cpufeature.c 44.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 * Contains CPU feature definitions
 *
 * Copyright (C) 2015 ARM Ltd.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 */

19
#define pr_fmt(fmt) "CPU features: " fmt
20

21
#include <linux/bsearch.h>
22
#include <linux/cpumask.h>
23
#include <linux/sort.h>
24
#include <linux/stop_machine.h>
25
#include <linux/types.h>
26
#include <linux/mm.h>
27 28
#include <asm/cpu.h>
#include <asm/cpufeature.h>
29
#include <asm/cpu_ops.h>
30
#include <asm/fpsimd.h>
31
#include <asm/mmu_context.h>
32
#include <asm/processor.h>
33
#include <asm/sysreg.h>
34
#include <asm/traps.h>
35
#include <asm/virt.h>
36

37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
unsigned long elf_hwcap __read_mostly;
EXPORT_SYMBOL_GPL(elf_hwcap);

#ifdef CONFIG_COMPAT
#define COMPAT_ELF_HWCAP_DEFAULT	\
				(COMPAT_HWCAP_HALF|COMPAT_HWCAP_THUMB|\
				 COMPAT_HWCAP_FAST_MULT|COMPAT_HWCAP_EDSP|\
				 COMPAT_HWCAP_TLS|COMPAT_HWCAP_VFP|\
				 COMPAT_HWCAP_VFPv3|COMPAT_HWCAP_VFPv4|\
				 COMPAT_HWCAP_NEON|COMPAT_HWCAP_IDIV|\
				 COMPAT_HWCAP_LPAE)
unsigned int compat_elf_hwcap __read_mostly = COMPAT_ELF_HWCAP_DEFAULT;
unsigned int compat_elf_hwcap2 __read_mostly;
#endif

DECLARE_BITMAP(cpu_hwcaps, ARM64_NCAPS);
53
EXPORT_SYMBOL(cpu_hwcaps);
54

55 56 57 58 59 60 61 62 63 64 65 66 67 68 69
/*
 * Flag to indicate if we have computed the system wide
 * capabilities based on the boot time active CPUs. This
 * will be used to determine if a new booting CPU should
 * go through the verification process to make sure that it
 * supports the system capabilities, without using a hotplug
 * notifier.
 */
static bool sys_caps_initialised;

static inline void set_sys_caps_initialised(void)
{
	sys_caps_initialised = true;
}

70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
static int dump_cpu_hwcaps(struct notifier_block *self, unsigned long v, void *p)
{
	/* file-wide pr_fmt adds "CPU features: " prefix */
	pr_emerg("0x%*pb\n", ARM64_NCAPS, &cpu_hwcaps);
	return 0;
}

static struct notifier_block cpu_hwcaps_notifier = {
	.notifier_call = dump_cpu_hwcaps
};

static int __init register_cpu_hwcaps_dumper(void)
{
	atomic_notifier_chain_register(&panic_notifier_list,
				       &cpu_hwcaps_notifier);
	return 0;
}
__initcall(register_cpu_hwcaps_dumper);

89 90 91
DEFINE_STATIC_KEY_ARRAY_FALSE(cpu_hwcap_keys, ARM64_NCAPS);
EXPORT_SYMBOL(cpu_hwcap_keys);

92
#define __ARM64_FTR_BITS(SIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
93
	{						\
94
		.sign = SIGNED,				\
95
		.visible = VISIBLE,			\
96 97 98 99 100 101 102
		.strict = STRICT,			\
		.type = TYPE,				\
		.shift = SHIFT,				\
		.width = WIDTH,				\
		.safe_val = SAFE_VAL,			\
	}

103
/* Define a feature with unsigned values */
104 105
#define ARM64_FTR_BITS(VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
	__ARM64_FTR_BITS(FTR_UNSIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
106

107
/* Define a feature with a signed value */
108 109
#define S_ARM64_FTR_BITS(VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
	__ARM64_FTR_BITS(FTR_SIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
110

111 112 113 114 115
#define ARM64_FTR_END					\
	{						\
		.width = 0,				\
	}

116 117
/* meta feature for alternatives */
static bool __maybe_unused
118 119
cpufeature_pan_not_uao(const struct arm64_cpu_capabilities *entry, int __unused);

120

121 122 123 124
/*
 * NOTE: Any changes to the visibility of features should be kept in
 * sync with the documentation of the CPU feature register ABI.
 */
125
static const struct arm64_ftr_bits ftr_id_aa64isar0[] = {
126 127 128 129 130
	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_DP_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SM4_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SM3_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA3_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_RDM_SHIFT, 4, 0),
131 132 133 134 135
	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_ATOMICS_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_CRC32_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA2_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA1_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_AES_SHIFT, 4, 0),
136 137 138
	ARM64_FTR_END,
};

139
static const struct arm64_ftr_bits ftr_id_aa64isar1[] = {
140 141 142 143
	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_LRCPC_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_FCMA_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_JSCVT_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_DPB_SHIFT, 4, 0),
144 145 146
	ARM64_FTR_END,
};

147
static const struct arm64_ftr_bits ftr_id_aa64pfr0[] = {
148
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_GIC_SHIFT, 4, 0),
149 150
	S_ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_ASIMD_SHIFT, 4, ID_AA64PFR0_ASIMD_NI),
	S_ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_FP_SHIFT, 4, ID_AA64PFR0_FP_NI),
151
	/* Linux doesn't care about the EL3 */
152 153 154 155
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL3_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL2_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_SHIFT, 4, ID_AA64PFR0_EL1_64BIT_ONLY),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL0_SHIFT, 4, ID_AA64PFR0_EL0_64BIT_ONLY),
156 157 158
	ARM64_FTR_END,
};

159
static const struct arm64_ftr_bits ftr_id_aa64mmfr0[] = {
160 161 162 163
	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_TGRAN4_SHIFT, 4, ID_AA64MMFR0_TGRAN4_NI),
	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_TGRAN64_SHIFT, 4, ID_AA64MMFR0_TGRAN64_NI),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_TGRAN16_SHIFT, 4, ID_AA64MMFR0_TGRAN16_NI),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_BIGENDEL0_SHIFT, 4, 0),
164
	/* Linux shouldn't care about secure memory */
165 166 167
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_SNSMEM_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_BIGENDEL_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_ASID_SHIFT, 4, 0),
168 169 170 171
	/*
	 * Differing PARange is fine as long as all peripherals and memory are mapped
	 * within the minimum PARange of all CPUs
	 */
172
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_PARANGE_SHIFT, 4, 0),
173 174 175
	ARM64_FTR_END,
};

176
static const struct arm64_ftr_bits ftr_id_aa64mmfr1[] = {
177
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_PAN_SHIFT, 4, 0),
178 179 180 181 182
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_LOR_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_HPD_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_VHE_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_VMIDBITS_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_HADBS_SHIFT, 4, 0),
183 184 185
	ARM64_FTR_END,
};

186
static const struct arm64_ftr_bits ftr_id_aa64mmfr2[] = {
187 188 189 190 191
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_LVA_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_IESB_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_LSM_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_UAO_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_CNP_SHIFT, 4, 0),
192 193 194
	ARM64_FTR_END,
};

195
static const struct arm64_ftr_bits ftr_ctr[] = {
196 197 198 199
	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, 31, 1, 1),	/* RAO */
	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_HIGHER_SAFE, 24, 4, 0),	/* CWG */
	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),	/* ERG */
	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 1),	/* DminLine */
200 201
	/*
	 * Linux can handle differing I-cache policies. Userspace JITs will
202
	 * make use of *minLine.
203
	 * If we have differing I-cache policies, report it as the weakest - VIPT.
204
	 */
205
	ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_EXACT, 14, 2, ICACHE_POLICY_VIPT),	/* L1Ip */
206
	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),	/* IminLine */
207 208 209
	ARM64_FTR_END,
};

210 211 212 213 214
struct arm64_ftr_reg arm64_ftr_reg_ctrel0 = {
	.name		= "SYS_CTR_EL0",
	.ftr_bits	= ftr_ctr
};

215
static const struct arm64_ftr_bits ftr_id_mmfr0[] = {
216 217
	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0xf),	/* InnerShr */
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0),	/* FCSE */
218
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, 20, 4, 0),	/* AuxReg */
219 220 221 222 223
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),	/* TCM */
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),	/* ShareLvl */
	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0xf),	/* OuterShr */
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),	/* PMSA */
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),	/* VMSA */
224 225 226
	ARM64_FTR_END,
};

227
static const struct arm64_ftr_bits ftr_id_aa64dfr0[] = {
228 229 230 231 232
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 36, 28, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64DFR0_PMSVER_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_CTX_CMPS_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_WRPS_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_BRPS_SHIFT, 4, 0),
233 234 235
	/*
	 * We can instantiate multiple PMU instances with different levels
	 * of support.
236 237 238 239
	 */
	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64DFR0_PMUVER_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64DFR0_TRACEVER_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64DFR0_DEBUGVER_SHIFT, 4, 0x6),
240 241 242
	ARM64_FTR_END,
};

243
static const struct arm64_ftr_bits ftr_mvfr2[] = {
244 245
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),		/* FPMisc */
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),		/* SIMDMisc */
246 247 248
	ARM64_FTR_END,
};

249
static const struct arm64_ftr_bits ftr_dczid[] = {
250 251
	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, 4, 1, 1),		/* DZP */
	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),	/* BS */
252 253 254 255
	ARM64_FTR_END,
};


256
static const struct arm64_ftr_bits ftr_id_isar5[] = {
257 258 259 260 261 262
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_RDM_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_CRC32_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_SHA2_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_SHA1_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_AES_SHIFT, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_SEVL_SHIFT, 4, 0),
263 264 265
	ARM64_FTR_END,
};

266
static const struct arm64_ftr_bits ftr_id_mmfr4[] = {
267
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),	/* ac2 */
268 269 270
	ARM64_FTR_END,
};

271
static const struct arm64_ftr_bits ftr_id_pfr0[] = {
272 273 274 275
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),		/* State3 */
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),		/* State2 */
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),		/* State1 */
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),		/* State0 */
276 277 278
	ARM64_FTR_END,
};

279
static const struct arm64_ftr_bits ftr_id_dfr0[] = {
280 281 282 283 284 285 286 287
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0),
	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0xf),	/* PerfMon */
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),
288 289 290
	ARM64_FTR_END,
};

291 292 293 294 295 296
static const struct arm64_ftr_bits ftr_zcr[] = {
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE,
		ZCR_ELx_LEN_SHIFT, ZCR_ELx_LEN_SIZE, 0),	/* LEN */
	ARM64_FTR_END,
};

297 298 299 300 301 302
/*
 * Common ftr bits for a 32bit register with all hidden, strict
 * attributes, with 4bit feature fields and a default safe value of
 * 0. Covers the following 32bit registers:
 * id_isar[0-4], id_mmfr[1-3], id_pfr1, mvfr[0-1]
 */
303
static const struct arm64_ftr_bits ftr_generic_32bits[] = {
304 305 306 307 308 309 310 311
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),
312 313 314
	ARM64_FTR_END,
};

315 316
/* Table for a single 32bit feature value */
static const struct arm64_ftr_bits ftr_single32[] = {
317
	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 0, 32, 0),
318 319 320
	ARM64_FTR_END,
};

321
static const struct arm64_ftr_bits ftr_raz[] = {
322 323 324
	ARM64_FTR_END,
};

325 326 327
#define ARM64_FTR_REG(id, table) {		\
	.sys_id = id,				\
	.reg = 	&(struct arm64_ftr_reg){	\
328 329
		.name = #id,			\
		.ftr_bits = &((table)[0]),	\
330
	}}
331

332 333 334 335
static const struct __ftr_reg_entry {
	u32			sys_id;
	struct arm64_ftr_reg 	*reg;
} arm64_ftr_regs[] = {
336 337 338 339

	/* Op1 = 0, CRn = 0, CRm = 1 */
	ARM64_FTR_REG(SYS_ID_PFR0_EL1, ftr_id_pfr0),
	ARM64_FTR_REG(SYS_ID_PFR1_EL1, ftr_generic_32bits),
340
	ARM64_FTR_REG(SYS_ID_DFR0_EL1, ftr_id_dfr0),
341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361
	ARM64_FTR_REG(SYS_ID_MMFR0_EL1, ftr_id_mmfr0),
	ARM64_FTR_REG(SYS_ID_MMFR1_EL1, ftr_generic_32bits),
	ARM64_FTR_REG(SYS_ID_MMFR2_EL1, ftr_generic_32bits),
	ARM64_FTR_REG(SYS_ID_MMFR3_EL1, ftr_generic_32bits),

	/* Op1 = 0, CRn = 0, CRm = 2 */
	ARM64_FTR_REG(SYS_ID_ISAR0_EL1, ftr_generic_32bits),
	ARM64_FTR_REG(SYS_ID_ISAR1_EL1, ftr_generic_32bits),
	ARM64_FTR_REG(SYS_ID_ISAR2_EL1, ftr_generic_32bits),
	ARM64_FTR_REG(SYS_ID_ISAR3_EL1, ftr_generic_32bits),
	ARM64_FTR_REG(SYS_ID_ISAR4_EL1, ftr_generic_32bits),
	ARM64_FTR_REG(SYS_ID_ISAR5_EL1, ftr_id_isar5),
	ARM64_FTR_REG(SYS_ID_MMFR4_EL1, ftr_id_mmfr4),

	/* Op1 = 0, CRn = 0, CRm = 3 */
	ARM64_FTR_REG(SYS_MVFR0_EL1, ftr_generic_32bits),
	ARM64_FTR_REG(SYS_MVFR1_EL1, ftr_generic_32bits),
	ARM64_FTR_REG(SYS_MVFR2_EL1, ftr_mvfr2),

	/* Op1 = 0, CRn = 0, CRm = 4 */
	ARM64_FTR_REG(SYS_ID_AA64PFR0_EL1, ftr_id_aa64pfr0),
362
	ARM64_FTR_REG(SYS_ID_AA64PFR1_EL1, ftr_raz),
363
	ARM64_FTR_REG(SYS_ID_AA64ZFR0_EL1, ftr_raz),
364 365 366

	/* Op1 = 0, CRn = 0, CRm = 5 */
	ARM64_FTR_REG(SYS_ID_AA64DFR0_EL1, ftr_id_aa64dfr0),
367
	ARM64_FTR_REG(SYS_ID_AA64DFR1_EL1, ftr_raz),
368 369 370

	/* Op1 = 0, CRn = 0, CRm = 6 */
	ARM64_FTR_REG(SYS_ID_AA64ISAR0_EL1, ftr_id_aa64isar0),
371
	ARM64_FTR_REG(SYS_ID_AA64ISAR1_EL1, ftr_id_aa64isar1),
372 373 374 375

	/* Op1 = 0, CRn = 0, CRm = 7 */
	ARM64_FTR_REG(SYS_ID_AA64MMFR0_EL1, ftr_id_aa64mmfr0),
	ARM64_FTR_REG(SYS_ID_AA64MMFR1_EL1, ftr_id_aa64mmfr1),
376
	ARM64_FTR_REG(SYS_ID_AA64MMFR2_EL1, ftr_id_aa64mmfr2),
377

378 379 380
	/* Op1 = 0, CRn = 1, CRm = 2 */
	ARM64_FTR_REG(SYS_ZCR_EL1, ftr_zcr),

381
	/* Op1 = 3, CRn = 0, CRm = 0 */
382
	{ SYS_CTR_EL0, &arm64_ftr_reg_ctrel0 },
383 384 385
	ARM64_FTR_REG(SYS_DCZID_EL0, ftr_dczid),

	/* Op1 = 3, CRn = 14, CRm = 0 */
386
	ARM64_FTR_REG(SYS_CNTFRQ_EL0, ftr_single32),
387 388 389 390
};

static int search_cmp_ftr_reg(const void *id, const void *regp)
{
391
	return (int)(unsigned long)id - (int)((const struct __ftr_reg_entry *)regp)->sys_id;
392 393 394 395 396 397 398 399 400 401 402 403 404 405
}

/*
 * get_arm64_ftr_reg - Lookup a feature register entry using its
 * sys_reg() encoding. With the array arm64_ftr_regs sorted in the
 * ascending order of sys_id , we use binary search to find a matching
 * entry.
 *
 * returns - Upon success,  matching ftr_reg entry for id.
 *         - NULL on failure. It is upto the caller to decide
 *	     the impact of a failure.
 */
static struct arm64_ftr_reg *get_arm64_ftr_reg(u32 sys_id)
{
406 407 408
	const struct __ftr_reg_entry *ret;

	ret = bsearch((const void *)(unsigned long)sys_id,
409 410 411 412
			arm64_ftr_regs,
			ARRAY_SIZE(arm64_ftr_regs),
			sizeof(arm64_ftr_regs[0]),
			search_cmp_ftr_reg);
413 414 415
	if (ret)
		return ret->reg;
	return NULL;
416 417
}

418 419
static u64 arm64_ftr_set_value(const struct arm64_ftr_bits *ftrp, s64 reg,
			       s64 ftr_val)
420 421 422 423 424 425 426 427
{
	u64 mask = arm64_ftr_mask(ftrp);

	reg &= ~mask;
	reg |= (ftr_val << ftrp->shift) & mask;
	return reg;
}

428 429
static s64 arm64_ftr_safe_value(const struct arm64_ftr_bits *ftrp, s64 new,
				s64 cur)
430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451
{
	s64 ret = 0;

	switch (ftrp->type) {
	case FTR_EXACT:
		ret = ftrp->safe_val;
		break;
	case FTR_LOWER_SAFE:
		ret = new < cur ? new : cur;
		break;
	case FTR_HIGHER_SAFE:
		ret = new > cur ? new : cur;
		break;
	default:
		BUG();
	}

	return ret;
}

static void __init sort_ftr_regs(void)
{
452 453 454 455 456
	int i;

	/* Check that the array is sorted so that we can do the binary search */
	for (i = 1; i < ARRAY_SIZE(arm64_ftr_regs); i++)
		BUG_ON(arm64_ftr_regs[i].sys_id < arm64_ftr_regs[i - 1].sys_id);
457 458 459 460 461
}

/*
 * Initialise the CPU feature register from Boot CPU values.
 * Also initiliases the strict_mask for the register.
462 463
 * Any bits that are not covered by an arm64_ftr_bits entry are considered
 * RES0 for the system-wide value, and must strictly match.
464 465 466 467 468
 */
static void __init init_cpu_ftr_reg(u32 sys_reg, u64 new)
{
	u64 val = 0;
	u64 strict_mask = ~0x0ULL;
469
	u64 user_mask = 0;
470 471
	u64 valid_mask = 0;

472
	const struct arm64_ftr_bits *ftrp;
473 474 475 476 477
	struct arm64_ftr_reg *reg = get_arm64_ftr_reg(sys_reg);

	BUG_ON(!reg);

	for (ftrp  = reg->ftr_bits; ftrp->width; ftrp++) {
478
		u64 ftr_mask = arm64_ftr_mask(ftrp);
479 480 481
		s64 ftr_new = arm64_ftr_value(ftrp, new);

		val = arm64_ftr_set_value(ftrp, val, ftr_new);
482 483

		valid_mask |= ftr_mask;
484
		if (!ftrp->strict)
485
			strict_mask &= ~ftr_mask;
486 487 488 489 490 491
		if (ftrp->visible)
			user_mask |= ftr_mask;
		else
			reg->user_val = arm64_ftr_set_value(ftrp,
							    reg->user_val,
							    ftrp->safe_val);
492
	}
493 494 495

	val &= valid_mask;

496 497
	reg->sys_val = val;
	reg->strict_mask = strict_mask;
498
	reg->user_mask = user_mask;
499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514
}

void __init init_cpu_features(struct cpuinfo_arm64 *info)
{
	/* Before we start using the tables, make sure it is sorted */
	sort_ftr_regs();

	init_cpu_ftr_reg(SYS_CTR_EL0, info->reg_ctr);
	init_cpu_ftr_reg(SYS_DCZID_EL0, info->reg_dczid);
	init_cpu_ftr_reg(SYS_CNTFRQ_EL0, info->reg_cntfrq);
	init_cpu_ftr_reg(SYS_ID_AA64DFR0_EL1, info->reg_id_aa64dfr0);
	init_cpu_ftr_reg(SYS_ID_AA64DFR1_EL1, info->reg_id_aa64dfr1);
	init_cpu_ftr_reg(SYS_ID_AA64ISAR0_EL1, info->reg_id_aa64isar0);
	init_cpu_ftr_reg(SYS_ID_AA64ISAR1_EL1, info->reg_id_aa64isar1);
	init_cpu_ftr_reg(SYS_ID_AA64MMFR0_EL1, info->reg_id_aa64mmfr0);
	init_cpu_ftr_reg(SYS_ID_AA64MMFR1_EL1, info->reg_id_aa64mmfr1);
515
	init_cpu_ftr_reg(SYS_ID_AA64MMFR2_EL1, info->reg_id_aa64mmfr2);
516 517
	init_cpu_ftr_reg(SYS_ID_AA64PFR0_EL1, info->reg_id_aa64pfr0);
	init_cpu_ftr_reg(SYS_ID_AA64PFR1_EL1, info->reg_id_aa64pfr1);
518
	init_cpu_ftr_reg(SYS_ID_AA64ZFR0_EL1, info->reg_id_aa64zfr0);
519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538

	if (id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0)) {
		init_cpu_ftr_reg(SYS_ID_DFR0_EL1, info->reg_id_dfr0);
		init_cpu_ftr_reg(SYS_ID_ISAR0_EL1, info->reg_id_isar0);
		init_cpu_ftr_reg(SYS_ID_ISAR1_EL1, info->reg_id_isar1);
		init_cpu_ftr_reg(SYS_ID_ISAR2_EL1, info->reg_id_isar2);
		init_cpu_ftr_reg(SYS_ID_ISAR3_EL1, info->reg_id_isar3);
		init_cpu_ftr_reg(SYS_ID_ISAR4_EL1, info->reg_id_isar4);
		init_cpu_ftr_reg(SYS_ID_ISAR5_EL1, info->reg_id_isar5);
		init_cpu_ftr_reg(SYS_ID_MMFR0_EL1, info->reg_id_mmfr0);
		init_cpu_ftr_reg(SYS_ID_MMFR1_EL1, info->reg_id_mmfr1);
		init_cpu_ftr_reg(SYS_ID_MMFR2_EL1, info->reg_id_mmfr2);
		init_cpu_ftr_reg(SYS_ID_MMFR3_EL1, info->reg_id_mmfr3);
		init_cpu_ftr_reg(SYS_ID_PFR0_EL1, info->reg_id_pfr0);
		init_cpu_ftr_reg(SYS_ID_PFR1_EL1, info->reg_id_pfr1);
		init_cpu_ftr_reg(SYS_MVFR0_EL1, info->reg_mvfr0);
		init_cpu_ftr_reg(SYS_MVFR1_EL1, info->reg_mvfr1);
		init_cpu_ftr_reg(SYS_MVFR2_EL1, info->reg_mvfr2);
	}

539 540 541 542
	if (id_aa64pfr0_sve(info->reg_id_aa64pfr0)) {
		init_cpu_ftr_reg(SYS_ZCR_EL1, info->reg_zcr);
		sve_init_vq_map();
	}
543 544
}

545
static void update_cpu_ftr_reg(struct arm64_ftr_reg *reg, u64 new)
546
{
547
	const struct arm64_ftr_bits *ftrp;
548 549 550 551 552 553 554 555 556 557 558 559 560 561

	for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) {
		s64 ftr_cur = arm64_ftr_value(ftrp, reg->sys_val);
		s64 ftr_new = arm64_ftr_value(ftrp, new);

		if (ftr_cur == ftr_new)
			continue;
		/* Find a safe value */
		ftr_new = arm64_ftr_safe_value(ftrp, ftr_new, ftr_cur);
		reg->sys_val = arm64_ftr_set_value(ftrp, reg->sys_val, ftr_new);
	}

}

562
static int check_update_ftr_reg(u32 sys_id, int cpu, u64 val, u64 boot)
563
{
564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633
	struct arm64_ftr_reg *regp = get_arm64_ftr_reg(sys_id);

	BUG_ON(!regp);
	update_cpu_ftr_reg(regp, val);
	if ((boot & regp->strict_mask) == (val & regp->strict_mask))
		return 0;
	pr_warn("SANITY CHECK: Unexpected variation in %s. Boot CPU: %#016llx, CPU%d: %#016llx\n",
			regp->name, boot, cpu, val);
	return 1;
}

/*
 * Update system wide CPU feature registers with the values from a
 * non-boot CPU. Also performs SANITY checks to make sure that there
 * aren't any insane variations from that of the boot CPU.
 */
void update_cpu_features(int cpu,
			 struct cpuinfo_arm64 *info,
			 struct cpuinfo_arm64 *boot)
{
	int taint = 0;

	/*
	 * The kernel can handle differing I-cache policies, but otherwise
	 * caches should look identical. Userspace JITs will make use of
	 * *minLine.
	 */
	taint |= check_update_ftr_reg(SYS_CTR_EL0, cpu,
				      info->reg_ctr, boot->reg_ctr);

	/*
	 * Userspace may perform DC ZVA instructions. Mismatched block sizes
	 * could result in too much or too little memory being zeroed if a
	 * process is preempted and migrated between CPUs.
	 */
	taint |= check_update_ftr_reg(SYS_DCZID_EL0, cpu,
				      info->reg_dczid, boot->reg_dczid);

	/* If different, timekeeping will be broken (especially with KVM) */
	taint |= check_update_ftr_reg(SYS_CNTFRQ_EL0, cpu,
				      info->reg_cntfrq, boot->reg_cntfrq);

	/*
	 * The kernel uses self-hosted debug features and expects CPUs to
	 * support identical debug features. We presently need CTX_CMPs, WRPs,
	 * and BRPs to be identical.
	 * ID_AA64DFR1 is currently RES0.
	 */
	taint |= check_update_ftr_reg(SYS_ID_AA64DFR0_EL1, cpu,
				      info->reg_id_aa64dfr0, boot->reg_id_aa64dfr0);
	taint |= check_update_ftr_reg(SYS_ID_AA64DFR1_EL1, cpu,
				      info->reg_id_aa64dfr1, boot->reg_id_aa64dfr1);
	/*
	 * Even in big.LITTLE, processors should be identical instruction-set
	 * wise.
	 */
	taint |= check_update_ftr_reg(SYS_ID_AA64ISAR0_EL1, cpu,
				      info->reg_id_aa64isar0, boot->reg_id_aa64isar0);
	taint |= check_update_ftr_reg(SYS_ID_AA64ISAR1_EL1, cpu,
				      info->reg_id_aa64isar1, boot->reg_id_aa64isar1);

	/*
	 * Differing PARange support is fine as long as all peripherals and
	 * memory are mapped within the minimum PARange of all CPUs.
	 * Linux should not care about secure memory.
	 */
	taint |= check_update_ftr_reg(SYS_ID_AA64MMFR0_EL1, cpu,
				      info->reg_id_aa64mmfr0, boot->reg_id_aa64mmfr0);
	taint |= check_update_ftr_reg(SYS_ID_AA64MMFR1_EL1, cpu,
				      info->reg_id_aa64mmfr1, boot->reg_id_aa64mmfr1);
634 635
	taint |= check_update_ftr_reg(SYS_ID_AA64MMFR2_EL1, cpu,
				      info->reg_id_aa64mmfr2, boot->reg_id_aa64mmfr2);
636 637 638 639 640 641 642 643 644 645

	/*
	 * EL3 is not our concern.
	 * ID_AA64PFR1 is currently RES0.
	 */
	taint |= check_update_ftr_reg(SYS_ID_AA64PFR0_EL1, cpu,
				      info->reg_id_aa64pfr0, boot->reg_id_aa64pfr0);
	taint |= check_update_ftr_reg(SYS_ID_AA64PFR1_EL1, cpu,
				      info->reg_id_aa64pfr1, boot->reg_id_aa64pfr1);

646 647 648
	taint |= check_update_ftr_reg(SYS_ID_AA64ZFR0_EL1, cpu,
				      info->reg_id_aa64zfr0, boot->reg_id_aa64zfr0);

649
	/*
650 651
	 * If we have AArch32, we care about 32-bit features for compat.
	 * If the system doesn't support AArch32, don't update them.
652
	 */
653
	if (id_aa64pfr0_32bit_el0(read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1)) &&
654 655 656
		id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0)) {

		taint |= check_update_ftr_reg(SYS_ID_DFR0_EL1, cpu,
657
					info->reg_id_dfr0, boot->reg_id_dfr0);
658
		taint |= check_update_ftr_reg(SYS_ID_ISAR0_EL1, cpu,
659
					info->reg_id_isar0, boot->reg_id_isar0);
660
		taint |= check_update_ftr_reg(SYS_ID_ISAR1_EL1, cpu,
661
					info->reg_id_isar1, boot->reg_id_isar1);
662
		taint |= check_update_ftr_reg(SYS_ID_ISAR2_EL1, cpu,
663
					info->reg_id_isar2, boot->reg_id_isar2);
664
		taint |= check_update_ftr_reg(SYS_ID_ISAR3_EL1, cpu,
665
					info->reg_id_isar3, boot->reg_id_isar3);
666
		taint |= check_update_ftr_reg(SYS_ID_ISAR4_EL1, cpu,
667
					info->reg_id_isar4, boot->reg_id_isar4);
668
		taint |= check_update_ftr_reg(SYS_ID_ISAR5_EL1, cpu,
669 670
					info->reg_id_isar5, boot->reg_id_isar5);

671 672 673 674 675 676
		/*
		 * Regardless of the value of the AuxReg field, the AIFSR, ADFSR, and
		 * ACTLR formats could differ across CPUs and therefore would have to
		 * be trapped for virtualization anyway.
		 */
		taint |= check_update_ftr_reg(SYS_ID_MMFR0_EL1, cpu,
677
					info->reg_id_mmfr0, boot->reg_id_mmfr0);
678
		taint |= check_update_ftr_reg(SYS_ID_MMFR1_EL1, cpu,
679
					info->reg_id_mmfr1, boot->reg_id_mmfr1);
680
		taint |= check_update_ftr_reg(SYS_ID_MMFR2_EL1, cpu,
681
					info->reg_id_mmfr2, boot->reg_id_mmfr2);
682
		taint |= check_update_ftr_reg(SYS_ID_MMFR3_EL1, cpu,
683
					info->reg_id_mmfr3, boot->reg_id_mmfr3);
684
		taint |= check_update_ftr_reg(SYS_ID_PFR0_EL1, cpu,
685
					info->reg_id_pfr0, boot->reg_id_pfr0);
686
		taint |= check_update_ftr_reg(SYS_ID_PFR1_EL1, cpu,
687
					info->reg_id_pfr1, boot->reg_id_pfr1);
688
		taint |= check_update_ftr_reg(SYS_MVFR0_EL1, cpu,
689
					info->reg_mvfr0, boot->reg_mvfr0);
690
		taint |= check_update_ftr_reg(SYS_MVFR1_EL1, cpu,
691
					info->reg_mvfr1, boot->reg_mvfr1);
692
		taint |= check_update_ftr_reg(SYS_MVFR2_EL1, cpu,
693
					info->reg_mvfr2, boot->reg_mvfr2);
694
	}
695

696 697 698 699 700 701 702 703 704 705
	if (id_aa64pfr0_sve(info->reg_id_aa64pfr0)) {
		taint |= check_update_ftr_reg(SYS_ZCR_EL1, cpu,
					info->reg_zcr, boot->reg_zcr);

		/* Probe vector lengths, unless we already gave up on SVE */
		if (id_aa64pfr0_sve(read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1)) &&
		    !sys_caps_initialised)
			sve_update_vq_map();
	}

706 707 708 709
	/*
	 * Mismatched CPU features are a recipe for disaster. Don't even
	 * pretend to support them.
	 */
710 711 712 713
	if (taint) {
		pr_warn_once("Unsupported CPU feature variation detected.\n");
		add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK);
	}
714 715
}

716
u64 read_sanitised_ftr_reg(u32 id)
717 718 719 720 721 722 723
{
	struct arm64_ftr_reg *regp = get_arm64_ftr_reg(id);

	/* We shouldn't get a request for an unsupported register */
	BUG_ON(!regp);
	return regp->sys_val;
}
724

725 726 727
#define read_sysreg_case(r)	\
	case r:		return read_sysreg_s(r)

728
/*
729
 * __read_sysreg_by_encoding() - Used by a STARTING cpu before cpuinfo is populated.
730 731
 * Read the system register on the current CPU
 */
732
static u64 __read_sysreg_by_encoding(u32 sys_id)
733 734
{
	switch (sys_id) {
735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765
	read_sysreg_case(SYS_ID_PFR0_EL1);
	read_sysreg_case(SYS_ID_PFR1_EL1);
	read_sysreg_case(SYS_ID_DFR0_EL1);
	read_sysreg_case(SYS_ID_MMFR0_EL1);
	read_sysreg_case(SYS_ID_MMFR1_EL1);
	read_sysreg_case(SYS_ID_MMFR2_EL1);
	read_sysreg_case(SYS_ID_MMFR3_EL1);
	read_sysreg_case(SYS_ID_ISAR0_EL1);
	read_sysreg_case(SYS_ID_ISAR1_EL1);
	read_sysreg_case(SYS_ID_ISAR2_EL1);
	read_sysreg_case(SYS_ID_ISAR3_EL1);
	read_sysreg_case(SYS_ID_ISAR4_EL1);
	read_sysreg_case(SYS_ID_ISAR5_EL1);
	read_sysreg_case(SYS_MVFR0_EL1);
	read_sysreg_case(SYS_MVFR1_EL1);
	read_sysreg_case(SYS_MVFR2_EL1);

	read_sysreg_case(SYS_ID_AA64PFR0_EL1);
	read_sysreg_case(SYS_ID_AA64PFR1_EL1);
	read_sysreg_case(SYS_ID_AA64DFR0_EL1);
	read_sysreg_case(SYS_ID_AA64DFR1_EL1);
	read_sysreg_case(SYS_ID_AA64MMFR0_EL1);
	read_sysreg_case(SYS_ID_AA64MMFR1_EL1);
	read_sysreg_case(SYS_ID_AA64MMFR2_EL1);
	read_sysreg_case(SYS_ID_AA64ISAR0_EL1);
	read_sysreg_case(SYS_ID_AA64ISAR1_EL1);

	read_sysreg_case(SYS_CNTFRQ_EL0);
	read_sysreg_case(SYS_CTR_EL0);
	read_sysreg_case(SYS_DCZID_EL0);

766 767 768 769 770 771
	default:
		BUG();
		return 0;
	}
}

772 773
#include <linux/irqchip/arm-gic-v3.h>

774 775 776
static bool
feature_matches(u64 reg, const struct arm64_cpu_capabilities *entry)
{
777
	int val = cpuid_feature_extract_field(reg, entry->field_pos, entry->sign);
778 779 780 781

	return val >= entry->min_field_value;
}

782
static bool
783
has_cpuid_feature(const struct arm64_cpu_capabilities *entry, int scope)
784 785
{
	u64 val;
786

787 788
	WARN_ON(scope == SCOPE_LOCAL_CPU && preemptible());
	if (scope == SCOPE_SYSTEM)
789
		val = read_sanitised_ftr_reg(entry->sys_reg);
790
	else
791
		val = __read_sysreg_by_encoding(entry->sys_reg);
792

793 794
	return feature_matches(val, entry);
}
795

796
static bool has_useable_gicv3_cpuif(const struct arm64_cpu_capabilities *entry, int scope)
797 798 799
{
	bool has_sre;

800
	if (!has_cpuid_feature(entry, scope))
801 802 803 804 805 806 807 808 809 810
		return false;

	has_sre = gic_enable_sre();
	if (!has_sre)
		pr_warn_once("%s present but disabled by higher exception level\n",
			     entry->desc);

	return has_sre;
}

811
static bool has_no_hw_prefetch(const struct arm64_cpu_capabilities *entry, int __unused)
812 813 814 815
{
	u32 midr = read_cpuid_id();

	/* Cavium ThunderX pass 1.x and 2.x */
816 817 818
	return MIDR_IS_CPU_MODEL_RANGE(midr, MIDR_THUNDERX,
		MIDR_CPU_VAR_REV(0, 0),
		MIDR_CPU_VAR_REV(1, MIDR_REVISION_MASK));
819 820
}

821
static bool runs_at_el2(const struct arm64_cpu_capabilities *entry, int __unused)
822 823 824 825
{
	return is_kernel_in_hyp_mode();
}

826 827 828
static bool hyp_offset_low(const struct arm64_cpu_capabilities *entry,
			   int __unused)
{
829
	phys_addr_t idmap_addr = __pa_symbol(__hyp_idmap_text_start);
830 831 832 833 834 835 836 837 838

	/*
	 * Activate the lower HYP offset only if:
	 * - the idmap doesn't clash with it,
	 * - the kernel is not running at EL2.
	 */
	return idmap_addr > GENMASK(VA_BITS - 2, 0) && !is_kernel_in_hyp_mode();
}

839 840
static bool has_no_fpsimd(const struct arm64_cpu_capabilities *entry, int __unused)
{
841
	u64 pfr0 = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
842 843 844 845 846

	return cpuid_feature_extract_signed_field(pfr0,
					ID_AA64PFR0_FP_SHIFT) < 0;
}

847
static const struct arm64_cpu_capabilities arm64_features[] = {
848 849 850
	{
		.desc = "GIC system register CPU interface",
		.capability = ARM64_HAS_SYSREG_GIC_CPUIF,
851
		.def_scope = SCOPE_SYSTEM,
852
		.matches = has_useable_gicv3_cpuif,
853 854
		.sys_reg = SYS_ID_AA64PFR0_EL1,
		.field_pos = ID_AA64PFR0_GIC_SHIFT,
855
		.sign = FTR_UNSIGNED,
856
		.min_field_value = 1,
857
	},
858 859 860 861
#ifdef CONFIG_ARM64_PAN
	{
		.desc = "Privileged Access Never",
		.capability = ARM64_HAS_PAN,
862
		.def_scope = SCOPE_SYSTEM,
863 864 865
		.matches = has_cpuid_feature,
		.sys_reg = SYS_ID_AA64MMFR1_EL1,
		.field_pos = ID_AA64MMFR1_PAN_SHIFT,
866
		.sign = FTR_UNSIGNED,
867 868 869 870
		.min_field_value = 1,
		.enable = cpu_enable_pan,
	},
#endif /* CONFIG_ARM64_PAN */
871 872 873 874
#if defined(CONFIG_AS_LSE) && defined(CONFIG_ARM64_LSE_ATOMICS)
	{
		.desc = "LSE atomic instructions",
		.capability = ARM64_HAS_LSE_ATOMICS,
875
		.def_scope = SCOPE_SYSTEM,
876 877 878
		.matches = has_cpuid_feature,
		.sys_reg = SYS_ID_AA64ISAR0_EL1,
		.field_pos = ID_AA64ISAR0_ATOMICS_SHIFT,
879
		.sign = FTR_UNSIGNED,
880 881 882
		.min_field_value = 2,
	},
#endif /* CONFIG_AS_LSE && CONFIG_ARM64_LSE_ATOMICS */
883 884 885
	{
		.desc = "Software prefetching using PRFM",
		.capability = ARM64_HAS_NO_HW_PREFETCH,
886
		.def_scope = SCOPE_SYSTEM,
887 888
		.matches = has_no_hw_prefetch,
	},
889 890 891 892
#ifdef CONFIG_ARM64_UAO
	{
		.desc = "User Access Override",
		.capability = ARM64_HAS_UAO,
893
		.def_scope = SCOPE_SYSTEM,
894 895 896 897
		.matches = has_cpuid_feature,
		.sys_reg = SYS_ID_AA64MMFR2_EL1,
		.field_pos = ID_AA64MMFR2_UAO_SHIFT,
		.min_field_value = 1,
898 899 900 901
		/*
		 * We rely on stop_machine() calling uao_thread_switch() to set
		 * UAO immediately after patching.
		 */
902 903
	},
#endif /* CONFIG_ARM64_UAO */
904 905 906
#ifdef CONFIG_ARM64_PAN
	{
		.capability = ARM64_ALT_PAN_NOT_UAO,
907
		.def_scope = SCOPE_SYSTEM,
908 909 910
		.matches = cpufeature_pan_not_uao,
	},
#endif /* CONFIG_ARM64_PAN */
911 912 913
	{
		.desc = "Virtualization Host Extensions",
		.capability = ARM64_HAS_VIRT_HOST_EXTN,
914
		.def_scope = SCOPE_SYSTEM,
915 916
		.matches = runs_at_el2,
	},
917 918 919
	{
		.desc = "32-bit EL0 Support",
		.capability = ARM64_HAS_32BIT_EL0,
920
		.def_scope = SCOPE_SYSTEM,
921 922 923 924 925 926
		.matches = has_cpuid_feature,
		.sys_reg = SYS_ID_AA64PFR0_EL1,
		.sign = FTR_UNSIGNED,
		.field_pos = ID_AA64PFR0_EL0_SHIFT,
		.min_field_value = ID_AA64PFR0_EL0_32BIT_64BIT,
	},
927 928 929 930 931 932
	{
		.desc = "Reduced HYP mapping offset",
		.capability = ARM64_HYP_OFFSET_LOW,
		.def_scope = SCOPE_SYSTEM,
		.matches = hyp_offset_low,
	},
933 934 935 936 937 938 939
	{
		/* FP/SIMD is not implemented */
		.capability = ARM64_HAS_NO_FPSIMD,
		.def_scope = SCOPE_SYSTEM,
		.min_field_value = 0,
		.matches = has_no_fpsimd,
	},
R
Robin Murphy 已提交
940 941 942 943 944 945 946 947 948 949 950
#ifdef CONFIG_ARM64_PMEM
	{
		.desc = "Data cache clean to Point of Persistence",
		.capability = ARM64_HAS_DCPOP,
		.def_scope = SCOPE_SYSTEM,
		.matches = has_cpuid_feature,
		.sys_reg = SYS_ID_AA64ISAR1_EL1,
		.field_pos = ID_AA64ISAR1_DPB_SHIFT,
		.min_field_value = 1,
	},
#endif
951 952 953
	{},
};

954
#define HWCAP_CAP(reg, field, s, min_value, type, cap)	\
955 956
	{							\
		.desc = #cap,					\
957
		.def_scope = SCOPE_SYSTEM,			\
958 959 960
		.matches = has_cpuid_feature,			\
		.sys_reg = reg,					\
		.field_pos = field,				\
961
		.sign = s,					\
962 963 964 965 966
		.min_field_value = min_value,			\
		.hwcap_type = type,				\
		.hwcap = cap,					\
	}

S
Suzuki K Poulose 已提交
967
static const struct arm64_cpu_capabilities arm64_elf_hwcaps[] = {
968 969 970 971
	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_AES_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, HWCAP_PMULL),
	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_AES_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_AES),
	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA1_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_SHA1),
	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA2_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_SHA2),
972
	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA2_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, HWCAP_SHA512),
973 974
	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_CRC32_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_CRC32),
	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_ATOMICS_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, HWCAP_ATOMICS),
975
	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_RDM_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_ASIMDRDM),
976 977 978 979
	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA3_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_SHA3),
	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SM3_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_SM3),
	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SM4_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_SM4),
	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_DP_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_ASIMDDP),
980
	HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_FP_SHIFT, FTR_SIGNED, 0, CAP_HWCAP, HWCAP_FP),
981
	HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_FP_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, HWCAP_FPHP),
982
	HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_ASIMD_SHIFT, FTR_SIGNED, 0, CAP_HWCAP, HWCAP_ASIMD),
983
	HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_ASIMD_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, HWCAP_ASIMDHP),
984
	HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_DPB_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_DCPOP),
985
	HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_JSCVT_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_JSCVT),
986
	HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_FCMA_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_FCMA),
987
	HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_LRCPC_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_LRCPC),
988 989 990 991
	{},
};

static const struct arm64_cpu_capabilities compat_elf_hwcaps[] = {
992
#ifdef CONFIG_COMPAT
993 994 995 996 997
	HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, FTR_UNSIGNED, 2, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_PMULL),
	HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_AES),
	HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA1_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA1),
	HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA2_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA2),
	HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_CRC32_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_CRC32),
998 999 1000 1001
#endif
	{},
};

S
Suzuki K Poulose 已提交
1002
static void __init cap_set_elf_hwcap(const struct arm64_cpu_capabilities *cap)
1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022
{
	switch (cap->hwcap_type) {
	case CAP_HWCAP:
		elf_hwcap |= cap->hwcap;
		break;
#ifdef CONFIG_COMPAT
	case CAP_COMPAT_HWCAP:
		compat_elf_hwcap |= (u32)cap->hwcap;
		break;
	case CAP_COMPAT_HWCAP2:
		compat_elf_hwcap2 |= (u32)cap->hwcap;
		break;
#endif
	default:
		WARN_ON(1);
		break;
	}
}

/* Check if we have a particular HWCAP enabled */
S
Suzuki K Poulose 已提交
1023
static bool cpus_have_elf_hwcap(const struct arm64_cpu_capabilities *cap)
1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046
{
	bool rc;

	switch (cap->hwcap_type) {
	case CAP_HWCAP:
		rc = (elf_hwcap & cap->hwcap) != 0;
		break;
#ifdef CONFIG_COMPAT
	case CAP_COMPAT_HWCAP:
		rc = (compat_elf_hwcap & (u32)cap->hwcap) != 0;
		break;
	case CAP_COMPAT_HWCAP2:
		rc = (compat_elf_hwcap2 & (u32)cap->hwcap) != 0;
		break;
#endif
	default:
		WARN_ON(1);
		rc = false;
	}

	return rc;
}

1047
static void __init setup_elf_hwcaps(const struct arm64_cpu_capabilities *hwcaps)
1048
{
1049 1050
	/* We support emulation of accesses to CPU ID feature registers */
	elf_hwcap |= HWCAP_CPUID;
1051
	for (; hwcaps->matches; hwcaps++)
1052
		if (hwcaps->matches(hwcaps, hwcaps->def_scope))
1053
			cap_set_elf_hwcap(hwcaps);
1054 1055
}

1056
void update_cpu_capabilities(const struct arm64_cpu_capabilities *caps,
1057 1058
			    const char *info)
{
1059
	for (; caps->matches; caps++) {
1060
		if (!caps->matches(caps, caps->def_scope))
1061 1062
			continue;

1063 1064 1065
		if (!cpus_have_cap(caps->capability) && caps->desc)
			pr_info("%s %s\n", info, caps->desc);
		cpus_set_cap(caps->capability);
1066
	}
1067 1068 1069
}

/*
1070 1071
 * Run through the enabled capabilities and enable() it on all active
 * CPUs
1072
 */
1073
void __init enable_cpu_capabilities(const struct arm64_cpu_capabilities *caps)
1074
{
1075 1076 1077 1078 1079 1080 1081 1082 1083 1084
	for (; caps->matches; caps++) {
		unsigned int num = caps->capability;

		if (!cpus_have_cap(num))
			continue;

		/* Ensure cpus_have_const_cap(num) works */
		static_branch_enable(&cpu_hwcap_keys[num]);

		if (caps->enable) {
1085 1086 1087 1088 1089 1090 1091
			/*
			 * Use stop_machine() as it schedules the work allowing
			 * us to modify PSTATE, instead of on_each_cpu() which
			 * uses an IPI, giving us a PSTATE that disappears when
			 * we return.
			 */
			stop_machine(caps->enable, NULL, cpu_online_mask);
1092 1093
		}
	}
1094 1095 1096
}

/*
1097 1098
 * Check for CPU features that are used in early boot
 * based on the Boot CPU value.
1099
 */
1100
static void check_early_cpu_features(void)
1101
{
1102
	verify_cpu_run_el();
1103
	verify_cpu_asid_bits();
1104
}
1105

1106 1107 1108 1109
static void
verify_local_elf_hwcaps(const struct arm64_cpu_capabilities *caps)
{

1110 1111
	for (; caps->matches; caps++)
		if (cpus_have_elf_hwcap(caps) && !caps->matches(caps, SCOPE_LOCAL_CPU)) {
1112 1113 1114 1115 1116 1117 1118 1119 1120 1121
			pr_crit("CPU%d: missing HWCAP: %s\n",
					smp_processor_id(), caps->desc);
			cpu_die_early();
		}
}

static void
verify_local_cpu_features(const struct arm64_cpu_capabilities *caps)
{
	for (; caps->matches; caps++) {
1122
		if (!cpus_have_cap(caps->capability))
1123 1124 1125 1126 1127
			continue;
		/*
		 * If the new CPU misses an advertised feature, we cannot proceed
		 * further, park the cpu.
		 */
1128
		if (!caps->matches(caps, SCOPE_LOCAL_CPU)) {
1129 1130 1131 1132 1133 1134 1135 1136 1137
			pr_crit("CPU%d: missing feature: %s\n",
					smp_processor_id(), caps->desc);
			cpu_die_early();
		}
		if (caps->enable)
			caps->enable(NULL);
	}
}

1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154
static void verify_sve_features(void)
{
	u64 safe_zcr = read_sanitised_ftr_reg(SYS_ZCR_EL1);
	u64 zcr = read_zcr_features();

	unsigned int safe_len = safe_zcr & ZCR_ELx_LEN_MASK;
	unsigned int len = zcr & ZCR_ELx_LEN_MASK;

	if (len < safe_len || sve_verify_vq_map()) {
		pr_crit("CPU%d: SVE: required vector length(s) missing\n",
			smp_processor_id());
		cpu_die_early();
	}

	/* Add checks on other ZCR bits here if necessary */
}

1155 1156 1157 1158 1159 1160 1161 1162
/*
 * Run through the enabled system capabilities and enable() it on this CPU.
 * The capabilities were decided based on the available CPUs at the boot time.
 * Any new CPU should match the system wide status of the capability. If the
 * new CPU doesn't have a capability which the system now has enabled, we
 * cannot do anything to fix it up and could cause unexpected failures. So
 * we park the CPU.
 */
1163
static void verify_local_cpu_capabilities(void)
1164
{
1165 1166 1167
	verify_local_cpu_errata_workarounds();
	verify_local_cpu_features(arm64_features);
	verify_local_elf_hwcaps(arm64_elf_hwcaps);
1168

1169 1170
	if (system_supports_32bit_el0())
		verify_local_elf_hwcaps(compat_elf_hwcaps);
1171 1172 1173

	if (system_supports_sve())
		verify_sve_features();
1174
}
1175

1176 1177 1178 1179 1180 1181
void check_local_cpu_capabilities(void)
{
	/*
	 * All secondary CPUs should conform to the early CPU features
	 * in use by the kernel based on boot CPU.
	 */
1182 1183
	check_early_cpu_features();

1184
	/*
1185 1186 1187 1188
	 * If we haven't finalised the system capabilities, this CPU gets
	 * a chance to update the errata work arounds.
	 * Otherwise, this CPU should verify that it has all the system
	 * advertised capabilities.
1189 1190
	 */
	if (!sys_caps_initialised)
1191 1192 1193
		update_cpu_errata_workarounds();
	else
		verify_local_cpu_capabilities();
1194 1195
}

1196
static void __init setup_feature_capabilities(void)
1197
{
1198 1199
	update_cpu_capabilities(arm64_features, "detected feature:");
	enable_cpu_capabilities(arm64_features);
1200 1201
}

1202 1203 1204 1205 1206 1207 1208 1209
DEFINE_STATIC_KEY_FALSE(arm64_const_caps_ready);
EXPORT_SYMBOL(arm64_const_caps_ready);

static void __init mark_const_caps_ready(void)
{
	static_branch_enable(&arm64_const_caps_ready);
}

1210 1211 1212 1213
/*
 * Check if the current CPU has a given feature capability.
 * Should be called from non-preemptible context.
 */
1214 1215
static bool __this_cpu_has_cap(const struct arm64_cpu_capabilities *cap_array,
			       unsigned int cap)
1216 1217 1218 1219 1220 1221
{
	const struct arm64_cpu_capabilities *caps;

	if (WARN_ON(preemptible()))
		return false;

1222
	for (caps = cap_array; caps->desc; caps++)
1223 1224 1225 1226 1227 1228
		if (caps->capability == cap && caps->matches)
			return caps->matches(caps, SCOPE_LOCAL_CPU);

	return false;
}

1229 1230 1231 1232 1233 1234 1235 1236
extern const struct arm64_cpu_capabilities arm64_errata[];

bool this_cpu_has_cap(unsigned int cap)
{
	return (__this_cpu_has_cap(arm64_features, cap) ||
		__this_cpu_has_cap(arm64_errata, cap));
}

1237
void __init setup_cpu_features(void)
1238
{
1239 1240 1241
	u32 cwg;
	int cls;

1242 1243
	/* Set the CPU feature capabilies */
	setup_feature_capabilities();
1244
	enable_errata_workarounds();
1245
	mark_const_caps_ready();
1246
	setup_elf_hwcaps(arm64_elf_hwcaps);
1247 1248 1249

	if (system_supports_32bit_el0())
		setup_elf_hwcaps(compat_elf_hwcaps);
1250

1251 1252
	sve_setup();

1253 1254 1255
	/* Advertise that we have computed the system capabilities */
	set_sys_caps_initialised();

1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266
	/*
	 * Check for sane CTR_EL0.CWG value.
	 */
	cwg = cache_type_cwg();
	cls = cache_line_size();
	if (!cwg)
		pr_warn("No Cache Writeback Granule information, assuming cache line size %d\n",
			cls);
	if (L1_CACHE_BYTES < cls)
		pr_warn("L1_CACHE_BYTES smaller than the Cache Writeback Granule (%d < %d)\n",
			L1_CACHE_BYTES, cls);
1267
}
1268 1269

static bool __maybe_unused
1270
cpufeature_pan_not_uao(const struct arm64_cpu_capabilities *entry, int __unused)
1271
{
1272
	return (cpus_have_const_cap(ARM64_HAS_PAN) && !cpus_have_const_cap(ARM64_HAS_UAO));
1273
}
1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349

/*
 * We emulate only the following system register space.
 * Op0 = 0x3, CRn = 0x0, Op1 = 0x0, CRm = [0, 4 - 7]
 * See Table C5-6 System instruction encodings for System register accesses,
 * ARMv8 ARM(ARM DDI 0487A.f) for more details.
 */
static inline bool __attribute_const__ is_emulated(u32 id)
{
	return (sys_reg_Op0(id) == 0x3 &&
		sys_reg_CRn(id) == 0x0 &&
		sys_reg_Op1(id) == 0x0 &&
		(sys_reg_CRm(id) == 0 ||
		 ((sys_reg_CRm(id) >= 4) && (sys_reg_CRm(id) <= 7))));
}

/*
 * With CRm == 0, reg should be one of :
 * MIDR_EL1, MPIDR_EL1 or REVIDR_EL1.
 */
static inline int emulate_id_reg(u32 id, u64 *valp)
{
	switch (id) {
	case SYS_MIDR_EL1:
		*valp = read_cpuid_id();
		break;
	case SYS_MPIDR_EL1:
		*valp = SYS_MPIDR_SAFE_VAL;
		break;
	case SYS_REVIDR_EL1:
		/* IMPLEMENTATION DEFINED values are emulated with 0 */
		*valp = 0;
		break;
	default:
		return -EINVAL;
	}

	return 0;
}

static int emulate_sys_reg(u32 id, u64 *valp)
{
	struct arm64_ftr_reg *regp;

	if (!is_emulated(id))
		return -EINVAL;

	if (sys_reg_CRm(id) == 0)
		return emulate_id_reg(id, valp);

	regp = get_arm64_ftr_reg(id);
	if (regp)
		*valp = arm64_ftr_reg_user_value(regp);
	else
		/*
		 * The untracked registers are either IMPLEMENTATION DEFINED
		 * (e.g, ID_AFR0_EL1) or reserved RAZ.
		 */
		*valp = 0;
	return 0;
}

static int emulate_mrs(struct pt_regs *regs, u32 insn)
{
	int rc;
	u32 sys_reg, dst;
	u64 val;

	/*
	 * sys_reg values are defined as used in mrs/msr instruction.
	 * shift the imm value to get the encoding.
	 */
	sys_reg = (u32)aarch64_insn_decode_immediate(AARCH64_INSN_IMM_16, insn) << 5;
	rc = emulate_sys_reg(sys_reg, &val);
	if (!rc) {
		dst = aarch64_insn_decode_register(AARCH64_INSN_REGTYPE_RT, insn);
1350
		pt_regs_write_reg(regs, dst, val);
1351
		arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371
	}

	return rc;
}

static struct undef_hook mrs_hook = {
	.instr_mask = 0xfff00000,
	.instr_val  = 0xd5300000,
	.pstate_mask = COMPAT_PSR_MODE_MASK,
	.pstate_val = PSR_MODE_EL0t,
	.fn = emulate_mrs,
};

static int __init enable_mrs_emulation(void)
{
	register_undef_hook(&mrs_hook);
	return 0;
}

late_initcall(enable_mrs_emulation);