cpufeature.c 41.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 * Contains CPU feature definitions
 *
 * Copyright (C) 2015 ARM Ltd.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 */

19
#define pr_fmt(fmt) "CPU features: " fmt
20

21
#include <linux/bsearch.h>
22
#include <linux/cpumask.h>
23
#include <linux/sort.h>
24
#include <linux/stop_machine.h>
25
#include <linux/types.h>
26
#include <linux/mm.h>
27 28
#include <asm/cpu.h>
#include <asm/cpufeature.h>
29
#include <asm/cpu_ops.h>
30
#include <asm/mmu_context.h>
31
#include <asm/processor.h>
32
#include <asm/sysreg.h>
33
#include <asm/traps.h>
34
#include <asm/virt.h>
35

36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51
unsigned long elf_hwcap __read_mostly;
EXPORT_SYMBOL_GPL(elf_hwcap);

#ifdef CONFIG_COMPAT
#define COMPAT_ELF_HWCAP_DEFAULT	\
				(COMPAT_HWCAP_HALF|COMPAT_HWCAP_THUMB|\
				 COMPAT_HWCAP_FAST_MULT|COMPAT_HWCAP_EDSP|\
				 COMPAT_HWCAP_TLS|COMPAT_HWCAP_VFP|\
				 COMPAT_HWCAP_VFPv3|COMPAT_HWCAP_VFPv4|\
				 COMPAT_HWCAP_NEON|COMPAT_HWCAP_IDIV|\
				 COMPAT_HWCAP_LPAE)
unsigned int compat_elf_hwcap __read_mostly = COMPAT_ELF_HWCAP_DEFAULT;
unsigned int compat_elf_hwcap2 __read_mostly;
#endif

DECLARE_BITMAP(cpu_hwcaps, ARM64_NCAPS);
52
EXPORT_SYMBOL(cpu_hwcaps);
53

54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
static int dump_cpu_hwcaps(struct notifier_block *self, unsigned long v, void *p)
{
	/* file-wide pr_fmt adds "CPU features: " prefix */
	pr_emerg("0x%*pb\n", ARM64_NCAPS, &cpu_hwcaps);
	return 0;
}

static struct notifier_block cpu_hwcaps_notifier = {
	.notifier_call = dump_cpu_hwcaps
};

static int __init register_cpu_hwcaps_dumper(void)
{
	atomic_notifier_chain_register(&panic_notifier_list,
				       &cpu_hwcaps_notifier);
	return 0;
}
__initcall(register_cpu_hwcaps_dumper);

73 74 75
DEFINE_STATIC_KEY_ARRAY_FALSE(cpu_hwcap_keys, ARM64_NCAPS);
EXPORT_SYMBOL(cpu_hwcap_keys);

76
#define __ARM64_FTR_BITS(SIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
77
	{						\
78
		.sign = SIGNED,				\
79
		.visible = VISIBLE,			\
80 81 82 83 84 85 86
		.strict = STRICT,			\
		.type = TYPE,				\
		.shift = SHIFT,				\
		.width = WIDTH,				\
		.safe_val = SAFE_VAL,			\
	}

87
/* Define a feature with unsigned values */
88 89
#define ARM64_FTR_BITS(VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
	__ARM64_FTR_BITS(FTR_UNSIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
90

91
/* Define a feature with a signed value */
92 93
#define S_ARM64_FTR_BITS(VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
	__ARM64_FTR_BITS(FTR_SIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
94

95 96 97 98 99
#define ARM64_FTR_END					\
	{						\
		.width = 0,				\
	}

100 101
/* meta feature for alternatives */
static bool __maybe_unused
102 103
cpufeature_pan_not_uao(const struct arm64_cpu_capabilities *entry, int __unused);

104

105 106 107 108
/*
 * NOTE: Any changes to the visibility of features should be kept in
 * sync with the documentation of the CPU feature register ABI.
 */
109
static const struct arm64_ftr_bits ftr_id_aa64isar0[] = {
110 111 112 113 114 115
	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, ID_AA64ISAR0_RDM_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_ATOMICS_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_CRC32_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA2_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA1_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_AES_SHIFT, 4, 0),
116 117 118
	ARM64_FTR_END,
};

119
static const struct arm64_ftr_bits ftr_id_aa64isar1[] = {
120
	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, ID_AA64ISAR1_LRCPC_SHIFT, 4, 0),
121
	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, ID_AA64ISAR1_FCMA_SHIFT, 4, 0),
122 123 124 125
	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, ID_AA64ISAR1_JSCVT_SHIFT, 4, 0),
	ARM64_FTR_END,
};

126
static const struct arm64_ftr_bits ftr_id_aa64pfr0[] = {
127 128 129
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64PFR0_GIC_SHIFT, 4, 0),
	S_ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_ASIMD_SHIFT, 4, ID_AA64PFR0_ASIMD_NI),
	S_ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_FP_SHIFT, 4, ID_AA64PFR0_FP_NI),
130
	/* Linux doesn't care about the EL3 */
131 132 133 134
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64PFR0_EL3_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64PFR0_EL2_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64PFR0_EL1_SHIFT, 4, ID_AA64PFR0_EL1_64BIT_ONLY),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64PFR0_EL0_SHIFT, 4, ID_AA64PFR0_EL0_64BIT_ONLY),
135 136 137
	ARM64_FTR_END,
};

138
static const struct arm64_ftr_bits ftr_id_aa64mmfr0[] = {
139 140 141 142
	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN4_SHIFT, 4, ID_AA64MMFR0_TGRAN4_NI),
	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN64_SHIFT, 4, ID_AA64MMFR0_TGRAN64_NI),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN16_SHIFT, 4, ID_AA64MMFR0_TGRAN16_NI),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_BIGENDEL0_SHIFT, 4, 0),
143
	/* Linux shouldn't care about secure memory */
144 145 146
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64MMFR0_SNSMEM_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_BIGENDEL_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_ASID_SHIFT, 4, 0),
147 148 149 150
	/*
	 * Differing PARange is fine as long as all peripherals and memory are mapped
	 * within the minimum PARange of all CPUs
	 */
151
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_PARANGE_SHIFT, 4, 0),
152 153 154
	ARM64_FTR_END,
};

155
static const struct arm64_ftr_bits ftr_id_aa64mmfr1[] = {
156 157 158 159 160 161
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_PAN_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_LOR_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_HPD_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_VHE_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_VMIDBITS_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_HADBS_SHIFT, 4, 0),
162 163 164
	ARM64_FTR_END,
};

165
static const struct arm64_ftr_bits ftr_id_aa64mmfr2[] = {
166 167 168 169 170
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64MMFR2_LVA_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64MMFR2_IESB_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64MMFR2_LSM_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64MMFR2_UAO_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64MMFR2_CNP_SHIFT, 4, 0),
171 172 173
	ARM64_FTR_END,
};

174
static const struct arm64_ftr_bits ftr_ctr[] = {
175 176 177 178
	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, 31, 1, 1),	/* RAO */
	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_HIGHER_SAFE, 24, 4, 0),	/* CWG */
	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),	/* ERG */
	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 1),	/* DminLine */
179 180
	/*
	 * Linux can handle differing I-cache policies. Userspace JITs will
181
	 * make use of *minLine.
182
	 * If we have differing I-cache policies, report it as the weakest - VIPT.
183
	 */
184
	ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_EXACT, 14, 2, ICACHE_POLICY_VIPT),	/* L1Ip */
185
	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),	/* IminLine */
186 187 188
	ARM64_FTR_END,
};

189 190 191 192 193
struct arm64_ftr_reg arm64_ftr_reg_ctrel0 = {
	.name		= "SYS_CTR_EL0",
	.ftr_bits	= ftr_ctr
};

194
static const struct arm64_ftr_bits ftr_id_mmfr0[] = {
195 196 197 198 199 200 201 202
	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 28, 4, 0xf),	/* InnerShr */
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 24, 4, 0),	/* FCSE */
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, 20, 4, 0),	/* AuxReg */
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 16, 4, 0),	/* TCM */
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 12, 4, 0),	/* ShareLvl */
	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 8, 4, 0xf),	/* OuterShr */
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 4, 4, 0),	/* PMSA */
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 0, 4, 0),	/* VMSA */
203 204 205
	ARM64_FTR_END,
};

206
static const struct arm64_ftr_bits ftr_id_aa64dfr0[] = {
207 208 209 210 211
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 36, 28, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64DFR0_PMSVER_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_CTX_CMPS_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_WRPS_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_BRPS_SHIFT, 4, 0),
212 213 214
	/*
	 * We can instantiate multiple PMU instances with different levels
	 * of support.
215 216 217 218
	 */
	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64DFR0_PMUVER_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64DFR0_TRACEVER_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64DFR0_DEBUGVER_SHIFT, 4, 0x6),
219 220 221
	ARM64_FTR_END,
};

222
static const struct arm64_ftr_bits ftr_mvfr2[] = {
223 224
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 4, 4, 0),		/* FPMisc */
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 0, 4, 0),		/* SIMDMisc */
225 226 227
	ARM64_FTR_END,
};

228
static const struct arm64_ftr_bits ftr_dczid[] = {
229 230
	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, 4, 1, 1),		/* DZP */
	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),	/* BS */
231 232 233 234
	ARM64_FTR_END,
};


235
static const struct arm64_ftr_bits ftr_id_isar5[] = {
236 237 238 239 240 241
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_ISAR5_RDM_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_ISAR5_CRC32_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_ISAR5_SHA2_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_ISAR5_SHA1_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_ISAR5_AES_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_ISAR5_SEVL_SHIFT, 4, 0),
242 243 244
	ARM64_FTR_END,
};

245
static const struct arm64_ftr_bits ftr_id_mmfr4[] = {
246
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 4, 4, 0),		/* ac2 */
247 248 249
	ARM64_FTR_END,
};

250
static const struct arm64_ftr_bits ftr_id_pfr0[] = {
251 252 253 254
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 12, 4, 0),	/* State3 */
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 8, 4, 0),		/* State2 */
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 4, 4, 0),		/* State1 */
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 0, 4, 0),		/* State0 */
255 256 257
	ARM64_FTR_END,
};

258
static const struct arm64_ftr_bits ftr_id_dfr0[] = {
259 260 261 262 263 264 265 266
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0),
	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0xf),	/* PerfMon */
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),
267 268 269
	ARM64_FTR_END,
};

270 271 272 273 274 275
/*
 * Common ftr bits for a 32bit register with all hidden, strict
 * attributes, with 4bit feature fields and a default safe value of
 * 0. Covers the following 32bit registers:
 * id_isar[0-4], id_mmfr[1-3], id_pfr1, mvfr[0-1]
 */
276
static const struct arm64_ftr_bits ftr_generic_32bits[] = {
277 278 279 280 281 282 283 284
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),
285 286 287
	ARM64_FTR_END,
};

288 289
/* Table for a single 32bit feature value */
static const struct arm64_ftr_bits ftr_single32[] = {
290
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 0, 32, 0),
291 292 293
	ARM64_FTR_END,
};

294
static const struct arm64_ftr_bits ftr_raz[] = {
295 296 297
	ARM64_FTR_END,
};

298 299 300
#define ARM64_FTR_REG(id, table) {		\
	.sys_id = id,				\
	.reg = 	&(struct arm64_ftr_reg){	\
301 302
		.name = #id,			\
		.ftr_bits = &((table)[0]),	\
303
	}}
304

305 306 307 308
static const struct __ftr_reg_entry {
	u32			sys_id;
	struct arm64_ftr_reg 	*reg;
} arm64_ftr_regs[] = {
309 310 311 312

	/* Op1 = 0, CRn = 0, CRm = 1 */
	ARM64_FTR_REG(SYS_ID_PFR0_EL1, ftr_id_pfr0),
	ARM64_FTR_REG(SYS_ID_PFR1_EL1, ftr_generic_32bits),
313
	ARM64_FTR_REG(SYS_ID_DFR0_EL1, ftr_id_dfr0),
314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334
	ARM64_FTR_REG(SYS_ID_MMFR0_EL1, ftr_id_mmfr0),
	ARM64_FTR_REG(SYS_ID_MMFR1_EL1, ftr_generic_32bits),
	ARM64_FTR_REG(SYS_ID_MMFR2_EL1, ftr_generic_32bits),
	ARM64_FTR_REG(SYS_ID_MMFR3_EL1, ftr_generic_32bits),

	/* Op1 = 0, CRn = 0, CRm = 2 */
	ARM64_FTR_REG(SYS_ID_ISAR0_EL1, ftr_generic_32bits),
	ARM64_FTR_REG(SYS_ID_ISAR1_EL1, ftr_generic_32bits),
	ARM64_FTR_REG(SYS_ID_ISAR2_EL1, ftr_generic_32bits),
	ARM64_FTR_REG(SYS_ID_ISAR3_EL1, ftr_generic_32bits),
	ARM64_FTR_REG(SYS_ID_ISAR4_EL1, ftr_generic_32bits),
	ARM64_FTR_REG(SYS_ID_ISAR5_EL1, ftr_id_isar5),
	ARM64_FTR_REG(SYS_ID_MMFR4_EL1, ftr_id_mmfr4),

	/* Op1 = 0, CRn = 0, CRm = 3 */
	ARM64_FTR_REG(SYS_MVFR0_EL1, ftr_generic_32bits),
	ARM64_FTR_REG(SYS_MVFR1_EL1, ftr_generic_32bits),
	ARM64_FTR_REG(SYS_MVFR2_EL1, ftr_mvfr2),

	/* Op1 = 0, CRn = 0, CRm = 4 */
	ARM64_FTR_REG(SYS_ID_AA64PFR0_EL1, ftr_id_aa64pfr0),
335
	ARM64_FTR_REG(SYS_ID_AA64PFR1_EL1, ftr_raz),
336 337 338

	/* Op1 = 0, CRn = 0, CRm = 5 */
	ARM64_FTR_REG(SYS_ID_AA64DFR0_EL1, ftr_id_aa64dfr0),
339
	ARM64_FTR_REG(SYS_ID_AA64DFR1_EL1, ftr_raz),
340 341 342

	/* Op1 = 0, CRn = 0, CRm = 6 */
	ARM64_FTR_REG(SYS_ID_AA64ISAR0_EL1, ftr_id_aa64isar0),
343
	ARM64_FTR_REG(SYS_ID_AA64ISAR1_EL1, ftr_id_aa64isar1),
344 345 346 347

	/* Op1 = 0, CRn = 0, CRm = 7 */
	ARM64_FTR_REG(SYS_ID_AA64MMFR0_EL1, ftr_id_aa64mmfr0),
	ARM64_FTR_REG(SYS_ID_AA64MMFR1_EL1, ftr_id_aa64mmfr1),
348
	ARM64_FTR_REG(SYS_ID_AA64MMFR2_EL1, ftr_id_aa64mmfr2),
349 350

	/* Op1 = 3, CRn = 0, CRm = 0 */
351
	{ SYS_CTR_EL0, &arm64_ftr_reg_ctrel0 },
352 353 354
	ARM64_FTR_REG(SYS_DCZID_EL0, ftr_dczid),

	/* Op1 = 3, CRn = 14, CRm = 0 */
355
	ARM64_FTR_REG(SYS_CNTFRQ_EL0, ftr_single32),
356 357 358 359
};

static int search_cmp_ftr_reg(const void *id, const void *regp)
{
360
	return (int)(unsigned long)id - (int)((const struct __ftr_reg_entry *)regp)->sys_id;
361 362 363 364 365 366 367 368 369 370 371 372 373 374
}

/*
 * get_arm64_ftr_reg - Lookup a feature register entry using its
 * sys_reg() encoding. With the array arm64_ftr_regs sorted in the
 * ascending order of sys_id , we use binary search to find a matching
 * entry.
 *
 * returns - Upon success,  matching ftr_reg entry for id.
 *         - NULL on failure. It is upto the caller to decide
 *	     the impact of a failure.
 */
static struct arm64_ftr_reg *get_arm64_ftr_reg(u32 sys_id)
{
375 376 377
	const struct __ftr_reg_entry *ret;

	ret = bsearch((const void *)(unsigned long)sys_id,
378 379 380 381
			arm64_ftr_regs,
			ARRAY_SIZE(arm64_ftr_regs),
			sizeof(arm64_ftr_regs[0]),
			search_cmp_ftr_reg);
382 383 384
	if (ret)
		return ret->reg;
	return NULL;
385 386
}

387 388
static u64 arm64_ftr_set_value(const struct arm64_ftr_bits *ftrp, s64 reg,
			       s64 ftr_val)
389 390 391 392 393 394 395 396
{
	u64 mask = arm64_ftr_mask(ftrp);

	reg &= ~mask;
	reg |= (ftr_val << ftrp->shift) & mask;
	return reg;
}

397 398
static s64 arm64_ftr_safe_value(const struct arm64_ftr_bits *ftrp, s64 new,
				s64 cur)
399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420
{
	s64 ret = 0;

	switch (ftrp->type) {
	case FTR_EXACT:
		ret = ftrp->safe_val;
		break;
	case FTR_LOWER_SAFE:
		ret = new < cur ? new : cur;
		break;
	case FTR_HIGHER_SAFE:
		ret = new > cur ? new : cur;
		break;
	default:
		BUG();
	}

	return ret;
}

static void __init sort_ftr_regs(void)
{
421 422 423 424 425
	int i;

	/* Check that the array is sorted so that we can do the binary search */
	for (i = 1; i < ARRAY_SIZE(arm64_ftr_regs); i++)
		BUG_ON(arm64_ftr_regs[i].sys_id < arm64_ftr_regs[i - 1].sys_id);
426 427 428 429 430
}

/*
 * Initialise the CPU feature register from Boot CPU values.
 * Also initiliases the strict_mask for the register.
431 432
 * Any bits that are not covered by an arm64_ftr_bits entry are considered
 * RES0 for the system-wide value, and must strictly match.
433 434 435 436 437
 */
static void __init init_cpu_ftr_reg(u32 sys_reg, u64 new)
{
	u64 val = 0;
	u64 strict_mask = ~0x0ULL;
438
	u64 user_mask = 0;
439 440
	u64 valid_mask = 0;

441
	const struct arm64_ftr_bits *ftrp;
442 443 444 445 446
	struct arm64_ftr_reg *reg = get_arm64_ftr_reg(sys_reg);

	BUG_ON(!reg);

	for (ftrp  = reg->ftr_bits; ftrp->width; ftrp++) {
447
		u64 ftr_mask = arm64_ftr_mask(ftrp);
448 449 450
		s64 ftr_new = arm64_ftr_value(ftrp, new);

		val = arm64_ftr_set_value(ftrp, val, ftr_new);
451 452

		valid_mask |= ftr_mask;
453
		if (!ftrp->strict)
454
			strict_mask &= ~ftr_mask;
455 456 457 458 459 460
		if (ftrp->visible)
			user_mask |= ftr_mask;
		else
			reg->user_val = arm64_ftr_set_value(ftrp,
							    reg->user_val,
							    ftrp->safe_val);
461
	}
462 463 464

	val &= valid_mask;

465 466
	reg->sys_val = val;
	reg->strict_mask = strict_mask;
467
	reg->user_mask = user_mask;
468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483
}

void __init init_cpu_features(struct cpuinfo_arm64 *info)
{
	/* Before we start using the tables, make sure it is sorted */
	sort_ftr_regs();

	init_cpu_ftr_reg(SYS_CTR_EL0, info->reg_ctr);
	init_cpu_ftr_reg(SYS_DCZID_EL0, info->reg_dczid);
	init_cpu_ftr_reg(SYS_CNTFRQ_EL0, info->reg_cntfrq);
	init_cpu_ftr_reg(SYS_ID_AA64DFR0_EL1, info->reg_id_aa64dfr0);
	init_cpu_ftr_reg(SYS_ID_AA64DFR1_EL1, info->reg_id_aa64dfr1);
	init_cpu_ftr_reg(SYS_ID_AA64ISAR0_EL1, info->reg_id_aa64isar0);
	init_cpu_ftr_reg(SYS_ID_AA64ISAR1_EL1, info->reg_id_aa64isar1);
	init_cpu_ftr_reg(SYS_ID_AA64MMFR0_EL1, info->reg_id_aa64mmfr0);
	init_cpu_ftr_reg(SYS_ID_AA64MMFR1_EL1, info->reg_id_aa64mmfr1);
484
	init_cpu_ftr_reg(SYS_ID_AA64MMFR2_EL1, info->reg_id_aa64mmfr2);
485 486
	init_cpu_ftr_reg(SYS_ID_AA64PFR0_EL1, info->reg_id_aa64pfr0);
	init_cpu_ftr_reg(SYS_ID_AA64PFR1_EL1, info->reg_id_aa64pfr1);
487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506

	if (id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0)) {
		init_cpu_ftr_reg(SYS_ID_DFR0_EL1, info->reg_id_dfr0);
		init_cpu_ftr_reg(SYS_ID_ISAR0_EL1, info->reg_id_isar0);
		init_cpu_ftr_reg(SYS_ID_ISAR1_EL1, info->reg_id_isar1);
		init_cpu_ftr_reg(SYS_ID_ISAR2_EL1, info->reg_id_isar2);
		init_cpu_ftr_reg(SYS_ID_ISAR3_EL1, info->reg_id_isar3);
		init_cpu_ftr_reg(SYS_ID_ISAR4_EL1, info->reg_id_isar4);
		init_cpu_ftr_reg(SYS_ID_ISAR5_EL1, info->reg_id_isar5);
		init_cpu_ftr_reg(SYS_ID_MMFR0_EL1, info->reg_id_mmfr0);
		init_cpu_ftr_reg(SYS_ID_MMFR1_EL1, info->reg_id_mmfr1);
		init_cpu_ftr_reg(SYS_ID_MMFR2_EL1, info->reg_id_mmfr2);
		init_cpu_ftr_reg(SYS_ID_MMFR3_EL1, info->reg_id_mmfr3);
		init_cpu_ftr_reg(SYS_ID_PFR0_EL1, info->reg_id_pfr0);
		init_cpu_ftr_reg(SYS_ID_PFR1_EL1, info->reg_id_pfr1);
		init_cpu_ftr_reg(SYS_MVFR0_EL1, info->reg_mvfr0);
		init_cpu_ftr_reg(SYS_MVFR1_EL1, info->reg_mvfr1);
		init_cpu_ftr_reg(SYS_MVFR2_EL1, info->reg_mvfr2);
	}

507 508
}

509
static void update_cpu_ftr_reg(struct arm64_ftr_reg *reg, u64 new)
510
{
511
	const struct arm64_ftr_bits *ftrp;
512 513 514 515 516 517 518 519 520 521 522 523 524 525

	for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) {
		s64 ftr_cur = arm64_ftr_value(ftrp, reg->sys_val);
		s64 ftr_new = arm64_ftr_value(ftrp, new);

		if (ftr_cur == ftr_new)
			continue;
		/* Find a safe value */
		ftr_new = arm64_ftr_safe_value(ftrp, ftr_new, ftr_cur);
		reg->sys_val = arm64_ftr_set_value(ftrp, reg->sys_val, ftr_new);
	}

}

526
static int check_update_ftr_reg(u32 sys_id, int cpu, u64 val, u64 boot)
527
{
528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597
	struct arm64_ftr_reg *regp = get_arm64_ftr_reg(sys_id);

	BUG_ON(!regp);
	update_cpu_ftr_reg(regp, val);
	if ((boot & regp->strict_mask) == (val & regp->strict_mask))
		return 0;
	pr_warn("SANITY CHECK: Unexpected variation in %s. Boot CPU: %#016llx, CPU%d: %#016llx\n",
			regp->name, boot, cpu, val);
	return 1;
}

/*
 * Update system wide CPU feature registers with the values from a
 * non-boot CPU. Also performs SANITY checks to make sure that there
 * aren't any insane variations from that of the boot CPU.
 */
void update_cpu_features(int cpu,
			 struct cpuinfo_arm64 *info,
			 struct cpuinfo_arm64 *boot)
{
	int taint = 0;

	/*
	 * The kernel can handle differing I-cache policies, but otherwise
	 * caches should look identical. Userspace JITs will make use of
	 * *minLine.
	 */
	taint |= check_update_ftr_reg(SYS_CTR_EL0, cpu,
				      info->reg_ctr, boot->reg_ctr);

	/*
	 * Userspace may perform DC ZVA instructions. Mismatched block sizes
	 * could result in too much or too little memory being zeroed if a
	 * process is preempted and migrated between CPUs.
	 */
	taint |= check_update_ftr_reg(SYS_DCZID_EL0, cpu,
				      info->reg_dczid, boot->reg_dczid);

	/* If different, timekeeping will be broken (especially with KVM) */
	taint |= check_update_ftr_reg(SYS_CNTFRQ_EL0, cpu,
				      info->reg_cntfrq, boot->reg_cntfrq);

	/*
	 * The kernel uses self-hosted debug features and expects CPUs to
	 * support identical debug features. We presently need CTX_CMPs, WRPs,
	 * and BRPs to be identical.
	 * ID_AA64DFR1 is currently RES0.
	 */
	taint |= check_update_ftr_reg(SYS_ID_AA64DFR0_EL1, cpu,
				      info->reg_id_aa64dfr0, boot->reg_id_aa64dfr0);
	taint |= check_update_ftr_reg(SYS_ID_AA64DFR1_EL1, cpu,
				      info->reg_id_aa64dfr1, boot->reg_id_aa64dfr1);
	/*
	 * Even in big.LITTLE, processors should be identical instruction-set
	 * wise.
	 */
	taint |= check_update_ftr_reg(SYS_ID_AA64ISAR0_EL1, cpu,
				      info->reg_id_aa64isar0, boot->reg_id_aa64isar0);
	taint |= check_update_ftr_reg(SYS_ID_AA64ISAR1_EL1, cpu,
				      info->reg_id_aa64isar1, boot->reg_id_aa64isar1);

	/*
	 * Differing PARange support is fine as long as all peripherals and
	 * memory are mapped within the minimum PARange of all CPUs.
	 * Linux should not care about secure memory.
	 */
	taint |= check_update_ftr_reg(SYS_ID_AA64MMFR0_EL1, cpu,
				      info->reg_id_aa64mmfr0, boot->reg_id_aa64mmfr0);
	taint |= check_update_ftr_reg(SYS_ID_AA64MMFR1_EL1, cpu,
				      info->reg_id_aa64mmfr1, boot->reg_id_aa64mmfr1);
598 599
	taint |= check_update_ftr_reg(SYS_ID_AA64MMFR2_EL1, cpu,
				      info->reg_id_aa64mmfr2, boot->reg_id_aa64mmfr2);
600 601 602 603 604 605 606 607 608 609 610

	/*
	 * EL3 is not our concern.
	 * ID_AA64PFR1 is currently RES0.
	 */
	taint |= check_update_ftr_reg(SYS_ID_AA64PFR0_EL1, cpu,
				      info->reg_id_aa64pfr0, boot->reg_id_aa64pfr0);
	taint |= check_update_ftr_reg(SYS_ID_AA64PFR1_EL1, cpu,
				      info->reg_id_aa64pfr1, boot->reg_id_aa64pfr1);

	/*
611 612
	 * If we have AArch32, we care about 32-bit features for compat.
	 * If the system doesn't support AArch32, don't update them.
613
	 */
614
	if (id_aa64pfr0_32bit_el0(read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1)) &&
615 616 617
		id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0)) {

		taint |= check_update_ftr_reg(SYS_ID_DFR0_EL1, cpu,
618
					info->reg_id_dfr0, boot->reg_id_dfr0);
619
		taint |= check_update_ftr_reg(SYS_ID_ISAR0_EL1, cpu,
620
					info->reg_id_isar0, boot->reg_id_isar0);
621
		taint |= check_update_ftr_reg(SYS_ID_ISAR1_EL1, cpu,
622
					info->reg_id_isar1, boot->reg_id_isar1);
623
		taint |= check_update_ftr_reg(SYS_ID_ISAR2_EL1, cpu,
624
					info->reg_id_isar2, boot->reg_id_isar2);
625
		taint |= check_update_ftr_reg(SYS_ID_ISAR3_EL1, cpu,
626
					info->reg_id_isar3, boot->reg_id_isar3);
627
		taint |= check_update_ftr_reg(SYS_ID_ISAR4_EL1, cpu,
628
					info->reg_id_isar4, boot->reg_id_isar4);
629
		taint |= check_update_ftr_reg(SYS_ID_ISAR5_EL1, cpu,
630 631
					info->reg_id_isar5, boot->reg_id_isar5);

632 633 634 635 636 637
		/*
		 * Regardless of the value of the AuxReg field, the AIFSR, ADFSR, and
		 * ACTLR formats could differ across CPUs and therefore would have to
		 * be trapped for virtualization anyway.
		 */
		taint |= check_update_ftr_reg(SYS_ID_MMFR0_EL1, cpu,
638
					info->reg_id_mmfr0, boot->reg_id_mmfr0);
639
		taint |= check_update_ftr_reg(SYS_ID_MMFR1_EL1, cpu,
640
					info->reg_id_mmfr1, boot->reg_id_mmfr1);
641
		taint |= check_update_ftr_reg(SYS_ID_MMFR2_EL1, cpu,
642
					info->reg_id_mmfr2, boot->reg_id_mmfr2);
643
		taint |= check_update_ftr_reg(SYS_ID_MMFR3_EL1, cpu,
644
					info->reg_id_mmfr3, boot->reg_id_mmfr3);
645
		taint |= check_update_ftr_reg(SYS_ID_PFR0_EL1, cpu,
646
					info->reg_id_pfr0, boot->reg_id_pfr0);
647
		taint |= check_update_ftr_reg(SYS_ID_PFR1_EL1, cpu,
648
					info->reg_id_pfr1, boot->reg_id_pfr1);
649
		taint |= check_update_ftr_reg(SYS_MVFR0_EL1, cpu,
650
					info->reg_mvfr0, boot->reg_mvfr0);
651
		taint |= check_update_ftr_reg(SYS_MVFR1_EL1, cpu,
652
					info->reg_mvfr1, boot->reg_mvfr1);
653
		taint |= check_update_ftr_reg(SYS_MVFR2_EL1, cpu,
654
					info->reg_mvfr2, boot->reg_mvfr2);
655
	}
656 657 658 659 660

	/*
	 * Mismatched CPU features are a recipe for disaster. Don't even
	 * pretend to support them.
	 */
661 662 663 664
	if (taint) {
		pr_warn_once("Unsupported CPU feature variation detected.\n");
		add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK);
	}
665 666
}

667
u64 read_sanitised_ftr_reg(u32 id)
668 669 670 671 672 673 674
{
	struct arm64_ftr_reg *regp = get_arm64_ftr_reg(id);

	/* We shouldn't get a request for an unsupported register */
	BUG_ON(!regp);
	return regp->sys_val;
}
675

676 677 678
#define read_sysreg_case(r)	\
	case r:		return read_sysreg_s(r)

679
/*
680
 * __read_sysreg_by_encoding() - Used by a STARTING cpu before cpuinfo is populated.
681 682
 * Read the system register on the current CPU
 */
683
static u64 __read_sysreg_by_encoding(u32 sys_id)
684 685
{
	switch (sys_id) {
686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716
	read_sysreg_case(SYS_ID_PFR0_EL1);
	read_sysreg_case(SYS_ID_PFR1_EL1);
	read_sysreg_case(SYS_ID_DFR0_EL1);
	read_sysreg_case(SYS_ID_MMFR0_EL1);
	read_sysreg_case(SYS_ID_MMFR1_EL1);
	read_sysreg_case(SYS_ID_MMFR2_EL1);
	read_sysreg_case(SYS_ID_MMFR3_EL1);
	read_sysreg_case(SYS_ID_ISAR0_EL1);
	read_sysreg_case(SYS_ID_ISAR1_EL1);
	read_sysreg_case(SYS_ID_ISAR2_EL1);
	read_sysreg_case(SYS_ID_ISAR3_EL1);
	read_sysreg_case(SYS_ID_ISAR4_EL1);
	read_sysreg_case(SYS_ID_ISAR5_EL1);
	read_sysreg_case(SYS_MVFR0_EL1);
	read_sysreg_case(SYS_MVFR1_EL1);
	read_sysreg_case(SYS_MVFR2_EL1);

	read_sysreg_case(SYS_ID_AA64PFR0_EL1);
	read_sysreg_case(SYS_ID_AA64PFR1_EL1);
	read_sysreg_case(SYS_ID_AA64DFR0_EL1);
	read_sysreg_case(SYS_ID_AA64DFR1_EL1);
	read_sysreg_case(SYS_ID_AA64MMFR0_EL1);
	read_sysreg_case(SYS_ID_AA64MMFR1_EL1);
	read_sysreg_case(SYS_ID_AA64MMFR2_EL1);
	read_sysreg_case(SYS_ID_AA64ISAR0_EL1);
	read_sysreg_case(SYS_ID_AA64ISAR1_EL1);

	read_sysreg_case(SYS_CNTFRQ_EL0);
	read_sysreg_case(SYS_CTR_EL0);
	read_sysreg_case(SYS_DCZID_EL0);

717 718 719 720 721 722
	default:
		BUG();
		return 0;
	}
}

723 724
#include <linux/irqchip/arm-gic-v3.h>

725 726 727
static bool
feature_matches(u64 reg, const struct arm64_cpu_capabilities *entry)
{
728
	int val = cpuid_feature_extract_field(reg, entry->field_pos, entry->sign);
729 730 731 732

	return val >= entry->min_field_value;
}

733
static bool
734
has_cpuid_feature(const struct arm64_cpu_capabilities *entry, int scope)
735 736
{
	u64 val;
737

738 739
	WARN_ON(scope == SCOPE_LOCAL_CPU && preemptible());
	if (scope == SCOPE_SYSTEM)
740
		val = read_sanitised_ftr_reg(entry->sys_reg);
741
	else
742
		val = __read_sysreg_by_encoding(entry->sys_reg);
743

744 745
	return feature_matches(val, entry);
}
746

747
static bool has_useable_gicv3_cpuif(const struct arm64_cpu_capabilities *entry, int scope)
748 749 750
{
	bool has_sre;

751
	if (!has_cpuid_feature(entry, scope))
752 753 754 755 756 757 758 759 760 761
		return false;

	has_sre = gic_enable_sre();
	if (!has_sre)
		pr_warn_once("%s present but disabled by higher exception level\n",
			     entry->desc);

	return has_sre;
}

762
static bool has_no_hw_prefetch(const struct arm64_cpu_capabilities *entry, int __unused)
763 764 765 766
{
	u32 midr = read_cpuid_id();

	/* Cavium ThunderX pass 1.x and 2.x */
767 768 769
	return MIDR_IS_CPU_MODEL_RANGE(midr, MIDR_THUNDERX,
		MIDR_CPU_VAR_REV(0, 0),
		MIDR_CPU_VAR_REV(1, MIDR_REVISION_MASK));
770 771
}

772
static bool runs_at_el2(const struct arm64_cpu_capabilities *entry, int __unused)
773 774 775 776
{
	return is_kernel_in_hyp_mode();
}

777 778 779
static bool hyp_offset_low(const struct arm64_cpu_capabilities *entry,
			   int __unused)
{
780
	phys_addr_t idmap_addr = __pa_symbol(__hyp_idmap_text_start);
781 782 783 784 785 786 787 788 789

	/*
	 * Activate the lower HYP offset only if:
	 * - the idmap doesn't clash with it,
	 * - the kernel is not running at EL2.
	 */
	return idmap_addr > GENMASK(VA_BITS - 2, 0) && !is_kernel_in_hyp_mode();
}

790 791
static bool has_no_fpsimd(const struct arm64_cpu_capabilities *entry, int __unused)
{
792
	u64 pfr0 = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
793 794 795 796 797

	return cpuid_feature_extract_signed_field(pfr0,
					ID_AA64PFR0_FP_SHIFT) < 0;
}

798
static const struct arm64_cpu_capabilities arm64_features[] = {
799 800 801
	{
		.desc = "GIC system register CPU interface",
		.capability = ARM64_HAS_SYSREG_GIC_CPUIF,
802
		.def_scope = SCOPE_SYSTEM,
803
		.matches = has_useable_gicv3_cpuif,
804 805
		.sys_reg = SYS_ID_AA64PFR0_EL1,
		.field_pos = ID_AA64PFR0_GIC_SHIFT,
806
		.sign = FTR_UNSIGNED,
807
		.min_field_value = 1,
808
	},
809 810 811 812
#ifdef CONFIG_ARM64_PAN
	{
		.desc = "Privileged Access Never",
		.capability = ARM64_HAS_PAN,
813
		.def_scope = SCOPE_SYSTEM,
814 815 816
		.matches = has_cpuid_feature,
		.sys_reg = SYS_ID_AA64MMFR1_EL1,
		.field_pos = ID_AA64MMFR1_PAN_SHIFT,
817
		.sign = FTR_UNSIGNED,
818 819 820 821
		.min_field_value = 1,
		.enable = cpu_enable_pan,
	},
#endif /* CONFIG_ARM64_PAN */
822 823 824 825
#if defined(CONFIG_AS_LSE) && defined(CONFIG_ARM64_LSE_ATOMICS)
	{
		.desc = "LSE atomic instructions",
		.capability = ARM64_HAS_LSE_ATOMICS,
826
		.def_scope = SCOPE_SYSTEM,
827 828 829
		.matches = has_cpuid_feature,
		.sys_reg = SYS_ID_AA64ISAR0_EL1,
		.field_pos = ID_AA64ISAR0_ATOMICS_SHIFT,
830
		.sign = FTR_UNSIGNED,
831 832 833
		.min_field_value = 2,
	},
#endif /* CONFIG_AS_LSE && CONFIG_ARM64_LSE_ATOMICS */
834 835 836
	{
		.desc = "Software prefetching using PRFM",
		.capability = ARM64_HAS_NO_HW_PREFETCH,
837
		.def_scope = SCOPE_SYSTEM,
838 839
		.matches = has_no_hw_prefetch,
	},
840 841 842 843
#ifdef CONFIG_ARM64_UAO
	{
		.desc = "User Access Override",
		.capability = ARM64_HAS_UAO,
844
		.def_scope = SCOPE_SYSTEM,
845 846 847 848
		.matches = has_cpuid_feature,
		.sys_reg = SYS_ID_AA64MMFR2_EL1,
		.field_pos = ID_AA64MMFR2_UAO_SHIFT,
		.min_field_value = 1,
849 850 851 852
		/*
		 * We rely on stop_machine() calling uao_thread_switch() to set
		 * UAO immediately after patching.
		 */
853 854
	},
#endif /* CONFIG_ARM64_UAO */
855 856 857
#ifdef CONFIG_ARM64_PAN
	{
		.capability = ARM64_ALT_PAN_NOT_UAO,
858
		.def_scope = SCOPE_SYSTEM,
859 860 861
		.matches = cpufeature_pan_not_uao,
	},
#endif /* CONFIG_ARM64_PAN */
862 863 864
	{
		.desc = "Virtualization Host Extensions",
		.capability = ARM64_HAS_VIRT_HOST_EXTN,
865
		.def_scope = SCOPE_SYSTEM,
866 867
		.matches = runs_at_el2,
	},
868 869 870
	{
		.desc = "32-bit EL0 Support",
		.capability = ARM64_HAS_32BIT_EL0,
871
		.def_scope = SCOPE_SYSTEM,
872 873 874 875 876 877
		.matches = has_cpuid_feature,
		.sys_reg = SYS_ID_AA64PFR0_EL1,
		.sign = FTR_UNSIGNED,
		.field_pos = ID_AA64PFR0_EL0_SHIFT,
		.min_field_value = ID_AA64PFR0_EL0_32BIT_64BIT,
	},
878 879 880 881 882 883
	{
		.desc = "Reduced HYP mapping offset",
		.capability = ARM64_HYP_OFFSET_LOW,
		.def_scope = SCOPE_SYSTEM,
		.matches = hyp_offset_low,
	},
884 885 886 887 888 889 890
	{
		/* FP/SIMD is not implemented */
		.capability = ARM64_HAS_NO_FPSIMD,
		.def_scope = SCOPE_SYSTEM,
		.min_field_value = 0,
		.matches = has_no_fpsimd,
	},
891 892 893
	{},
};

894
#define HWCAP_CAP(reg, field, s, min_value, type, cap)	\
895 896
	{							\
		.desc = #cap,					\
897
		.def_scope = SCOPE_SYSTEM,			\
898 899 900
		.matches = has_cpuid_feature,			\
		.sys_reg = reg,					\
		.field_pos = field,				\
901
		.sign = s,					\
902 903 904 905 906
		.min_field_value = min_value,			\
		.hwcap_type = type,				\
		.hwcap = cap,					\
	}

S
Suzuki K Poulose 已提交
907
static const struct arm64_cpu_capabilities arm64_elf_hwcaps[] = {
908 909 910 911 912 913
	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_AES_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, HWCAP_PMULL),
	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_AES_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_AES),
	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA1_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_SHA1),
	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA2_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_SHA2),
	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_CRC32_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_CRC32),
	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_ATOMICS_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, HWCAP_ATOMICS),
914
	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_RDM_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_ASIMDRDM),
915
	HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_FP_SHIFT, FTR_SIGNED, 0, CAP_HWCAP, HWCAP_FP),
916
	HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_FP_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, HWCAP_FPHP),
917
	HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_ASIMD_SHIFT, FTR_SIGNED, 0, CAP_HWCAP, HWCAP_ASIMD),
918
	HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_ASIMD_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, HWCAP_ASIMDHP),
919
	HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_JSCVT_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_JSCVT),
920
	HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_FCMA_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_FCMA),
921
	HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_LRCPC_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_LRCPC),
922 923 924 925
	{},
};

static const struct arm64_cpu_capabilities compat_elf_hwcaps[] = {
926
#ifdef CONFIG_COMPAT
927 928 929 930 931
	HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, FTR_UNSIGNED, 2, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_PMULL),
	HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_AES),
	HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA1_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA1),
	HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA2_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA2),
	HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_CRC32_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_CRC32),
932 933 934 935
#endif
	{},
};

S
Suzuki K Poulose 已提交
936
static void __init cap_set_elf_hwcap(const struct arm64_cpu_capabilities *cap)
937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956
{
	switch (cap->hwcap_type) {
	case CAP_HWCAP:
		elf_hwcap |= cap->hwcap;
		break;
#ifdef CONFIG_COMPAT
	case CAP_COMPAT_HWCAP:
		compat_elf_hwcap |= (u32)cap->hwcap;
		break;
	case CAP_COMPAT_HWCAP2:
		compat_elf_hwcap2 |= (u32)cap->hwcap;
		break;
#endif
	default:
		WARN_ON(1);
		break;
	}
}

/* Check if we have a particular HWCAP enabled */
S
Suzuki K Poulose 已提交
957
static bool cpus_have_elf_hwcap(const struct arm64_cpu_capabilities *cap)
958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980
{
	bool rc;

	switch (cap->hwcap_type) {
	case CAP_HWCAP:
		rc = (elf_hwcap & cap->hwcap) != 0;
		break;
#ifdef CONFIG_COMPAT
	case CAP_COMPAT_HWCAP:
		rc = (compat_elf_hwcap & (u32)cap->hwcap) != 0;
		break;
	case CAP_COMPAT_HWCAP2:
		rc = (compat_elf_hwcap2 & (u32)cap->hwcap) != 0;
		break;
#endif
	default:
		WARN_ON(1);
		rc = false;
	}

	return rc;
}

981
static void __init setup_elf_hwcaps(const struct arm64_cpu_capabilities *hwcaps)
982
{
983 984
	/* We support emulation of accesses to CPU ID feature registers */
	elf_hwcap |= HWCAP_CPUID;
985
	for (; hwcaps->matches; hwcaps++)
986
		if (hwcaps->matches(hwcaps, hwcaps->def_scope))
987
			cap_set_elf_hwcap(hwcaps);
988 989
}

990
void update_cpu_capabilities(const struct arm64_cpu_capabilities *caps,
991 992
			    const char *info)
{
993
	for (; caps->matches; caps++) {
994
		if (!caps->matches(caps, caps->def_scope))
995 996
			continue;

997 998 999
		if (!cpus_have_cap(caps->capability) && caps->desc)
			pr_info("%s %s\n", info, caps->desc);
		cpus_set_cap(caps->capability);
1000
	}
1001 1002 1003
}

/*
1004 1005
 * Run through the enabled capabilities and enable() it on all active
 * CPUs
1006
 */
1007
void __init enable_cpu_capabilities(const struct arm64_cpu_capabilities *caps)
1008
{
1009 1010 1011 1012 1013 1014 1015 1016 1017 1018
	for (; caps->matches; caps++) {
		unsigned int num = caps->capability;

		if (!cpus_have_cap(num))
			continue;

		/* Ensure cpus_have_const_cap(num) works */
		static_branch_enable(&cpu_hwcap_keys[num]);

		if (caps->enable) {
1019 1020 1021 1022 1023 1024 1025
			/*
			 * Use stop_machine() as it schedules the work allowing
			 * us to modify PSTATE, instead of on_each_cpu() which
			 * uses an IPI, giving us a PSTATE that disappears when
			 * we return.
			 */
			stop_machine(caps->enable, NULL, cpu_online_mask);
1026 1027
		}
	}
1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045
}

/*
 * Flag to indicate if we have computed the system wide
 * capabilities based on the boot time active CPUs. This
 * will be used to determine if a new booting CPU should
 * go through the verification process to make sure that it
 * supports the system capabilities, without using a hotplug
 * notifier.
 */
static bool sys_caps_initialised;

static inline void set_sys_caps_initialised(void)
{
	sys_caps_initialised = true;
}

/*
1046 1047
 * Check for CPU features that are used in early boot
 * based on the Boot CPU value.
1048
 */
1049
static void check_early_cpu_features(void)
1050
{
1051
	verify_cpu_run_el();
1052
	verify_cpu_asid_bits();
1053
}
1054

1055 1056 1057 1058
static void
verify_local_elf_hwcaps(const struct arm64_cpu_capabilities *caps)
{

1059 1060
	for (; caps->matches; caps++)
		if (cpus_have_elf_hwcap(caps) && !caps->matches(caps, SCOPE_LOCAL_CPU)) {
1061 1062 1063 1064 1065 1066 1067 1068 1069 1070
			pr_crit("CPU%d: missing HWCAP: %s\n",
					smp_processor_id(), caps->desc);
			cpu_die_early();
		}
}

static void
verify_local_cpu_features(const struct arm64_cpu_capabilities *caps)
{
	for (; caps->matches; caps++) {
1071
		if (!cpus_have_cap(caps->capability))
1072 1073 1074 1075 1076
			continue;
		/*
		 * If the new CPU misses an advertised feature, we cannot proceed
		 * further, park the cpu.
		 */
1077
		if (!caps->matches(caps, SCOPE_LOCAL_CPU)) {
1078 1079 1080 1081 1082 1083 1084 1085 1086
			pr_crit("CPU%d: missing feature: %s\n",
					smp_processor_id(), caps->desc);
			cpu_die_early();
		}
		if (caps->enable)
			caps->enable(NULL);
	}
}

1087 1088 1089 1090 1091 1092 1093 1094
/*
 * Run through the enabled system capabilities and enable() it on this CPU.
 * The capabilities were decided based on the available CPUs at the boot time.
 * Any new CPU should match the system wide status of the capability. If the
 * new CPU doesn't have a capability which the system now has enabled, we
 * cannot do anything to fix it up and could cause unexpected failures. So
 * we park the CPU.
 */
1095
static void verify_local_cpu_capabilities(void)
1096
{
1097 1098 1099 1100 1101 1102
	verify_local_cpu_errata_workarounds();
	verify_local_cpu_features(arm64_features);
	verify_local_elf_hwcaps(arm64_elf_hwcaps);
	if (system_supports_32bit_el0())
		verify_local_elf_hwcaps(compat_elf_hwcaps);
}
1103

1104 1105 1106 1107 1108 1109
void check_local_cpu_capabilities(void)
{
	/*
	 * All secondary CPUs should conform to the early CPU features
	 * in use by the kernel based on boot CPU.
	 */
1110 1111
	check_early_cpu_features();

1112
	/*
1113 1114 1115 1116
	 * If we haven't finalised the system capabilities, this CPU gets
	 * a chance to update the errata work arounds.
	 * Otherwise, this CPU should verify that it has all the system
	 * advertised capabilities.
1117 1118
	 */
	if (!sys_caps_initialised)
1119 1120 1121
		update_cpu_errata_workarounds();
	else
		verify_local_cpu_capabilities();
1122 1123
}

1124
static void __init setup_feature_capabilities(void)
1125
{
1126 1127
	update_cpu_capabilities(arm64_features, "detected feature:");
	enable_cpu_capabilities(arm64_features);
1128 1129
}

1130 1131 1132 1133 1134 1135 1136 1137
DEFINE_STATIC_KEY_FALSE(arm64_const_caps_ready);
EXPORT_SYMBOL(arm64_const_caps_ready);

static void __init mark_const_caps_ready(void)
{
	static_branch_enable(&arm64_const_caps_ready);
}

1138 1139 1140 1141
/*
 * Check if the current CPU has a given feature capability.
 * Should be called from non-preemptible context.
 */
1142 1143
static bool __this_cpu_has_cap(const struct arm64_cpu_capabilities *cap_array,
			       unsigned int cap)
1144 1145 1146 1147 1148 1149
{
	const struct arm64_cpu_capabilities *caps;

	if (WARN_ON(preemptible()))
		return false;

1150
	for (caps = cap_array; caps->desc; caps++)
1151 1152 1153 1154 1155 1156
		if (caps->capability == cap && caps->matches)
			return caps->matches(caps, SCOPE_LOCAL_CPU);

	return false;
}

1157 1158 1159 1160 1161 1162 1163 1164
extern const struct arm64_cpu_capabilities arm64_errata[];

bool this_cpu_has_cap(unsigned int cap)
{
	return (__this_cpu_has_cap(arm64_features, cap) ||
		__this_cpu_has_cap(arm64_errata, cap));
}

1165
void __init setup_cpu_features(void)
1166
{
1167 1168 1169
	u32 cwg;
	int cls;

1170 1171
	/* Set the CPU feature capabilies */
	setup_feature_capabilities();
1172
	enable_errata_workarounds();
1173
	mark_const_caps_ready();
1174
	setup_elf_hwcaps(arm64_elf_hwcaps);
1175 1176 1177

	if (system_supports_32bit_el0())
		setup_elf_hwcaps(compat_elf_hwcaps);
1178 1179 1180 1181

	/* Advertise that we have computed the system capabilities */
	set_sys_caps_initialised();

1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192
	/*
	 * Check for sane CTR_EL0.CWG value.
	 */
	cwg = cache_type_cwg();
	cls = cache_line_size();
	if (!cwg)
		pr_warn("No Cache Writeback Granule information, assuming cache line size %d\n",
			cls);
	if (L1_CACHE_BYTES < cls)
		pr_warn("L1_CACHE_BYTES smaller than the Cache Writeback Granule (%d < %d)\n",
			L1_CACHE_BYTES, cls);
1193
}
1194 1195

static bool __maybe_unused
1196
cpufeature_pan_not_uao(const struct arm64_cpu_capabilities *entry, int __unused)
1197
{
1198
	return (cpus_have_const_cap(ARM64_HAS_PAN) && !cpus_have_const_cap(ARM64_HAS_UAO));
1199
}
1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275

/*
 * We emulate only the following system register space.
 * Op0 = 0x3, CRn = 0x0, Op1 = 0x0, CRm = [0, 4 - 7]
 * See Table C5-6 System instruction encodings for System register accesses,
 * ARMv8 ARM(ARM DDI 0487A.f) for more details.
 */
static inline bool __attribute_const__ is_emulated(u32 id)
{
	return (sys_reg_Op0(id) == 0x3 &&
		sys_reg_CRn(id) == 0x0 &&
		sys_reg_Op1(id) == 0x0 &&
		(sys_reg_CRm(id) == 0 ||
		 ((sys_reg_CRm(id) >= 4) && (sys_reg_CRm(id) <= 7))));
}

/*
 * With CRm == 0, reg should be one of :
 * MIDR_EL1, MPIDR_EL1 or REVIDR_EL1.
 */
static inline int emulate_id_reg(u32 id, u64 *valp)
{
	switch (id) {
	case SYS_MIDR_EL1:
		*valp = read_cpuid_id();
		break;
	case SYS_MPIDR_EL1:
		*valp = SYS_MPIDR_SAFE_VAL;
		break;
	case SYS_REVIDR_EL1:
		/* IMPLEMENTATION DEFINED values are emulated with 0 */
		*valp = 0;
		break;
	default:
		return -EINVAL;
	}

	return 0;
}

static int emulate_sys_reg(u32 id, u64 *valp)
{
	struct arm64_ftr_reg *regp;

	if (!is_emulated(id))
		return -EINVAL;

	if (sys_reg_CRm(id) == 0)
		return emulate_id_reg(id, valp);

	regp = get_arm64_ftr_reg(id);
	if (regp)
		*valp = arm64_ftr_reg_user_value(regp);
	else
		/*
		 * The untracked registers are either IMPLEMENTATION DEFINED
		 * (e.g, ID_AFR0_EL1) or reserved RAZ.
		 */
		*valp = 0;
	return 0;
}

static int emulate_mrs(struct pt_regs *regs, u32 insn)
{
	int rc;
	u32 sys_reg, dst;
	u64 val;

	/*
	 * sys_reg values are defined as used in mrs/msr instruction.
	 * shift the imm value to get the encoding.
	 */
	sys_reg = (u32)aarch64_insn_decode_immediate(AARCH64_INSN_IMM_16, insn) << 5;
	rc = emulate_sys_reg(sys_reg, &val);
	if (!rc) {
		dst = aarch64_insn_decode_register(AARCH64_INSN_REGTYPE_RT, insn);
1276
		pt_regs_write_reg(regs, dst, val);
1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297
		regs->pc += 4;
	}

	return rc;
}

static struct undef_hook mrs_hook = {
	.instr_mask = 0xfff00000,
	.instr_val  = 0xd5300000,
	.pstate_mask = COMPAT_PSR_MODE_MASK,
	.pstate_val = PSR_MODE_EL0t,
	.fn = emulate_mrs,
};

static int __init enable_mrs_emulation(void)
{
	register_undef_hook(&mrs_hook);
	return 0;
}

late_initcall(enable_mrs_emulation);