 0. Covers the following 32bit registers:
 * id_isar[0-4], id_mmfr[1-3], id_pfr1, mvfr[0-1]
 */
329
static const struct arm64_ftr_bits ftr_generic_32bits[] = {
330 331 332 333 334 335 336 337
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),
338 339 340
	ARM64_FTR_END,
};

341 342
/* Table for a single 32bit feature value */
static const struct arm64_ftr_bits ftr_single32[] = {
343
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 0, 32, 0),
344 345 346
	ARM64_FTR_END,
};

347
static const struct arm64_ftr_bits ftr_raz[] = {
348 349 350
	ARM64_FTR_END,
};

351 352 353
#define ARM64_FTR_REG(id, table) {		\
	.sys_id = id,				\
	.reg = 	&(struct arm64_ftr_reg){	\
354 355
		.name = #id,			\
		.ftr_bits = &((table)[0]),	\
356
	}}
357

358 359 360 361
static const struct __ftr_reg_entry {
	u32			sys_id;
	struct arm64_ftr_reg 	*reg;
} arm64_ftr_regs[] = {
362 363 364 365

	/* Op1 = 0, CRn = 0, CRm = 1 */
	ARM64_FTR_REG(SYS_ID_PFR0_EL1, ftr_id_pfr0),
	ARM64_FTR_REG(SYS_ID_PFR1_EL1, ftr_generic_32bits),
366
	ARM64_FTR_REG(SYS_ID_DFR0_EL1, ftr_id_dfr0),
367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387
	ARM64_FTR_REG(SYS_ID_MMFR0_EL1, ftr_id_mmfr0),
	ARM64_FTR_REG(SYS_ID_MMFR1_EL1, ftr_generic_32bits),
	ARM64_FTR_REG(SYS_ID_MMFR2_EL1, ftr_generic_32bits),
	ARM64_FTR_REG(SYS_ID_MMFR3_EL1, ftr_generic_32bits),

	/* Op1 = 0, CRn = 0, CRm = 2 */
	ARM64_FTR_REG(SYS_ID_ISAR0_EL1, ftr_generic_32bits),
	ARM64_FTR_REG(SYS_ID_ISAR1_EL1, ftr_generic_32bits),
	ARM64_FTR_REG(SYS_ID_ISAR2_EL1, ftr_generic_32bits),
	ARM64_FTR_REG(SYS_ID_ISAR3_EL1, ftr_generic_32bits),
	ARM64_FTR_REG(SYS_ID_ISAR4_EL1, ftr_generic_32bits),
	ARM64_FTR_REG(SYS_ID_ISAR5_EL1, ftr_id_isar5),
	ARM64_FTR_REG(SYS_ID_MMFR4_EL1, ftr_id_mmfr4),

	/* Op1 = 0, CRn = 0, CRm = 3 */
	ARM64_FTR_REG(SYS_MVFR0_EL1, ftr_generic_32bits),
	ARM64_FTR_REG(SYS_MVFR1_EL1, ftr_generic_32bits),
	ARM64_FTR_REG(SYS_MVFR2_EL1, ftr_mvfr2),

	/* Op1 = 0, CRn = 0, CRm = 4 */
	ARM64_FTR_REG(SYS_ID_AA64PFR0_EL1, ftr_id_aa64pfr0),
388
	ARM64_FTR_REG(SYS_ID_AA64PFR1_EL1, ftr_id_aa64pfr1),
389
	ARM64_FTR_REG(SYS_ID_AA64ZFR0_EL1, ftr_raz),
390 391 392

	/* Op1 = 0, CRn = 0, CRm = 5 */
	ARM64_FTR_REG(SYS_ID_AA64DFR0_EL1, ftr_id_aa64dfr0),
393
	ARM64_FTR_REG(SYS_ID_AA64DFR1_EL1, ftr_raz),
394 395 396

	/* Op1 = 0, CRn = 0, CRm = 6 */
	ARM64_FTR_REG(SYS_ID_AA64ISAR0_EL1, ftr_id_aa64isar0),
397
	ARM64_FTR_REG(SYS_ID_AA64ISAR1_EL1, ftr_id_aa64isar1),
398 399 400 401

	/* Op1 = 0, CRn = 0, CRm = 7 */
	ARM64_FTR_REG(SYS_ID_AA64MMFR0_EL1, ftr_id_aa64mmfr0),
	ARM64_FTR_REG(SYS_ID_AA64MMFR1_EL1, ftr_id_aa64mmfr1),
402
	ARM64_FTR_REG(SYS_ID_AA64MMFR2_EL1, ftr_id_aa64mmfr2),
403

404 405 406
	/* Op1 = 0, CRn = 1, CRm = 2 */
	ARM64_FTR_REG(SYS_ZCR_EL1, ftr_zcr),

407
	/* Op1 = 3, CRn = 0, CRm = 0 */
408
	{ SYS_CTR_EL0, &arm64_ftr_reg_ctrel0 },
409 410 411
	ARM64_FTR_REG(SYS_DCZID_EL0, ftr_dczid),

	/* Op1 = 3, CRn = 14, CRm = 0 */
412
	ARM64_FTR_REG(SYS_CNTFRQ_EL0, ftr_single32),
413 414 415 416
};

static int search_cmp_ftr_reg(const void *id, const void *regp)
{
417
	return (int)(unsigned long)id - (int)((const struct __ftr_reg_entry *)regp)->sys_id;
418 419 420 421 422 423 424 425 426 427 428 429 430 431
}

/*
 * get_arm64_ftr_reg - Lookup a feature register entry using its
 * sys_reg() encoding. With the array arm64_ftr_regs sorted in the
 * ascending order of sys_id , we use binary search to find a matching
 * entry.
 *
 * returns - Upon success,  matching ftr_reg entry for id.
 *         - NULL on failure. It is upto the caller to decide
 *	     the impact of a failure.
 */
static struct arm64_ftr_reg *get_arm64_ftr_reg(u32 sys_id)
{
432 433 434
	const struct __ftr_reg_entry *ret;

	ret = bsearch((const void *)(unsigned long)sys_id,
435 436 437 438
			arm64_ftr_regs,
			ARRAY_SIZE(arm64_ftr_regs),
			sizeof(arm64_ftr_regs[0]),
			search_cmp_ftr_reg);
439 440 441
	if (ret)
		return ret->reg;
	return NULL;
442 443
}

444 445
static u64 arm64_ftr_set_value(const struct arm64_ftr_bits *ftrp, s64 reg,
			       s64 ftr_val)
446 447 448 449 450 451 452 453
{
	u64 mask = arm64_ftr_mask(ftrp);

	reg &= ~mask;
	reg |= (ftr_val << ftrp->shift) & mask;
	return reg;
}

454 455
static s64 arm64_ftr_safe_value(const struct arm64_ftr_bits *ftrp, s64 new,
				s64 cur)
456 457 458 459 460 461 462 463 464 465
{
	s64 ret = 0;

	switch (ftrp->type) {
	case FTR_EXACT:
		ret = ftrp->safe_val;
		break;
	case FTR_LOWER_SAFE:
		ret = new < cur ? new : cur;
		break;
466 467 468 469
	case FTR_HIGHER_OR_ZERO_SAFE:
		if (!cur || !new)
			break;
		/* Fallthrough */
470 471 472 473 474 475 476 477 478 479 480 481
	case FTR_HIGHER_SAFE:
		ret = new > cur ? new : cur;
		break;
	default:
		BUG();
	}

	return ret;
}

static void __init sort_ftr_regs(void)
{
482 483 484 485 486
	int i;

	/* Check that the array is sorted so that we can do the binary search */
	for (i = 1; i < ARRAY_SIZE(arm64_ftr_regs); i++)
		BUG_ON(arm64_ftr_regs[i].sys_id < arm64_ftr_regs[i - 1].sys_id);
487 488 489 490 491
}

/*
 * Initialise the CPU feature register from Boot CPU values.
 * Also initiliases the strict_mask for the register.
492 493
 * Any bits that are not covered by an arm64_ftr_bits entry are considered
 * RES0 for the system-wide value, and must strictly match.
494 495 496 497 498
 */
static void __init init_cpu_ftr_reg(u32 sys_reg, u64 new)
{
	u64 val = 0;
	u64 strict_mask = ~0x0ULL;
499
	u64 user_mask = 0;
500 501
	u64 valid_mask = 0;

502
	const struct arm64_ftr_bits *ftrp;
503 504 505 506 507
	struct arm64_ftr_reg *reg = get_arm64_ftr_reg(sys_reg);

	BUG_ON(!reg);

	for (ftrp  = reg->ftr_bits; ftrp->width; ftrp++) {
508
		u64 ftr_mask = arm64_ftr_mask(ftrp);
509 510 511
		s64 ftr_new = arm64_ftr_value(ftrp, new);

		val = arm64_ftr_set_value(ftrp, val, ftr_new);
512 513

		valid_mask |= ftr_mask;
514
		if (!ftrp->strict)
515
			strict_mask &= ~ftr_mask;
516 517 518 519 520 521
		if (ftrp->visible)
			user_mask |= ftr_mask;
		else
			reg->user_val = arm64_ftr_set_value(ftrp,
							    reg->user_val,
							    ftrp->safe_val);
522
	}
523 524 525

	val &= valid_mask;

526 527
	reg->sys_val = val;
	reg->strict_mask = strict_mask;
528
	reg->user_mask = user_mask;
529 530
}

531
extern const struct arm64_cpu_capabilities arm64_errata[];
532
static void __init setup_boot_cpu_capabilities(void);
533

534 535 536 537 538 539 540 541 542 543 544 545 546 547
void __init init_cpu_features(struct cpuinfo_arm64 *info)
{
	/* Before we start using the tables, make sure it is sorted */
	sort_ftr_regs();

	init_cpu_ftr_reg(SYS_CTR_EL0, info->reg_ctr);
	init_cpu_ftr_reg(SYS_DCZID_EL0, info->reg_dczid);
	init_cpu_ftr_reg(SYS_CNTFRQ_EL0, info->reg_cntfrq);
	init_cpu_ftr_reg(SYS_ID_AA64DFR0_EL1, info->reg_id_aa64dfr0);
	init_cpu_ftr_reg(SYS_ID_AA64DFR1_EL1, info->reg_id_aa64dfr1);
	init_cpu_ftr_reg(SYS_ID_AA64ISAR0_EL1, info->reg_id_aa64isar0);
	init_cpu_ftr_reg(SYS_ID_AA64ISAR1_EL1, info->reg_id_aa64isar1);
	init_cpu_ftr_reg(SYS_ID_AA64MMFR0_EL1, info->reg_id_aa64mmfr0);
	init_cpu_ftr_reg(SYS_ID_AA64MMFR1_EL1, info->reg_id_aa64mmfr1);
548
	init_cpu_ftr_reg(SYS_ID_AA64MMFR2_EL1, info->reg_id_aa64mmfr2);
549 550
	init_cpu_ftr_reg(SYS_ID_AA64PFR0_EL1, info->reg_id_aa64pfr0);
	init_cpu_ftr_reg(SYS_ID_AA64PFR1_EL1, info->reg_id_aa64pfr1);
551
	init_cpu_ftr_reg(SYS_ID_AA64ZFR0_EL1, info->reg_id_aa64zfr0);
552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571

	if (id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0)) {
		init_cpu_ftr_reg(SYS_ID_DFR0_EL1, info->reg_id_dfr0);
		init_cpu_ftr_reg(SYS_ID_ISAR0_EL1, info->reg_id_isar0);
		init_cpu_ftr_reg(SYS_ID_ISAR1_EL1, info->reg_id_isar1);
		init_cpu_ftr_reg(SYS_ID_ISAR2_EL1, info->reg_id_isar2);
		init_cpu_ftr_reg(SYS_ID_ISAR3_EL1, info->reg_id_isar3);
		init_cpu_ftr_reg(SYS_ID_ISAR4_EL1, info->reg_id_isar4);
		init_cpu_ftr_reg(SYS_ID_ISAR5_EL1, info->reg_id_isar5);
		init_cpu_ftr_reg(SYS_ID_MMFR0_EL1, info->reg_id_mmfr0);
		init_cpu_ftr_reg(SYS_ID_MMFR1_EL1, info->reg_id_mmfr1);
		init_cpu_ftr_reg(SYS_ID_MMFR2_EL1, info->reg_id_mmfr2);
		init_cpu_ftr_reg(SYS_ID_MMFR3_EL1, info->reg_id_mmfr3);
		init_cpu_ftr_reg(SYS_ID_PFR0_EL1, info->reg_id_pfr0);
		init_cpu_ftr_reg(SYS_ID_PFR1_EL1, info->reg_id_pfr1);
		init_cpu_ftr_reg(SYS_MVFR0_EL1, info->reg_mvfr0);
		init_cpu_ftr_reg(SYS_MVFR1_EL1, info->reg_mvfr1);
		init_cpu_ftr_reg(SYS_MVFR2_EL1, info->reg_mvfr2);
	}

572 573 574 575
	if (id_aa64pfr0_sve(info->reg_id_aa64pfr0)) {
		init_cpu_ftr_reg(SYS_ZCR_EL1, info->reg_zcr);
		sve_init_vq_map();
	}
576 577

	/*
578 579
	 * Detect and enable early CPU capabilities based on the boot CPU,
	 * after we have initialised the CPU feature infrastructure.
580
	 */
581
	setup_boot_cpu_capabilities();
582 583
}

584
static void update_cpu_ftr_reg(struct arm64_ftr_reg *reg, u64 new)
585
{
586
	const struct arm64_ftr_bits *ftrp;
587 588 589 590 591 592 593 594 595 596 597 598 599 600

	for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) {
		s64 ftr_cur = arm64_ftr_value(ftrp, reg->sys_val);
		s64 ftr_new = arm64_ftr_value(ftrp, new);

		if (ftr_cur == ftr_new)
			continue;
		/* Find a safe value */
		ftr_new = arm64_ftr_safe_value(ftrp, ftr_new, ftr_cur);
		reg->sys_val = arm64_ftr_set_value(ftrp, reg->sys_val, ftr_new);
	}

}

601
static int check_update_ftr_reg(u32 sys_id, int cpu, u64 val, u64 boot)
602
{
603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672
	struct arm64_ftr_reg *regp = get_arm64_ftr_reg(sys_id);

	BUG_ON(!regp);
	update_cpu_ftr_reg(regp, val);
	if ((boot & regp->strict_mask) == (val & regp->strict_mask))
		return 0;
	pr_warn("SANITY CHECK: Unexpected variation in %s. Boot CPU: %#016llx, CPU%d: %#016llx\n",
			regp->name, boot, cpu, val);
	return 1;
}

/*
 * Update system wide CPU feature registers with the values from a
 * non-boot CPU. Also performs SANITY checks to make sure that there
 * aren't any insane variations from that of the boot CPU.
 */
void update_cpu_features(int cpu,
			 struct cpuinfo_arm64 *info,
			 struct cpuinfo_arm64 *boot)
{
	int taint = 0;

	/*
	 * The kernel can handle differing I-cache policies, but otherwise
	 * caches should look identical. Userspace JITs will make use of
	 * *minLine.
	 */
	taint |= check_update_ftr_reg(SYS_CTR_EL0, cpu,
				      info->reg_ctr, boot->reg_ctr);

	/*
	 * Userspace may perform DC ZVA instructions. Mismatched block sizes
	 * could result in too much or too little memory being zeroed if a
	 * process is preempted and migrated between CPUs.
	 */
	taint |= check_update_ftr_reg(SYS_DCZID_EL0, cpu,
				      info->reg_dczid, boot->reg_dczid);

	/* If different, timekeeping will be broken (especially with KVM) */
	taint |= check_update_ftr_reg(SYS_CNTFRQ_EL0, cpu,
				      info->reg_cntfrq, boot->reg_cntfrq);

	/*
	 * The kernel uses self-hosted debug features and expects CPUs to
	 * support identical debug features. We presently need CTX_CMPs, WRPs,
	 * and BRPs to be identical.
	 * ID_AA64DFR1 is currently RES0.
	 */
	taint |= check_update_ftr_reg(SYS_ID_AA64DFR0_EL1, cpu,
				      info->reg_id_aa64dfr0, boot->reg_id_aa64dfr0);
	taint |= check_update_ftr_reg(SYS_ID_AA64DFR1_EL1, cpu,
				      info->reg_id_aa64dfr1, boot->reg_id_aa64dfr1);
	/*
	 * Even in big.LITTLE, processors should be identical instruction-set
	 * wise.
	 */
	taint |= check_update_ftr_reg(SYS_ID_AA64ISAR0_EL1, cpu,
				      info->reg_id_aa64isar0, boot->reg_id_aa64isar0);
	taint |= check_update_ftr_reg(SYS_ID_AA64ISAR1_EL1, cpu,
				      info->reg_id_aa64isar1, boot->reg_id_aa64isar1);

	/*
	 * Differing PARange support is fine as long as all peripherals and
	 * memory are mapped within the minimum PARange of all CPUs.
	 * Linux should not care about secure memory.
	 */
	taint |= check_update_ftr_reg(SYS_ID_AA64MMFR0_EL1, cpu,
				      info->reg_id_aa64mmfr0, boot->reg_id_aa64mmfr0);
	taint |= check_update_ftr_reg(SYS_ID_AA64MMFR1_EL1, cpu,
				      info->reg_id_aa64mmfr1, boot->reg_id_aa64mmfr1);
673 674
	taint |= check_update_ftr_reg(SYS_ID_AA64MMFR2_EL1, cpu,
				      info->reg_id_aa64mmfr2, boot->reg_id_aa64mmfr2);
675 676 677 678 679 680 681 682 683

	/*
	 * EL3 is not our concern.
	 */
	taint |= check_update_ftr_reg(SYS_ID_AA64PFR0_EL1, cpu,
				      info->reg_id_aa64pfr0, boot->reg_id_aa64pfr0);
	taint |= check_update_ftr_reg(SYS_ID_AA64PFR1_EL1, cpu,
				      info->reg_id_aa64pfr1, boot->reg_id_aa64pfr1);

684 685 686
	taint |= check_update_ftr_reg(SYS_ID_AA64ZFR0_EL1, cpu,
				      info->reg_id_aa64zfr0, boot->reg_id_aa64zfr0);

687
	/*
688 689
	 * If we have AArch32, we care about 32-bit features for compat.
	 * If the system doesn't support AArch32, don't update them.
690
	 */
691
	if (id_aa64pfr0_32bit_el0(read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1)) &&
692 693 694
		id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0)) {

		taint |= check_update_ftr_reg(SYS_ID_DFR0_EL1, cpu,
695
					info->reg_id_dfr0, boot->reg_id_dfr0);
696
		taint |= check_update_ftr_reg(SYS_ID_ISAR0_EL1, cpu,
697
					info->reg_id_isar0, boot->reg_id_isar0);
698
		taint |= check_update_ftr_reg(SYS_ID_ISAR1_EL1, cpu,
699
					info->reg_id_isar1, boot->reg_id_isar1);
700
		taint |= check_update_ftr_reg(SYS_ID_ISAR2_EL1, cpu,
701
					info->reg_id_isar2, boot->reg_id_isar2);
702
		taint |= check_update_ftr_reg(SYS_ID_ISAR3_EL1, cpu,
703
					info->reg_id_isar3, boot->reg_id_isar3);
704
		taint |= check_update_ftr_reg(SYS_ID_ISAR4_EL1, cpu,
705
					info->reg_id_isar4, boot->reg_id_isar4);
706
		taint |= check_update_ftr_reg(SYS_ID_ISAR5_EL1, cpu,
707 708
					info->reg_id_isar5, boot->reg_id_isar5);

709 710 711 712 713 714
		/*
		 * Regardless of the value of the AuxReg field, the AIFSR, ADFSR, and
		 * ACTLR formats could differ across CPUs and therefore would have to
		 * be trapped for virtualization anyway.
		 */
		taint |= check_update_ftr_reg(SYS_ID_MMFR0_EL1, cpu,
715
					info->reg_id_mmfr0, boot->reg_id_mmfr0);
716
		taint |= check_update_ftr_reg(SYS_ID_MMFR1_EL1, cpu,
717
					info->reg_id_mmfr1, boot->reg_id_mmfr1);
718
		taint |= check_update_ftr_reg(SYS_ID_MMFR2_EL1, cpu,
719
					info->reg_id_mmfr2, boot->reg_id_mmfr2);
720
		taint |= check_update_ftr_reg(SYS_ID_MMFR3_EL1, cpu,
721
					info->reg_id_mmfr3, boot->reg_id_mmfr3);
722
		taint |= check_update_ftr_reg(SYS_ID_PFR0_EL1, cpu,
723
					info->reg_id_pfr0, boot->reg_id_pfr0);
724
		taint |= check_update_ftr_reg(SYS_ID_PFR1_EL1, cpu,
725
					info->reg_id_pfr1, boot->reg_id_pfr1);
726
		taint |= check_update_ftr_reg(SYS_MVFR0_EL1, cpu,
727
					info->reg_mvfr0, boot->reg_mvfr0);
728
		taint |= check_update_ftr_reg(SYS_MVFR1_EL1, cpu,
729
					info->reg_mvfr1, boot->reg_mvfr1);
730
		taint |= check_update_ftr_reg(SYS_MVFR2_EL1, cpu,
731
					info->reg_mvfr2, boot->reg_mvfr2);
732
	}
733

734 735 736 737 738 739 740 741 742 743
	if (id_aa64pfr0_sve(info->reg_id_aa64pfr0)) {
		taint |= check_update_ftr_reg(SYS_ZCR_EL1, cpu,
					info->reg_zcr, boot->reg_zcr);

		/* Probe vector lengths, unless we already gave up on SVE */
		if (id_aa64pfr0_sve(read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1)) &&
		    !sys_caps_initialised)
			sve_update_vq_map();
	}

744 745 746 747
	/*
	 * Mismatched CPU features are a recipe for disaster. Don't even
	 * pretend to support them.
	 */
748 749 750 751
	if (taint) {
		pr_warn_once("Unsupported CPU feature variation detected.\n");
		add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK);
	}
752 753
}

754
u64 read_sanitised_ftr_reg(u32 id)
755 756 757 758 759 760 761
{
	struct arm64_ftr_reg *regp = get_arm64_ftr_reg(id);

	/* We shouldn't get a request for an unsupported register */
	BUG_ON(!regp);
	return regp->sys_val;
}
762

763 764 765
#define read_sysreg_case(r)	\
	case r:		return read_sysreg_s(r)

766
/*
767
 * __read_sysreg_by_encoding() - Used by a STARTING cpu before cpuinfo is populated.
768 769
 * Read the system register on the current CPU
 */
770
static u64 __read_sysreg_by_encoding(u32 sys_id)
771 772
{
	switch (sys_id) {
773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803
	read_sysreg_case(SYS_ID_PFR0_EL1);
	read_sysreg_case(SYS_ID_PFR1_EL1);
	read_sysreg_case(SYS_ID_DFR0_EL1);
	read_sysreg_case(SYS_ID_MMFR0_EL1);
	read_sysreg_case(SYS_ID_MMFR1_EL1);
	read_sysreg_case(SYS_ID_MMFR2_EL1);
	read_sysreg_case(SYS_ID_MMFR3_EL1);
	read_sysreg_case(SYS_ID_ISAR0_EL1);
	read_sysreg_case(SYS_ID_ISAR1_EL1);
	read_sysreg_case(SYS_ID_ISAR2_EL1);
	read_sysreg_case(SYS_ID_ISAR3_EL1);
	read_sysreg_case(SYS_ID_ISAR4_EL1);
	read_sysreg_case(SYS_ID_ISAR5_EL1);
	read_sysreg_case(SYS_MVFR0_EL1);
	read_sysreg_case(SYS_MVFR1_EL1);
	read_sysreg_case(SYS_MVFR2_EL1);

	read_sysreg_case(SYS_ID_AA64PFR0_EL1);
	read_sysreg_case(SYS_ID_AA64PFR1_EL1);
	read_sysreg_case(SYS_ID_AA64DFR0_EL1);
	read_sysreg_case(SYS_ID_AA64DFR1_EL1);
	read_sysreg_case(SYS_ID_AA64MMFR0_EL1);
	read_sysreg_case(SYS_ID_AA64MMFR1_EL1);
	read_sysreg_case(SYS_ID_AA64MMFR2_EL1);
	read_sysreg_case(SYS_ID_AA64ISAR0_EL1);
	read_sysreg_case(SYS_ID_AA64ISAR1_EL1);

	read_sysreg_case(SYS_CNTFRQ_EL0);
	read_sysreg_case(SYS_CTR_EL0);
	read_sysreg_case(SYS_DCZID_EL0);

804 805 806 807 808 809
	default:
		BUG();
		return 0;
	}
}

810 811
#include <linux/irqchip/arm-gic-v3.h>

812 813 814
static bool
feature_matches(u64 reg, const struct arm64_cpu_capabilities *entry)
{
815
	int val = cpuid_feature_extract_field(reg, entry->field_pos, entry->sign);
816 817 818 819

	return val >= entry->min_field_value;
}

820
static bool
821
has_cpuid_feature(const struct arm64_cpu_capabilities *entry, int scope)
822 823
{
	u64 val;
824

825 826
	WARN_ON(scope == SCOPE_LOCAL_CPU && preemptible());
	if (scope == SCOPE_SYSTEM)
827
		val = read_sanitised_ftr_reg(entry->sys_reg);
828
	else
829
		val = __read_sysreg_by_encoding(entry->sys_reg);
830

831 832
	return feature_matches(val, entry);
}
833

834
static bool has_useable_gicv3_cpuif(const struct arm64_cpu_capabilities *entry, int scope)
835 836 837
{
	bool has_sre;

838
	if (!has_cpuid_feature(entry, scope))
839 840 841 842 843 844 845 846 847 848
		return false;

	has_sre = gic_enable_sre();
	if (!has_sre)
		pr_warn_once("%s present but disabled by higher exception level\n",
			     entry->desc);

	return has_sre;
}

849
static bool has_no_hw_prefetch(const struct arm64_cpu_capabilities *entry, int __unused)
850 851 852 853
{
	u32 midr = read_cpuid_id();

	/* Cavium ThunderX pass 1.x and 2.x */
854
	return midr_is_cpu_model_range(midr, MIDR_THUNDERX,
855 856
		MIDR_CPU_VAR_REV(0, 0),
		MIDR_CPU_VAR_REV(1, MIDR_REVISION_MASK));
857 858
}

859 860
static bool has_no_fpsimd(const struct arm64_cpu_capabilities *entry, int __unused)
{
861
	u64 pfr0 = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
862 863 864 865 866

	return cpuid_feature_extract_signed_field(pfr0,
					ID_AA64PFR0_FP_SHIFT) < 0;
}

867
static bool has_cache_idc(const struct arm64_cpu_capabilities *entry,
868
			  int scope)
869
{
870 871 872 873 874 875 876 877
	u64 ctr;

	if (scope == SCOPE_SYSTEM)
		ctr = arm64_ftr_reg_ctrel0.sys_val;
	else
		ctr = read_cpuid_cachetype();

	return ctr & BIT(CTR_IDC_SHIFT);
878 879 880
}

static bool has_cache_dic(const struct arm64_cpu_capabilities *entry,
881
			  int scope)
882
{
883 884 885 886 887 888 889 890
	u64 ctr;

	if (scope == SCOPE_SYSTEM)
		ctr = arm64_ftr_reg_ctrel0.sys_val;
	else
		ctr = read_cpuid_cachetype();

	return ctr & BIT(CTR_DIC_SHIFT);
891 892
}

893
static bool __meltdown_safe = true;
894 895 896
static int __kpti_forced; /* 0: not forced, >0: forced on, <0: forced off */

static bool unmap_kernel_at_el0(const struct arm64_cpu_capabilities *entry,
897
				int scope)
898
{
899 900 901 902
	/* List of CPUs that are not vulnerable and don't need KPTI */
	static const struct midr_range kpti_safe_list[] = {
		MIDR_ALL_VERSIONS(MIDR_CAVIUM_THUNDERX2),
		MIDR_ALL_VERSIONS(MIDR_BRCM_VULCAN),
903 904 905 906 907 908
		MIDR_ALL_VERSIONS(MIDR_CORTEX_A35),
		MIDR_ALL_VERSIONS(MIDR_CORTEX_A53),
		MIDR_ALL_VERSIONS(MIDR_CORTEX_A55),
		MIDR_ALL_VERSIONS(MIDR_CORTEX_A57),
		MIDR_ALL_VERSIONS(MIDR_CORTEX_A72),
		MIDR_ALL_VERSIONS(MIDR_CORTEX_A73),
909
		{ /* sentinel */ }
910
	};
911
	char const *str = "kpti command line option";
912 913 914 915 916 917 918 919 920 921
	bool meltdown_safe;

	meltdown_safe = is_midr_in_range_list(read_cpuid_id(), kpti_safe_list);

	/* Defer to CPU feature registers */
	if (has_cpuid_feature(entry, scope))
		meltdown_safe = true;

	if (!meltdown_safe)
		__meltdown_safe = false;
922

923 924 925 926 927 928 929 930 931 932
	/*
	 * For reasons that aren't entirely clear, enabling KPTI on Cavium
	 * ThunderX leads to apparent I-cache corruption of kernel text, which
	 * ends as well as you might imagine. Don't even try.
	 */
	if (cpus_have_const_cap(ARM64_WORKAROUND_CAVIUM_27456)) {
		str = "ARM64_WORKAROUND_CAVIUM_27456";
		__kpti_forced = -1;
	}

933 934 935 936 937 938 939 940
	/* Useful for KASLR robustness */
	if (IS_ENABLED(CONFIG_RANDOMIZE_BASE) && kaslr_offset() > 0) {
		if (!__kpti_forced) {
			str = "KASLR";
			__kpti_forced = 1;
		}
	}

941 942 943 944 945
	if (cpu_mitigations_off() && !__kpti_forced) {
		str = "mitigations=off";
		__kpti_forced = -1;
	}

946 947 948 949 950
	if (!IS_ENABLED(CONFIG_UNMAP_KERNEL_AT_EL0)) {
		pr_info_once("kernel page table isolation disabled by kernel configuration\n");
		return false;
	}

951
	/* Forced? */
952
	if (__kpti_forced) {
953 954
		pr_info_once("kernel page table isolation forced %s by %s\n",
			     __kpti_forced > 0 ? "ON" : "OFF", str);
955 956 957
		return __kpti_forced > 0;
	}

958
	return !meltdown_safe;
959 960
}

961
#ifdef CONFIG_UNMAP_KERNEL_AT_EL0
962 963
static void
kpti_install_ng_mappings(const struct arm64_cpu_capabilities *__unused)
964 965 966 967 968 969 970 971 972
{
	typedef void (kpti_remap_fn)(int, int, phys_addr_t);
	extern kpti_remap_fn idmap_kpti_install_ng_mappings;
	kpti_remap_fn *remap_fn;

	static bool kpti_applied = false;
	int cpu = smp_processor_id();

	if (kpti_applied)
973
		return;
974 975 976 977 978 979 980 981 982 983

	remap_fn = (void *)__pa_symbol(idmap_kpti_install_ng_mappings);

	cpu_install_idmap();
	remap_fn(cpu, num_online_cpus(), __pa_symbol(swapper_pg_dir));
	cpu_uninstall_idmap();

	if (!cpu)
		kpti_applied = true;

984
	return;
985
}
986 987 988 989 990 991
#else
static void
kpti_install_ng_mappings(const struct arm64_cpu_capabilities *__unused)
{
}
#endif	/* CONFIG_UNMAP_KERNEL_AT_EL0 */
992

993 994 995 996 997 998 999 1000 1001 1002 1003
static int __init parse_kpti(char *str)
{
	bool enabled;
	int ret = strtobool(str, &enabled);

	if (ret)
		return ret;

	__kpti_forced = enabled ? 1 : -1;
	return 0;
}
1004
early_param("kpti", parse_kpti);
1005

1006 1007 1008 1009 1010 1011 1012 1013 1014
#ifdef CONFIG_ARM64_HW_AFDBM
static inline void __cpu_enable_hw_dbm(void)
{
	u64 tcr = read_sysreg(tcr_el1) | TCR_HD;

	write_sysreg(tcr, tcr_el1);
	isb();
}

1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027
static bool cpu_has_broken_dbm(void)
{
	/* List of CPUs which have broken DBM support. */
	static const struct midr_range cpus[] = {
#ifdef CONFIG_ARM64_ERRATUM_1024718
		MIDR_RANGE(MIDR_CORTEX_A55, 0, 0, 1, 0),  // A55 r0p0 -r1p0
#endif
		{},
	};

	return is_midr_in_range_list(read_cpuid_id(), cpus);
}

1028 1029
static bool cpu_can_use_dbm(const struct arm64_cpu_capabilities *cap)
{
1030 1031
	return has_cpuid_feature(cap, SCOPE_LOCAL_CPU) &&
	       !cpu_has_broken_dbm();
1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070
}

static void cpu_enable_hw_dbm(struct arm64_cpu_capabilities const *cap)
{
	if (cpu_can_use_dbm(cap))
		__cpu_enable_hw_dbm();
}

static bool has_hw_dbm(const struct arm64_cpu_capabilities *cap,
		       int __unused)
{
	static bool detected = false;
	/*
	 * DBM is a non-conflicting feature. i.e, the kernel can safely
	 * run a mix of CPUs with and without the feature. So, we
	 * unconditionally enable the capability to allow any late CPU
	 * to use the feature. We only enable the control bits on the
	 * CPU, if it actually supports.
	 *
	 * We have to make sure we print the "feature" detection only
	 * when at least one CPU actually uses it. So check if this CPU
	 * can actually use it and print the message exactly once.
	 *
	 * This is safe as all CPUs (including secondary CPUs - due to the
	 * LOCAL_CPU scope - and the hotplugged CPUs - via verification)
	 * goes through the "matches" check exactly once. Also if a CPU
	 * matches the criteria, it is guaranteed that the CPU will turn
	 * the DBM on, as the capability is unconditionally enabled.
	 */
	if (!detected && cpu_can_use_dbm(cap)) {
		detected = true;
		pr_info("detected: Hardware dirty bit management\n");
	}

	return true;
}

#endif

1071 1072 1073 1074 1075 1076
#ifdef CONFIG_ARM64_VHE
static bool runs_at_el2(const struct arm64_cpu_capabilities *entry, int __unused)
{
	return is_kernel_in_hyp_mode();
}

1077
static void cpu_copy_el2regs(const struct arm64_cpu_capabilities *__unused)
1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089
{
	/*
	 * Copy register values that aren't redirected by hardware.
	 *
	 * Before code patching, we only set tpidr_el1, all CPUs need to copy
	 * this value to tpidr_el2 before we patch the code. Once we've done
	 * that, freshly-onlined CPUs will set tpidr_el2, so we don't need to
	 * do anything here.
	 */
	if (!alternatives_applied)
		write_sysreg(read_sysreg(tpidr_el1), tpidr_el2);
}
1090
#endif
1091

1092 1093 1094 1095 1096 1097 1098 1099
static void cpu_has_fwb(const struct arm64_cpu_capabilities *__unused)
{
	u64 val = read_sysreg_s(SYS_CLIDR_EL1);

	/* Check that CLIDR_EL1.LOU{U,IS} are both 0 */
	WARN_ON(val & (7 << 27 | 7 << 21));
}

1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141
#ifdef CONFIG_ARM64_SSBD
static int ssbs_emulation_handler(struct pt_regs *regs, u32 instr)
{
	if (user_mode(regs))
		return 1;

	if (instr & BIT(CRm_shift))
		regs->pstate |= PSR_SSBS_BIT;
	else
		regs->pstate &= ~PSR_SSBS_BIT;

	arm64_skip_faulting_instruction(regs, 4);
	return 0;
}

static struct undef_hook ssbs_emulation_hook = {
	.instr_mask	= ~(1U << CRm_shift),
	.instr_val	= 0xd500001f | REG_PSTATE_SSBS_IMM,
	.fn		= ssbs_emulation_handler,
};

static void cpu_enable_ssbs(const struct arm64_cpu_capabilities *__unused)
{
	static bool undef_hook_registered = false;
	static DEFINE_SPINLOCK(hook_lock);

	spin_lock(&hook_lock);
	if (!undef_hook_registered) {
		register_undef_hook(&ssbs_emulation_hook);
		undef_hook_registered = true;
	}
	spin_unlock(&hook_lock);

	if (arm64_get_ssbd_state() == ARM64_SSBD_FORCE_DISABLE) {
		sysreg_clear_set(sctlr_el1, 0, SCTLR_ELx_DSSBS);
		arm64_set_ssbd_mitigation(false);
	} else {
		arm64_set_ssbd_mitigation(true);
	}
}
#endif /* CONFIG_ARM64_SSBD */

1142
static const struct arm64_cpu_capabilities arm64_features[] = {
1143 1144 1145
	{
		.desc = "GIC system register CPU interface",
		.capability = ARM64_HAS_SYSREG_GIC_CPUIF,
1146
		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
1147
		.matches = has_useable_gicv3_cpuif,
1148 1149
		.sys_reg = SYS_ID_AA64PFR0_EL1,
		.field_pos = ID_AA64PFR0_GIC_SHIFT,
1150
		.sign = FTR_UNSIGNED,
1151
		.min_field_value = 1,
1152
	},
1153 1154 1155 1156
#ifdef CONFIG_ARM64_PAN
	{
		.desc = "Privileged Access Never",
		.capability = ARM64_HAS_PAN,
1157
		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
1158 1159 1160
		.matches = has_cpuid_feature,
		.sys_reg = SYS_ID_AA64MMFR1_EL1,
		.field_pos = ID_AA64MMFR1_PAN_SHIFT,
1161
		.sign = FTR_UNSIGNED,
1162
		.min_field_value = 1,
1163
		.cpu_enable = cpu_enable_pan,
1164 1165
	},
#endif /* CONFIG_ARM64_PAN */
1166 1167 1168 1169
#if defined(CONFIG_AS_LSE) && defined(CONFIG_ARM64_LSE_ATOMICS)
	{
		.desc = "LSE atomic instructions",
		.capability = ARM64_HAS_LSE_ATOMICS,
1170
		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
1171 1172 1173
		.matches = has_cpuid_feature,
		.sys_reg = SYS_ID_AA64ISAR0_EL1,
		.field_pos = ID_AA64ISAR0_ATOMICS_SHIFT,
1174
		.sign = FTR_UNSIGNED,
1175 1176 1177
		.min_field_value = 2,
	},
#endif /* CONFIG_AS_LSE && CONFIG_ARM64_LSE_ATOMICS */
1178 1179 1180
	{
		.desc = "Software prefetching using PRFM",
		.capability = ARM64_HAS_NO_HW_PREFETCH,
1181
		.type = ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE,
1182 1183
		.matches = has_no_hw_prefetch,
	},
1184 1185 1186 1187
#ifdef CONFIG_ARM64_UAO
	{
		.desc = "User Access Override",
		.capability = ARM64_HAS_UAO,
1188
		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
1189 1190 1191 1192
		.matches = has_cpuid_feature,
		.sys_reg = SYS_ID_AA64MMFR2_EL1,
		.field_pos = ID_AA64MMFR2_UAO_SHIFT,
		.min_field_value = 1,
1193 1194 1195 1196
		/*
		 * We rely on stop_machine() calling uao_thread_switch() to set
		 * UAO immediately after patching.
		 */
1197 1198
	},
#endif /* CONFIG_ARM64_UAO */
1199 1200 1201
#ifdef CONFIG_ARM64_PAN
	{
		.capability = ARM64_ALT_PAN_NOT_UAO,
1202
		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
1203 1204 1205
		.matches = cpufeature_pan_not_uao,
	},
#endif /* CONFIG_ARM64_PAN */
1206
#ifdef CONFIG_ARM64_VHE
1207 1208 1209
	{
		.desc = "Virtualization Host Extensions",
		.capability = ARM64_HAS_VIRT_HOST_EXTN,
1210
		.type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
1211
		.matches = runs_at_el2,
1212
		.cpu_enable = cpu_copy_el2regs,
1213
	},
1214
#endif	/* CONFIG_ARM64_VHE */
1215 1216 1217
	{
		.desc = "32-bit EL0 Support",
		.capability = ARM64_HAS_32BIT_EL0,
1218
		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
1219 1220 1221 1222 1223 1224
		.matches = has_cpuid_feature,
		.sys_reg = SYS_ID_AA64PFR0_EL1,
		.sign = FTR_UNSIGNED,
		.field_pos = ID_AA64PFR0_EL0_SHIFT,
		.min_field_value = ID_AA64PFR0_EL0_32BIT_64BIT,
	},
1225
	{
1226
		.desc = "Kernel page table isolation (KPTI)",
1227
		.capability = ARM64_UNMAP_KERNEL_AT_EL0,
1228 1229 1230 1231 1232 1233 1234 1235 1236
		.type = ARM64_CPUCAP_BOOT_RESTRICTED_CPU_LOCAL_FEATURE,
		/*
		 * The ID feature fields below are used to indicate that
		 * the CPU doesn't need KPTI. See unmap_kernel_at_el0 for
		 * more details.
		 */
		.sys_reg = SYS_ID_AA64PFR0_EL1,
		.field_pos = ID_AA64PFR0_CSV3_SHIFT,
		.min_field_value = 1,
1237
		.matches = unmap_kernel_at_el0,
1238
		.cpu_enable = kpti_install_ng_mappings,
1239
	},
1240 1241 1242
	{
		/* FP/SIMD is not implemented */
		.capability = ARM64_HAS_NO_FPSIMD,
1243
		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
1244 1245 1246
		.min_field_value = 0,
		.matches = has_no_fpsimd,
	},
R
Robin Murphy 已提交
1247 1248 1249 1250
#ifdef CONFIG_ARM64_PMEM
	{
		.desc = "Data cache clean to Point of Persistence",
		.capability = ARM64_HAS_DCPOP,
1251
		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
R
Robin Murphy 已提交
1252 1253 1254 1255 1256 1257
		.matches = has_cpuid_feature,
		.sys_reg = SYS_ID_AA64ISAR1_EL1,
		.field_pos = ID_AA64ISAR1_DPB_SHIFT,
		.min_field_value = 1,
	},
#endif
1258 1259 1260
#ifdef CONFIG_ARM64_SVE
	{
		.desc = "Scalable Vector Extension",
1261
		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
1262 1263 1264 1265 1266 1267
		.capability = ARM64_SVE,
		.sys_reg = SYS_ID_AA64PFR0_EL1,
		.sign = FTR_UNSIGNED,
		.field_pos = ID_AA64PFR0_SVE_SHIFT,
		.min_field_value = ID_AA64PFR0_SVE,
		.matches = has_cpuid_feature,
1268
		.cpu_enable = sve_kernel_enable,
1269 1270
	},
#endif /* CONFIG_ARM64_SVE */
1271 1272 1273 1274
#ifdef CONFIG_ARM64_RAS_EXTN
	{
		.desc = "RAS Extension Support",
		.capability = ARM64_HAS_RAS_EXTN,
1275
		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
1276 1277 1278 1279 1280
		.matches = has_cpuid_feature,
		.sys_reg = SYS_ID_AA64PFR0_EL1,
		.sign = FTR_UNSIGNED,
		.field_pos = ID_AA64PFR0_RAS_SHIFT,
		.min_field_value = ID_AA64PFR0_RAS_V1,
1281
		.cpu_enable = cpu_clear_disr,
1282 1283
	},
#endif /* CONFIG_ARM64_RAS_EXTN */
1284 1285 1286
	{
		.desc = "Data cache clean to the PoU not required for I/D coherence",
		.capability = ARM64_HAS_CACHE_IDC,
1287
		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
1288 1289 1290 1291 1292
		.matches = has_cache_idc,
	},
	{
		.desc = "Instruction cache invalidation not required for I/D coherence",
		.capability = ARM64_HAS_CACHE_DIC,
1293
		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
1294 1295
		.matches = has_cache_dic,
	},
1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306
	{
		.desc = "Stage-2 Force Write-Back",
		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
		.capability = ARM64_HAS_STAGE2_FWB,
		.sys_reg = SYS_ID_AA64MMFR2_EL1,
		.sign = FTR_UNSIGNED,
		.field_pos = ID_AA64MMFR2_FWB_SHIFT,
		.min_field_value = 1,
		.matches = has_cpuid_feature,
		.cpu_enable = cpu_has_fwb,
	},
1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326
#ifdef CONFIG_ARM64_HW_AFDBM
	{
		/*
		 * Since we turn this on always, we don't want the user to
		 * think that the feature is available when it may not be.
		 * So hide the description.
		 *
		 * .desc = "Hardware pagetable Dirty Bit Management",
		 *
		 */
		.type = ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE,
		.capability = ARM64_HW_DBM,
		.sys_reg = SYS_ID_AA64MMFR1_EL1,
		.sign = FTR_UNSIGNED,
		.field_pos = ID_AA64MMFR1_HADBS_SHIFT,
		.min_field_value = 2,
		.matches = has_hw_dbm,
		.cpu_enable = cpu_enable_hw_dbm,
	},
#endif
1327
#ifdef CONFIG_ARM64_SSBD
1328 1329 1330 1331 1332 1333 1334 1335 1336
	{
		.desc = "Speculative Store Bypassing Safe (SSBS)",
		.capability = ARM64_SSBS,
		.type = ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE,
		.matches = has_cpuid_feature,
		.sys_reg = SYS_ID_AA64PFR1_EL1,
		.field_pos = ID_AA64PFR1_SSBS_SHIFT,
		.sign = FTR_UNSIGNED,
		.min_field_value = ID_AA64PFR1_SSBS_PSTATE_ONLY,
1337
		.cpu_enable = cpu_enable_ssbs,
1338
	},
1339
#endif
1340 1341 1342
	{},
};

1343
#define HWCAP_CAP(reg, field, s, min_value, cap_type, cap)	\
1344 1345
	{							\
		.desc = #cap,					\
1346
		.type = ARM64_CPUCAP_SYSTEM_FEATURE,		\
1347 1348 1349
		.matches = has_cpuid_feature,			\
		.sys_reg = reg,					\
		.field_pos = field,				\
1350
		.sign = s,					\
1351
		.min_field_value = min_value,			\
1352
		.hwcap_type = cap_type,				\
1353 1354 1355
		.hwcap = cap,					\
	}

S
Suzuki K Poulose 已提交
1356
static const struct arm64_cpu_capabilities arm64_elf_hwcaps[] = {
1357 1358 1359 1360
	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_AES_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, HWCAP_PMULL),
	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_AES_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_AES),
	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA1_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_SHA1),
	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA2_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_SHA2),
1361
	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA2_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, HWCAP_SHA512),
1362 1363
	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_CRC32_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_CRC32),
	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_ATOMICS_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, HWCAP_ATOMICS),
1364
	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_RDM_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_ASIMDRDM),
1365 1366 1367 1368
	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA3_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_SHA3),
	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SM3_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_SM3),
	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SM4_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_SM4),
	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_DP_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_ASIMDDP),
1369
	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_FHM_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_ASIMDFHM),
1370
	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_TS_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_FLAGM),
1371
	HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_FP_SHIFT, FTR_SIGNED, 0, CAP_HWCAP, HWCAP_FP),
1372
	HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_FP_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, HWCAP_FPHP),
1373
	HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_ASIMD_SHIFT, FTR_SIGNED, 0, CAP_HWCAP, HWCAP_ASIMD),
1374
	HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_ASIMD_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, HWCAP_ASIMDHP),
1375
	HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_DIT_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, HWCAP_DIT),
1376
	HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_DPB_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_DCPOP),
1377
	HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_JSCVT_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_JSCVT),
1378
	HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_FCMA_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_FCMA),
1379
	HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_LRCPC_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_LRCPC),
1380 1381
	HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_LRCPC_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, HWCAP_ILRCPC),
	HWCAP_CAP(SYS_ID_AA64MMFR2_EL1, ID_AA64MMFR2_AT_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_USCAT),
1382 1383 1384
#ifdef CONFIG_ARM64_SVE
	HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_SVE_SHIFT, FTR_UNSIGNED, ID_AA64PFR0_SVE, CAP_HWCAP, HWCAP_SVE),
#endif
1385
	HWCAP_CAP(SYS_ID_AA64PFR1_EL1, ID_AA64PFR1_SSBS_SHIFT, FTR_UNSIGNED, ID_AA64PFR1_SSBS_PSTATE_INSNS, CAP_HWCAP, HWCAP_SSBS),
1386 1387 1388 1389
	{},
};

static const struct arm64_cpu_capabilities compat_elf_hwcaps[] = {
1390
#ifdef CONFIG_COMPAT
1391 1392 1393 1394 1395
	HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, FTR_UNSIGNED, 2, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_PMULL),
	HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_AES),
	HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA1_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA1),
	HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA2_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA2),
	HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_CRC32_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_CRC32),
1396 1397 1398 1399
#endif
	{},
};

S
Suzuki K Poulose 已提交
1400
static void __init cap_set_elf_hwcap(const struct arm64_cpu_capabilities *cap)
1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420
{
	switch (cap->hwcap_type) {
	case CAP_HWCAP:
		elf_hwcap |= cap->hwcap;
		break;
#ifdef CONFIG_COMPAT
	case CAP_COMPAT_HWCAP:
		compat_elf_hwcap |= (u32)cap->hwcap;
		break;
	case CAP_COMPAT_HWCAP2:
		compat_elf_hwcap2 |= (u32)cap->hwcap;
		break;
#endif
	default:
		WARN_ON(1);
		break;
	}
}

/* Check if we have a particular HWCAP enabled */
S
Suzuki K Poulose 已提交
1421
static bool cpus_have_elf_hwcap(const struct arm64_cpu_capabilities *cap)
1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444
{
	bool rc;

	switch (cap->hwcap_type) {
	case CAP_HWCAP:
		rc = (elf_hwcap & cap->hwcap) != 0;
		break;
#ifdef CONFIG_COMPAT
	case CAP_COMPAT_HWCAP:
		rc = (compat_elf_hwcap & (u32)cap->hwcap) != 0;
		break;
	case CAP_COMPAT_HWCAP2:
		rc = (compat_elf_hwcap2 & (u32)cap->hwcap) != 0;
		break;
#endif
	default:
		WARN_ON(1);
		rc = false;
	}

	return rc;
}

1445
static void __init setup_elf_hwcaps(const struct arm64_cpu_capabilities *hwcaps)
1446
{
1447 1448
	/* We support emulation of accesses to CPU ID feature registers */
	elf_hwcap |= HWCAP_CPUID;
1449
	for (; hwcaps->matches; hwcaps++)
1450
		if (hwcaps->matches(hwcaps, cpucap_default_scope(hwcaps)))
1451
			cap_set_elf_hwcap(hwcaps);
1452 1453
}

1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465
/*
 * Check if the current CPU has a given feature capability.
 * Should be called from non-preemptible context.
 */
static bool __this_cpu_has_cap(const struct arm64_cpu_capabilities *cap_array,
			       unsigned int cap)
{
	const struct arm64_cpu_capabilities *caps;

	if (WARN_ON(preemptible()))
		return false;

1466
	for (caps = cap_array; caps->matches; caps++)
1467 1468 1469
		if (caps->capability == cap)
			return caps->matches(caps, SCOPE_LOCAL_CPU);

1470 1471 1472
	return false;
}

1473 1474
static void __update_cpu_capabilities(const struct arm64_cpu_capabilities *caps,
				      u16 scope_mask, const char *info)
1475
{
1476
	scope_mask &= ARM64_CPUCAP_SCOPE_MASK;
1477
	for (; caps->matches; caps++) {
1478 1479
		if (!(caps->type & scope_mask) ||
		    !caps->matches(caps, cpucap_default_scope(caps)))
1480 1481
			continue;

1482 1483 1484
		if (!cpus_have_cap(caps->capability) && caps->desc)
			pr_info("%s %s\n", info, caps->desc);
		cpus_set_cap(caps->capability);
1485
	}
1486 1487
}

1488 1489 1490 1491
static void update_cpu_capabilities(u16 scope_mask)
{
	__update_cpu_capabilities(arm64_errata, scope_mask,
				  "enabling workaround for");
1492
	__update_cpu_capabilities(arm64_features, scope_mask, "detected:");
1493 1494
}

1495 1496 1497 1498 1499 1500 1501 1502
static int __enable_cpu_capability(void *arg)
{
	const struct arm64_cpu_capabilities *cap = arg;

	cap->cpu_enable(cap);
	return 0;
}

1503
/*
1504 1505
 * Run through the enabled capabilities and enable() it on all active
 * CPUs
1506
 */
1507
static void __init
1508 1509
__enable_cpu_capabilities(const struct arm64_cpu_capabilities *caps,
			  u16 scope_mask)
1510
{
1511
	scope_mask &= ARM64_CPUCAP_SCOPE_MASK;
1512 1513 1514
	for (; caps->matches; caps++) {
		unsigned int num = caps->capability;

1515
		if (!(caps->type & scope_mask) || !cpus_have_cap(num))
1516 1517 1518 1519 1520
			continue;

		/* Ensure cpus_have_const_cap(num) works */
		static_branch_enable(&cpu_hwcap_keys[num]);

1521
		if (caps->cpu_enable) {
1522
			/*
1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534
			 * Capabilities with SCOPE_BOOT_CPU scope are finalised
			 * before any secondary CPU boots. Thus, each secondary
			 * will enable the capability as appropriate via
			 * check_local_cpu_capabilities(). The only exception is
			 * the boot CPU, for which the capability must be
			 * enabled here. This approach avoids costly
			 * stop_machine() calls for this case.
			 *
			 * Otherwise, use stop_machine() as it schedules the
			 * work allowing us to modify PSTATE, instead of
			 * on_each_cpu() which uses an IPI, giving us a PSTATE
			 * that disappears when we return.
1535
			 */
1536 1537 1538 1539 1540
			if (scope_mask & SCOPE_BOOT_CPU)
				caps->cpu_enable(caps);
			else
				stop_machine(__enable_cpu_capability,
					     (void *)caps, cpu_online_mask);
1541 1542
		}
	}
1543 1544
}

1545 1546 1547
static void __init enable_cpu_capabilities(u16 scope_mask)
{
	__enable_cpu_capabilities(arm64_errata, scope_mask);
1548
	__enable_cpu_capabilities(arm64_features, scope_mask);
1549 1550
}

1551 1552 1553 1554 1555 1556 1557 1558
/*
 * Run through the list of capabilities to check for conflicts.
 * If the system has already detected a capability, take necessary
 * action on this CPU.
 *
 * Returns "false" on conflicts.
 */
static bool
1559
__verify_local_cpu_caps(const struct arm64_cpu_capabilities *caps,
1560
			u16 scope_mask)
1561 1562 1563
{
	bool cpu_has_cap, system_has_cap;

1564 1565
	scope_mask &= ARM64_CPUCAP_SCOPE_MASK;

1566
	for (; caps->matches; caps++) {
1567 1568 1569
		if (!(caps->type & scope_mask))
			continue;

1570
		cpu_has_cap = caps->matches(caps, SCOPE_LOCAL_CPU);
1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607
		system_has_cap = cpus_have_cap(caps->capability);

		if (system_has_cap) {
			/*
			 * Check if the new CPU misses an advertised feature,
			 * which is not safe to miss.
			 */
			if (!cpu_has_cap && !cpucap_late_cpu_optional(caps))
				break;
			/*
			 * We have to issue cpu_enable() irrespective of
			 * whether the CPU has it or not, as it is enabeld
			 * system wide. It is upto the call back to take
			 * appropriate action on this CPU.
			 */
			if (caps->cpu_enable)
				caps->cpu_enable(caps);
		} else {
			/*
			 * Check if the CPU has this capability if it isn't
			 * safe to have when the system doesn't.
			 */
			if (cpu_has_cap && !cpucap_late_cpu_permitted(caps))
				break;
		}
	}

	if (caps->matches) {
		pr_crit("CPU%d: Detected conflict for capability %d (%s), System: %d, CPU: %d\n",
			smp_processor_id(), caps->capability,
			caps->desc, system_has_cap, cpu_has_cap);
		return false;
	}

	return true;
}

1608 1609 1610 1611 1612 1613
static bool verify_local_cpu_caps(u16 scope_mask)
{
	return __verify_local_cpu_caps(arm64_errata, scope_mask) &&
	       __verify_local_cpu_caps(arm64_features, scope_mask);
}

1614
/*
1615 1616
 * Check for CPU features that are used in early boot
 * based on the Boot CPU value.
1617
 */
1618
static void check_early_cpu_features(void)
1619
{
1620
	verify_cpu_asid_bits();
1621 1622 1623 1624 1625 1626
	/*
	 * Early features are used by the kernel already. If there
	 * is a conflict, we cannot proceed further.
	 */
	if (!verify_local_cpu_caps(SCOPE_BOOT_CPU))
		cpu_panic_kernel();
1627
}
1628

1629 1630 1631 1632
static void
verify_local_elf_hwcaps(const struct arm64_cpu_capabilities *caps)
{

1633 1634
	for (; caps->matches; caps++)
		if (cpus_have_elf_hwcap(caps) && !caps->matches(caps, SCOPE_LOCAL_CPU)) {
1635 1636 1637 1638 1639 1640
			pr_crit("CPU%d: missing HWCAP: %s\n",
					smp_processor_id(), caps->desc);
			cpu_die_early();
		}
}

1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657
static void verify_sve_features(void)
{
	u64 safe_zcr = read_sanitised_ftr_reg(SYS_ZCR_EL1);
	u64 zcr = read_zcr_features();

	unsigned int safe_len = safe_zcr & ZCR_ELx_LEN_MASK;
	unsigned int len = zcr & ZCR_ELx_LEN_MASK;

	if (len < safe_len || sve_verify_vq_map()) {
		pr_crit("CPU%d: SVE: required vector length(s) missing\n",
			smp_processor_id());
		cpu_die_early();
	}

	/* Add checks on other ZCR bits here if necessary */
}

1658

1659 1660 1661 1662 1663 1664 1665 1666
/*
 * Run through the enabled system capabilities and enable() it on this CPU.
 * The capabilities were decided based on the available CPUs at the boot time.
 * Any new CPU should match the system wide status of the capability. If the
 * new CPU doesn't have a capability which the system now has enabled, we
 * cannot do anything to fix it up and could cause unexpected failures. So
 * we park the CPU.
 */
1667
static void verify_local_cpu_capabilities(void)
1668
{
1669 1670 1671 1672 1673 1674
	/*
	 * The capabilities with SCOPE_BOOT_CPU are checked from
	 * check_early_cpu_features(), as they need to be verified
	 * on all secondary CPUs.
	 */
	if (!verify_local_cpu_caps(SCOPE_ALL & ~SCOPE_BOOT_CPU))
1675
		cpu_die_early();
1676

1677
	verify_local_elf_hwcaps(arm64_elf_hwcaps);
1678

1679 1680
	if (system_supports_32bit_el0())
		verify_local_elf_hwcaps(compat_elf_hwcaps);
1681 1682 1683

	if (system_supports_sve())
		verify_sve_features();
1684
}
1685

1686 1687 1688 1689 1690 1691
void check_local_cpu_capabilities(void)
{
	/*
	 * All secondary CPUs should conform to the early CPU features
	 * in use by the kernel based on boot CPU.
	 */
1692 1693
	check_early_cpu_features();

1694
	/*
1695
	 * If we haven't finalised the system capabilities, this CPU gets
1696
	 * a chance to update the errata work arounds and local features.
1697 1698
	 * Otherwise, this CPU should verify that it has all the system
	 * advertised capabilities.
1699
	 */
1700 1701 1702
	if (!sys_caps_initialised)
		update_cpu_capabilities(SCOPE_LOCAL_CPU);
	else
1703
		verify_local_cpu_capabilities();
1704 1705
}

1706 1707 1708 1709 1710 1711 1712 1713
static void __init setup_boot_cpu_capabilities(void)
{
	/* Detect capabilities with either SCOPE_BOOT_CPU or SCOPE_LOCAL_CPU */
	update_cpu_capabilities(SCOPE_BOOT_CPU | SCOPE_LOCAL_CPU);
	/* Enable the SCOPE_BOOT_CPU capabilities alone right away */
	enable_cpu_capabilities(SCOPE_BOOT_CPU);
}

1714 1715 1716 1717 1718 1719 1720 1721
DEFINE_STATIC_KEY_FALSE(arm64_const_caps_ready);
EXPORT_SYMBOL(arm64_const_caps_ready);

static void __init mark_const_caps_ready(void)
{
	static_branch_enable(&arm64_const_caps_ready);
}

1722 1723 1724 1725 1726 1727 1728 1729
extern const struct arm64_cpu_capabilities arm64_errata[];

bool this_cpu_has_cap(unsigned int cap)
{
	return (__this_cpu_has_cap(arm64_features, cap) ||
		__this_cpu_has_cap(arm64_errata, cap));
}

1730 1731 1732 1733 1734
static void __init setup_system_capabilities(void)
{
	/*
	 * We have finalised the system-wide safe feature
	 * registers, finalise the capabilities that depend
1735 1736
	 * on it. Also enable all the available capabilities,
	 * that are not enabled already.
1737 1738
	 */
	update_cpu_capabilities(SCOPE_SYSTEM);
1739
	enable_cpu_capabilities(SCOPE_ALL & ~SCOPE_BOOT_CPU);
1740 1741
}

1742
void __init setup_cpu_features(void)
1743
{
1744 1745
	u32 cwg;

1746
	setup_system_capabilities();
1747
	mark_const_caps_ready();
1748
	setup_elf_hwcaps(arm64_elf_hwcaps);
1749 1750 1751

	if (system_supports_32bit_el0())
		setup_elf_hwcaps(compat_elf_hwcaps);
1752

1753 1754 1755
	if (system_uses_ttbr0_pan())
		pr_info("emulated: Privileged Access Never (PAN) using TTBR0_EL1 switching\n");

1756
	sve_setup();
1757
	minsigstksz_setup();
1758

1759 1760 1761
	/* Advertise that we have computed the system capabilities */
	set_sys_caps_initialised();

1762 1763 1764 1765 1766
	/*
	 * Check for sane CTR_EL0.CWG value.
	 */
	cwg = cache_type_cwg();
	if (!cwg)
1767 1768
		pr_warn("No Cache Writeback Granule information, assuming %d\n",
			ARCH_DMA_MINALIGN);
1769
}
1770 1771

static bool __maybe_unused
1772
cpufeature_pan_not_uao(const struct arm64_cpu_capabilities *entry, int __unused)
1773
{
1774
	return (cpus_have_const_cap(ARM64_HAS_PAN) && !cpus_have_const_cap(ARM64_HAS_UAO));
1775
}
1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851

/*
 * We emulate only the following system register space.
 * Op0 = 0x3, CRn = 0x0, Op1 = 0x0, CRm = [0, 4 - 7]
 * See Table C5-6 System instruction encodings for System register accesses,
 * ARMv8 ARM(ARM DDI 0487A.f) for more details.
 */
static inline bool __attribute_const__ is_emulated(u32 id)
{
	return (sys_reg_Op0(id) == 0x3 &&
		sys_reg_CRn(id) == 0x0 &&
		sys_reg_Op1(id) == 0x0 &&
		(sys_reg_CRm(id) == 0 ||
		 ((sys_reg_CRm(id) >= 4) && (sys_reg_CRm(id) <= 7))));
}

/*
 * With CRm == 0, reg should be one of :
 * MIDR_EL1, MPIDR_EL1 or REVIDR_EL1.
 */
static inline int emulate_id_reg(u32 id, u64 *valp)
{
	switch (id) {
	case SYS_MIDR_EL1:
		*valp = read_cpuid_id();
		break;
	case SYS_MPIDR_EL1:
		*valp = SYS_MPIDR_SAFE_VAL;
		break;
	case SYS_REVIDR_EL1:
		/* IMPLEMENTATION DEFINED values are emulated with 0 */
		*valp = 0;
		break;
	default:
		return -EINVAL;
	}

	return 0;
}

static int emulate_sys_reg(u32 id, u64 *valp)
{
	struct arm64_ftr_reg *regp;

	if (!is_emulated(id))
		return -EINVAL;

	if (sys_reg_CRm(id) == 0)
		return emulate_id_reg(id, valp);

	regp = get_arm64_ftr_reg(id);
	if (regp)
		*valp = arm64_ftr_reg_user_value(regp);
	else
		/*
		 * The untracked registers are either IMPLEMENTATION DEFINED
		 * (e.g, ID_AFR0_EL1) or reserved RAZ.
		 */
		*valp = 0;
	return 0;
}

static int emulate_mrs(struct pt_regs *regs, u32 insn)
{
	int rc;
	u32 sys_reg, dst;
	u64 val;

	/*
	 * sys_reg values are defined as used in mrs/msr instruction.
	 * shift the imm value to get the encoding.
	 */
	sys_reg = (u32)aarch64_insn_decode_immediate(AARCH64_INSN_IMM_16, insn) << 5;
	rc = emulate_sys_reg(sys_reg, &val);
	if (!rc) {
		dst = aarch64_insn_decode_register(AARCH64_INSN_REGTYPE_RT, insn);
1852
		pt_regs_write_reg(regs, dst, val);
1853
		arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
1854 1855 1856 1857 1858 1859 1860 1861
	}

	return rc;
}

static struct undef_hook mrs_hook = {
	.instr_mask = 0xfff00000,
	.instr_val  = 0xd5300000,
M
Mark Rutland 已提交
1862
	.pstate_mask = PSR_AA32_MODE_MASK,
1863 1864 1865 1866 1867 1868 1869 1870 1871 1872
	.pstate_val = PSR_MODE_EL0t,
	.fn = emulate_mrs,
};

static int __init enable_mrs_emulation(void)
{
	register_undef_hook(&mrs_hook);
	return 0;
}

1873
core_initcall(enable_mrs_emulation);
1874

1875
void cpu_clear_disr(const struct arm64_cpu_capabilities *__unused)
1876 1877 1878 1879
{
	/* Firmware may have left a deferred SError in this register. */
	write_sysreg_s(0, SYS_DISR_EL1);
}
1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891

ssize_t cpu_show_meltdown(struct device *dev, struct device_attribute *attr,
			  char *buf)
{
	if (__meltdown_safe)
		return sprintf(buf, "Not affected\n");

	if (arm64_kernel_unmapped_at_el0())
		return sprintf(buf, "Mitigation: PTI\n");

	return sprintf(buf, "Vulnerable\n");
}