cpufeature.c 36.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 * Contains CPU feature definitions
 *
 * Copyright (C) 2015 ARM Ltd.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 */

19
#define pr_fmt(fmt) "CPU features: " fmt
20

21
#include <linux/bsearch.h>
22
#include <linux/cpumask.h>
23
#include <linux/sort.h>
24
#include <linux/stop_machine.h>
25 26 27
#include <linux/types.h>
#include <asm/cpu.h>
#include <asm/cpufeature.h>
28
#include <asm/cpu_ops.h>
29
#include <asm/mmu_context.h>
30
#include <asm/processor.h>
31
#include <asm/sysreg.h>
32
#include <asm/virt.h>
33

34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
unsigned long elf_hwcap __read_mostly;
EXPORT_SYMBOL_GPL(elf_hwcap);

#ifdef CONFIG_COMPAT
#define COMPAT_ELF_HWCAP_DEFAULT	\
				(COMPAT_HWCAP_HALF|COMPAT_HWCAP_THUMB|\
				 COMPAT_HWCAP_FAST_MULT|COMPAT_HWCAP_EDSP|\
				 COMPAT_HWCAP_TLS|COMPAT_HWCAP_VFP|\
				 COMPAT_HWCAP_VFPv3|COMPAT_HWCAP_VFPv4|\
				 COMPAT_HWCAP_NEON|COMPAT_HWCAP_IDIV|\
				 COMPAT_HWCAP_LPAE)
unsigned int compat_elf_hwcap __read_mostly = COMPAT_ELF_HWCAP_DEFAULT;
unsigned int compat_elf_hwcap2 __read_mostly;
#endif

DECLARE_BITMAP(cpu_hwcaps, ARM64_NCAPS);
50
EXPORT_SYMBOL(cpu_hwcaps);
51

52 53 54
DEFINE_STATIC_KEY_ARRAY_FALSE(cpu_hwcap_keys, ARM64_NCAPS);
EXPORT_SYMBOL(cpu_hwcap_keys);

55
#define __ARM64_FTR_BITS(SIGNED, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
56
	{						\
57
		.sign = SIGNED,				\
58 59 60 61 62 63 64
		.strict = STRICT,			\
		.type = TYPE,				\
		.shift = SHIFT,				\
		.width = WIDTH,				\
		.safe_val = SAFE_VAL,			\
	}

65
/* Define a feature with unsigned values */
66 67 68
#define ARM64_FTR_BITS(STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
	__ARM64_FTR_BITS(FTR_UNSIGNED, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)

69 70 71 72
/* Define a feature with a signed value */
#define S_ARM64_FTR_BITS(STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
	__ARM64_FTR_BITS(FTR_SIGNED, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)

73 74 75 76 77
#define ARM64_FTR_END					\
	{						\
		.width = 0,				\
	}

78 79
/* meta feature for alternatives */
static bool __maybe_unused
80 81
cpufeature_pan_not_uao(const struct arm64_cpu_capabilities *entry, int __unused);

82

83
static const struct arm64_ftr_bits ftr_id_aa64isar0[] = {
84 85 86 87 88 89 90 91 92 93 94 95
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 32, 32, 0),
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64ISAR0_RDM_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 24, 4, 0),
	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_ATOMICS_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_CRC32_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA2_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA1_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_AES_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 4, 0),	/* RAZ */
	ARM64_FTR_END,
};

96
static const struct arm64_ftr_bits ftr_id_aa64pfr0[] = {
97 98 99
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 32, 32, 0),
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 28, 4, 0),
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64PFR0_GIC_SHIFT, 4, 0),
100 101
	S_ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_ASIMD_SHIFT, 4, ID_AA64PFR0_ASIMD_NI),
	S_ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_FP_SHIFT, 4, ID_AA64PFR0_FP_NI),
102 103 104 105 106 107 108 109
	/* Linux doesn't care about the EL3 */
	ARM64_FTR_BITS(FTR_NONSTRICT, FTR_EXACT, ID_AA64PFR0_EL3_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64PFR0_EL2_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64PFR0_EL1_SHIFT, 4, ID_AA64PFR0_EL1_64BIT_ONLY),
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64PFR0_EL0_SHIFT, 4, ID_AA64PFR0_EL0_64BIT_ONLY),
	ARM64_FTR_END,
};

110
static const struct arm64_ftr_bits ftr_id_aa64mmfr0[] = {
111
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 32, 32, 0),
112 113
	S_ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN4_SHIFT, 4, ID_AA64MMFR0_TGRAN4_NI),
	S_ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN64_SHIFT, 4, ID_AA64MMFR0_TGRAN64_NI),
114 115 116 117 118 119 120 121 122 123
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN16_SHIFT, 4, ID_AA64MMFR0_TGRAN16_NI),
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_BIGENDEL0_SHIFT, 4, 0),
	/* Linux shouldn't care about secure memory */
	ARM64_FTR_BITS(FTR_NONSTRICT, FTR_EXACT, ID_AA64MMFR0_SNSMEM_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_BIGENDEL_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_ASID_SHIFT, 4, 0),
	/*
	 * Differing PARange is fine as long as all peripherals and memory are mapped
	 * within the minimum PARange of all CPUs
	 */
124
	ARM64_FTR_BITS(FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_PARANGE_SHIFT, 4, 0),
125 126 127
	ARM64_FTR_END,
};

128
static const struct arm64_ftr_bits ftr_id_aa64mmfr1[] = {
129 130 131 132 133 134 135 136 137 138
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 32, 32, 0),
	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_PAN_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_LOR_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_HPD_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_VHE_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_VMIDBITS_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_HADBS_SHIFT, 4, 0),
	ARM64_FTR_END,
};

139
static const struct arm64_ftr_bits ftr_id_aa64mmfr2[] = {
140 141 142
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR2_LVA_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR2_IESB_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR2_LSM_SHIFT, 4, 0),
143
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR2_UAO_SHIFT, 4, 0),
144
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR2_CNP_SHIFT, 4, 0),
145 146 147
	ARM64_FTR_END,
};

148
static const struct arm64_ftr_bits ftr_ctr[] = {
149
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 31, 1, 1),	/* RAO */
150
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 28, 3, 0),
151 152 153
	ARM64_FTR_BITS(FTR_STRICT, FTR_HIGHER_SAFE, 24, 4, 0),	/* CWG */
	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),	/* ERG */
	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 1),	/* DminLine */
154 155
	/*
	 * Linux can handle differing I-cache policies. Userspace JITs will
156 157
	 * make use of *minLine.
	 * If we have differing I-cache policies, report it as the weakest - AIVIVT.
158
	 */
159
	ARM64_FTR_BITS(FTR_NONSTRICT, FTR_EXACT, 14, 2, ICACHE_POLICY_AIVIVT),	/* L1Ip */
160
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 10, 0),	/* RAZ */
161
	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),	/* IminLine */
162 163 164
	ARM64_FTR_END,
};

165 166 167 168 169
struct arm64_ftr_reg arm64_ftr_reg_ctrel0 = {
	.name		= "SYS_CTR_EL0",
	.ftr_bits	= ftr_ctr
};

170
static const struct arm64_ftr_bits ftr_id_mmfr0[] = {
171
	S_ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 28, 4, 0xf),	/* InnerShr */
172 173 174 175
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 24, 4, 0),	/* FCSE */
	ARM64_FTR_BITS(FTR_NONSTRICT, FTR_LOWER_SAFE, 20, 4, 0),	/* AuxReg */
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 16, 4, 0),	/* TCM */
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 12, 4, 0),	/* ShareLvl */
176
	S_ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 8, 4, 0xf),	/* OuterShr */
177 178 179 180 181
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 4, 0),	/* PMSA */
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 4, 0),	/* VMSA */
	ARM64_FTR_END,
};

182
static const struct arm64_ftr_bits ftr_id_aa64dfr0[] = {
183
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 32, 32, 0),
184 185 186 187 188 189
	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_CTX_CMPS_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_WRPS_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_BRPS_SHIFT, 4, 0),
	S_ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64DFR0_PMUVER_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64DFR0_TRACEVER_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64DFR0_DEBUGVER_SHIFT, 4, 0x6),
190 191 192
	ARM64_FTR_END,
};

193
static const struct arm64_ftr_bits ftr_mvfr2[] = {
194 195 196 197 198 199
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 8, 24, 0),	/* RAZ */
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 4, 0),		/* FPMisc */
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 4, 0),		/* SIMDMisc */
	ARM64_FTR_END,
};

200
static const struct arm64_ftr_bits ftr_dczid[] = {
201 202 203 204 205 206 207
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 5, 27, 0),	/* RAZ */
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 1, 1),		/* DZP */
	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),	/* BS */
	ARM64_FTR_END,
};


208
static const struct arm64_ftr_bits ftr_id_isar5[] = {
209 210 211 212 213 214 215 216 217 218
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_RDM_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 20, 4, 0),	/* RAZ */
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_CRC32_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_SHA2_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_SHA1_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_AES_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_SEVL_SHIFT, 4, 0),
	ARM64_FTR_END,
};

219
static const struct arm64_ftr_bits ftr_id_mmfr4[] = {
220 221 222 223 224 225
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 8, 24, 0),	/* RAZ */
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 4, 0),		/* ac2 */
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 4, 0),		/* RAZ */
	ARM64_FTR_END,
};

226
static const struct arm64_ftr_bits ftr_id_pfr0[] = {
227 228 229 230 231 232 233 234
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 16, 16, 0),	/* RAZ */
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 12, 4, 0),	/* State3 */
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 8, 4, 0),		/* State2 */
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 4, 0),		/* State1 */
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 4, 0),		/* State0 */
	ARM64_FTR_END,
};

235
static const struct arm64_ftr_bits ftr_id_dfr0[] = {
236
	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0),
237
	S_ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0xf),	/* PerfMon */
238 239 240 241 242 243 244 245 246
	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),
	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),
	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),
	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),
	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),
	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),
	ARM64_FTR_END,
};

247 248 249 250 251 252
/*
 * Common ftr bits for a 32bit register with all hidden, strict
 * attributes, with 4bit feature fields and a default safe value of
 * 0. Covers the following 32bit registers:
 * id_isar[0-4], id_mmfr[1-3], id_pfr1, mvfr[0-1]
 */
253
static const struct arm64_ftr_bits ftr_generic_32bits[] = {
254 255 256 257 258 259 260 261 262 263 264
	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0),
	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0),
	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),
	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),
	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),
	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),
	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),
	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),
	ARM64_FTR_END,
};

265
static const struct arm64_ftr_bits ftr_generic[] = {
266 267 268 269
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 64, 0),
	ARM64_FTR_END,
};

270
static const struct arm64_ftr_bits ftr_generic32[] = {
271 272 273 274
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 32, 0),
	ARM64_FTR_END,
};

275
static const struct arm64_ftr_bits ftr_aa64raz[] = {
276 277 278 279
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 64, 0),
	ARM64_FTR_END,
};

280 281 282
#define ARM64_FTR_REG(id, table) {		\
	.sys_id = id,				\
	.reg = 	&(struct arm64_ftr_reg){	\
283 284
		.name = #id,			\
		.ftr_bits = &((table)[0]),	\
285
	}}
286

287 288 289 290
static const struct __ftr_reg_entry {
	u32			sys_id;
	struct arm64_ftr_reg 	*reg;
} arm64_ftr_regs[] = {
291 292 293 294

	/* Op1 = 0, CRn = 0, CRm = 1 */
	ARM64_FTR_REG(SYS_ID_PFR0_EL1, ftr_id_pfr0),
	ARM64_FTR_REG(SYS_ID_PFR1_EL1, ftr_generic_32bits),
295
	ARM64_FTR_REG(SYS_ID_DFR0_EL1, ftr_id_dfr0),
296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329
	ARM64_FTR_REG(SYS_ID_MMFR0_EL1, ftr_id_mmfr0),
	ARM64_FTR_REG(SYS_ID_MMFR1_EL1, ftr_generic_32bits),
	ARM64_FTR_REG(SYS_ID_MMFR2_EL1, ftr_generic_32bits),
	ARM64_FTR_REG(SYS_ID_MMFR3_EL1, ftr_generic_32bits),

	/* Op1 = 0, CRn = 0, CRm = 2 */
	ARM64_FTR_REG(SYS_ID_ISAR0_EL1, ftr_generic_32bits),
	ARM64_FTR_REG(SYS_ID_ISAR1_EL1, ftr_generic_32bits),
	ARM64_FTR_REG(SYS_ID_ISAR2_EL1, ftr_generic_32bits),
	ARM64_FTR_REG(SYS_ID_ISAR3_EL1, ftr_generic_32bits),
	ARM64_FTR_REG(SYS_ID_ISAR4_EL1, ftr_generic_32bits),
	ARM64_FTR_REG(SYS_ID_ISAR5_EL1, ftr_id_isar5),
	ARM64_FTR_REG(SYS_ID_MMFR4_EL1, ftr_id_mmfr4),

	/* Op1 = 0, CRn = 0, CRm = 3 */
	ARM64_FTR_REG(SYS_MVFR0_EL1, ftr_generic_32bits),
	ARM64_FTR_REG(SYS_MVFR1_EL1, ftr_generic_32bits),
	ARM64_FTR_REG(SYS_MVFR2_EL1, ftr_mvfr2),

	/* Op1 = 0, CRn = 0, CRm = 4 */
	ARM64_FTR_REG(SYS_ID_AA64PFR0_EL1, ftr_id_aa64pfr0),
	ARM64_FTR_REG(SYS_ID_AA64PFR1_EL1, ftr_aa64raz),

	/* Op1 = 0, CRn = 0, CRm = 5 */
	ARM64_FTR_REG(SYS_ID_AA64DFR0_EL1, ftr_id_aa64dfr0),
	ARM64_FTR_REG(SYS_ID_AA64DFR1_EL1, ftr_generic),

	/* Op1 = 0, CRn = 0, CRm = 6 */
	ARM64_FTR_REG(SYS_ID_AA64ISAR0_EL1, ftr_id_aa64isar0),
	ARM64_FTR_REG(SYS_ID_AA64ISAR1_EL1, ftr_aa64raz),

	/* Op1 = 0, CRn = 0, CRm = 7 */
	ARM64_FTR_REG(SYS_ID_AA64MMFR0_EL1, ftr_id_aa64mmfr0),
	ARM64_FTR_REG(SYS_ID_AA64MMFR1_EL1, ftr_id_aa64mmfr1),
330
	ARM64_FTR_REG(SYS_ID_AA64MMFR2_EL1, ftr_id_aa64mmfr2),
331 332

	/* Op1 = 3, CRn = 0, CRm = 0 */
333
	{ SYS_CTR_EL0, &arm64_ftr_reg_ctrel0 },
334 335 336 337 338 339 340 341
	ARM64_FTR_REG(SYS_DCZID_EL0, ftr_dczid),

	/* Op1 = 3, CRn = 14, CRm = 0 */
	ARM64_FTR_REG(SYS_CNTFRQ_EL0, ftr_generic32),
};

static int search_cmp_ftr_reg(const void *id, const void *regp)
{
342
	return (int)(unsigned long)id - (int)((const struct __ftr_reg_entry *)regp)->sys_id;
343 344 345 346 347 348 349 350 351 352 353 354 355 356
}

/*
 * get_arm64_ftr_reg - Lookup a feature register entry using its
 * sys_reg() encoding. With the array arm64_ftr_regs sorted in the
 * ascending order of sys_id , we use binary search to find a matching
 * entry.
 *
 * returns - Upon success,  matching ftr_reg entry for id.
 *         - NULL on failure. It is upto the caller to decide
 *	     the impact of a failure.
 */
static struct arm64_ftr_reg *get_arm64_ftr_reg(u32 sys_id)
{
357 358 359
	const struct __ftr_reg_entry *ret;

	ret = bsearch((const void *)(unsigned long)sys_id,
360 361 362 363
			arm64_ftr_regs,
			ARRAY_SIZE(arm64_ftr_regs),
			sizeof(arm64_ftr_regs[0]),
			search_cmp_ftr_reg);
364 365 366
	if (ret)
		return ret->reg;
	return NULL;
367 368
}

369 370
static u64 arm64_ftr_set_value(const struct arm64_ftr_bits *ftrp, s64 reg,
			       s64 ftr_val)
371 372 373 374 375 376 377 378
{
	u64 mask = arm64_ftr_mask(ftrp);

	reg &= ~mask;
	reg |= (ftr_val << ftrp->shift) & mask;
	return reg;
}

379 380
static s64 arm64_ftr_safe_value(const struct arm64_ftr_bits *ftrp, s64 new,
				s64 cur)
381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402
{
	s64 ret = 0;

	switch (ftrp->type) {
	case FTR_EXACT:
		ret = ftrp->safe_val;
		break;
	case FTR_LOWER_SAFE:
		ret = new < cur ? new : cur;
		break;
	case FTR_HIGHER_SAFE:
		ret = new > cur ? new : cur;
		break;
	default:
		BUG();
	}

	return ret;
}

static void __init sort_ftr_regs(void)
{
403 404 405 406 407
	int i;

	/* Check that the array is sorted so that we can do the binary search */
	for (i = 1; i < ARRAY_SIZE(arm64_ftr_regs); i++)
		BUG_ON(arm64_ftr_regs[i].sys_id < arm64_ftr_regs[i - 1].sys_id);
408 409 410 411 412 413 414 415 416 417
}

/*
 * Initialise the CPU feature register from Boot CPU values.
 * Also initiliases the strict_mask for the register.
 */
static void __init init_cpu_ftr_reg(u32 sys_reg, u64 new)
{
	u64 val = 0;
	u64 strict_mask = ~0x0ULL;
418
	const struct arm64_ftr_bits *ftrp;
419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447
	struct arm64_ftr_reg *reg = get_arm64_ftr_reg(sys_reg);

	BUG_ON(!reg);

	for (ftrp  = reg->ftr_bits; ftrp->width; ftrp++) {
		s64 ftr_new = arm64_ftr_value(ftrp, new);

		val = arm64_ftr_set_value(ftrp, val, ftr_new);
		if (!ftrp->strict)
			strict_mask &= ~arm64_ftr_mask(ftrp);
	}
	reg->sys_val = val;
	reg->strict_mask = strict_mask;
}

void __init init_cpu_features(struct cpuinfo_arm64 *info)
{
	/* Before we start using the tables, make sure it is sorted */
	sort_ftr_regs();

	init_cpu_ftr_reg(SYS_CTR_EL0, info->reg_ctr);
	init_cpu_ftr_reg(SYS_DCZID_EL0, info->reg_dczid);
	init_cpu_ftr_reg(SYS_CNTFRQ_EL0, info->reg_cntfrq);
	init_cpu_ftr_reg(SYS_ID_AA64DFR0_EL1, info->reg_id_aa64dfr0);
	init_cpu_ftr_reg(SYS_ID_AA64DFR1_EL1, info->reg_id_aa64dfr1);
	init_cpu_ftr_reg(SYS_ID_AA64ISAR0_EL1, info->reg_id_aa64isar0);
	init_cpu_ftr_reg(SYS_ID_AA64ISAR1_EL1, info->reg_id_aa64isar1);
	init_cpu_ftr_reg(SYS_ID_AA64MMFR0_EL1, info->reg_id_aa64mmfr0);
	init_cpu_ftr_reg(SYS_ID_AA64MMFR1_EL1, info->reg_id_aa64mmfr1);
448
	init_cpu_ftr_reg(SYS_ID_AA64MMFR2_EL1, info->reg_id_aa64mmfr2);
449 450
	init_cpu_ftr_reg(SYS_ID_AA64PFR0_EL1, info->reg_id_aa64pfr0);
	init_cpu_ftr_reg(SYS_ID_AA64PFR1_EL1, info->reg_id_aa64pfr1);
451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470

	if (id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0)) {
		init_cpu_ftr_reg(SYS_ID_DFR0_EL1, info->reg_id_dfr0);
		init_cpu_ftr_reg(SYS_ID_ISAR0_EL1, info->reg_id_isar0);
		init_cpu_ftr_reg(SYS_ID_ISAR1_EL1, info->reg_id_isar1);
		init_cpu_ftr_reg(SYS_ID_ISAR2_EL1, info->reg_id_isar2);
		init_cpu_ftr_reg(SYS_ID_ISAR3_EL1, info->reg_id_isar3);
		init_cpu_ftr_reg(SYS_ID_ISAR4_EL1, info->reg_id_isar4);
		init_cpu_ftr_reg(SYS_ID_ISAR5_EL1, info->reg_id_isar5);
		init_cpu_ftr_reg(SYS_ID_MMFR0_EL1, info->reg_id_mmfr0);
		init_cpu_ftr_reg(SYS_ID_MMFR1_EL1, info->reg_id_mmfr1);
		init_cpu_ftr_reg(SYS_ID_MMFR2_EL1, info->reg_id_mmfr2);
		init_cpu_ftr_reg(SYS_ID_MMFR3_EL1, info->reg_id_mmfr3);
		init_cpu_ftr_reg(SYS_ID_PFR0_EL1, info->reg_id_pfr0);
		init_cpu_ftr_reg(SYS_ID_PFR1_EL1, info->reg_id_pfr1);
		init_cpu_ftr_reg(SYS_MVFR0_EL1, info->reg_mvfr0);
		init_cpu_ftr_reg(SYS_MVFR1_EL1, info->reg_mvfr1);
		init_cpu_ftr_reg(SYS_MVFR2_EL1, info->reg_mvfr2);
	}

471 472
}

473
static void update_cpu_ftr_reg(struct arm64_ftr_reg *reg, u64 new)
474
{
475
	const struct arm64_ftr_bits *ftrp;
476 477 478 479 480 481 482 483 484 485 486 487 488 489

	for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) {
		s64 ftr_cur = arm64_ftr_value(ftrp, reg->sys_val);
		s64 ftr_new = arm64_ftr_value(ftrp, new);

		if (ftr_cur == ftr_new)
			continue;
		/* Find a safe value */
		ftr_new = arm64_ftr_safe_value(ftrp, ftr_new, ftr_cur);
		reg->sys_val = arm64_ftr_set_value(ftrp, reg->sys_val, ftr_new);
	}

}

490
static int check_update_ftr_reg(u32 sys_id, int cpu, u64 val, u64 boot)
491
{
492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561
	struct arm64_ftr_reg *regp = get_arm64_ftr_reg(sys_id);

	BUG_ON(!regp);
	update_cpu_ftr_reg(regp, val);
	if ((boot & regp->strict_mask) == (val & regp->strict_mask))
		return 0;
	pr_warn("SANITY CHECK: Unexpected variation in %s. Boot CPU: %#016llx, CPU%d: %#016llx\n",
			regp->name, boot, cpu, val);
	return 1;
}

/*
 * Update system wide CPU feature registers with the values from a
 * non-boot CPU. Also performs SANITY checks to make sure that there
 * aren't any insane variations from that of the boot CPU.
 */
void update_cpu_features(int cpu,
			 struct cpuinfo_arm64 *info,
			 struct cpuinfo_arm64 *boot)
{
	int taint = 0;

	/*
	 * The kernel can handle differing I-cache policies, but otherwise
	 * caches should look identical. Userspace JITs will make use of
	 * *minLine.
	 */
	taint |= check_update_ftr_reg(SYS_CTR_EL0, cpu,
				      info->reg_ctr, boot->reg_ctr);

	/*
	 * Userspace may perform DC ZVA instructions. Mismatched block sizes
	 * could result in too much or too little memory being zeroed if a
	 * process is preempted and migrated between CPUs.
	 */
	taint |= check_update_ftr_reg(SYS_DCZID_EL0, cpu,
				      info->reg_dczid, boot->reg_dczid);

	/* If different, timekeeping will be broken (especially with KVM) */
	taint |= check_update_ftr_reg(SYS_CNTFRQ_EL0, cpu,
				      info->reg_cntfrq, boot->reg_cntfrq);

	/*
	 * The kernel uses self-hosted debug features and expects CPUs to
	 * support identical debug features. We presently need CTX_CMPs, WRPs,
	 * and BRPs to be identical.
	 * ID_AA64DFR1 is currently RES0.
	 */
	taint |= check_update_ftr_reg(SYS_ID_AA64DFR0_EL1, cpu,
				      info->reg_id_aa64dfr0, boot->reg_id_aa64dfr0);
	taint |= check_update_ftr_reg(SYS_ID_AA64DFR1_EL1, cpu,
				      info->reg_id_aa64dfr1, boot->reg_id_aa64dfr1);
	/*
	 * Even in big.LITTLE, processors should be identical instruction-set
	 * wise.
	 */
	taint |= check_update_ftr_reg(SYS_ID_AA64ISAR0_EL1, cpu,
				      info->reg_id_aa64isar0, boot->reg_id_aa64isar0);
	taint |= check_update_ftr_reg(SYS_ID_AA64ISAR1_EL1, cpu,
				      info->reg_id_aa64isar1, boot->reg_id_aa64isar1);

	/*
	 * Differing PARange support is fine as long as all peripherals and
	 * memory are mapped within the minimum PARange of all CPUs.
	 * Linux should not care about secure memory.
	 */
	taint |= check_update_ftr_reg(SYS_ID_AA64MMFR0_EL1, cpu,
				      info->reg_id_aa64mmfr0, boot->reg_id_aa64mmfr0);
	taint |= check_update_ftr_reg(SYS_ID_AA64MMFR1_EL1, cpu,
				      info->reg_id_aa64mmfr1, boot->reg_id_aa64mmfr1);
562 563
	taint |= check_update_ftr_reg(SYS_ID_AA64MMFR2_EL1, cpu,
				      info->reg_id_aa64mmfr2, boot->reg_id_aa64mmfr2);
564 565 566 567 568 569 570 571 572 573 574

	/*
	 * EL3 is not our concern.
	 * ID_AA64PFR1 is currently RES0.
	 */
	taint |= check_update_ftr_reg(SYS_ID_AA64PFR0_EL1, cpu,
				      info->reg_id_aa64pfr0, boot->reg_id_aa64pfr0);
	taint |= check_update_ftr_reg(SYS_ID_AA64PFR1_EL1, cpu,
				      info->reg_id_aa64pfr1, boot->reg_id_aa64pfr1);

	/*
575 576
	 * If we have AArch32, we care about 32-bit features for compat.
	 * If the system doesn't support AArch32, don't update them.
577
	 */
578 579 580 581
	if (id_aa64pfr0_32bit_el0(read_system_reg(SYS_ID_AA64PFR0_EL1)) &&
		id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0)) {

		taint |= check_update_ftr_reg(SYS_ID_DFR0_EL1, cpu,
582
					info->reg_id_dfr0, boot->reg_id_dfr0);
583
		taint |= check_update_ftr_reg(SYS_ID_ISAR0_EL1, cpu,
584
					info->reg_id_isar0, boot->reg_id_isar0);
585
		taint |= check_update_ftr_reg(SYS_ID_ISAR1_EL1, cpu,
586
					info->reg_id_isar1, boot->reg_id_isar1);
587
		taint |= check_update_ftr_reg(SYS_ID_ISAR2_EL1, cpu,
588
					info->reg_id_isar2, boot->reg_id_isar2);
589
		taint |= check_update_ftr_reg(SYS_ID_ISAR3_EL1, cpu,
590
					info->reg_id_isar3, boot->reg_id_isar3);
591
		taint |= check_update_ftr_reg(SYS_ID_ISAR4_EL1, cpu,
592
					info->reg_id_isar4, boot->reg_id_isar4);
593
		taint |= check_update_ftr_reg(SYS_ID_ISAR5_EL1, cpu,
594 595
					info->reg_id_isar5, boot->reg_id_isar5);

596 597 598 599 600 601
		/*
		 * Regardless of the value of the AuxReg field, the AIFSR, ADFSR, and
		 * ACTLR formats could differ across CPUs and therefore would have to
		 * be trapped for virtualization anyway.
		 */
		taint |= check_update_ftr_reg(SYS_ID_MMFR0_EL1, cpu,
602
					info->reg_id_mmfr0, boot->reg_id_mmfr0);
603
		taint |= check_update_ftr_reg(SYS_ID_MMFR1_EL1, cpu,
604
					info->reg_id_mmfr1, boot->reg_id_mmfr1);
605
		taint |= check_update_ftr_reg(SYS_ID_MMFR2_EL1, cpu,
606
					info->reg_id_mmfr2, boot->reg_id_mmfr2);
607
		taint |= check_update_ftr_reg(SYS_ID_MMFR3_EL1, cpu,
608
					info->reg_id_mmfr3, boot->reg_id_mmfr3);
609
		taint |= check_update_ftr_reg(SYS_ID_PFR0_EL1, cpu,
610
					info->reg_id_pfr0, boot->reg_id_pfr0);
611
		taint |= check_update_ftr_reg(SYS_ID_PFR1_EL1, cpu,
612
					info->reg_id_pfr1, boot->reg_id_pfr1);
613
		taint |= check_update_ftr_reg(SYS_MVFR0_EL1, cpu,
614
					info->reg_mvfr0, boot->reg_mvfr0);
615
		taint |= check_update_ftr_reg(SYS_MVFR1_EL1, cpu,
616
					info->reg_mvfr1, boot->reg_mvfr1);
617
		taint |= check_update_ftr_reg(SYS_MVFR2_EL1, cpu,
618
					info->reg_mvfr2, boot->reg_mvfr2);
619
	}
620 621 622 623 624 625 626

	/*
	 * Mismatched CPU features are a recipe for disaster. Don't even
	 * pretend to support them.
	 */
	WARN_TAINT_ONCE(taint, TAINT_CPU_OUT_OF_SPEC,
			"Unsupported CPU feature variation.\n");
627 628
}

629 630 631 632 633 634 635 636
u64 read_system_reg(u32 id)
{
	struct arm64_ftr_reg *regp = get_arm64_ftr_reg(id);

	/* We shouldn't get a request for an unsupported register */
	BUG_ON(!regp);
	return regp->sys_val;
}
637

638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680
/*
 * __raw_read_system_reg() - Used by a STARTING cpu before cpuinfo is populated.
 * Read the system register on the current CPU
 */
static u64 __raw_read_system_reg(u32 sys_id)
{
	switch (sys_id) {
	case SYS_ID_PFR0_EL1:		return read_cpuid(ID_PFR0_EL1);
	case SYS_ID_PFR1_EL1:		return read_cpuid(ID_PFR1_EL1);
	case SYS_ID_DFR0_EL1:		return read_cpuid(ID_DFR0_EL1);
	case SYS_ID_MMFR0_EL1:		return read_cpuid(ID_MMFR0_EL1);
	case SYS_ID_MMFR1_EL1:		return read_cpuid(ID_MMFR1_EL1);
	case SYS_ID_MMFR2_EL1:		return read_cpuid(ID_MMFR2_EL1);
	case SYS_ID_MMFR3_EL1:		return read_cpuid(ID_MMFR3_EL1);
	case SYS_ID_ISAR0_EL1:		return read_cpuid(ID_ISAR0_EL1);
	case SYS_ID_ISAR1_EL1:		return read_cpuid(ID_ISAR1_EL1);
	case SYS_ID_ISAR2_EL1:		return read_cpuid(ID_ISAR2_EL1);
	case SYS_ID_ISAR3_EL1:		return read_cpuid(ID_ISAR3_EL1);
	case SYS_ID_ISAR4_EL1:		return read_cpuid(ID_ISAR4_EL1);
	case SYS_ID_ISAR5_EL1:		return read_cpuid(ID_ISAR4_EL1);
	case SYS_MVFR0_EL1:		return read_cpuid(MVFR0_EL1);
	case SYS_MVFR1_EL1:		return read_cpuid(MVFR1_EL1);
	case SYS_MVFR2_EL1:		return read_cpuid(MVFR2_EL1);

	case SYS_ID_AA64PFR0_EL1:	return read_cpuid(ID_AA64PFR0_EL1);
	case SYS_ID_AA64PFR1_EL1:	return read_cpuid(ID_AA64PFR0_EL1);
	case SYS_ID_AA64DFR0_EL1:	return read_cpuid(ID_AA64DFR0_EL1);
	case SYS_ID_AA64DFR1_EL1:	return read_cpuid(ID_AA64DFR0_EL1);
	case SYS_ID_AA64MMFR0_EL1:	return read_cpuid(ID_AA64MMFR0_EL1);
	case SYS_ID_AA64MMFR1_EL1:	return read_cpuid(ID_AA64MMFR1_EL1);
	case SYS_ID_AA64MMFR2_EL1:	return read_cpuid(ID_AA64MMFR2_EL1);
	case SYS_ID_AA64ISAR0_EL1:	return read_cpuid(ID_AA64ISAR0_EL1);
	case SYS_ID_AA64ISAR1_EL1:	return read_cpuid(ID_AA64ISAR1_EL1);

	case SYS_CNTFRQ_EL0:		return read_cpuid(CNTFRQ_EL0);
	case SYS_CTR_EL0:		return read_cpuid(CTR_EL0);
	case SYS_DCZID_EL0:		return read_cpuid(DCZID_EL0);
	default:
		BUG();
		return 0;
	}
}

681 682
#include <linux/irqchip/arm-gic-v3.h>

683 684 685
static bool
feature_matches(u64 reg, const struct arm64_cpu_capabilities *entry)
{
686
	int val = cpuid_feature_extract_field(reg, entry->field_pos, entry->sign);
687 688 689 690

	return val >= entry->min_field_value;
}

691
static bool
692
has_cpuid_feature(const struct arm64_cpu_capabilities *entry, int scope)
693 694
{
	u64 val;
695

696 697 698 699 700 701
	WARN_ON(scope == SCOPE_LOCAL_CPU && preemptible());
	if (scope == SCOPE_SYSTEM)
		val = read_system_reg(entry->sys_reg);
	else
		val = __raw_read_system_reg(entry->sys_reg);

702 703
	return feature_matches(val, entry);
}
704

705
static bool has_useable_gicv3_cpuif(const struct arm64_cpu_capabilities *entry, int scope)
706 707 708
{
	bool has_sre;

709
	if (!has_cpuid_feature(entry, scope))
710 711 712 713 714 715 716 717 718 719
		return false;

	has_sre = gic_enable_sre();
	if (!has_sre)
		pr_warn_once("%s present but disabled by higher exception level\n",
			     entry->desc);

	return has_sre;
}

720
static bool has_no_hw_prefetch(const struct arm64_cpu_capabilities *entry, int __unused)
721 722 723 724 725 726 727 728 729 730 731
{
	u32 midr = read_cpuid_id();
	u32 rv_min, rv_max;

	/* Cavium ThunderX pass 1.x and 2.x */
	rv_min = 0;
	rv_max = (1 << MIDR_VARIANT_SHIFT) | MIDR_REVISION_MASK;

	return MIDR_IS_CPU_MODEL_RANGE(midr, MIDR_THUNDERX, rv_min, rv_max);
}

732
static bool runs_at_el2(const struct arm64_cpu_capabilities *entry, int __unused)
733 734 735 736
{
	return is_kernel_in_hyp_mode();
}

737 738 739 740 741 742 743 744 745 746 747 748 749
static bool hyp_offset_low(const struct arm64_cpu_capabilities *entry,
			   int __unused)
{
	phys_addr_t idmap_addr = virt_to_phys(__hyp_idmap_text_start);

	/*
	 * Activate the lower HYP offset only if:
	 * - the idmap doesn't clash with it,
	 * - the kernel is not running at EL2.
	 */
	return idmap_addr > GENMASK(VA_BITS - 2, 0) && !is_kernel_in_hyp_mode();
}

750 751 752 753 754 755 756 757
static bool has_no_fpsimd(const struct arm64_cpu_capabilities *entry, int __unused)
{
	u64 pfr0 = read_system_reg(SYS_ID_AA64PFR0_EL1);

	return cpuid_feature_extract_signed_field(pfr0,
					ID_AA64PFR0_FP_SHIFT) < 0;
}

758
static const struct arm64_cpu_capabilities arm64_features[] = {
759 760 761
	{
		.desc = "GIC system register CPU interface",
		.capability = ARM64_HAS_SYSREG_GIC_CPUIF,
762
		.def_scope = SCOPE_SYSTEM,
763
		.matches = has_useable_gicv3_cpuif,
764 765
		.sys_reg = SYS_ID_AA64PFR0_EL1,
		.field_pos = ID_AA64PFR0_GIC_SHIFT,
766
		.sign = FTR_UNSIGNED,
767
		.min_field_value = 1,
768
	},
769 770 771 772
#ifdef CONFIG_ARM64_PAN
	{
		.desc = "Privileged Access Never",
		.capability = ARM64_HAS_PAN,
773
		.def_scope = SCOPE_SYSTEM,
774 775 776
		.matches = has_cpuid_feature,
		.sys_reg = SYS_ID_AA64MMFR1_EL1,
		.field_pos = ID_AA64MMFR1_PAN_SHIFT,
777
		.sign = FTR_UNSIGNED,
778 779 780 781
		.min_field_value = 1,
		.enable = cpu_enable_pan,
	},
#endif /* CONFIG_ARM64_PAN */
782 783 784 785
#if defined(CONFIG_AS_LSE) && defined(CONFIG_ARM64_LSE_ATOMICS)
	{
		.desc = "LSE atomic instructions",
		.capability = ARM64_HAS_LSE_ATOMICS,
786
		.def_scope = SCOPE_SYSTEM,
787 788 789
		.matches = has_cpuid_feature,
		.sys_reg = SYS_ID_AA64ISAR0_EL1,
		.field_pos = ID_AA64ISAR0_ATOMICS_SHIFT,
790
		.sign = FTR_UNSIGNED,
791 792 793
		.min_field_value = 2,
	},
#endif /* CONFIG_AS_LSE && CONFIG_ARM64_LSE_ATOMICS */
794 795 796
	{
		.desc = "Software prefetching using PRFM",
		.capability = ARM64_HAS_NO_HW_PREFETCH,
797
		.def_scope = SCOPE_SYSTEM,
798 799
		.matches = has_no_hw_prefetch,
	},
800 801 802 803
#ifdef CONFIG_ARM64_UAO
	{
		.desc = "User Access Override",
		.capability = ARM64_HAS_UAO,
804
		.def_scope = SCOPE_SYSTEM,
805 806 807 808
		.matches = has_cpuid_feature,
		.sys_reg = SYS_ID_AA64MMFR2_EL1,
		.field_pos = ID_AA64MMFR2_UAO_SHIFT,
		.min_field_value = 1,
809 810 811 812
		/*
		 * We rely on stop_machine() calling uao_thread_switch() to set
		 * UAO immediately after patching.
		 */
813 814
	},
#endif /* CONFIG_ARM64_UAO */
815 816 817
#ifdef CONFIG_ARM64_PAN
	{
		.capability = ARM64_ALT_PAN_NOT_UAO,
818
		.def_scope = SCOPE_SYSTEM,
819 820 821
		.matches = cpufeature_pan_not_uao,
	},
#endif /* CONFIG_ARM64_PAN */
822 823 824
	{
		.desc = "Virtualization Host Extensions",
		.capability = ARM64_HAS_VIRT_HOST_EXTN,
825
		.def_scope = SCOPE_SYSTEM,
826 827
		.matches = runs_at_el2,
	},
828 829 830
	{
		.desc = "32-bit EL0 Support",
		.capability = ARM64_HAS_32BIT_EL0,
831
		.def_scope = SCOPE_SYSTEM,
832 833 834 835 836 837
		.matches = has_cpuid_feature,
		.sys_reg = SYS_ID_AA64PFR0_EL1,
		.sign = FTR_UNSIGNED,
		.field_pos = ID_AA64PFR0_EL0_SHIFT,
		.min_field_value = ID_AA64PFR0_EL0_32BIT_64BIT,
	},
838 839 840 841 842 843
	{
		.desc = "Reduced HYP mapping offset",
		.capability = ARM64_HYP_OFFSET_LOW,
		.def_scope = SCOPE_SYSTEM,
		.matches = hyp_offset_low,
	},
844 845 846 847 848 849 850
	{
		/* FP/SIMD is not implemented */
		.capability = ARM64_HAS_NO_FPSIMD,
		.def_scope = SCOPE_SYSTEM,
		.min_field_value = 0,
		.matches = has_no_fpsimd,
	},
851 852 853
	{},
};

854
#define HWCAP_CAP(reg, field, s, min_value, type, cap)	\
855 856
	{							\
		.desc = #cap,					\
857
		.def_scope = SCOPE_SYSTEM,			\
858 859 860
		.matches = has_cpuid_feature,			\
		.sys_reg = reg,					\
		.field_pos = field,				\
861
		.sign = s,					\
862 863 864 865 866
		.min_field_value = min_value,			\
		.hwcap_type = type,				\
		.hwcap = cap,					\
	}

S
Suzuki K Poulose 已提交
867
static const struct arm64_cpu_capabilities arm64_elf_hwcaps[] = {
868 869 870 871 872 873 874
	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_AES_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, HWCAP_PMULL),
	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_AES_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_AES),
	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA1_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_SHA1),
	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA2_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_SHA2),
	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_CRC32_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_CRC32),
	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_ATOMICS_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, HWCAP_ATOMICS),
	HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_FP_SHIFT, FTR_SIGNED, 0, CAP_HWCAP, HWCAP_FP),
875
	HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_FP_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, HWCAP_FPHP),
876
	HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_ASIMD_SHIFT, FTR_SIGNED, 0, CAP_HWCAP, HWCAP_ASIMD),
877
	HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_ASIMD_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, HWCAP_ASIMDHP),
878 879 880 881
	{},
};

static const struct arm64_cpu_capabilities compat_elf_hwcaps[] = {
882
#ifdef CONFIG_COMPAT
883 884 885 886 887
	HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, FTR_UNSIGNED, 2, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_PMULL),
	HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_AES),
	HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA1_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA1),
	HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA2_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA2),
	HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_CRC32_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_CRC32),
888 889 890 891
#endif
	{},
};

S
Suzuki K Poulose 已提交
892
static void __init cap_set_elf_hwcap(const struct arm64_cpu_capabilities *cap)
893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912
{
	switch (cap->hwcap_type) {
	case CAP_HWCAP:
		elf_hwcap |= cap->hwcap;
		break;
#ifdef CONFIG_COMPAT
	case CAP_COMPAT_HWCAP:
		compat_elf_hwcap |= (u32)cap->hwcap;
		break;
	case CAP_COMPAT_HWCAP2:
		compat_elf_hwcap2 |= (u32)cap->hwcap;
		break;
#endif
	default:
		WARN_ON(1);
		break;
	}
}

/* Check if we have a particular HWCAP enabled */
S
Suzuki K Poulose 已提交
913
static bool cpus_have_elf_hwcap(const struct arm64_cpu_capabilities *cap)
914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936
{
	bool rc;

	switch (cap->hwcap_type) {
	case CAP_HWCAP:
		rc = (elf_hwcap & cap->hwcap) != 0;
		break;
#ifdef CONFIG_COMPAT
	case CAP_COMPAT_HWCAP:
		rc = (compat_elf_hwcap & (u32)cap->hwcap) != 0;
		break;
	case CAP_COMPAT_HWCAP2:
		rc = (compat_elf_hwcap2 & (u32)cap->hwcap) != 0;
		break;
#endif
	default:
		WARN_ON(1);
		rc = false;
	}

	return rc;
}

937
static void __init setup_elf_hwcaps(const struct arm64_cpu_capabilities *hwcaps)
938
{
939
	for (; hwcaps->matches; hwcaps++)
940
		if (hwcaps->matches(hwcaps, hwcaps->def_scope))
941
			cap_set_elf_hwcap(hwcaps);
942 943
}

944
void update_cpu_capabilities(const struct arm64_cpu_capabilities *caps,
945 946
			    const char *info)
{
947
	for (; caps->matches; caps++) {
948
		if (!caps->matches(caps, caps->def_scope))
949 950
			continue;

951 952 953
		if (!cpus_have_cap(caps->capability) && caps->desc)
			pr_info("%s %s\n", info, caps->desc);
		cpus_set_cap(caps->capability);
954
	}
955 956 957
}

/*
958 959
 * Run through the enabled capabilities and enable() it on all active
 * CPUs
960
 */
961
void __init enable_cpu_capabilities(const struct arm64_cpu_capabilities *caps)
962
{
963 964
	for (; caps->matches; caps++)
		if (caps->enable && cpus_have_cap(caps->capability))
965 966 967 968 969 970 971
			/*
			 * Use stop_machine() as it schedules the work allowing
			 * us to modify PSTATE, instead of on_each_cpu() which
			 * uses an IPI, giving us a PSTATE that disappears when
			 * we return.
			 */
			stop_machine(caps->enable, NULL, cpu_online_mask);
972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989
}

/*
 * Flag to indicate if we have computed the system wide
 * capabilities based on the boot time active CPUs. This
 * will be used to determine if a new booting CPU should
 * go through the verification process to make sure that it
 * supports the system capabilities, without using a hotplug
 * notifier.
 */
static bool sys_caps_initialised;

static inline void set_sys_caps_initialised(void)
{
	sys_caps_initialised = true;
}

/*
990 991
 * Check for CPU features that are used in early boot
 * based on the Boot CPU value.
992
 */
993
static void check_early_cpu_features(void)
994
{
995
	verify_cpu_run_el();
996
	verify_cpu_asid_bits();
997
}
998

999 1000 1001 1002
static void
verify_local_elf_hwcaps(const struct arm64_cpu_capabilities *caps)
{

1003 1004
	for (; caps->matches; caps++)
		if (cpus_have_elf_hwcap(caps) && !caps->matches(caps, SCOPE_LOCAL_CPU)) {
1005 1006 1007 1008 1009 1010 1011 1012 1013 1014
			pr_crit("CPU%d: missing HWCAP: %s\n",
					smp_processor_id(), caps->desc);
			cpu_die_early();
		}
}

static void
verify_local_cpu_features(const struct arm64_cpu_capabilities *caps)
{
	for (; caps->matches; caps++) {
1015
		if (!cpus_have_cap(caps->capability))
1016 1017 1018 1019 1020
			continue;
		/*
		 * If the new CPU misses an advertised feature, we cannot proceed
		 * further, park the cpu.
		 */
1021
		if (!caps->matches(caps, SCOPE_LOCAL_CPU)) {
1022 1023 1024 1025 1026 1027 1028 1029 1030
			pr_crit("CPU%d: missing feature: %s\n",
					smp_processor_id(), caps->desc);
			cpu_die_early();
		}
		if (caps->enable)
			caps->enable(NULL);
	}
}

1031 1032 1033 1034 1035 1036 1037 1038
/*
 * Run through the enabled system capabilities and enable() it on this CPU.
 * The capabilities were decided based on the available CPUs at the boot time.
 * Any new CPU should match the system wide status of the capability. If the
 * new CPU doesn't have a capability which the system now has enabled, we
 * cannot do anything to fix it up and could cause unexpected failures. So
 * we park the CPU.
 */
1039
static void verify_local_cpu_capabilities(void)
1040
{
1041 1042 1043 1044 1045 1046
	verify_local_cpu_errata_workarounds();
	verify_local_cpu_features(arm64_features);
	verify_local_elf_hwcaps(arm64_elf_hwcaps);
	if (system_supports_32bit_el0())
		verify_local_elf_hwcaps(compat_elf_hwcaps);
}
1047

1048 1049 1050 1051 1052 1053
void check_local_cpu_capabilities(void)
{
	/*
	 * All secondary CPUs should conform to the early CPU features
	 * in use by the kernel based on boot CPU.
	 */
1054 1055
	check_early_cpu_features();

1056
	/*
1057 1058 1059 1060
	 * If we haven't finalised the system capabilities, this CPU gets
	 * a chance to update the errata work arounds.
	 * Otherwise, this CPU should verify that it has all the system
	 * advertised capabilities.
1061 1062
	 */
	if (!sys_caps_initialised)
1063 1064 1065
		update_cpu_errata_workarounds();
	else
		verify_local_cpu_capabilities();
1066 1067
}

1068
static void __init setup_feature_capabilities(void)
1069
{
1070 1071
	update_cpu_capabilities(arm64_features, "detected feature:");
	enable_cpu_capabilities(arm64_features);
1072 1073
}

1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091
/*
 * Check if the current CPU has a given feature capability.
 * Should be called from non-preemptible context.
 */
bool this_cpu_has_cap(unsigned int cap)
{
	const struct arm64_cpu_capabilities *caps;

	if (WARN_ON(preemptible()))
		return false;

	for (caps = arm64_features; caps->desc; caps++)
		if (caps->capability == cap && caps->matches)
			return caps->matches(caps, SCOPE_LOCAL_CPU);

	return false;
}

1092
void __init setup_cpu_features(void)
1093
{
1094 1095 1096
	u32 cwg;
	int cls;

1097 1098
	/* Set the CPU feature capabilies */
	setup_feature_capabilities();
1099
	enable_errata_workarounds();
1100
	setup_elf_hwcaps(arm64_elf_hwcaps);
1101 1102 1103

	if (system_supports_32bit_el0())
		setup_elf_hwcaps(compat_elf_hwcaps);
1104 1105 1106 1107

	/* Advertise that we have computed the system capabilities */
	set_sys_caps_initialised();

1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118
	/*
	 * Check for sane CTR_EL0.CWG value.
	 */
	cwg = cache_type_cwg();
	cls = cache_line_size();
	if (!cwg)
		pr_warn("No Cache Writeback Granule information, assuming cache line size %d\n",
			cls);
	if (L1_CACHE_BYTES < cls)
		pr_warn("L1_CACHE_BYTES smaller than the Cache Writeback Granule (%d < %d)\n",
			L1_CACHE_BYTES, cls);
1119
}
1120 1121

static bool __maybe_unused
1122
cpufeature_pan_not_uao(const struct arm64_cpu_capabilities *entry, int __unused)
1123
{
1124
	return (cpus_have_const_cap(ARM64_HAS_PAN) && !cpus_have_const_cap(ARM64_HAS_UAO));
1125
}