cpufeature.c 35.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 * Contains CPU feature definitions
 *
 * Copyright (C) 2015 ARM Ltd.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 */

19
#define pr_fmt(fmt) "CPU features: " fmt
20

21 22
#include <linux/bsearch.h>
#include <linux/sort.h>
23 24 25
#include <linux/types.h>
#include <asm/cpu.h>
#include <asm/cpufeature.h>
26
#include <asm/cpu_ops.h>
27
#include <asm/mmu_context.h>
28
#include <asm/processor.h>
29
#include <asm/sysreg.h>
30
#include <asm/virt.h>
31

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
unsigned long elf_hwcap __read_mostly;
EXPORT_SYMBOL_GPL(elf_hwcap);

#ifdef CONFIG_COMPAT
#define COMPAT_ELF_HWCAP_DEFAULT	\
				(COMPAT_HWCAP_HALF|COMPAT_HWCAP_THUMB|\
				 COMPAT_HWCAP_FAST_MULT|COMPAT_HWCAP_EDSP|\
				 COMPAT_HWCAP_TLS|COMPAT_HWCAP_VFP|\
				 COMPAT_HWCAP_VFPv3|COMPAT_HWCAP_VFPv4|\
				 COMPAT_HWCAP_NEON|COMPAT_HWCAP_IDIV|\
				 COMPAT_HWCAP_LPAE)
unsigned int compat_elf_hwcap __read_mostly = COMPAT_ELF_HWCAP_DEFAULT;
unsigned int compat_elf_hwcap2 __read_mostly;
#endif

DECLARE_BITMAP(cpu_hwcaps, ARM64_NCAPS);

49
#define __ARM64_FTR_BITS(SIGNED, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
50
	{						\
51
		.sign = SIGNED,				\
52 53 54 55 56 57 58
		.strict = STRICT,			\
		.type = TYPE,				\
		.shift = SHIFT,				\
		.width = WIDTH,				\
		.safe_val = SAFE_VAL,			\
	}

59
/* Define a feature with unsigned values */
60 61 62
#define ARM64_FTR_BITS(STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
	__ARM64_FTR_BITS(FTR_UNSIGNED, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)

63 64 65 66
/* Define a feature with a signed value */
#define S_ARM64_FTR_BITS(STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
	__ARM64_FTR_BITS(FTR_SIGNED, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)

67 68 69 70 71
#define ARM64_FTR_END					\
	{						\
		.width = 0,				\
	}

72 73
/* meta feature for alternatives */
static bool __maybe_unused
74 75
cpufeature_pan_not_uao(const struct arm64_cpu_capabilities *entry, int __unused);

76

77
static const struct arm64_ftr_bits ftr_id_aa64isar0[] = {
78 79 80 81 82 83 84 85 86 87 88 89
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 32, 32, 0),
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64ISAR0_RDM_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 24, 4, 0),
	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_ATOMICS_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_CRC32_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA2_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA1_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_AES_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 4, 0),	/* RAZ */
	ARM64_FTR_END,
};

90
static const struct arm64_ftr_bits ftr_id_aa64pfr0[] = {
91 92 93
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 32, 32, 0),
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 28, 4, 0),
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64PFR0_GIC_SHIFT, 4, 0),
94 95
	S_ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_ASIMD_SHIFT, 4, ID_AA64PFR0_ASIMD_NI),
	S_ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_FP_SHIFT, 4, ID_AA64PFR0_FP_NI),
96 97 98 99 100 101 102 103
	/* Linux doesn't care about the EL3 */
	ARM64_FTR_BITS(FTR_NONSTRICT, FTR_EXACT, ID_AA64PFR0_EL3_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64PFR0_EL2_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64PFR0_EL1_SHIFT, 4, ID_AA64PFR0_EL1_64BIT_ONLY),
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64PFR0_EL0_SHIFT, 4, ID_AA64PFR0_EL0_64BIT_ONLY),
	ARM64_FTR_END,
};

104
static const struct arm64_ftr_bits ftr_id_aa64mmfr0[] = {
105
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 32, 32, 0),
106 107
	S_ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN4_SHIFT, 4, ID_AA64MMFR0_TGRAN4_NI),
	S_ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN64_SHIFT, 4, ID_AA64MMFR0_TGRAN64_NI),
108 109 110 111 112 113 114 115 116 117
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN16_SHIFT, 4, ID_AA64MMFR0_TGRAN16_NI),
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_BIGENDEL0_SHIFT, 4, 0),
	/* Linux shouldn't care about secure memory */
	ARM64_FTR_BITS(FTR_NONSTRICT, FTR_EXACT, ID_AA64MMFR0_SNSMEM_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_BIGENDEL_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_ASID_SHIFT, 4, 0),
	/*
	 * Differing PARange is fine as long as all peripherals and memory are mapped
	 * within the minimum PARange of all CPUs
	 */
118
	ARM64_FTR_BITS(FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_PARANGE_SHIFT, 4, 0),
119 120 121
	ARM64_FTR_END,
};

122
static const struct arm64_ftr_bits ftr_id_aa64mmfr1[] = {
123 124 125 126 127 128 129 130 131 132
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 32, 32, 0),
	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_PAN_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_LOR_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_HPD_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_VHE_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_VMIDBITS_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_HADBS_SHIFT, 4, 0),
	ARM64_FTR_END,
};

133
static const struct arm64_ftr_bits ftr_id_aa64mmfr2[] = {
134 135 136
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR2_LVA_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR2_IESB_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR2_LSM_SHIFT, 4, 0),
137
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR2_UAO_SHIFT, 4, 0),
138
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR2_CNP_SHIFT, 4, 0),
139 140 141
	ARM64_FTR_END,
};

142
static const struct arm64_ftr_bits ftr_ctr[] = {
143
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 31, 1, 1),	/* RAO */
144
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 28, 3, 0),
145 146 147
	ARM64_FTR_BITS(FTR_STRICT, FTR_HIGHER_SAFE, 24, 4, 0),	/* CWG */
	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),	/* ERG */
	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 1),	/* DminLine */
148 149 150 151
	/*
	 * Linux can handle differing I-cache policies. Userspace JITs will
	 * make use of *minLine
	 */
152
	ARM64_FTR_BITS(FTR_NONSTRICT, FTR_EXACT, 14, 2, 0),	/* L1Ip */
153
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 10, 0),	/* RAZ */
154
	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),	/* IminLine */
155 156 157
	ARM64_FTR_END,
};

158 159 160 161 162
struct arm64_ftr_reg arm64_ftr_reg_ctrel0 = {
	.name		= "SYS_CTR_EL0",
	.ftr_bits	= ftr_ctr
};

163
static const struct arm64_ftr_bits ftr_id_mmfr0[] = {
164
	S_ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 28, 4, 0xf),	/* InnerShr */
165 166 167 168
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 24, 4, 0),	/* FCSE */
	ARM64_FTR_BITS(FTR_NONSTRICT, FTR_LOWER_SAFE, 20, 4, 0),	/* AuxReg */
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 16, 4, 0),	/* TCM */
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 12, 4, 0),	/* ShareLvl */
169
	S_ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 8, 4, 0xf),	/* OuterShr */
170 171 172 173 174
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 4, 0),	/* PMSA */
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 4, 0),	/* VMSA */
	ARM64_FTR_END,
};

175
static const struct arm64_ftr_bits ftr_id_aa64dfr0[] = {
176
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 32, 32, 0),
177 178 179 180 181 182
	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_CTX_CMPS_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_WRPS_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_BRPS_SHIFT, 4, 0),
	S_ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64DFR0_PMUVER_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64DFR0_TRACEVER_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64DFR0_DEBUGVER_SHIFT, 4, 0x6),
183 184 185
	ARM64_FTR_END,
};

186
static const struct arm64_ftr_bits ftr_mvfr2[] = {
187 188 189 190 191 192
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 8, 24, 0),	/* RAZ */
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 4, 0),		/* FPMisc */
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 4, 0),		/* SIMDMisc */
	ARM64_FTR_END,
};

193
static const struct arm64_ftr_bits ftr_dczid[] = {
194 195 196 197 198 199 200
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 5, 27, 0),	/* RAZ */
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 1, 1),		/* DZP */
	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),	/* BS */
	ARM64_FTR_END,
};


201
static const struct arm64_ftr_bits ftr_id_isar5[] = {
202 203 204 205 206 207 208 209 210 211
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_RDM_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 20, 4, 0),	/* RAZ */
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_CRC32_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_SHA2_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_SHA1_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_AES_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_SEVL_SHIFT, 4, 0),
	ARM64_FTR_END,
};

212
static const struct arm64_ftr_bits ftr_id_mmfr4[] = {
213 214 215 216 217 218
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 8, 24, 0),	/* RAZ */
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 4, 0),		/* ac2 */
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 4, 0),		/* RAZ */
	ARM64_FTR_END,
};

219
static const struct arm64_ftr_bits ftr_id_pfr0[] = {
220 221 222 223 224 225 226 227
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 16, 16, 0),	/* RAZ */
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 12, 4, 0),	/* State3 */
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 8, 4, 0),		/* State2 */
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 4, 0),		/* State1 */
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 4, 0),		/* State0 */
	ARM64_FTR_END,
};

228
static const struct arm64_ftr_bits ftr_id_dfr0[] = {
229
	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0),
230
	S_ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0xf),	/* PerfMon */
231 232 233 234 235 236 237 238 239
	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),
	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),
	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),
	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),
	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),
	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),
	ARM64_FTR_END,
};

240 241 242 243 244 245
/*
 * Common ftr bits for a 32bit register with all hidden, strict
 * attributes, with 4bit feature fields and a default safe value of
 * 0. Covers the following 32bit registers:
 * id_isar[0-4], id_mmfr[1-3], id_pfr1, mvfr[0-1]
 */
246
static const struct arm64_ftr_bits ftr_generic_32bits[] = {
247 248 249 250 251 252 253 254 255 256 257
	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0),
	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0),
	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),
	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),
	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),
	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),
	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),
	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),
	ARM64_FTR_END,
};

258
static const struct arm64_ftr_bits ftr_generic[] = {
259 260 261 262
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 64, 0),
	ARM64_FTR_END,
};

263
static const struct arm64_ftr_bits ftr_generic32[] = {
264 265 266 267
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 32, 0),
	ARM64_FTR_END,
};

268
static const struct arm64_ftr_bits ftr_aa64raz[] = {
269 270 271 272
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 64, 0),
	ARM64_FTR_END,
};

273 274 275
#define ARM64_FTR_REG(id, table) {		\
	.sys_id = id,				\
	.reg = 	&(struct arm64_ftr_reg){	\
276 277
		.name = #id,			\
		.ftr_bits = &((table)[0]),	\
278
	}}
279

280 281 282 283
static const struct __ftr_reg_entry {
	u32			sys_id;
	struct arm64_ftr_reg 	*reg;
} arm64_ftr_regs[] = {
284 285 286 287

	/* Op1 = 0, CRn = 0, CRm = 1 */
	ARM64_FTR_REG(SYS_ID_PFR0_EL1, ftr_id_pfr0),
	ARM64_FTR_REG(SYS_ID_PFR1_EL1, ftr_generic_32bits),
288
	ARM64_FTR_REG(SYS_ID_DFR0_EL1, ftr_id_dfr0),
289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322
	ARM64_FTR_REG(SYS_ID_MMFR0_EL1, ftr_id_mmfr0),
	ARM64_FTR_REG(SYS_ID_MMFR1_EL1, ftr_generic_32bits),
	ARM64_FTR_REG(SYS_ID_MMFR2_EL1, ftr_generic_32bits),
	ARM64_FTR_REG(SYS_ID_MMFR3_EL1, ftr_generic_32bits),

	/* Op1 = 0, CRn = 0, CRm = 2 */
	ARM64_FTR_REG(SYS_ID_ISAR0_EL1, ftr_generic_32bits),
	ARM64_FTR_REG(SYS_ID_ISAR1_EL1, ftr_generic_32bits),
	ARM64_FTR_REG(SYS_ID_ISAR2_EL1, ftr_generic_32bits),
	ARM64_FTR_REG(SYS_ID_ISAR3_EL1, ftr_generic_32bits),
	ARM64_FTR_REG(SYS_ID_ISAR4_EL1, ftr_generic_32bits),
	ARM64_FTR_REG(SYS_ID_ISAR5_EL1, ftr_id_isar5),
	ARM64_FTR_REG(SYS_ID_MMFR4_EL1, ftr_id_mmfr4),

	/* Op1 = 0, CRn = 0, CRm = 3 */
	ARM64_FTR_REG(SYS_MVFR0_EL1, ftr_generic_32bits),
	ARM64_FTR_REG(SYS_MVFR1_EL1, ftr_generic_32bits),
	ARM64_FTR_REG(SYS_MVFR2_EL1, ftr_mvfr2),

	/* Op1 = 0, CRn = 0, CRm = 4 */
	ARM64_FTR_REG(SYS_ID_AA64PFR0_EL1, ftr_id_aa64pfr0),
	ARM64_FTR_REG(SYS_ID_AA64PFR1_EL1, ftr_aa64raz),

	/* Op1 = 0, CRn = 0, CRm = 5 */
	ARM64_FTR_REG(SYS_ID_AA64DFR0_EL1, ftr_id_aa64dfr0),
	ARM64_FTR_REG(SYS_ID_AA64DFR1_EL1, ftr_generic),

	/* Op1 = 0, CRn = 0, CRm = 6 */
	ARM64_FTR_REG(SYS_ID_AA64ISAR0_EL1, ftr_id_aa64isar0),
	ARM64_FTR_REG(SYS_ID_AA64ISAR1_EL1, ftr_aa64raz),

	/* Op1 = 0, CRn = 0, CRm = 7 */
	ARM64_FTR_REG(SYS_ID_AA64MMFR0_EL1, ftr_id_aa64mmfr0),
	ARM64_FTR_REG(SYS_ID_AA64MMFR1_EL1, ftr_id_aa64mmfr1),
323
	ARM64_FTR_REG(SYS_ID_AA64MMFR2_EL1, ftr_id_aa64mmfr2),
324 325

	/* Op1 = 3, CRn = 0, CRm = 0 */
326
	{ SYS_CTR_EL0, &arm64_ftr_reg_ctrel0 },
327 328 329 330 331 332 333 334
	ARM64_FTR_REG(SYS_DCZID_EL0, ftr_dczid),

	/* Op1 = 3, CRn = 14, CRm = 0 */
	ARM64_FTR_REG(SYS_CNTFRQ_EL0, ftr_generic32),
};

static int search_cmp_ftr_reg(const void *id, const void *regp)
{
335
	return (int)(unsigned long)id - (int)((const struct __ftr_reg_entry *)regp)->sys_id;
336 337 338 339 340 341 342 343 344 345 346 347 348 349
}

/*
 * get_arm64_ftr_reg - Lookup a feature register entry using its
 * sys_reg() encoding. With the array arm64_ftr_regs sorted in the
 * ascending order of sys_id , we use binary search to find a matching
 * entry.
 *
 * returns - Upon success,  matching ftr_reg entry for id.
 *         - NULL on failure. It is upto the caller to decide
 *	     the impact of a failure.
 */
static struct arm64_ftr_reg *get_arm64_ftr_reg(u32 sys_id)
{
350 351 352
	const struct __ftr_reg_entry *ret;

	ret = bsearch((const void *)(unsigned long)sys_id,
353 354 355 356
			arm64_ftr_regs,
			ARRAY_SIZE(arm64_ftr_regs),
			sizeof(arm64_ftr_regs[0]),
			search_cmp_ftr_reg);
357 358 359
	if (ret)
		return ret->reg;
	return NULL;
360 361
}

362 363
static u64 arm64_ftr_set_value(const struct arm64_ftr_bits *ftrp, s64 reg,
			       s64 ftr_val)
364 365 366 367 368 369 370 371
{
	u64 mask = arm64_ftr_mask(ftrp);

	reg &= ~mask;
	reg |= (ftr_val << ftrp->shift) & mask;
	return reg;
}

372 373
static s64 arm64_ftr_safe_value(const struct arm64_ftr_bits *ftrp, s64 new,
				s64 cur)
374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395
{
	s64 ret = 0;

	switch (ftrp->type) {
	case FTR_EXACT:
		ret = ftrp->safe_val;
		break;
	case FTR_LOWER_SAFE:
		ret = new < cur ? new : cur;
		break;
	case FTR_HIGHER_SAFE:
		ret = new > cur ? new : cur;
		break;
	default:
		BUG();
	}

	return ret;
}

static void __init sort_ftr_regs(void)
{
396 397 398 399 400
	int i;

	/* Check that the array is sorted so that we can do the binary search */
	for (i = 1; i < ARRAY_SIZE(arm64_ftr_regs); i++)
		BUG_ON(arm64_ftr_regs[i].sys_id < arm64_ftr_regs[i - 1].sys_id);
401 402 403 404 405 406 407 408 409 410
}

/*
 * Initialise the CPU feature register from Boot CPU values.
 * Also initiliases the strict_mask for the register.
 */
static void __init init_cpu_ftr_reg(u32 sys_reg, u64 new)
{
	u64 val = 0;
	u64 strict_mask = ~0x0ULL;
411
	const struct arm64_ftr_bits *ftrp;
412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440
	struct arm64_ftr_reg *reg = get_arm64_ftr_reg(sys_reg);

	BUG_ON(!reg);

	for (ftrp  = reg->ftr_bits; ftrp->width; ftrp++) {
		s64 ftr_new = arm64_ftr_value(ftrp, new);

		val = arm64_ftr_set_value(ftrp, val, ftr_new);
		if (!ftrp->strict)
			strict_mask &= ~arm64_ftr_mask(ftrp);
	}
	reg->sys_val = val;
	reg->strict_mask = strict_mask;
}

void __init init_cpu_features(struct cpuinfo_arm64 *info)
{
	/* Before we start using the tables, make sure it is sorted */
	sort_ftr_regs();

	init_cpu_ftr_reg(SYS_CTR_EL0, info->reg_ctr);
	init_cpu_ftr_reg(SYS_DCZID_EL0, info->reg_dczid);
	init_cpu_ftr_reg(SYS_CNTFRQ_EL0, info->reg_cntfrq);
	init_cpu_ftr_reg(SYS_ID_AA64DFR0_EL1, info->reg_id_aa64dfr0);
	init_cpu_ftr_reg(SYS_ID_AA64DFR1_EL1, info->reg_id_aa64dfr1);
	init_cpu_ftr_reg(SYS_ID_AA64ISAR0_EL1, info->reg_id_aa64isar0);
	init_cpu_ftr_reg(SYS_ID_AA64ISAR1_EL1, info->reg_id_aa64isar1);
	init_cpu_ftr_reg(SYS_ID_AA64MMFR0_EL1, info->reg_id_aa64mmfr0);
	init_cpu_ftr_reg(SYS_ID_AA64MMFR1_EL1, info->reg_id_aa64mmfr1);
441
	init_cpu_ftr_reg(SYS_ID_AA64MMFR2_EL1, info->reg_id_aa64mmfr2);
442 443
	init_cpu_ftr_reg(SYS_ID_AA64PFR0_EL1, info->reg_id_aa64pfr0);
	init_cpu_ftr_reg(SYS_ID_AA64PFR1_EL1, info->reg_id_aa64pfr1);
444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463

	if (id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0)) {
		init_cpu_ftr_reg(SYS_ID_DFR0_EL1, info->reg_id_dfr0);
		init_cpu_ftr_reg(SYS_ID_ISAR0_EL1, info->reg_id_isar0);
		init_cpu_ftr_reg(SYS_ID_ISAR1_EL1, info->reg_id_isar1);
		init_cpu_ftr_reg(SYS_ID_ISAR2_EL1, info->reg_id_isar2);
		init_cpu_ftr_reg(SYS_ID_ISAR3_EL1, info->reg_id_isar3);
		init_cpu_ftr_reg(SYS_ID_ISAR4_EL1, info->reg_id_isar4);
		init_cpu_ftr_reg(SYS_ID_ISAR5_EL1, info->reg_id_isar5);
		init_cpu_ftr_reg(SYS_ID_MMFR0_EL1, info->reg_id_mmfr0);
		init_cpu_ftr_reg(SYS_ID_MMFR1_EL1, info->reg_id_mmfr1);
		init_cpu_ftr_reg(SYS_ID_MMFR2_EL1, info->reg_id_mmfr2);
		init_cpu_ftr_reg(SYS_ID_MMFR3_EL1, info->reg_id_mmfr3);
		init_cpu_ftr_reg(SYS_ID_PFR0_EL1, info->reg_id_pfr0);
		init_cpu_ftr_reg(SYS_ID_PFR1_EL1, info->reg_id_pfr1);
		init_cpu_ftr_reg(SYS_MVFR0_EL1, info->reg_mvfr0);
		init_cpu_ftr_reg(SYS_MVFR1_EL1, info->reg_mvfr1);
		init_cpu_ftr_reg(SYS_MVFR2_EL1, info->reg_mvfr2);
	}

464 465
}

466
static void update_cpu_ftr_reg(struct arm64_ftr_reg *reg, u64 new)
467
{
468
	const struct arm64_ftr_bits *ftrp;
469 470 471 472 473 474 475 476 477 478 479 480 481 482

	for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) {
		s64 ftr_cur = arm64_ftr_value(ftrp, reg->sys_val);
		s64 ftr_new = arm64_ftr_value(ftrp, new);

		if (ftr_cur == ftr_new)
			continue;
		/* Find a safe value */
		ftr_new = arm64_ftr_safe_value(ftrp, ftr_new, ftr_cur);
		reg->sys_val = arm64_ftr_set_value(ftrp, reg->sys_val, ftr_new);
	}

}

483
static int check_update_ftr_reg(u32 sys_id, int cpu, u64 val, u64 boot)
484
{
485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554
	struct arm64_ftr_reg *regp = get_arm64_ftr_reg(sys_id);

	BUG_ON(!regp);
	update_cpu_ftr_reg(regp, val);
	if ((boot & regp->strict_mask) == (val & regp->strict_mask))
		return 0;
	pr_warn("SANITY CHECK: Unexpected variation in %s. Boot CPU: %#016llx, CPU%d: %#016llx\n",
			regp->name, boot, cpu, val);
	return 1;
}

/*
 * Update system wide CPU feature registers with the values from a
 * non-boot CPU. Also performs SANITY checks to make sure that there
 * aren't any insane variations from that of the boot CPU.
 */
void update_cpu_features(int cpu,
			 struct cpuinfo_arm64 *info,
			 struct cpuinfo_arm64 *boot)
{
	int taint = 0;

	/*
	 * The kernel can handle differing I-cache policies, but otherwise
	 * caches should look identical. Userspace JITs will make use of
	 * *minLine.
	 */
	taint |= check_update_ftr_reg(SYS_CTR_EL0, cpu,
				      info->reg_ctr, boot->reg_ctr);

	/*
	 * Userspace may perform DC ZVA instructions. Mismatched block sizes
	 * could result in too much or too little memory being zeroed if a
	 * process is preempted and migrated between CPUs.
	 */
	taint |= check_update_ftr_reg(SYS_DCZID_EL0, cpu,
				      info->reg_dczid, boot->reg_dczid);

	/* If different, timekeeping will be broken (especially with KVM) */
	taint |= check_update_ftr_reg(SYS_CNTFRQ_EL0, cpu,
				      info->reg_cntfrq, boot->reg_cntfrq);

	/*
	 * The kernel uses self-hosted debug features and expects CPUs to
	 * support identical debug features. We presently need CTX_CMPs, WRPs,
	 * and BRPs to be identical.
	 * ID_AA64DFR1 is currently RES0.
	 */
	taint |= check_update_ftr_reg(SYS_ID_AA64DFR0_EL1, cpu,
				      info->reg_id_aa64dfr0, boot->reg_id_aa64dfr0);
	taint |= check_update_ftr_reg(SYS_ID_AA64DFR1_EL1, cpu,
				      info->reg_id_aa64dfr1, boot->reg_id_aa64dfr1);
	/*
	 * Even in big.LITTLE, processors should be identical instruction-set
	 * wise.
	 */
	taint |= check_update_ftr_reg(SYS_ID_AA64ISAR0_EL1, cpu,
				      info->reg_id_aa64isar0, boot->reg_id_aa64isar0);
	taint |= check_update_ftr_reg(SYS_ID_AA64ISAR1_EL1, cpu,
				      info->reg_id_aa64isar1, boot->reg_id_aa64isar1);

	/*
	 * Differing PARange support is fine as long as all peripherals and
	 * memory are mapped within the minimum PARange of all CPUs.
	 * Linux should not care about secure memory.
	 */
	taint |= check_update_ftr_reg(SYS_ID_AA64MMFR0_EL1, cpu,
				      info->reg_id_aa64mmfr0, boot->reg_id_aa64mmfr0);
	taint |= check_update_ftr_reg(SYS_ID_AA64MMFR1_EL1, cpu,
				      info->reg_id_aa64mmfr1, boot->reg_id_aa64mmfr1);
555 556
	taint |= check_update_ftr_reg(SYS_ID_AA64MMFR2_EL1, cpu,
				      info->reg_id_aa64mmfr2, boot->reg_id_aa64mmfr2);
557 558 559 560 561 562 563 564 565 566 567

	/*
	 * EL3 is not our concern.
	 * ID_AA64PFR1 is currently RES0.
	 */
	taint |= check_update_ftr_reg(SYS_ID_AA64PFR0_EL1, cpu,
				      info->reg_id_aa64pfr0, boot->reg_id_aa64pfr0);
	taint |= check_update_ftr_reg(SYS_ID_AA64PFR1_EL1, cpu,
				      info->reg_id_aa64pfr1, boot->reg_id_aa64pfr1);

	/*
568 569
	 * If we have AArch32, we care about 32-bit features for compat.
	 * If the system doesn't support AArch32, don't update them.
570
	 */
571 572 573 574
	if (id_aa64pfr0_32bit_el0(read_system_reg(SYS_ID_AA64PFR0_EL1)) &&
		id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0)) {

		taint |= check_update_ftr_reg(SYS_ID_DFR0_EL1, cpu,
575
					info->reg_id_dfr0, boot->reg_id_dfr0);
576
		taint |= check_update_ftr_reg(SYS_ID_ISAR0_EL1, cpu,
577
					info->reg_id_isar0, boot->reg_id_isar0);
578
		taint |= check_update_ftr_reg(SYS_ID_ISAR1_EL1, cpu,
579
					info->reg_id_isar1, boot->reg_id_isar1);
580
		taint |= check_update_ftr_reg(SYS_ID_ISAR2_EL1, cpu,
581
					info->reg_id_isar2, boot->reg_id_isar2);
582
		taint |= check_update_ftr_reg(SYS_ID_ISAR3_EL1, cpu,
583
					info->reg_id_isar3, boot->reg_id_isar3);
584
		taint |= check_update_ftr_reg(SYS_ID_ISAR4_EL1, cpu,
585
					info->reg_id_isar4, boot->reg_id_isar4);
586
		taint |= check_update_ftr_reg(SYS_ID_ISAR5_EL1, cpu,
587 588
					info->reg_id_isar5, boot->reg_id_isar5);

589 590 591 592 593 594
		/*
		 * Regardless of the value of the AuxReg field, the AIFSR, ADFSR, and
		 * ACTLR formats could differ across CPUs and therefore would have to
		 * be trapped for virtualization anyway.
		 */
		taint |= check_update_ftr_reg(SYS_ID_MMFR0_EL1, cpu,
595
					info->reg_id_mmfr0, boot->reg_id_mmfr0);
596
		taint |= check_update_ftr_reg(SYS_ID_MMFR1_EL1, cpu,
597
					info->reg_id_mmfr1, boot->reg_id_mmfr1);
598
		taint |= check_update_ftr_reg(SYS_ID_MMFR2_EL1, cpu,
599
					info->reg_id_mmfr2, boot->reg_id_mmfr2);
600
		taint |= check_update_ftr_reg(SYS_ID_MMFR3_EL1, cpu,
601
					info->reg_id_mmfr3, boot->reg_id_mmfr3);
602
		taint |= check_update_ftr_reg(SYS_ID_PFR0_EL1, cpu,
603
					info->reg_id_pfr0, boot->reg_id_pfr0);
604
		taint |= check_update_ftr_reg(SYS_ID_PFR1_EL1, cpu,
605
					info->reg_id_pfr1, boot->reg_id_pfr1);
606
		taint |= check_update_ftr_reg(SYS_MVFR0_EL1, cpu,
607
					info->reg_mvfr0, boot->reg_mvfr0);
608
		taint |= check_update_ftr_reg(SYS_MVFR1_EL1, cpu,
609
					info->reg_mvfr1, boot->reg_mvfr1);
610
		taint |= check_update_ftr_reg(SYS_MVFR2_EL1, cpu,
611
					info->reg_mvfr2, boot->reg_mvfr2);
612
	}
613 614 615 616 617 618 619

	/*
	 * Mismatched CPU features are a recipe for disaster. Don't even
	 * pretend to support them.
	 */
	WARN_TAINT_ONCE(taint, TAINT_CPU_OUT_OF_SPEC,
			"Unsupported CPU feature variation.\n");
620 621
}

622 623 624 625 626 627 628 629
u64 read_system_reg(u32 id)
{
	struct arm64_ftr_reg *regp = get_arm64_ftr_reg(id);

	/* We shouldn't get a request for an unsupported register */
	BUG_ON(!regp);
	return regp->sys_val;
}
630

631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673
/*
 * __raw_read_system_reg() - Used by a STARTING cpu before cpuinfo is populated.
 * Read the system register on the current CPU
 */
static u64 __raw_read_system_reg(u32 sys_id)
{
	switch (sys_id) {
	case SYS_ID_PFR0_EL1:		return read_cpuid(ID_PFR0_EL1);
	case SYS_ID_PFR1_EL1:		return read_cpuid(ID_PFR1_EL1);
	case SYS_ID_DFR0_EL1:		return read_cpuid(ID_DFR0_EL1);
	case SYS_ID_MMFR0_EL1:		return read_cpuid(ID_MMFR0_EL1);
	case SYS_ID_MMFR1_EL1:		return read_cpuid(ID_MMFR1_EL1);
	case SYS_ID_MMFR2_EL1:		return read_cpuid(ID_MMFR2_EL1);
	case SYS_ID_MMFR3_EL1:		return read_cpuid(ID_MMFR3_EL1);
	case SYS_ID_ISAR0_EL1:		return read_cpuid(ID_ISAR0_EL1);
	case SYS_ID_ISAR1_EL1:		return read_cpuid(ID_ISAR1_EL1);
	case SYS_ID_ISAR2_EL1:		return read_cpuid(ID_ISAR2_EL1);
	case SYS_ID_ISAR3_EL1:		return read_cpuid(ID_ISAR3_EL1);
	case SYS_ID_ISAR4_EL1:		return read_cpuid(ID_ISAR4_EL1);
	case SYS_ID_ISAR5_EL1:		return read_cpuid(ID_ISAR4_EL1);
	case SYS_MVFR0_EL1:		return read_cpuid(MVFR0_EL1);
	case SYS_MVFR1_EL1:		return read_cpuid(MVFR1_EL1);
	case SYS_MVFR2_EL1:		return read_cpuid(MVFR2_EL1);

	case SYS_ID_AA64PFR0_EL1:	return read_cpuid(ID_AA64PFR0_EL1);
	case SYS_ID_AA64PFR1_EL1:	return read_cpuid(ID_AA64PFR0_EL1);
	case SYS_ID_AA64DFR0_EL1:	return read_cpuid(ID_AA64DFR0_EL1);
	case SYS_ID_AA64DFR1_EL1:	return read_cpuid(ID_AA64DFR0_EL1);
	case SYS_ID_AA64MMFR0_EL1:	return read_cpuid(ID_AA64MMFR0_EL1);
	case SYS_ID_AA64MMFR1_EL1:	return read_cpuid(ID_AA64MMFR1_EL1);
	case SYS_ID_AA64MMFR2_EL1:	return read_cpuid(ID_AA64MMFR2_EL1);
	case SYS_ID_AA64ISAR0_EL1:	return read_cpuid(ID_AA64ISAR0_EL1);
	case SYS_ID_AA64ISAR1_EL1:	return read_cpuid(ID_AA64ISAR1_EL1);

	case SYS_CNTFRQ_EL0:		return read_cpuid(CNTFRQ_EL0);
	case SYS_CTR_EL0:		return read_cpuid(CTR_EL0);
	case SYS_DCZID_EL0:		return read_cpuid(DCZID_EL0);
	default:
		BUG();
		return 0;
	}
}

674 675
#include <linux/irqchip/arm-gic-v3.h>

676 677 678
static bool
feature_matches(u64 reg, const struct arm64_cpu_capabilities *entry)
{
679
	int val = cpuid_feature_extract_field(reg, entry->field_pos, entry->sign);
680 681 682 683

	return val >= entry->min_field_value;
}

684
static bool
685
has_cpuid_feature(const struct arm64_cpu_capabilities *entry, int scope)
686 687
{
	u64 val;
688

689 690 691 692 693 694
	WARN_ON(scope == SCOPE_LOCAL_CPU && preemptible());
	if (scope == SCOPE_SYSTEM)
		val = read_system_reg(entry->sys_reg);
	else
		val = __raw_read_system_reg(entry->sys_reg);

695 696
	return feature_matches(val, entry);
}
697

698
static bool has_useable_gicv3_cpuif(const struct arm64_cpu_capabilities *entry, int scope)
699 700 701
{
	bool has_sre;

702
	if (!has_cpuid_feature(entry, scope))
703 704 705 706 707 708 709 710 711 712
		return false;

	has_sre = gic_enable_sre();
	if (!has_sre)
		pr_warn_once("%s present but disabled by higher exception level\n",
			     entry->desc);

	return has_sre;
}

713
static bool has_no_hw_prefetch(const struct arm64_cpu_capabilities *entry, int __unused)
714 715 716 717 718 719 720 721 722 723 724
{
	u32 midr = read_cpuid_id();
	u32 rv_min, rv_max;

	/* Cavium ThunderX pass 1.x and 2.x */
	rv_min = 0;
	rv_max = (1 << MIDR_VARIANT_SHIFT) | MIDR_REVISION_MASK;

	return MIDR_IS_CPU_MODEL_RANGE(midr, MIDR_THUNDERX, rv_min, rv_max);
}

725
static bool runs_at_el2(const struct arm64_cpu_capabilities *entry, int __unused)
726 727 728 729
{
	return is_kernel_in_hyp_mode();
}

730 731 732 733 734 735 736 737 738 739 740 741 742
static bool hyp_offset_low(const struct arm64_cpu_capabilities *entry,
			   int __unused)
{
	phys_addr_t idmap_addr = virt_to_phys(__hyp_idmap_text_start);

	/*
	 * Activate the lower HYP offset only if:
	 * - the idmap doesn't clash with it,
	 * - the kernel is not running at EL2.
	 */
	return idmap_addr > GENMASK(VA_BITS - 2, 0) && !is_kernel_in_hyp_mode();
}

743
static const struct arm64_cpu_capabilities arm64_features[] = {
744 745 746
	{
		.desc = "GIC system register CPU interface",
		.capability = ARM64_HAS_SYSREG_GIC_CPUIF,
747
		.def_scope = SCOPE_SYSTEM,
748
		.matches = has_useable_gicv3_cpuif,
749 750
		.sys_reg = SYS_ID_AA64PFR0_EL1,
		.field_pos = ID_AA64PFR0_GIC_SHIFT,
751
		.sign = FTR_UNSIGNED,
752
		.min_field_value = 1,
753
	},
754 755 756 757
#ifdef CONFIG_ARM64_PAN
	{
		.desc = "Privileged Access Never",
		.capability = ARM64_HAS_PAN,
758
		.def_scope = SCOPE_SYSTEM,
759 760 761
		.matches = has_cpuid_feature,
		.sys_reg = SYS_ID_AA64MMFR1_EL1,
		.field_pos = ID_AA64MMFR1_PAN_SHIFT,
762
		.sign = FTR_UNSIGNED,
763 764 765 766
		.min_field_value = 1,
		.enable = cpu_enable_pan,
	},
#endif /* CONFIG_ARM64_PAN */
767 768 769 770
#if defined(CONFIG_AS_LSE) && defined(CONFIG_ARM64_LSE_ATOMICS)
	{
		.desc = "LSE atomic instructions",
		.capability = ARM64_HAS_LSE_ATOMICS,
771
		.def_scope = SCOPE_SYSTEM,
772 773 774
		.matches = has_cpuid_feature,
		.sys_reg = SYS_ID_AA64ISAR0_EL1,
		.field_pos = ID_AA64ISAR0_ATOMICS_SHIFT,
775
		.sign = FTR_UNSIGNED,
776 777 778
		.min_field_value = 2,
	},
#endif /* CONFIG_AS_LSE && CONFIG_ARM64_LSE_ATOMICS */
779 780 781
	{
		.desc = "Software prefetching using PRFM",
		.capability = ARM64_HAS_NO_HW_PREFETCH,
782
		.def_scope = SCOPE_SYSTEM,
783 784
		.matches = has_no_hw_prefetch,
	},
785 786 787 788
#ifdef CONFIG_ARM64_UAO
	{
		.desc = "User Access Override",
		.capability = ARM64_HAS_UAO,
789
		.def_scope = SCOPE_SYSTEM,
790 791 792 793 794 795 796
		.matches = has_cpuid_feature,
		.sys_reg = SYS_ID_AA64MMFR2_EL1,
		.field_pos = ID_AA64MMFR2_UAO_SHIFT,
		.min_field_value = 1,
		.enable = cpu_enable_uao,
	},
#endif /* CONFIG_ARM64_UAO */
797 798 799
#ifdef CONFIG_ARM64_PAN
	{
		.capability = ARM64_ALT_PAN_NOT_UAO,
800
		.def_scope = SCOPE_SYSTEM,
801 802 803
		.matches = cpufeature_pan_not_uao,
	},
#endif /* CONFIG_ARM64_PAN */
804 805 806
	{
		.desc = "Virtualization Host Extensions",
		.capability = ARM64_HAS_VIRT_HOST_EXTN,
807
		.def_scope = SCOPE_SYSTEM,
808 809
		.matches = runs_at_el2,
	},
810 811 812
	{
		.desc = "32-bit EL0 Support",
		.capability = ARM64_HAS_32BIT_EL0,
813
		.def_scope = SCOPE_SYSTEM,
814 815 816 817 818 819
		.matches = has_cpuid_feature,
		.sys_reg = SYS_ID_AA64PFR0_EL1,
		.sign = FTR_UNSIGNED,
		.field_pos = ID_AA64PFR0_EL0_SHIFT,
		.min_field_value = ID_AA64PFR0_EL0_32BIT_64BIT,
	},
820 821 822 823 824 825
	{
		.desc = "Reduced HYP mapping offset",
		.capability = ARM64_HYP_OFFSET_LOW,
		.def_scope = SCOPE_SYSTEM,
		.matches = hyp_offset_low,
	},
826 827 828
	{},
};

829
#define HWCAP_CAP(reg, field, s, min_value, type, cap)	\
830 831
	{							\
		.desc = #cap,					\
832
		.def_scope = SCOPE_SYSTEM,			\
833 834 835
		.matches = has_cpuid_feature,			\
		.sys_reg = reg,					\
		.field_pos = field,				\
836
		.sign = s,					\
837 838 839 840 841
		.min_field_value = min_value,			\
		.hwcap_type = type,				\
		.hwcap = cap,					\
	}

S
Suzuki K Poulose 已提交
842
static const struct arm64_cpu_capabilities arm64_elf_hwcaps[] = {
843 844 845 846 847 848 849
	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_AES_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, HWCAP_PMULL),
	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_AES_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_AES),
	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA1_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_SHA1),
	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA2_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_SHA2),
	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_CRC32_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_CRC32),
	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_ATOMICS_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, HWCAP_ATOMICS),
	HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_FP_SHIFT, FTR_SIGNED, 0, CAP_HWCAP, HWCAP_FP),
850
	HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_FP_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, HWCAP_FPHP),
851
	HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_ASIMD_SHIFT, FTR_SIGNED, 0, CAP_HWCAP, HWCAP_ASIMD),
852
	HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_ASIMD_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, HWCAP_ASIMDHP),
853 854 855 856
	{},
};

static const struct arm64_cpu_capabilities compat_elf_hwcaps[] = {
857
#ifdef CONFIG_COMPAT
858 859 860 861 862
	HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, FTR_UNSIGNED, 2, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_PMULL),
	HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_AES),
	HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA1_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA1),
	HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA2_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA2),
	HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_CRC32_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_CRC32),
863 864 865 866
#endif
	{},
};

S
Suzuki K Poulose 已提交
867
static void __init cap_set_elf_hwcap(const struct arm64_cpu_capabilities *cap)
868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887
{
	switch (cap->hwcap_type) {
	case CAP_HWCAP:
		elf_hwcap |= cap->hwcap;
		break;
#ifdef CONFIG_COMPAT
	case CAP_COMPAT_HWCAP:
		compat_elf_hwcap |= (u32)cap->hwcap;
		break;
	case CAP_COMPAT_HWCAP2:
		compat_elf_hwcap2 |= (u32)cap->hwcap;
		break;
#endif
	default:
		WARN_ON(1);
		break;
	}
}

/* Check if we have a particular HWCAP enabled */
S
Suzuki K Poulose 已提交
888
static bool cpus_have_elf_hwcap(const struct arm64_cpu_capabilities *cap)
889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911
{
	bool rc;

	switch (cap->hwcap_type) {
	case CAP_HWCAP:
		rc = (elf_hwcap & cap->hwcap) != 0;
		break;
#ifdef CONFIG_COMPAT
	case CAP_COMPAT_HWCAP:
		rc = (compat_elf_hwcap & (u32)cap->hwcap) != 0;
		break;
	case CAP_COMPAT_HWCAP2:
		rc = (compat_elf_hwcap2 & (u32)cap->hwcap) != 0;
		break;
#endif
	default:
		WARN_ON(1);
		rc = false;
	}

	return rc;
}

912
static void __init setup_elf_hwcaps(const struct arm64_cpu_capabilities *hwcaps)
913
{
914
	for (; hwcaps->matches; hwcaps++)
915
		if (hwcaps->matches(hwcaps, hwcaps->def_scope))
916
			cap_set_elf_hwcap(hwcaps);
917 918
}

919
void update_cpu_capabilities(const struct arm64_cpu_capabilities *caps,
920 921
			    const char *info)
{
922
	for (; caps->matches; caps++) {
923
		if (!caps->matches(caps, caps->def_scope))
924 925
			continue;

926 927 928
		if (!cpus_have_cap(caps->capability) && caps->desc)
			pr_info("%s %s\n", info, caps->desc);
		cpus_set_cap(caps->capability);
929
	}
930 931 932
}

/*
933 934
 * Run through the enabled capabilities and enable() it on all active
 * CPUs
935
 */
936
void __init enable_cpu_capabilities(const struct arm64_cpu_capabilities *caps)
937
{
938 939 940
	for (; caps->matches; caps++)
		if (caps->enable && cpus_have_cap(caps->capability))
			on_each_cpu(caps->enable, NULL, true);
941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958
}

/*
 * Flag to indicate if we have computed the system wide
 * capabilities based on the boot time active CPUs. This
 * will be used to determine if a new booting CPU should
 * go through the verification process to make sure that it
 * supports the system capabilities, without using a hotplug
 * notifier.
 */
static bool sys_caps_initialised;

static inline void set_sys_caps_initialised(void)
{
	sys_caps_initialised = true;
}

/*
959 960
 * Check for CPU features that are used in early boot
 * based on the Boot CPU value.
961
 */
962
static void check_early_cpu_features(void)
963
{
964
	verify_cpu_run_el();
965
	verify_cpu_asid_bits();
966
}
967

968 969 970 971
static void
verify_local_elf_hwcaps(const struct arm64_cpu_capabilities *caps)
{

972 973
	for (; caps->matches; caps++)
		if (cpus_have_elf_hwcap(caps) && !caps->matches(caps, SCOPE_LOCAL_CPU)) {
974 975 976 977 978 979 980 981 982 983
			pr_crit("CPU%d: missing HWCAP: %s\n",
					smp_processor_id(), caps->desc);
			cpu_die_early();
		}
}

static void
verify_local_cpu_features(const struct arm64_cpu_capabilities *caps)
{
	for (; caps->matches; caps++) {
984
		if (!cpus_have_cap(caps->capability))
985 986 987 988 989
			continue;
		/*
		 * If the new CPU misses an advertised feature, we cannot proceed
		 * further, park the cpu.
		 */
990
		if (!caps->matches(caps, SCOPE_LOCAL_CPU)) {
991 992 993 994 995 996 997 998 999
			pr_crit("CPU%d: missing feature: %s\n",
					smp_processor_id(), caps->desc);
			cpu_die_early();
		}
		if (caps->enable)
			caps->enable(NULL);
	}
}

1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010
/*
 * Run through the enabled system capabilities and enable() it on this CPU.
 * The capabilities were decided based on the available CPUs at the boot time.
 * Any new CPU should match the system wide status of the capability. If the
 * new CPU doesn't have a capability which the system now has enabled, we
 * cannot do anything to fix it up and could cause unexpected failures. So
 * we park the CPU.
 */
void verify_local_cpu_capabilities(void)
{

1011 1012
	check_early_cpu_features();

1013 1014 1015 1016 1017 1018 1019
	/*
	 * If we haven't computed the system capabilities, there is nothing
	 * to verify.
	 */
	if (!sys_caps_initialised)
		return;

1020
	verify_local_cpu_errata();
1021 1022
	verify_local_cpu_features(arm64_features);
	verify_local_elf_hwcaps(arm64_elf_hwcaps);
1023 1024
	if (system_supports_32bit_el0())
		verify_local_elf_hwcaps(compat_elf_hwcaps);
1025 1026
}

1027
static void __init setup_feature_capabilities(void)
1028
{
1029 1030
	update_cpu_capabilities(arm64_features, "detected feature:");
	enable_cpu_capabilities(arm64_features);
1031 1032
}

1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050
/*
 * Check if the current CPU has a given feature capability.
 * Should be called from non-preemptible context.
 */
bool this_cpu_has_cap(unsigned int cap)
{
	const struct arm64_cpu_capabilities *caps;

	if (WARN_ON(preemptible()))
		return false;

	for (caps = arm64_features; caps->desc; caps++)
		if (caps->capability == cap && caps->matches)
			return caps->matches(caps, SCOPE_LOCAL_CPU);

	return false;
}

1051
void __init setup_cpu_features(void)
1052
{
1053 1054 1055
	u32 cwg;
	int cls;

1056 1057
	/* Set the CPU feature capabilies */
	setup_feature_capabilities();
1058
	enable_errata_workarounds();
1059
	setup_elf_hwcaps(arm64_elf_hwcaps);
1060 1061 1062

	if (system_supports_32bit_el0())
		setup_elf_hwcaps(compat_elf_hwcaps);
1063 1064 1065 1066

	/* Advertise that we have computed the system capabilities */
	set_sys_caps_initialised();

1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077
	/*
	 * Check for sane CTR_EL0.CWG value.
	 */
	cwg = cache_type_cwg();
	cls = cache_line_size();
	if (!cwg)
		pr_warn("No Cache Writeback Granule information, assuming cache line size %d\n",
			cls);
	if (L1_CACHE_BYTES < cls)
		pr_warn("L1_CACHE_BYTES smaller than the Cache Writeback Granule (%d < %d)\n",
			L1_CACHE_BYTES, cls);
1078
}
1079 1080

static bool __maybe_unused
1081
cpufeature_pan_not_uao(const struct arm64_cpu_capabilities *entry, int __unused)
1082 1083 1084
{
	return (cpus_have_cap(ARM64_HAS_PAN) && !cpus_have_cap(ARM64_HAS_UAO));
}