cpufeature.c 36.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 * Contains CPU feature definitions
 *
 * Copyright (C) 2015 ARM Ltd.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 */

19
#define pr_fmt(fmt) "CPU features: " fmt
20

21
#include <linux/bsearch.h>
22
#include <linux/cpumask.h>
23
#include <linux/sort.h>
24
#include <linux/stop_machine.h>
25 26 27
#include <linux/types.h>
#include <asm/cpu.h>
#include <asm/cpufeature.h>
28
#include <asm/cpu_ops.h>
29
#include <asm/mmu_context.h>
30
#include <asm/processor.h>
31
#include <asm/sysreg.h>
32
#include <asm/virt.h>
33

34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
unsigned long elf_hwcap __read_mostly;
EXPORT_SYMBOL_GPL(elf_hwcap);

#ifdef CONFIG_COMPAT
#define COMPAT_ELF_HWCAP_DEFAULT	\
				(COMPAT_HWCAP_HALF|COMPAT_HWCAP_THUMB|\
				 COMPAT_HWCAP_FAST_MULT|COMPAT_HWCAP_EDSP|\
				 COMPAT_HWCAP_TLS|COMPAT_HWCAP_VFP|\
				 COMPAT_HWCAP_VFPv3|COMPAT_HWCAP_VFPv4|\
				 COMPAT_HWCAP_NEON|COMPAT_HWCAP_IDIV|\
				 COMPAT_HWCAP_LPAE)
unsigned int compat_elf_hwcap __read_mostly = COMPAT_ELF_HWCAP_DEFAULT;
unsigned int compat_elf_hwcap2 __read_mostly;
#endif

DECLARE_BITMAP(cpu_hwcaps, ARM64_NCAPS);

51 52 53
DEFINE_STATIC_KEY_ARRAY_FALSE(cpu_hwcap_keys, ARM64_NCAPS);
EXPORT_SYMBOL(cpu_hwcap_keys);

54
#define __ARM64_FTR_BITS(SIGNED, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
55
	{						\
56
		.sign = SIGNED,				\
57 58 59 60 61 62 63
		.strict = STRICT,			\
		.type = TYPE,				\
		.shift = SHIFT,				\
		.width = WIDTH,				\
		.safe_val = SAFE_VAL,			\
	}

64
/* Define a feature with unsigned values */
65 66 67
#define ARM64_FTR_BITS(STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
	__ARM64_FTR_BITS(FTR_UNSIGNED, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)

68 69 70 71
/* Define a feature with a signed value */
#define S_ARM64_FTR_BITS(STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
	__ARM64_FTR_BITS(FTR_SIGNED, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)

72 73 74 75 76
#define ARM64_FTR_END					\
	{						\
		.width = 0,				\
	}

77 78
/* meta feature for alternatives */
static bool __maybe_unused
79 80
cpufeature_pan_not_uao(const struct arm64_cpu_capabilities *entry, int __unused);

81

82
static const struct arm64_ftr_bits ftr_id_aa64isar0[] = {
83 84 85 86 87 88 89 90 91 92 93 94
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 32, 32, 0),
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64ISAR0_RDM_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 24, 4, 0),
	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_ATOMICS_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_CRC32_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA2_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA1_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_AES_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 4, 0),	/* RAZ */
	ARM64_FTR_END,
};

95
static const struct arm64_ftr_bits ftr_id_aa64pfr0[] = {
96 97 98
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 32, 32, 0),
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 28, 4, 0),
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64PFR0_GIC_SHIFT, 4, 0),
99 100
	S_ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_ASIMD_SHIFT, 4, ID_AA64PFR0_ASIMD_NI),
	S_ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_FP_SHIFT, 4, ID_AA64PFR0_FP_NI),
101 102 103 104 105 106 107 108
	/* Linux doesn't care about the EL3 */
	ARM64_FTR_BITS(FTR_NONSTRICT, FTR_EXACT, ID_AA64PFR0_EL3_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64PFR0_EL2_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64PFR0_EL1_SHIFT, 4, ID_AA64PFR0_EL1_64BIT_ONLY),
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64PFR0_EL0_SHIFT, 4, ID_AA64PFR0_EL0_64BIT_ONLY),
	ARM64_FTR_END,
};

109
static const struct arm64_ftr_bits ftr_id_aa64mmfr0[] = {
110
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 32, 32, 0),
111 112
	S_ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN4_SHIFT, 4, ID_AA64MMFR0_TGRAN4_NI),
	S_ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN64_SHIFT, 4, ID_AA64MMFR0_TGRAN64_NI),
113 114 115 116 117 118 119 120 121 122
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN16_SHIFT, 4, ID_AA64MMFR0_TGRAN16_NI),
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_BIGENDEL0_SHIFT, 4, 0),
	/* Linux shouldn't care about secure memory */
	ARM64_FTR_BITS(FTR_NONSTRICT, FTR_EXACT, ID_AA64MMFR0_SNSMEM_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_BIGENDEL_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_ASID_SHIFT, 4, 0),
	/*
	 * Differing PARange is fine as long as all peripherals and memory are mapped
	 * within the minimum PARange of all CPUs
	 */
123
	ARM64_FTR_BITS(FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_PARANGE_SHIFT, 4, 0),
124 125 126
	ARM64_FTR_END,
};

127
static const struct arm64_ftr_bits ftr_id_aa64mmfr1[] = {
128 129 130 131 132 133 134 135 136 137
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 32, 32, 0),
	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_PAN_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_LOR_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_HPD_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_VHE_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_VMIDBITS_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_HADBS_SHIFT, 4, 0),
	ARM64_FTR_END,
};

138
static const struct arm64_ftr_bits ftr_id_aa64mmfr2[] = {
139 140 141
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR2_LVA_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR2_IESB_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR2_LSM_SHIFT, 4, 0),
142
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR2_UAO_SHIFT, 4, 0),
143
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR2_CNP_SHIFT, 4, 0),
144 145 146
	ARM64_FTR_END,
};

147
static const struct arm64_ftr_bits ftr_ctr[] = {
148
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 31, 1, 1),	/* RAO */
149
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 28, 3, 0),
150 151 152
	ARM64_FTR_BITS(FTR_STRICT, FTR_HIGHER_SAFE, 24, 4, 0),	/* CWG */
	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),	/* ERG */
	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 1),	/* DminLine */
153 154
	/*
	 * Linux can handle differing I-cache policies. Userspace JITs will
155 156
	 * make use of *minLine.
	 * If we have differing I-cache policies, report it as the weakest - AIVIVT.
157
	 */
158
	ARM64_FTR_BITS(FTR_NONSTRICT, FTR_EXACT, 14, 2, ICACHE_POLICY_AIVIVT),	/* L1Ip */
159
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 10, 0),	/* RAZ */
160
	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),	/* IminLine */
161 162 163
	ARM64_FTR_END,
};

164 165 166 167 168
struct arm64_ftr_reg arm64_ftr_reg_ctrel0 = {
	.name		= "SYS_CTR_EL0",
	.ftr_bits	= ftr_ctr
};

169
static const struct arm64_ftr_bits ftr_id_mmfr0[] = {
170
	S_ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 28, 4, 0xf),	/* InnerShr */
171 172 173 174
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 24, 4, 0),	/* FCSE */
	ARM64_FTR_BITS(FTR_NONSTRICT, FTR_LOWER_SAFE, 20, 4, 0),	/* AuxReg */
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 16, 4, 0),	/* TCM */
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 12, 4, 0),	/* ShareLvl */
175
	S_ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 8, 4, 0xf),	/* OuterShr */
176 177 178 179 180
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 4, 0),	/* PMSA */
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 4, 0),	/* VMSA */
	ARM64_FTR_END,
};

181
static const struct arm64_ftr_bits ftr_id_aa64dfr0[] = {
182
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 32, 32, 0),
183 184 185 186 187 188
	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_CTX_CMPS_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_WRPS_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_BRPS_SHIFT, 4, 0),
	S_ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64DFR0_PMUVER_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64DFR0_TRACEVER_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64DFR0_DEBUGVER_SHIFT, 4, 0x6),
189 190 191
	ARM64_FTR_END,
};

192
static const struct arm64_ftr_bits ftr_mvfr2[] = {
193 194 195 196 197 198
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 8, 24, 0),	/* RAZ */
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 4, 0),		/* FPMisc */
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 4, 0),		/* SIMDMisc */
	ARM64_FTR_END,
};

199
static const struct arm64_ftr_bits ftr_dczid[] = {
200 201 202 203 204 205 206
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 5, 27, 0),	/* RAZ */
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 1, 1),		/* DZP */
	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),	/* BS */
	ARM64_FTR_END,
};


207
static const struct arm64_ftr_bits ftr_id_isar5[] = {
208 209 210 211 212 213 214 215 216 217
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_RDM_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 20, 4, 0),	/* RAZ */
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_CRC32_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_SHA2_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_SHA1_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_AES_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_SEVL_SHIFT, 4, 0),
	ARM64_FTR_END,
};

218
static const struct arm64_ftr_bits ftr_id_mmfr4[] = {
219 220 221 222 223 224
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 8, 24, 0),	/* RAZ */
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 4, 0),		/* ac2 */
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 4, 0),		/* RAZ */
	ARM64_FTR_END,
};

225
static const struct arm64_ftr_bits ftr_id_pfr0[] = {
226 227 228 229 230 231 232 233
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 16, 16, 0),	/* RAZ */
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 12, 4, 0),	/* State3 */
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 8, 4, 0),		/* State2 */
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 4, 0),		/* State1 */
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 4, 0),		/* State0 */
	ARM64_FTR_END,
};

234
static const struct arm64_ftr_bits ftr_id_dfr0[] = {
235
	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0),
236
	S_ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0xf),	/* PerfMon */
237 238 239 240 241 242 243 244 245
	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),
	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),
	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),
	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),
	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),
	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),
	ARM64_FTR_END,
};

246 247 248 249 250 251
/*
 * Common ftr bits for a 32bit register with all hidden, strict
 * attributes, with 4bit feature fields and a default safe value of
 * 0. Covers the following 32bit registers:
 * id_isar[0-4], id_mmfr[1-3], id_pfr1, mvfr[0-1]
 */
252
static const struct arm64_ftr_bits ftr_generic_32bits[] = {
253 254 255 256 257 258 259 260 261 262 263
	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0),
	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0),
	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),
	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),
	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),
	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),
	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),
	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),
	ARM64_FTR_END,
};

264
static const struct arm64_ftr_bits ftr_generic[] = {
265 266 267 268
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 64, 0),
	ARM64_FTR_END,
};

269
static const struct arm64_ftr_bits ftr_generic32[] = {
270 271 272 273
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 32, 0),
	ARM64_FTR_END,
};

274
static const struct arm64_ftr_bits ftr_aa64raz[] = {
275 276 277 278
	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 64, 0),
	ARM64_FTR_END,
};

279 280 281
#define ARM64_FTR_REG(id, table) {		\
	.sys_id = id,				\
	.reg = 	&(struct arm64_ftr_reg){	\
282 283
		.name = #id,			\
		.ftr_bits = &((table)[0]),	\
284
	}}
285

286 287 288 289
static const struct __ftr_reg_entry {
	u32			sys_id;
	struct arm64_ftr_reg 	*reg;
} arm64_ftr_regs[] = {
290 291 292 293

	/* Op1 = 0, CRn = 0, CRm = 1 */
	ARM64_FTR_REG(SYS_ID_PFR0_EL1, ftr_id_pfr0),
	ARM64_FTR_REG(SYS_ID_PFR1_EL1, ftr_generic_32bits),
294
	ARM64_FTR_REG(SYS_ID_DFR0_EL1, ftr_id_dfr0),
295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328
	ARM64_FTR_REG(SYS_ID_MMFR0_EL1, ftr_id_mmfr0),
	ARM64_FTR_REG(SYS_ID_MMFR1_EL1, ftr_generic_32bits),
	ARM64_FTR_REG(SYS_ID_MMFR2_EL1, ftr_generic_32bits),
	ARM64_FTR_REG(SYS_ID_MMFR3_EL1, ftr_generic_32bits),

	/* Op1 = 0, CRn = 0, CRm = 2 */
	ARM64_FTR_REG(SYS_ID_ISAR0_EL1, ftr_generic_32bits),
	ARM64_FTR_REG(SYS_ID_ISAR1_EL1, ftr_generic_32bits),
	ARM64_FTR_REG(SYS_ID_ISAR2_EL1, ftr_generic_32bits),
	ARM64_FTR_REG(SYS_ID_ISAR3_EL1, ftr_generic_32bits),
	ARM64_FTR_REG(SYS_ID_ISAR4_EL1, ftr_generic_32bits),
	ARM64_FTR_REG(SYS_ID_ISAR5_EL1, ftr_id_isar5),
	ARM64_FTR_REG(SYS_ID_MMFR4_EL1, ftr_id_mmfr4),

	/* Op1 = 0, CRn = 0, CRm = 3 */
	ARM64_FTR_REG(SYS_MVFR0_EL1, ftr_generic_32bits),
	ARM64_FTR_REG(SYS_MVFR1_EL1, ftr_generic_32bits),
	ARM64_FTR_REG(SYS_MVFR2_EL1, ftr_mvfr2),

	/* Op1 = 0, CRn = 0, CRm = 4 */
	ARM64_FTR_REG(SYS_ID_AA64PFR0_EL1, ftr_id_aa64pfr0),
	ARM64_FTR_REG(SYS_ID_AA64PFR1_EL1, ftr_aa64raz),

	/* Op1 = 0, CRn = 0, CRm = 5 */
	ARM64_FTR_REG(SYS_ID_AA64DFR0_EL1, ftr_id_aa64dfr0),
	ARM64_FTR_REG(SYS_ID_AA64DFR1_EL1, ftr_generic),

	/* Op1 = 0, CRn = 0, CRm = 6 */
	ARM64_FTR_REG(SYS_ID_AA64ISAR0_EL1, ftr_id_aa64isar0),
	ARM64_FTR_REG(SYS_ID_AA64ISAR1_EL1, ftr_aa64raz),

	/* Op1 = 0, CRn = 0, CRm = 7 */
	ARM64_FTR_REG(SYS_ID_AA64MMFR0_EL1, ftr_id_aa64mmfr0),
	ARM64_FTR_REG(SYS_ID_AA64MMFR1_EL1, ftr_id_aa64mmfr1),
329
	ARM64_FTR_REG(SYS_ID_AA64MMFR2_EL1, ftr_id_aa64mmfr2),
330 331

	/* Op1 = 3, CRn = 0, CRm = 0 */
332
	{ SYS_CTR_EL0, &arm64_ftr_reg_ctrel0 },
333 334 335 336 337 338 339 340
	ARM64_FTR_REG(SYS_DCZID_EL0, ftr_dczid),

	/* Op1 = 3, CRn = 14, CRm = 0 */
	ARM64_FTR_REG(SYS_CNTFRQ_EL0, ftr_generic32),
};

static int search_cmp_ftr_reg(const void *id, const void *regp)
{
341
	return (int)(unsigned long)id - (int)((const struct __ftr_reg_entry *)regp)->sys_id;
342 343 344 345 346 347 348 349 350 351 352 353 354 355
}

/*
 * get_arm64_ftr_reg - Lookup a feature register entry using its
 * sys_reg() encoding. With the array arm64_ftr_regs sorted in the
 * ascending order of sys_id , we use binary search to find a matching
 * entry.
 *
 * returns - Upon success,  matching ftr_reg entry for id.
 *         - NULL on failure. It is upto the caller to decide
 *	     the impact of a failure.
 */
static struct arm64_ftr_reg *get_arm64_ftr_reg(u32 sys_id)
{
356 357 358
	const struct __ftr_reg_entry *ret;

	ret = bsearch((const void *)(unsigned long)sys_id,
359 360 361 362
			arm64_ftr_regs,
			ARRAY_SIZE(arm64_ftr_regs),
			sizeof(arm64_ftr_regs[0]),
			search_cmp_ftr_reg);
363 364 365
	if (ret)
		return ret->reg;
	return NULL;
366 367
}

368 369
static u64 arm64_ftr_set_value(const struct arm64_ftr_bits *ftrp, s64 reg,
			       s64 ftr_val)
370 371 372 373 374 375 376 377
{
	u64 mask = arm64_ftr_mask(ftrp);

	reg &= ~mask;
	reg |= (ftr_val << ftrp->shift) & mask;
	return reg;
}

378 379
static s64 arm64_ftr_safe_value(const struct arm64_ftr_bits *ftrp, s64 new,
				s64 cur)
380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401
{
	s64 ret = 0;

	switch (ftrp->type) {
	case FTR_EXACT:
		ret = ftrp->safe_val;
		break;
	case FTR_LOWER_SAFE:
		ret = new < cur ? new : cur;
		break;
	case FTR_HIGHER_SAFE:
		ret = new > cur ? new : cur;
		break;
	default:
		BUG();
	}

	return ret;
}

static void __init sort_ftr_regs(void)
{
402 403 404 405 406
	int i;

	/* Check that the array is sorted so that we can do the binary search */
	for (i = 1; i < ARRAY_SIZE(arm64_ftr_regs); i++)
		BUG_ON(arm64_ftr_regs[i].sys_id < arm64_ftr_regs[i - 1].sys_id);
407 408 409 410 411 412 413 414 415 416
}

/*
 * Initialise the CPU feature register from Boot CPU values.
 * Also initiliases the strict_mask for the register.
 */
static void __init init_cpu_ftr_reg(u32 sys_reg, u64 new)
{
	u64 val = 0;
	u64 strict_mask = ~0x0ULL;
417
	const struct arm64_ftr_bits *ftrp;
418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446
	struct arm64_ftr_reg *reg = get_arm64_ftr_reg(sys_reg);

	BUG_ON(!reg);

	for (ftrp  = reg->ftr_bits; ftrp->width; ftrp++) {
		s64 ftr_new = arm64_ftr_value(ftrp, new);

		val = arm64_ftr_set_value(ftrp, val, ftr_new);
		if (!ftrp->strict)
			strict_mask &= ~arm64_ftr_mask(ftrp);
	}
	reg->sys_val = val;
	reg->strict_mask = strict_mask;
}

void __init init_cpu_features(struct cpuinfo_arm64 *info)
{
	/* Before we start using the tables, make sure it is sorted */
	sort_ftr_regs();

	init_cpu_ftr_reg(SYS_CTR_EL0, info->reg_ctr);
	init_cpu_ftr_reg(SYS_DCZID_EL0, info->reg_dczid);
	init_cpu_ftr_reg(SYS_CNTFRQ_EL0, info->reg_cntfrq);
	init_cpu_ftr_reg(SYS_ID_AA64DFR0_EL1, info->reg_id_aa64dfr0);
	init_cpu_ftr_reg(SYS_ID_AA64DFR1_EL1, info->reg_id_aa64dfr1);
	init_cpu_ftr_reg(SYS_ID_AA64ISAR0_EL1, info->reg_id_aa64isar0);
	init_cpu_ftr_reg(SYS_ID_AA64ISAR1_EL1, info->reg_id_aa64isar1);
	init_cpu_ftr_reg(SYS_ID_AA64MMFR0_EL1, info->reg_id_aa64mmfr0);
	init_cpu_ftr_reg(SYS_ID_AA64MMFR1_EL1, info->reg_id_aa64mmfr1);
447
	init_cpu_ftr_reg(SYS_ID_AA64MMFR2_EL1, info->reg_id_aa64mmfr2);
448 449
	init_cpu_ftr_reg(SYS_ID_AA64PFR0_EL1, info->reg_id_aa64pfr0);
	init_cpu_ftr_reg(SYS_ID_AA64PFR1_EL1, info->reg_id_aa64pfr1);
450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469

	if (id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0)) {
		init_cpu_ftr_reg(SYS_ID_DFR0_EL1, info->reg_id_dfr0);
		init_cpu_ftr_reg(SYS_ID_ISAR0_EL1, info->reg_id_isar0);
		init_cpu_ftr_reg(SYS_ID_ISAR1_EL1, info->reg_id_isar1);
		init_cpu_ftr_reg(SYS_ID_ISAR2_EL1, info->reg_id_isar2);
		init_cpu_ftr_reg(SYS_ID_ISAR3_EL1, info->reg_id_isar3);
		init_cpu_ftr_reg(SYS_ID_ISAR4_EL1, info->reg_id_isar4);
		init_cpu_ftr_reg(SYS_ID_ISAR5_EL1, info->reg_id_isar5);
		init_cpu_ftr_reg(SYS_ID_MMFR0_EL1, info->reg_id_mmfr0);
		init_cpu_ftr_reg(SYS_ID_MMFR1_EL1, info->reg_id_mmfr1);
		init_cpu_ftr_reg(SYS_ID_MMFR2_EL1, info->reg_id_mmfr2);
		init_cpu_ftr_reg(SYS_ID_MMFR3_EL1, info->reg_id_mmfr3);
		init_cpu_ftr_reg(SYS_ID_PFR0_EL1, info->reg_id_pfr0);
		init_cpu_ftr_reg(SYS_ID_PFR1_EL1, info->reg_id_pfr1);
		init_cpu_ftr_reg(SYS_MVFR0_EL1, info->reg_mvfr0);
		init_cpu_ftr_reg(SYS_MVFR1_EL1, info->reg_mvfr1);
		init_cpu_ftr_reg(SYS_MVFR2_EL1, info->reg_mvfr2);
	}

470 471
}

472
static void update_cpu_ftr_reg(struct arm64_ftr_reg *reg, u64 new)
473
{
474
	const struct arm64_ftr_bits *ftrp;
475 476 477 478 479 480 481 482 483 484 485 486 487 488

	for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) {
		s64 ftr_cur = arm64_ftr_value(ftrp, reg->sys_val);
		s64 ftr_new = arm64_ftr_value(ftrp, new);

		if (ftr_cur == ftr_new)
			continue;
		/* Find a safe value */
		ftr_new = arm64_ftr_safe_value(ftrp, ftr_new, ftr_cur);
		reg->sys_val = arm64_ftr_set_value(ftrp, reg->sys_val, ftr_new);
	}

}

489
static int check_update_ftr_reg(u32 sys_id, int cpu, u64 val, u64 boot)
490
{
491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560
	struct arm64_ftr_reg *regp = get_arm64_ftr_reg(sys_id);

	BUG_ON(!regp);
	update_cpu_ftr_reg(regp, val);
	if ((boot & regp->strict_mask) == (val & regp->strict_mask))
		return 0;
	pr_warn("SANITY CHECK: Unexpected variation in %s. Boot CPU: %#016llx, CPU%d: %#016llx\n",
			regp->name, boot, cpu, val);
	return 1;
}

/*
 * Update system wide CPU feature registers with the values from a
 * non-boot CPU. Also performs SANITY checks to make sure that there
 * aren't any insane variations from that of the boot CPU.
 */
void update_cpu_features(int cpu,
			 struct cpuinfo_arm64 *info,
			 struct cpuinfo_arm64 *boot)
{
	int taint = 0;

	/*
	 * The kernel can handle differing I-cache policies, but otherwise
	 * caches should look identical. Userspace JITs will make use of
	 * *minLine.
	 */
	taint |= check_update_ftr_reg(SYS_CTR_EL0, cpu,
				      info->reg_ctr, boot->reg_ctr);

	/*
	 * Userspace may perform DC ZVA instructions. Mismatched block sizes
	 * could result in too much or too little memory being zeroed if a
	 * process is preempted and migrated between CPUs.
	 */
	taint |= check_update_ftr_reg(SYS_DCZID_EL0, cpu,
				      info->reg_dczid, boot->reg_dczid);

	/* If different, timekeeping will be broken (especially with KVM) */
	taint |= check_update_ftr_reg(SYS_CNTFRQ_EL0, cpu,
				      info->reg_cntfrq, boot->reg_cntfrq);

	/*
	 * The kernel uses self-hosted debug features and expects CPUs to
	 * support identical debug features. We presently need CTX_CMPs, WRPs,
	 * and BRPs to be identical.
	 * ID_AA64DFR1 is currently RES0.
	 */
	taint |= check_update_ftr_reg(SYS_ID_AA64DFR0_EL1, cpu,
				      info->reg_id_aa64dfr0, boot->reg_id_aa64dfr0);
	taint |= check_update_ftr_reg(SYS_ID_AA64DFR1_EL1, cpu,
				      info->reg_id_aa64dfr1, boot->reg_id_aa64dfr1);
	/*
	 * Even in big.LITTLE, processors should be identical instruction-set
	 * wise.
	 */
	taint |= check_update_ftr_reg(SYS_ID_AA64ISAR0_EL1, cpu,
				      info->reg_id_aa64isar0, boot->reg_id_aa64isar0);
	taint |= check_update_ftr_reg(SYS_ID_AA64ISAR1_EL1, cpu,
				      info->reg_id_aa64isar1, boot->reg_id_aa64isar1);

	/*
	 * Differing PARange support is fine as long as all peripherals and
	 * memory are mapped within the minimum PARange of all CPUs.
	 * Linux should not care about secure memory.
	 */
	taint |= check_update_ftr_reg(SYS_ID_AA64MMFR0_EL1, cpu,
				      info->reg_id_aa64mmfr0, boot->reg_id_aa64mmfr0);
	taint |= check_update_ftr_reg(SYS_ID_AA64MMFR1_EL1, cpu,
				      info->reg_id_aa64mmfr1, boot->reg_id_aa64mmfr1);
561 562
	taint |= check_update_ftr_reg(SYS_ID_AA64MMFR2_EL1, cpu,
				      info->reg_id_aa64mmfr2, boot->reg_id_aa64mmfr2);
563 564 565 566 567 568 569 570 571 572 573

	/*
	 * EL3 is not our concern.
	 * ID_AA64PFR1 is currently RES0.
	 */
	taint |= check_update_ftr_reg(SYS_ID_AA64PFR0_EL1, cpu,
				      info->reg_id_aa64pfr0, boot->reg_id_aa64pfr0);
	taint |= check_update_ftr_reg(SYS_ID_AA64PFR1_EL1, cpu,
				      info->reg_id_aa64pfr1, boot->reg_id_aa64pfr1);

	/*
574 575
	 * If we have AArch32, we care about 32-bit features for compat.
	 * If the system doesn't support AArch32, don't update them.
576
	 */
577 578 579 580
	if (id_aa64pfr0_32bit_el0(read_system_reg(SYS_ID_AA64PFR0_EL1)) &&
		id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0)) {

		taint |= check_update_ftr_reg(SYS_ID_DFR0_EL1, cpu,
581
					info->reg_id_dfr0, boot->reg_id_dfr0);
582
		taint |= check_update_ftr_reg(SYS_ID_ISAR0_EL1, cpu,
583
					info->reg_id_isar0, boot->reg_id_isar0);
584
		taint |= check_update_ftr_reg(SYS_ID_ISAR1_EL1, cpu,
585
					info->reg_id_isar1, boot->reg_id_isar1);
586
		taint |= check_update_ftr_reg(SYS_ID_ISAR2_EL1, cpu,
587
					info->reg_id_isar2, boot->reg_id_isar2);
588
		taint |= check_update_ftr_reg(SYS_ID_ISAR3_EL1, cpu,
589
					info->reg_id_isar3, boot->reg_id_isar3);
590
		taint |= check_update_ftr_reg(SYS_ID_ISAR4_EL1, cpu,
591
					info->reg_id_isar4, boot->reg_id_isar4);
592
		taint |= check_update_ftr_reg(SYS_ID_ISAR5_EL1, cpu,
593 594
					info->reg_id_isar5, boot->reg_id_isar5);

595 596 597 598 599 600
		/*
		 * Regardless of the value of the AuxReg field, the AIFSR, ADFSR, and
		 * ACTLR formats could differ across CPUs and therefore would have to
		 * be trapped for virtualization anyway.
		 */
		taint |= check_update_ftr_reg(SYS_ID_MMFR0_EL1, cpu,
601
					info->reg_id_mmfr0, boot->reg_id_mmfr0);
602
		taint |= check_update_ftr_reg(SYS_ID_MMFR1_EL1, cpu,
603
					info->reg_id_mmfr1, boot->reg_id_mmfr1);
604
		taint |= check_update_ftr_reg(SYS_ID_MMFR2_EL1, cpu,
605
					info->reg_id_mmfr2, boot->reg_id_mmfr2);
606
		taint |= check_update_ftr_reg(SYS_ID_MMFR3_EL1, cpu,
607
					info->reg_id_mmfr3, boot->reg_id_mmfr3);
608
		taint |= check_update_ftr_reg(SYS_ID_PFR0_EL1, cpu,
609
					info->reg_id_pfr0, boot->reg_id_pfr0);
610
		taint |= check_update_ftr_reg(SYS_ID_PFR1_EL1, cpu,
611
					info->reg_id_pfr1, boot->reg_id_pfr1);
612
		taint |= check_update_ftr_reg(SYS_MVFR0_EL1, cpu,
613
					info->reg_mvfr0, boot->reg_mvfr0);
614
		taint |= check_update_ftr_reg(SYS_MVFR1_EL1, cpu,
615
					info->reg_mvfr1, boot->reg_mvfr1);
616
		taint |= check_update_ftr_reg(SYS_MVFR2_EL1, cpu,
617
					info->reg_mvfr2, boot->reg_mvfr2);
618
	}
619 620 621 622 623 624 625

	/*
	 * Mismatched CPU features are a recipe for disaster. Don't even
	 * pretend to support them.
	 */
	WARN_TAINT_ONCE(taint, TAINT_CPU_OUT_OF_SPEC,
			"Unsupported CPU feature variation.\n");
626 627
}

628 629 630 631 632 633 634 635
u64 read_system_reg(u32 id)
{
	struct arm64_ftr_reg *regp = get_arm64_ftr_reg(id);

	/* We shouldn't get a request for an unsupported register */
	BUG_ON(!regp);
	return regp->sys_val;
}
636

637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679
/*
 * __raw_read_system_reg() - Used by a STARTING cpu before cpuinfo is populated.
 * Read the system register on the current CPU
 */
static u64 __raw_read_system_reg(u32 sys_id)
{
	switch (sys_id) {
	case SYS_ID_PFR0_EL1:		return read_cpuid(ID_PFR0_EL1);
	case SYS_ID_PFR1_EL1:		return read_cpuid(ID_PFR1_EL1);
	case SYS_ID_DFR0_EL1:		return read_cpuid(ID_DFR0_EL1);
	case SYS_ID_MMFR0_EL1:		return read_cpuid(ID_MMFR0_EL1);
	case SYS_ID_MMFR1_EL1:		return read_cpuid(ID_MMFR1_EL1);
	case SYS_ID_MMFR2_EL1:		return read_cpuid(ID_MMFR2_EL1);
	case SYS_ID_MMFR3_EL1:		return read_cpuid(ID_MMFR3_EL1);
	case SYS_ID_ISAR0_EL1:		return read_cpuid(ID_ISAR0_EL1);
	case SYS_ID_ISAR1_EL1:		return read_cpuid(ID_ISAR1_EL1);
	case SYS_ID_ISAR2_EL1:		return read_cpuid(ID_ISAR2_EL1);
	case SYS_ID_ISAR3_EL1:		return read_cpuid(ID_ISAR3_EL1);
	case SYS_ID_ISAR4_EL1:		return read_cpuid(ID_ISAR4_EL1);
	case SYS_ID_ISAR5_EL1:		return read_cpuid(ID_ISAR4_EL1);
	case SYS_MVFR0_EL1:		return read_cpuid(MVFR0_EL1);
	case SYS_MVFR1_EL1:		return read_cpuid(MVFR1_EL1);
	case SYS_MVFR2_EL1:		return read_cpuid(MVFR2_EL1);

	case SYS_ID_AA64PFR0_EL1:	return read_cpuid(ID_AA64PFR0_EL1);
	case SYS_ID_AA64PFR1_EL1:	return read_cpuid(ID_AA64PFR0_EL1);
	case SYS_ID_AA64DFR0_EL1:	return read_cpuid(ID_AA64DFR0_EL1);
	case SYS_ID_AA64DFR1_EL1:	return read_cpuid(ID_AA64DFR0_EL1);
	case SYS_ID_AA64MMFR0_EL1:	return read_cpuid(ID_AA64MMFR0_EL1);
	case SYS_ID_AA64MMFR1_EL1:	return read_cpuid(ID_AA64MMFR1_EL1);
	case SYS_ID_AA64MMFR2_EL1:	return read_cpuid(ID_AA64MMFR2_EL1);
	case SYS_ID_AA64ISAR0_EL1:	return read_cpuid(ID_AA64ISAR0_EL1);
	case SYS_ID_AA64ISAR1_EL1:	return read_cpuid(ID_AA64ISAR1_EL1);

	case SYS_CNTFRQ_EL0:		return read_cpuid(CNTFRQ_EL0);
	case SYS_CTR_EL0:		return read_cpuid(CTR_EL0);
	case SYS_DCZID_EL0:		return read_cpuid(DCZID_EL0);
	default:
		BUG();
		return 0;
	}
}

680 681
#include <linux/irqchip/arm-gic-v3.h>

682 683 684
static bool
feature_matches(u64 reg, const struct arm64_cpu_capabilities *entry)
{
685
	int val = cpuid_feature_extract_field(reg, entry->field_pos, entry->sign);
686 687 688 689

	return val >= entry->min_field_value;
}

690
static bool
691
has_cpuid_feature(const struct arm64_cpu_capabilities *entry, int scope)
692 693
{
	u64 val;
694

695 696 697 698 699 700
	WARN_ON(scope == SCOPE_LOCAL_CPU && preemptible());
	if (scope == SCOPE_SYSTEM)
		val = read_system_reg(entry->sys_reg);
	else
		val = __raw_read_system_reg(entry->sys_reg);

701 702
	return feature_matches(val, entry);
}
703

704
static bool has_useable_gicv3_cpuif(const struct arm64_cpu_capabilities *entry, int scope)
705 706 707
{
	bool has_sre;

708
	if (!has_cpuid_feature(entry, scope))
709 710 711 712 713 714 715 716 717 718
		return false;

	has_sre = gic_enable_sre();
	if (!has_sre)
		pr_warn_once("%s present but disabled by higher exception level\n",
			     entry->desc);

	return has_sre;
}

719
static bool has_no_hw_prefetch(const struct arm64_cpu_capabilities *entry, int __unused)
720 721 722 723 724 725 726 727 728 729 730
{
	u32 midr = read_cpuid_id();
	u32 rv_min, rv_max;

	/* Cavium ThunderX pass 1.x and 2.x */
	rv_min = 0;
	rv_max = (1 << MIDR_VARIANT_SHIFT) | MIDR_REVISION_MASK;

	return MIDR_IS_CPU_MODEL_RANGE(midr, MIDR_THUNDERX, rv_min, rv_max);
}

731
static bool runs_at_el2(const struct arm64_cpu_capabilities *entry, int __unused)
732 733 734 735
{
	return is_kernel_in_hyp_mode();
}

736 737 738 739 740 741 742 743 744 745 746 747 748
static bool hyp_offset_low(const struct arm64_cpu_capabilities *entry,
			   int __unused)
{
	phys_addr_t idmap_addr = virt_to_phys(__hyp_idmap_text_start);

	/*
	 * Activate the lower HYP offset only if:
	 * - the idmap doesn't clash with it,
	 * - the kernel is not running at EL2.
	 */
	return idmap_addr > GENMASK(VA_BITS - 2, 0) && !is_kernel_in_hyp_mode();
}

749
static const struct arm64_cpu_capabilities arm64_features[] = {
750 751 752
	{
		.desc = "GIC system register CPU interface",
		.capability = ARM64_HAS_SYSREG_GIC_CPUIF,
753
		.def_scope = SCOPE_SYSTEM,
754
		.matches = has_useable_gicv3_cpuif,
755 756
		.sys_reg = SYS_ID_AA64PFR0_EL1,
		.field_pos = ID_AA64PFR0_GIC_SHIFT,
757
		.sign = FTR_UNSIGNED,
758
		.min_field_value = 1,
759
	},
760 761 762 763
#ifdef CONFIG_ARM64_PAN
	{
		.desc = "Privileged Access Never",
		.capability = ARM64_HAS_PAN,
764
		.def_scope = SCOPE_SYSTEM,
765 766 767
		.matches = has_cpuid_feature,
		.sys_reg = SYS_ID_AA64MMFR1_EL1,
		.field_pos = ID_AA64MMFR1_PAN_SHIFT,
768
		.sign = FTR_UNSIGNED,
769 770 771 772
		.min_field_value = 1,
		.enable = cpu_enable_pan,
	},
#endif /* CONFIG_ARM64_PAN */
773 774 775 776
#if defined(CONFIG_AS_LSE) && defined(CONFIG_ARM64_LSE_ATOMICS)
	{
		.desc = "LSE atomic instructions",
		.capability = ARM64_HAS_LSE_ATOMICS,
777
		.def_scope = SCOPE_SYSTEM,
778 779 780
		.matches = has_cpuid_feature,
		.sys_reg = SYS_ID_AA64ISAR0_EL1,
		.field_pos = ID_AA64ISAR0_ATOMICS_SHIFT,
781
		.sign = FTR_UNSIGNED,
782 783 784
		.min_field_value = 2,
	},
#endif /* CONFIG_AS_LSE && CONFIG_ARM64_LSE_ATOMICS */
785 786 787
	{
		.desc = "Software prefetching using PRFM",
		.capability = ARM64_HAS_NO_HW_PREFETCH,
788
		.def_scope = SCOPE_SYSTEM,
789 790
		.matches = has_no_hw_prefetch,
	},
791 792 793 794
#ifdef CONFIG_ARM64_UAO
	{
		.desc = "User Access Override",
		.capability = ARM64_HAS_UAO,
795
		.def_scope = SCOPE_SYSTEM,
796 797 798 799 800 801 802
		.matches = has_cpuid_feature,
		.sys_reg = SYS_ID_AA64MMFR2_EL1,
		.field_pos = ID_AA64MMFR2_UAO_SHIFT,
		.min_field_value = 1,
		.enable = cpu_enable_uao,
	},
#endif /* CONFIG_ARM64_UAO */
803 804 805
#ifdef CONFIG_ARM64_PAN
	{
		.capability = ARM64_ALT_PAN_NOT_UAO,
806
		.def_scope = SCOPE_SYSTEM,
807 808 809
		.matches = cpufeature_pan_not_uao,
	},
#endif /* CONFIG_ARM64_PAN */
810 811 812
	{
		.desc = "Virtualization Host Extensions",
		.capability = ARM64_HAS_VIRT_HOST_EXTN,
813
		.def_scope = SCOPE_SYSTEM,
814 815
		.matches = runs_at_el2,
	},
816 817 818
	{
		.desc = "32-bit EL0 Support",
		.capability = ARM64_HAS_32BIT_EL0,
819
		.def_scope = SCOPE_SYSTEM,
820 821 822 823 824 825
		.matches = has_cpuid_feature,
		.sys_reg = SYS_ID_AA64PFR0_EL1,
		.sign = FTR_UNSIGNED,
		.field_pos = ID_AA64PFR0_EL0_SHIFT,
		.min_field_value = ID_AA64PFR0_EL0_32BIT_64BIT,
	},
826 827 828 829 830 831
	{
		.desc = "Reduced HYP mapping offset",
		.capability = ARM64_HYP_OFFSET_LOW,
		.def_scope = SCOPE_SYSTEM,
		.matches = hyp_offset_low,
	},
832 833 834
	{},
};

835
#define HWCAP_CAP(reg, field, s, min_value, type, cap)	\
836 837
	{							\
		.desc = #cap,					\
838
		.def_scope = SCOPE_SYSTEM,			\
839 840 841
		.matches = has_cpuid_feature,			\
		.sys_reg = reg,					\
		.field_pos = field,				\
842
		.sign = s,					\
843 844 845 846 847
		.min_field_value = min_value,			\
		.hwcap_type = type,				\
		.hwcap = cap,					\
	}

S
Suzuki K Poulose 已提交
848
static const struct arm64_cpu_capabilities arm64_elf_hwcaps[] = {
849 850 851 852 853 854 855
	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_AES_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, HWCAP_PMULL),
	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_AES_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_AES),
	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA1_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_SHA1),
	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA2_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_SHA2),
	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_CRC32_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_CRC32),
	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_ATOMICS_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, HWCAP_ATOMICS),
	HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_FP_SHIFT, FTR_SIGNED, 0, CAP_HWCAP, HWCAP_FP),
856
	HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_FP_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, HWCAP_FPHP),
857
	HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_ASIMD_SHIFT, FTR_SIGNED, 0, CAP_HWCAP, HWCAP_ASIMD),
858
	HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_ASIMD_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, HWCAP_ASIMDHP),
859 860 861 862
	{},
};

static const struct arm64_cpu_capabilities compat_elf_hwcaps[] = {
863
#ifdef CONFIG_COMPAT
864 865 866 867 868
	HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, FTR_UNSIGNED, 2, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_PMULL),
	HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_AES),
	HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA1_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA1),
	HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA2_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA2),
	HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_CRC32_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_CRC32),
869 870 871 872
#endif
	{},
};

S
Suzuki K Poulose 已提交
873
static void __init cap_set_elf_hwcap(const struct arm64_cpu_capabilities *cap)
874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893
{
	switch (cap->hwcap_type) {
	case CAP_HWCAP:
		elf_hwcap |= cap->hwcap;
		break;
#ifdef CONFIG_COMPAT
	case CAP_COMPAT_HWCAP:
		compat_elf_hwcap |= (u32)cap->hwcap;
		break;
	case CAP_COMPAT_HWCAP2:
		compat_elf_hwcap2 |= (u32)cap->hwcap;
		break;
#endif
	default:
		WARN_ON(1);
		break;
	}
}

/* Check if we have a particular HWCAP enabled */
S
Suzuki K Poulose 已提交
894
static bool cpus_have_elf_hwcap(const struct arm64_cpu_capabilities *cap)
895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917
{
	bool rc;

	switch (cap->hwcap_type) {
	case CAP_HWCAP:
		rc = (elf_hwcap & cap->hwcap) != 0;
		break;
#ifdef CONFIG_COMPAT
	case CAP_COMPAT_HWCAP:
		rc = (compat_elf_hwcap & (u32)cap->hwcap) != 0;
		break;
	case CAP_COMPAT_HWCAP2:
		rc = (compat_elf_hwcap2 & (u32)cap->hwcap) != 0;
		break;
#endif
	default:
		WARN_ON(1);
		rc = false;
	}

	return rc;
}

918
static void __init setup_elf_hwcaps(const struct arm64_cpu_capabilities *hwcaps)
919
{
920
	for (; hwcaps->matches; hwcaps++)
921
		if (hwcaps->matches(hwcaps, hwcaps->def_scope))
922
			cap_set_elf_hwcap(hwcaps);
923 924
}

925
void update_cpu_capabilities(const struct arm64_cpu_capabilities *caps,
926 927
			    const char *info)
{
928
	for (; caps->matches; caps++) {
929
		if (!caps->matches(caps, caps->def_scope))
930 931
			continue;

932 933 934
		if (!cpus_have_cap(caps->capability) && caps->desc)
			pr_info("%s %s\n", info, caps->desc);
		cpus_set_cap(caps->capability);
935
	}
936 937 938
}

/*
939 940
 * Run through the enabled capabilities and enable() it on all active
 * CPUs
941
 */
942
void __init enable_cpu_capabilities(const struct arm64_cpu_capabilities *caps)
943
{
944 945
	for (; caps->matches; caps++)
		if (caps->enable && cpus_have_cap(caps->capability))
946 947 948 949 950 951 952
			/*
			 * Use stop_machine() as it schedules the work allowing
			 * us to modify PSTATE, instead of on_each_cpu() which
			 * uses an IPI, giving us a PSTATE that disappears when
			 * we return.
			 */
			stop_machine(caps->enable, NULL, cpu_online_mask);
953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970
}

/*
 * Flag to indicate if we have computed the system wide
 * capabilities based on the boot time active CPUs. This
 * will be used to determine if a new booting CPU should
 * go through the verification process to make sure that it
 * supports the system capabilities, without using a hotplug
 * notifier.
 */
static bool sys_caps_initialised;

static inline void set_sys_caps_initialised(void)
{
	sys_caps_initialised = true;
}

/*
971 972
 * Check for CPU features that are used in early boot
 * based on the Boot CPU value.
973
 */
974
static void check_early_cpu_features(void)
975
{
976
	verify_cpu_run_el();
977
	verify_cpu_asid_bits();
978
}
979

980 981 982 983
static void
verify_local_elf_hwcaps(const struct arm64_cpu_capabilities *caps)
{

984 985
	for (; caps->matches; caps++)
		if (cpus_have_elf_hwcap(caps) && !caps->matches(caps, SCOPE_LOCAL_CPU)) {
986 987 988 989 990 991 992 993 994 995
			pr_crit("CPU%d: missing HWCAP: %s\n",
					smp_processor_id(), caps->desc);
			cpu_die_early();
		}
}

static void
verify_local_cpu_features(const struct arm64_cpu_capabilities *caps)
{
	for (; caps->matches; caps++) {
996
		if (!cpus_have_cap(caps->capability))
997 998 999 1000 1001
			continue;
		/*
		 * If the new CPU misses an advertised feature, we cannot proceed
		 * further, park the cpu.
		 */
1002
		if (!caps->matches(caps, SCOPE_LOCAL_CPU)) {
1003 1004 1005 1006 1007 1008 1009 1010 1011
			pr_crit("CPU%d: missing feature: %s\n",
					smp_processor_id(), caps->desc);
			cpu_die_early();
		}
		if (caps->enable)
			caps->enable(NULL);
	}
}

1012 1013 1014 1015 1016 1017 1018 1019
/*
 * Run through the enabled system capabilities and enable() it on this CPU.
 * The capabilities were decided based on the available CPUs at the boot time.
 * Any new CPU should match the system wide status of the capability. If the
 * new CPU doesn't have a capability which the system now has enabled, we
 * cannot do anything to fix it up and could cause unexpected failures. So
 * we park the CPU.
 */
1020
static void verify_local_cpu_capabilities(void)
1021
{
1022 1023 1024 1025 1026 1027
	verify_local_cpu_errata_workarounds();
	verify_local_cpu_features(arm64_features);
	verify_local_elf_hwcaps(arm64_elf_hwcaps);
	if (system_supports_32bit_el0())
		verify_local_elf_hwcaps(compat_elf_hwcaps);
}
1028

1029 1030 1031 1032 1033 1034
void check_local_cpu_capabilities(void)
{
	/*
	 * All secondary CPUs should conform to the early CPU features
	 * in use by the kernel based on boot CPU.
	 */
1035 1036
	check_early_cpu_features();

1037
	/*
1038 1039 1040 1041
	 * If we haven't finalised the system capabilities, this CPU gets
	 * a chance to update the errata work arounds.
	 * Otherwise, this CPU should verify that it has all the system
	 * advertised capabilities.
1042 1043
	 */
	if (!sys_caps_initialised)
1044 1045 1046
		update_cpu_errata_workarounds();
	else
		verify_local_cpu_capabilities();
1047 1048
}

1049
static void __init setup_feature_capabilities(void)
1050
{
1051 1052
	update_cpu_capabilities(arm64_features, "detected feature:");
	enable_cpu_capabilities(arm64_features);
1053 1054
}

1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072
/*
 * Check if the current CPU has a given feature capability.
 * Should be called from non-preemptible context.
 */
bool this_cpu_has_cap(unsigned int cap)
{
	const struct arm64_cpu_capabilities *caps;

	if (WARN_ON(preemptible()))
		return false;

	for (caps = arm64_features; caps->desc; caps++)
		if (caps->capability == cap && caps->matches)
			return caps->matches(caps, SCOPE_LOCAL_CPU);

	return false;
}

1073
void __init setup_cpu_features(void)
1074
{
1075 1076 1077
	u32 cwg;
	int cls;

1078 1079
	/* Set the CPU feature capabilies */
	setup_feature_capabilities();
1080
	enable_errata_workarounds();
1081
	setup_elf_hwcaps(arm64_elf_hwcaps);
1082 1083 1084

	if (system_supports_32bit_el0())
		setup_elf_hwcaps(compat_elf_hwcaps);
1085 1086 1087 1088

	/* Advertise that we have computed the system capabilities */
	set_sys_caps_initialised();

1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099
	/*
	 * Check for sane CTR_EL0.CWG value.
	 */
	cwg = cache_type_cwg();
	cls = cache_line_size();
	if (!cwg)
		pr_warn("No Cache Writeback Granule information, assuming cache line size %d\n",
			cls);
	if (L1_CACHE_BYTES < cls)
		pr_warn("L1_CACHE_BYTES smaller than the Cache Writeback Granule (%d < %d)\n",
			L1_CACHE_BYTES, cls);
1100
}
1101 1102

static bool __maybe_unused
1103
cpufeature_pan_not_uao(const struct arm64_cpu_capabilities *entry, int __unused)
1104 1105 1106
{
	return (cpus_have_cap(ARM64_HAS_PAN) && !cpus_have_cap(ARM64_HAS_UAO));
}