regmap.c 71.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12
/*
 * Register map access API
 *
 * Copyright 2011 Wolfson Microelectronics plc
 *
 * Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

13
#include <linux/device.h>
14
#include <linux/slab.h>
15
#include <linux/export.h>
16 17
#include <linux/mutex.h>
#include <linux/err.h>
18
#include <linux/of.h>
19
#include <linux/rbtree.h>
20
#include <linux/sched.h>
21
#include <linux/delay.h>
22
#include <linux/log2.h>
23
#include <linux/hwspinlock.h>
24

M
Mark Brown 已提交
25
#define CREATE_TRACE_POINTS
26
#include "trace.h"
M
Mark Brown 已提交
27

28
#include "internal.h"
29

30 31 32 33 34 35 36 37 38 39
/*
 * Sometimes for failures during very early init the trace
 * infrastructure isn't available early enough to be used.  For this
 * sort of problem defining LOG_DEVICE will add printks for basic
 * register I/O on a specific device.
 */
#undef LOG_DEVICE

static int _regmap_update_bits(struct regmap *map, unsigned int reg,
			       unsigned int mask, unsigned int val,
40
			       bool *change, bool force_write);
41

42 43
static int _regmap_bus_reg_read(void *context, unsigned int reg,
				unsigned int *val);
44 45
static int _regmap_bus_read(void *context, unsigned int reg,
			    unsigned int *val);
46 47
static int _regmap_bus_formatted_write(void *context, unsigned int reg,
				       unsigned int val);
48 49
static int _regmap_bus_reg_write(void *context, unsigned int reg,
				 unsigned int val);
50 51
static int _regmap_bus_raw_write(void *context, unsigned int reg,
				 unsigned int val);
52

53 54 55 56 57 58 59 60 61 62 63 64 65 66
bool regmap_reg_in_ranges(unsigned int reg,
			  const struct regmap_range *ranges,
			  unsigned int nranges)
{
	const struct regmap_range *r;
	int i;

	for (i = 0, r = ranges; i < nranges; i++, r++)
		if (regmap_reg_in_range(reg, r))
			return true;
	return false;
}
EXPORT_SYMBOL_GPL(regmap_reg_in_ranges);

67 68
bool regmap_check_range_table(struct regmap *map, unsigned int reg,
			      const struct regmap_access_table *table)
69 70 71 72 73 74 75 76 77 78 79 80
{
	/* Check "no ranges" first */
	if (regmap_reg_in_ranges(reg, table->no_ranges, table->n_no_ranges))
		return false;

	/* In case zero "yes ranges" are supplied, any reg is OK */
	if (!table->n_yes_ranges)
		return true;

	return regmap_reg_in_ranges(reg, table->yes_ranges,
				    table->n_yes_ranges);
}
81
EXPORT_SYMBOL_GPL(regmap_check_range_table);
82

83 84 85 86 87 88 89 90
bool regmap_writeable(struct regmap *map, unsigned int reg)
{
	if (map->max_register && reg > map->max_register)
		return false;

	if (map->writeable_reg)
		return map->writeable_reg(map->dev, reg);

91
	if (map->wr_table)
92
		return regmap_check_range_table(map, reg, map->wr_table);
93

94 95 96
	return true;
}

97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
bool regmap_cached(struct regmap *map, unsigned int reg)
{
	int ret;
	unsigned int val;

	if (map->cache == REGCACHE_NONE)
		return false;

	if (!map->cache_ops)
		return false;

	if (map->max_register && reg > map->max_register)
		return false;

	map->lock(map->lock_arg);
	ret = regcache_read(map, reg, &val);
	map->unlock(map->lock_arg);
	if (ret)
		return false;

	return true;
}

120 121
bool regmap_readable(struct regmap *map, unsigned int reg)
{
122 123 124
	if (!map->reg_read)
		return false;

125 126 127
	if (map->max_register && reg > map->max_register)
		return false;

128 129 130
	if (map->format.format_write)
		return false;

131 132 133
	if (map->readable_reg)
		return map->readable_reg(map->dev, reg);

134
	if (map->rd_table)
135
		return regmap_check_range_table(map, reg, map->rd_table);
136

137 138 139 140 141
	return true;
}

bool regmap_volatile(struct regmap *map, unsigned int reg)
{
142
	if (!map->format.format_write && !regmap_readable(map, reg))
143 144 145 146 147
		return false;

	if (map->volatile_reg)
		return map->volatile_reg(map->dev, reg);

148
	if (map->volatile_table)
149
		return regmap_check_range_table(map, reg, map->volatile_table);
150

151 152 153 154
	if (map->cache_ops)
		return false;
	else
		return true;
155 156 157 158
}

bool regmap_precious(struct regmap *map, unsigned int reg)
{
159
	if (!regmap_readable(map, reg))
160 161 162 163 164
		return false;

	if (map->precious_reg)
		return map->precious_reg(map->dev, reg);

165
	if (map->precious_table)
166
		return regmap_check_range_table(map, reg, map->precious_table);
167

168 169 170
	return false;
}

171
static bool regmap_volatile_range(struct regmap *map, unsigned int reg,
P
Paul Bolle 已提交
172
	size_t num)
173 174 175 176 177 178 179 180 181 182
{
	unsigned int i;

	for (i = 0; i < num; i++)
		if (!regmap_volatile(map, reg + i))
			return false;

	return true;
}

183 184 185 186 187 188 189 190
static void regmap_format_2_6_write(struct regmap *map,
				     unsigned int reg, unsigned int val)
{
	u8 *out = map->work_buf;

	*out = (reg << 6) | val;
}

191 192 193 194 195 196 197 198 199 200 201 202 203 204
static void regmap_format_4_12_write(struct regmap *map,
				     unsigned int reg, unsigned int val)
{
	__be16 *out = map->work_buf;
	*out = cpu_to_be16((reg << 12) | val);
}

static void regmap_format_7_9_write(struct regmap *map,
				    unsigned int reg, unsigned int val)
{
	__be16 *out = map->work_buf;
	*out = cpu_to_be16((reg << 9) | val);
}

205 206 207 208 209 210 211 212 213 214
static void regmap_format_10_14_write(struct regmap *map,
				    unsigned int reg, unsigned int val)
{
	u8 *out = map->work_buf;

	out[2] = val;
	out[1] = (val >> 8) | (reg << 6);
	out[0] = reg >> 2;
}

215
static void regmap_format_8(void *buf, unsigned int val, unsigned int shift)
216 217 218
{
	u8 *b = buf;

219
	b[0] = val << shift;
220 221
}

222
static void regmap_format_16_be(void *buf, unsigned int val, unsigned int shift)
223 224 225
{
	__be16 *b = buf;

226
	b[0] = cpu_to_be16(val << shift);
227 228
}

229 230 231 232 233 234 235
static void regmap_format_16_le(void *buf, unsigned int val, unsigned int shift)
{
	__le16 *b = buf;

	b[0] = cpu_to_le16(val << shift);
}

236 237 238 239 240 241
static void regmap_format_16_native(void *buf, unsigned int val,
				    unsigned int shift)
{
	*(u16 *)buf = val << shift;
}

242
static void regmap_format_24(void *buf, unsigned int val, unsigned int shift)
243 244 245
{
	u8 *b = buf;

246 247
	val <<= shift;

248 249 250 251 252
	b[0] = val >> 16;
	b[1] = val >> 8;
	b[2] = val;
}

253
static void regmap_format_32_be(void *buf, unsigned int val, unsigned int shift)
254 255 256
{
	__be32 *b = buf;

257
	b[0] = cpu_to_be32(val << shift);
258 259
}

260 261 262 263 264 265 266
static void regmap_format_32_le(void *buf, unsigned int val, unsigned int shift)
{
	__le32 *b = buf;

	b[0] = cpu_to_le32(val << shift);
}

267 268 269 270 271 272
static void regmap_format_32_native(void *buf, unsigned int val,
				    unsigned int shift)
{
	*(u32 *)buf = val << shift;
}

X
Xiubo Li 已提交
273 274 275 276 277
#ifdef CONFIG_64BIT
static void regmap_format_64_be(void *buf, unsigned int val, unsigned int shift)
{
	__be64 *b = buf;

278
	b[0] = cpu_to_be64((u64)val << shift);
X
Xiubo Li 已提交
279 280 281 282 283 284
}

static void regmap_format_64_le(void *buf, unsigned int val, unsigned int shift)
{
	__le64 *b = buf;

285
	b[0] = cpu_to_le64((u64)val << shift);
X
Xiubo Li 已提交
286 287 288 289 290
}

static void regmap_format_64_native(void *buf, unsigned int val,
				    unsigned int shift)
{
291
	*(u64 *)buf = (u64)val << shift;
X
Xiubo Li 已提交
292 293 294
}
#endif

295
static void regmap_parse_inplace_noop(void *buf)
296
{
297 298 299 300 301
}

static unsigned int regmap_parse_8(const void *buf)
{
	const u8 *b = buf;
302 303 304 305

	return b[0];
}

306 307 308 309 310 311 312
static unsigned int regmap_parse_16_be(const void *buf)
{
	const __be16 *b = buf;

	return be16_to_cpu(b[0]);
}

313 314 315 316 317 318 319
static unsigned int regmap_parse_16_le(const void *buf)
{
	const __le16 *b = buf;

	return le16_to_cpu(b[0]);
}

320
static void regmap_parse_16_be_inplace(void *buf)
321 322 323 324 325 326
{
	__be16 *b = buf;

	b[0] = be16_to_cpu(b[0]);
}

327 328 329 330 331 332 333
static void regmap_parse_16_le_inplace(void *buf)
{
	__le16 *b = buf;

	b[0] = le16_to_cpu(b[0]);
}

334
static unsigned int regmap_parse_16_native(const void *buf)
335 336 337 338
{
	return *(u16 *)buf;
}

339
static unsigned int regmap_parse_24(const void *buf)
340
{
341
	const u8 *b = buf;
342 343 344 345 346 347 348
	unsigned int ret = b[2];
	ret |= ((unsigned int)b[1]) << 8;
	ret |= ((unsigned int)b[0]) << 16;

	return ret;
}

349 350 351 352 353 354 355
static unsigned int regmap_parse_32_be(const void *buf)
{
	const __be32 *b = buf;

	return be32_to_cpu(b[0]);
}

356 357 358 359 360 361 362
static unsigned int regmap_parse_32_le(const void *buf)
{
	const __le32 *b = buf;

	return le32_to_cpu(b[0]);
}

363
static void regmap_parse_32_be_inplace(void *buf)
364 365 366 367 368 369
{
	__be32 *b = buf;

	b[0] = be32_to_cpu(b[0]);
}

370 371 372 373 374 375 376
static void regmap_parse_32_le_inplace(void *buf)
{
	__le32 *b = buf;

	b[0] = le32_to_cpu(b[0]);
}

377
static unsigned int regmap_parse_32_native(const void *buf)
378 379 380 381
{
	return *(u32 *)buf;
}

X
Xiubo Li 已提交
382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416
#ifdef CONFIG_64BIT
static unsigned int regmap_parse_64_be(const void *buf)
{
	const __be64 *b = buf;

	return be64_to_cpu(b[0]);
}

static unsigned int regmap_parse_64_le(const void *buf)
{
	const __le64 *b = buf;

	return le64_to_cpu(b[0]);
}

static void regmap_parse_64_be_inplace(void *buf)
{
	__be64 *b = buf;

	b[0] = be64_to_cpu(b[0]);
}

static void regmap_parse_64_le_inplace(void *buf)
{
	__le64 *b = buf;

	b[0] = le64_to_cpu(b[0]);
}

static unsigned int regmap_parse_64_native(const void *buf)
{
	return *(u64 *)buf;
}
#endif

417
#ifdef REGMAP_HWSPINLOCK
418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459
static void regmap_lock_hwlock(void *__map)
{
	struct regmap *map = __map;

	hwspin_lock_timeout(map->hwlock, UINT_MAX);
}

static void regmap_lock_hwlock_irq(void *__map)
{
	struct regmap *map = __map;

	hwspin_lock_timeout_irq(map->hwlock, UINT_MAX);
}

static void regmap_lock_hwlock_irqsave(void *__map)
{
	struct regmap *map = __map;

	hwspin_lock_timeout_irqsave(map->hwlock, UINT_MAX,
				    &map->spinlock_flags);
}

static void regmap_unlock_hwlock(void *__map)
{
	struct regmap *map = __map;

	hwspin_unlock(map->hwlock);
}

static void regmap_unlock_hwlock_irq(void *__map)
{
	struct regmap *map = __map;

	hwspin_unlock_irq(map->hwlock);
}

static void regmap_unlock_hwlock_irqrestore(void *__map)
{
	struct regmap *map = __map;

	hwspin_unlock_irqrestore(map->hwlock, &map->spinlock_flags);
}
460
#endif
461

462 463 464 465 466
static void regmap_lock_unlock_empty(void *__map)
{

}

467
static void regmap_lock_mutex(void *__map)
468
{
469
	struct regmap *map = __map;
470 471 472
	mutex_lock(&map->mutex);
}

473
static void regmap_unlock_mutex(void *__map)
474
{
475
	struct regmap *map = __map;
476 477 478
	mutex_unlock(&map->mutex);
}

479
static void regmap_lock_spinlock(void *__map)
480
__acquires(&map->spinlock)
481
{
482
	struct regmap *map = __map;
483 484 485 486
	unsigned long flags;

	spin_lock_irqsave(&map->spinlock, flags);
	map->spinlock_flags = flags;
487 488
}

489
static void regmap_unlock_spinlock(void *__map)
490
__releases(&map->spinlock)
491
{
492
	struct regmap *map = __map;
493
	spin_unlock_irqrestore(&map->spinlock, map->spinlock_flags);
494 495
}

M
Mark Brown 已提交
496 497 498 499 500 501 502 503 504
static void dev_get_regmap_release(struct device *dev, void *res)
{
	/*
	 * We don't actually have anything to do here; the goal here
	 * is not to manage the regmap but to provide a simple way to
	 * get the regmap back given a struct device.
	 */
}

505 506 507 508 509 510 511 512
static bool _regmap_range_add(struct regmap *map,
			      struct regmap_range_node *data)
{
	struct rb_root *root = &map->range_tree;
	struct rb_node **new = &(root->rb_node), *parent = NULL;

	while (*new) {
		struct regmap_range_node *this =
G
Geliang Tang 已提交
513
			rb_entry(*new, struct regmap_range_node, node);
514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536

		parent = *new;
		if (data->range_max < this->range_min)
			new = &((*new)->rb_left);
		else if (data->range_min > this->range_max)
			new = &((*new)->rb_right);
		else
			return false;
	}

	rb_link_node(&data->node, parent, new);
	rb_insert_color(&data->node, root);

	return true;
}

static struct regmap_range_node *_regmap_range_lookup(struct regmap *map,
						      unsigned int reg)
{
	struct rb_node *node = map->range_tree.rb_node;

	while (node) {
		struct regmap_range_node *this =
G
Geliang Tang 已提交
537
			rb_entry(node, struct regmap_range_node, node);
538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565

		if (reg < this->range_min)
			node = node->rb_left;
		else if (reg > this->range_max)
			node = node->rb_right;
		else
			return this;
	}

	return NULL;
}

static void regmap_range_exit(struct regmap *map)
{
	struct rb_node *next;
	struct regmap_range_node *range_node;

	next = rb_first(&map->range_tree);
	while (next) {
		range_node = rb_entry(next, struct regmap_range_node, node);
		next = rb_next(&range_node->node);
		rb_erase(&range_node->node, &map->range_tree);
		kfree(range_node);
	}

	kfree(map->selector_work_buf);
}

566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587
int regmap_attach_dev(struct device *dev, struct regmap *map,
		      const struct regmap_config *config)
{
	struct regmap **m;

	map->dev = dev;

	regmap_debugfs_init(map, config->name);

	/* Add a devres resource for dev_get_regmap() */
	m = devres_alloc(dev_get_regmap_release, sizeof(*m), GFP_KERNEL);
	if (!m) {
		regmap_debugfs_exit(map);
		return -ENOMEM;
	}
	*m = map;
	devres_add(dev, m);

	return 0;
}
EXPORT_SYMBOL_GPL(regmap_attach_dev);

588 589 590 591 592 593 594 595 596 597 598 599 600 601 602
static enum regmap_endian regmap_get_reg_endian(const struct regmap_bus *bus,
					const struct regmap_config *config)
{
	enum regmap_endian endian;

	/* Retrieve the endianness specification from the regmap config */
	endian = config->reg_format_endian;

	/* If the regmap config specified a non-default value, use that */
	if (endian != REGMAP_ENDIAN_DEFAULT)
		return endian;

	/* Retrieve the endianness specification from the bus config */
	if (bus && bus->reg_format_endian_default)
		endian = bus->reg_format_endian_default;
603

604 605 606 607 608 609 610 611
	/* If the bus specified a non-default value, use that */
	if (endian != REGMAP_ENDIAN_DEFAULT)
		return endian;

	/* Use this if no other value was found */
	return REGMAP_ENDIAN_BIG;
}

612 613 614
enum regmap_endian regmap_get_val_endian(struct device *dev,
					 const struct regmap_bus *bus,
					 const struct regmap_config *config)
615
{
616
	struct device_node *np;
617
	enum regmap_endian endian;
618

619
	/* Retrieve the endianness specification from the regmap config */
620
	endian = config->val_format_endian;
621

622
	/* If the regmap config specified a non-default value, use that */
623 624
	if (endian != REGMAP_ENDIAN_DEFAULT)
		return endian;
625

626 627 628
	/* If the dev and dev->of_node exist try to get endianness from DT */
	if (dev && dev->of_node) {
		np = dev->of_node;
629

630 631 632 633 634
		/* Parse the device's DT node for an endianness specification */
		if (of_property_read_bool(np, "big-endian"))
			endian = REGMAP_ENDIAN_BIG;
		else if (of_property_read_bool(np, "little-endian"))
			endian = REGMAP_ENDIAN_LITTLE;
635 636
		else if (of_property_read_bool(np, "native-endian"))
			endian = REGMAP_ENDIAN_NATIVE;
637 638 639 640 641

		/* If the endianness was specified in DT, use that */
		if (endian != REGMAP_ENDIAN_DEFAULT)
			return endian;
	}
642 643

	/* Retrieve the endianness specification from the bus config */
644 645
	if (bus && bus->val_format_endian_default)
		endian = bus->val_format_endian_default;
646

647
	/* If the bus specified a non-default value, use that */
648 649
	if (endian != REGMAP_ENDIAN_DEFAULT)
		return endian;
650 651

	/* Use this if no other value was found */
652
	return REGMAP_ENDIAN_BIG;
653
}
654
EXPORT_SYMBOL_GPL(regmap_get_val_endian);
655

656 657 658 659 660 661
struct regmap *__regmap_init(struct device *dev,
			     const struct regmap_bus *bus,
			     void *bus_context,
			     const struct regmap_config *config,
			     struct lock_class_key *lock_key,
			     const char *lock_name)
662
{
663
	struct regmap *map;
664
	int ret = -EINVAL;
665
	enum regmap_endian reg_endian, val_endian;
666
	int i, j;
667

668
	if (!config)
669
		goto err;
670 671 672 673 674 675 676

	map = kzalloc(sizeof(*map), GFP_KERNEL);
	if (map == NULL) {
		ret = -ENOMEM;
		goto err;
	}

677 678 679
	if (config->disable_locking) {
		map->lock = map->unlock = regmap_lock_unlock_empty;
	} else if (config->lock && config->unlock) {
680 681 682
		map->lock = config->lock;
		map->unlock = config->unlock;
		map->lock_arg = config->lock_arg;
683
	} else if (config->hwlock_id) {
684
#ifdef REGMAP_HWSPINLOCK
685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706
		map->hwlock = hwspin_lock_request_specific(config->hwlock_id);
		if (!map->hwlock) {
			ret = -ENXIO;
			goto err_map;
		}

		switch (config->hwlock_mode) {
		case HWLOCK_IRQSTATE:
			map->lock = regmap_lock_hwlock_irqsave;
			map->unlock = regmap_unlock_hwlock_irqrestore;
			break;
		case HWLOCK_IRQ:
			map->lock = regmap_lock_hwlock_irq;
			map->unlock = regmap_unlock_hwlock_irq;
			break;
		default:
			map->lock = regmap_lock_hwlock;
			map->unlock = regmap_unlock_hwlock;
			break;
		}

		map->lock_arg = map;
707 708
#else
		ret = -EINVAL;
B
Baolin Wang 已提交
709
		goto err_map;
710
#endif
711
	} else {
712 713
		if ((bus && bus->fast_io) ||
		    config->fast_io) {
714 715 716
			spin_lock_init(&map->spinlock);
			map->lock = regmap_lock_spinlock;
			map->unlock = regmap_unlock_spinlock;
717 718
			lockdep_set_class_and_name(&map->spinlock,
						   lock_key, lock_name);
719 720 721 722
		} else {
			mutex_init(&map->mutex);
			map->lock = regmap_lock_mutex;
			map->unlock = regmap_unlock_mutex;
723 724
			lockdep_set_class_and_name(&map->mutex,
						   lock_key, lock_name);
725 726
		}
		map->lock_arg = map;
727
	}
728 729 730 731 732 733 734 735 736 737

	/*
	 * When we write in fast-paths with regmap_bulk_write() don't allocate
	 * scratch buffers with sleeping allocations.
	 */
	if ((bus && bus->fast_io) || config->fast_io)
		map->alloc_flags = GFP_ATOMIC;
	else
		map->alloc_flags = GFP_KERNEL;

738
	map->format.reg_bytes = DIV_ROUND_UP(config->reg_bits, 8);
739
	map->format.pad_bytes = config->pad_bits / 8;
740
	map->format.val_bytes = DIV_ROUND_UP(config->val_bits, 8);
741 742
	map->format.buf_size = DIV_ROUND_UP(config->reg_bits +
			config->val_bits + config->pad_bits, 8);
743
	map->reg_shift = config->pad_bits % 8;
744 745 746 747
	if (config->reg_stride)
		map->reg_stride = config->reg_stride;
	else
		map->reg_stride = 1;
748 749 750 751
	if (is_power_of_2(map->reg_stride))
		map->reg_stride_order = ilog2(map->reg_stride);
	else
		map->reg_stride_order = -1;
752 753
	map->use_single_read = config->use_single_rw || !bus || !bus->read;
	map->use_single_write = config->use_single_rw || !bus || !bus->write;
754
	map->can_multi_write = config->can_multi_write && bus && bus->write;
755 756 757 758
	if (bus) {
		map->max_raw_read = bus->max_raw_read;
		map->max_raw_write = bus->max_raw_write;
	}
759 760
	map->dev = dev;
	map->bus = bus;
761
	map->bus_context = bus_context;
762
	map->max_register = config->max_register;
763 764 765 766
	map->wr_table = config->wr_table;
	map->rd_table = config->rd_table;
	map->volatile_table = config->volatile_table;
	map->precious_table = config->precious_table;
767 768 769
	map->writeable_reg = config->writeable_reg;
	map->readable_reg = config->readable_reg;
	map->volatile_reg = config->volatile_reg;
770
	map->precious_reg = config->precious_reg;
771
	map->cache_type = config->cache_type;
M
Mark Brown 已提交
772
	map->name = config->name;
773

774 775
	spin_lock_init(&map->async_lock);
	INIT_LIST_HEAD(&map->async_list);
M
Mark Brown 已提交
776
	INIT_LIST_HEAD(&map->async_free);
777 778
	init_waitqueue_head(&map->async_waitq);

779 780 781
	if (config->read_flag_mask || config->write_flag_mask) {
		map->read_flag_mask = config->read_flag_mask;
		map->write_flag_mask = config->write_flag_mask;
782
	} else if (bus) {
783 784 785
		map->read_flag_mask = bus->read_flag_mask;
	}

786 787 788 789
	if (!bus) {
		map->reg_read  = config->reg_read;
		map->reg_write = config->reg_write;

790 791 792 793 794 795
		map->defer_caching = false;
		goto skip_format_initialization;
	} else if (!bus->read || !bus->write) {
		map->reg_read = _regmap_bus_reg_read;
		map->reg_write = _regmap_bus_reg_write;

796 797 798 799
		map->defer_caching = false;
		goto skip_format_initialization;
	} else {
		map->reg_read  = _regmap_bus_read;
800
		map->reg_update_bits = bus->reg_update_bits;
801
	}
802

803 804
	reg_endian = regmap_get_reg_endian(bus, config);
	val_endian = regmap_get_val_endian(dev, bus, config);
805

806
	switch (config->reg_bits + map->reg_shift) {
807 808 809 810 811 812
	case 2:
		switch (config->val_bits) {
		case 6:
			map->format.format_write = regmap_format_2_6_write;
			break;
		default:
813
			goto err_hwlock;
814 815 816
		}
		break;

817 818 819 820 821 822
	case 4:
		switch (config->val_bits) {
		case 12:
			map->format.format_write = regmap_format_4_12_write;
			break;
		default:
823
			goto err_hwlock;
824 825 826 827 828 829 830 831 832
		}
		break;

	case 7:
		switch (config->val_bits) {
		case 9:
			map->format.format_write = regmap_format_7_9_write;
			break;
		default:
833
			goto err_hwlock;
834 835 836
		}
		break;

837 838 839 840 841 842
	case 10:
		switch (config->val_bits) {
		case 14:
			map->format.format_write = regmap_format_10_14_write;
			break;
		default:
843
			goto err_hwlock;
844 845 846
		}
		break;

847 848 849 850 851
	case 8:
		map->format.format_reg = regmap_format_8;
		break;

	case 16:
852 853 854 855
		switch (reg_endian) {
		case REGMAP_ENDIAN_BIG:
			map->format.format_reg = regmap_format_16_be;
			break;
856 857 858
		case REGMAP_ENDIAN_LITTLE:
			map->format.format_reg = regmap_format_16_le;
			break;
859 860 861 862
		case REGMAP_ENDIAN_NATIVE:
			map->format.format_reg = regmap_format_16_native;
			break;
		default:
863
			goto err_hwlock;
864
		}
865 866
		break;

867 868
	case 24:
		if (reg_endian != REGMAP_ENDIAN_BIG)
869
			goto err_hwlock;
870 871 872
		map->format.format_reg = regmap_format_24;
		break;

873
	case 32:
874 875 876 877
		switch (reg_endian) {
		case REGMAP_ENDIAN_BIG:
			map->format.format_reg = regmap_format_32_be;
			break;
878 879 880
		case REGMAP_ENDIAN_LITTLE:
			map->format.format_reg = regmap_format_32_le;
			break;
881 882 883 884
		case REGMAP_ENDIAN_NATIVE:
			map->format.format_reg = regmap_format_32_native;
			break;
		default:
885
			goto err_hwlock;
886
		}
887 888
		break;

X
Xiubo Li 已提交
889 890 891 892 893 894
#ifdef CONFIG_64BIT
	case 64:
		switch (reg_endian) {
		case REGMAP_ENDIAN_BIG:
			map->format.format_reg = regmap_format_64_be;
			break;
895 896 897
		case REGMAP_ENDIAN_LITTLE:
			map->format.format_reg = regmap_format_64_le;
			break;
X
Xiubo Li 已提交
898 899 900 901
		case REGMAP_ENDIAN_NATIVE:
			map->format.format_reg = regmap_format_64_native;
			break;
		default:
902
			goto err_hwlock;
X
Xiubo Li 已提交
903 904 905 906
		}
		break;
#endif

907
	default:
908
		goto err_hwlock;
909 910
	}

911 912 913
	if (val_endian == REGMAP_ENDIAN_NATIVE)
		map->format.parse_inplace = regmap_parse_inplace_noop;

914 915 916 917
	switch (config->val_bits) {
	case 8:
		map->format.format_val = regmap_format_8;
		map->format.parse_val = regmap_parse_8;
918
		map->format.parse_inplace = regmap_parse_inplace_noop;
919 920
		break;
	case 16:
921 922 923 924
		switch (val_endian) {
		case REGMAP_ENDIAN_BIG:
			map->format.format_val = regmap_format_16_be;
			map->format.parse_val = regmap_parse_16_be;
925
			map->format.parse_inplace = regmap_parse_16_be_inplace;
926
			break;
927 928 929 930 931
		case REGMAP_ENDIAN_LITTLE:
			map->format.format_val = regmap_format_16_le;
			map->format.parse_val = regmap_parse_16_le;
			map->format.parse_inplace = regmap_parse_16_le_inplace;
			break;
932 933 934 935 936
		case REGMAP_ENDIAN_NATIVE:
			map->format.format_val = regmap_format_16_native;
			map->format.parse_val = regmap_parse_16_native;
			break;
		default:
937
			goto err_hwlock;
938
		}
939
		break;
940
	case 24:
941
		if (val_endian != REGMAP_ENDIAN_BIG)
942
			goto err_hwlock;
943 944 945
		map->format.format_val = regmap_format_24;
		map->format.parse_val = regmap_parse_24;
		break;
946
	case 32:
947 948 949 950
		switch (val_endian) {
		case REGMAP_ENDIAN_BIG:
			map->format.format_val = regmap_format_32_be;
			map->format.parse_val = regmap_parse_32_be;
951
			map->format.parse_inplace = regmap_parse_32_be_inplace;
952
			break;
953 954 955 956 957
		case REGMAP_ENDIAN_LITTLE:
			map->format.format_val = regmap_format_32_le;
			map->format.parse_val = regmap_parse_32_le;
			map->format.parse_inplace = regmap_parse_32_le_inplace;
			break;
958 959 960 961 962
		case REGMAP_ENDIAN_NATIVE:
			map->format.format_val = regmap_format_32_native;
			map->format.parse_val = regmap_parse_32_native;
			break;
		default:
963
			goto err_hwlock;
964
		}
965
		break;
X
Xiubo Li 已提交
966
#ifdef CONFIG_64BIT
D
Dan Carpenter 已提交
967
	case 64:
X
Xiubo Li 已提交
968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983
		switch (val_endian) {
		case REGMAP_ENDIAN_BIG:
			map->format.format_val = regmap_format_64_be;
			map->format.parse_val = regmap_parse_64_be;
			map->format.parse_inplace = regmap_parse_64_be_inplace;
			break;
		case REGMAP_ENDIAN_LITTLE:
			map->format.format_val = regmap_format_64_le;
			map->format.parse_val = regmap_parse_64_le;
			map->format.parse_inplace = regmap_parse_64_le_inplace;
			break;
		case REGMAP_ENDIAN_NATIVE:
			map->format.format_val = regmap_format_64_native;
			map->format.parse_val = regmap_parse_64_native;
			break;
		default:
984
			goto err_hwlock;
X
Xiubo Li 已提交
985 986 987
		}
		break;
#endif
988 989
	}

990 991 992
	if (map->format.format_write) {
		if ((reg_endian != REGMAP_ENDIAN_BIG) ||
		    (val_endian != REGMAP_ENDIAN_BIG))
993
			goto err_hwlock;
994
		map->use_single_write = true;
995
	}
996

997 998
	if (!map->format.format_write &&
	    !(map->format.format_reg && map->format.format_val))
999
		goto err_hwlock;
1000

1001
	map->work_buf = kzalloc(map->format.buf_size, GFP_KERNEL);
1002 1003
	if (map->work_buf == NULL) {
		ret = -ENOMEM;
1004
		goto err_hwlock;
1005 1006
	}

1007 1008
	if (map->format.format_write) {
		map->defer_caching = false;
1009
		map->reg_write = _regmap_bus_formatted_write;
1010 1011
	} else if (map->format.format_val) {
		map->defer_caching = true;
1012
		map->reg_write = _regmap_bus_raw_write;
1013 1014 1015
	}

skip_format_initialization:
1016

1017
	map->range_tree = RB_ROOT;
M
Mark Brown 已提交
1018
	for (i = 0; i < config->num_ranges; i++) {
1019 1020 1021 1022
		const struct regmap_range_cfg *range_cfg = &config->ranges[i];
		struct regmap_range_node *new;

		/* Sanity check */
1023 1024 1025
		if (range_cfg->range_max < range_cfg->range_min) {
			dev_err(map->dev, "Invalid range %d: %d < %d\n", i,
				range_cfg->range_max, range_cfg->range_min);
1026
			goto err_range;
1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045
		}

		if (range_cfg->range_max > map->max_register) {
			dev_err(map->dev, "Invalid range %d: %d > %d\n", i,
				range_cfg->range_max, map->max_register);
			goto err_range;
		}

		if (range_cfg->selector_reg > map->max_register) {
			dev_err(map->dev,
				"Invalid range %d: selector out of map\n", i);
			goto err_range;
		}

		if (range_cfg->window_len == 0) {
			dev_err(map->dev, "Invalid range %d: window_len 0\n",
				i);
			goto err_range;
		}
1046 1047 1048

		/* Make sure, that this register range has no selector
		   or data window within its boundary */
M
Mark Brown 已提交
1049
		for (j = 0; j < config->num_ranges; j++) {
1050 1051 1052 1053 1054
			unsigned sel_reg = config->ranges[j].selector_reg;
			unsigned win_min = config->ranges[j].window_start;
			unsigned win_max = win_min +
					   config->ranges[j].window_len - 1;

1055 1056 1057 1058
			/* Allow data window inside its own virtual range */
			if (j == i)
				continue;

1059 1060
			if (range_cfg->range_min <= sel_reg &&
			    sel_reg <= range_cfg->range_max) {
1061 1062 1063
				dev_err(map->dev,
					"Range %d: selector for %d in window\n",
					i, j);
1064 1065 1066 1067 1068
				goto err_range;
			}

			if (!(win_max < range_cfg->range_min ||
			      win_min > range_cfg->range_max)) {
1069 1070 1071
				dev_err(map->dev,
					"Range %d: window for %d in window\n",
					i, j);
1072 1073 1074 1075 1076 1077 1078 1079 1080 1081
				goto err_range;
			}
		}

		new = kzalloc(sizeof(*new), GFP_KERNEL);
		if (new == NULL) {
			ret = -ENOMEM;
			goto err_range;
		}

1082
		new->map = map;
M
Mark Brown 已提交
1083
		new->name = range_cfg->name;
1084 1085 1086 1087 1088 1089 1090 1091
		new->range_min = range_cfg->range_min;
		new->range_max = range_cfg->range_max;
		new->selector_reg = range_cfg->selector_reg;
		new->selector_mask = range_cfg->selector_mask;
		new->selector_shift = range_cfg->selector_shift;
		new->window_start = range_cfg->window_start;
		new->window_len = range_cfg->window_len;

N
Nenghua Cao 已提交
1092
		if (!_regmap_range_add(map, new)) {
1093
			dev_err(map->dev, "Failed to add range %d\n", i);
1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106
			kfree(new);
			goto err_range;
		}

		if (map->selector_work_buf == NULL) {
			map->selector_work_buf =
				kzalloc(map->format.buf_size, GFP_KERNEL);
			if (map->selector_work_buf == NULL) {
				ret = -ENOMEM;
				goto err_range;
			}
		}
	}
1107

1108
	ret = regcache_init(map, config);
1109
	if (ret != 0)
1110 1111
		goto err_range;

1112
	if (dev) {
1113 1114 1115
		ret = regmap_attach_dev(dev, map, config);
		if (ret != 0)
			goto err_regcache;
1116
	}
M
Mark Brown 已提交
1117

1118 1119
	return map;

1120
err_regcache:
M
Mark Brown 已提交
1121
	regcache_exit(map);
1122 1123
err_range:
	regmap_range_exit(map);
1124
	kfree(map->work_buf);
1125
err_hwlock:
1126 1127
	if (IS_ENABLED(REGMAP_HWSPINLOCK) && map->hwlock)
		hwspin_lock_free(map->hwlock);
1128 1129 1130 1131 1132
err_map:
	kfree(map);
err:
	return ERR_PTR(ret);
}
1133
EXPORT_SYMBOL_GPL(__regmap_init);
1134

1135 1136 1137 1138 1139
static void devm_regmap_release(struct device *dev, void *res)
{
	regmap_exit(*(struct regmap **)res);
}

1140 1141 1142 1143 1144 1145
struct regmap *__devm_regmap_init(struct device *dev,
				  const struct regmap_bus *bus,
				  void *bus_context,
				  const struct regmap_config *config,
				  struct lock_class_key *lock_key,
				  const char *lock_name)
1146 1147 1148 1149 1150 1151 1152
{
	struct regmap **ptr, *regmap;

	ptr = devres_alloc(devm_regmap_release, sizeof(*ptr), GFP_KERNEL);
	if (!ptr)
		return ERR_PTR(-ENOMEM);

1153 1154
	regmap = __regmap_init(dev, bus, bus_context, config,
			       lock_key, lock_name);
1155 1156 1157 1158 1159 1160 1161 1162 1163
	if (!IS_ERR(regmap)) {
		*ptr = regmap;
		devres_add(dev, ptr);
	} else {
		devres_free(ptr);
	}

	return regmap;
}
1164
EXPORT_SYMBOL_GPL(__devm_regmap_init);
1165

1166 1167 1168 1169 1170 1171
static void regmap_field_init(struct regmap_field *rm_field,
	struct regmap *regmap, struct reg_field reg_field)
{
	rm_field->regmap = regmap;
	rm_field->reg = reg_field.reg;
	rm_field->shift = reg_field.lsb;
1172
	rm_field->mask = GENMASK(reg_field.msb, reg_field.lsb);
1173 1174
	rm_field->id_size = reg_field.id_size;
	rm_field->id_offset = reg_field.id_offset;
1175 1176 1177
}

/**
1178
 * devm_regmap_field_alloc() - Allocate and initialise a register field.
1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203
 *
 * @dev: Device that will be interacted with
 * @regmap: regmap bank in which this register field is located.
 * @reg_field: Register field with in the bank.
 *
 * The return value will be an ERR_PTR() on error or a valid pointer
 * to a struct regmap_field. The regmap_field will be automatically freed
 * by the device management code.
 */
struct regmap_field *devm_regmap_field_alloc(struct device *dev,
		struct regmap *regmap, struct reg_field reg_field)
{
	struct regmap_field *rm_field = devm_kzalloc(dev,
					sizeof(*rm_field), GFP_KERNEL);
	if (!rm_field)
		return ERR_PTR(-ENOMEM);

	regmap_field_init(rm_field, regmap, reg_field);

	return rm_field;

}
EXPORT_SYMBOL_GPL(devm_regmap_field_alloc);

/**
1204 1205
 * devm_regmap_field_free() - Free a register field allocated using
 *                            devm_regmap_field_alloc.
1206 1207 1208
 *
 * @dev: Device that will be interacted with
 * @field: regmap field which should be freed.
1209 1210 1211 1212
 *
 * Free register field allocated using devm_regmap_field_alloc(). Usually
 * drivers need not call this function, as the memory allocated via devm
 * will be freed as per device-driver life-cyle.
1213 1214 1215 1216 1217 1218 1219 1220 1221
 */
void devm_regmap_field_free(struct device *dev,
	struct regmap_field *field)
{
	devm_kfree(dev, field);
}
EXPORT_SYMBOL_GPL(devm_regmap_field_free);

/**
1222
 * regmap_field_alloc() - Allocate and initialise a register field.
1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245
 *
 * @regmap: regmap bank in which this register field is located.
 * @reg_field: Register field with in the bank.
 *
 * The return value will be an ERR_PTR() on error or a valid pointer
 * to a struct regmap_field. The regmap_field should be freed by the
 * user once its finished working with it using regmap_field_free().
 */
struct regmap_field *regmap_field_alloc(struct regmap *regmap,
		struct reg_field reg_field)
{
	struct regmap_field *rm_field = kzalloc(sizeof(*rm_field), GFP_KERNEL);

	if (!rm_field)
		return ERR_PTR(-ENOMEM);

	regmap_field_init(rm_field, regmap, reg_field);

	return rm_field;
}
EXPORT_SYMBOL_GPL(regmap_field_alloc);

/**
1246 1247
 * regmap_field_free() - Free register field allocated using
 *                       regmap_field_alloc.
1248 1249 1250 1251 1252 1253 1254 1255 1256
 *
 * @field: regmap field which should be freed.
 */
void regmap_field_free(struct regmap_field *field)
{
	kfree(field);
}
EXPORT_SYMBOL_GPL(regmap_field_free);

1257
/**
1258
 * regmap_reinit_cache() - Reinitialise the current register cache
1259 1260 1261 1262 1263 1264 1265 1266
 *
 * @map: Register map to operate on.
 * @config: New configuration.  Only the cache data will be used.
 *
 * Discard any existing register cache for the map and initialize a
 * new cache.  This can be used to restore the cache to defaults or to
 * update the cache configuration to reflect runtime discovery of the
 * hardware.
1267 1268 1269
 *
 * No explicit locking is done here, the user needs to ensure that
 * this function will not race with other calls to regmap.
1270 1271 1272 1273
 */
int regmap_reinit_cache(struct regmap *map, const struct regmap_config *config)
{
	regcache_exit(map);
1274
	regmap_debugfs_exit(map);
1275 1276 1277 1278 1279 1280 1281 1282

	map->max_register = config->max_register;
	map->writeable_reg = config->writeable_reg;
	map->readable_reg = config->readable_reg;
	map->volatile_reg = config->volatile_reg;
	map->precious_reg = config->precious_reg;
	map->cache_type = config->cache_type;

1283
	regmap_debugfs_init(map, config->name);
1284

1285 1286 1287
	map->cache_bypass = false;
	map->cache_only = false;

1288
	return regcache_init(map, config);
1289
}
1290
EXPORT_SYMBOL_GPL(regmap_reinit_cache);
1291

1292
/**
1293 1294 1295
 * regmap_exit() - Free a previously allocated register map
 *
 * @map: Register map to operate on.
1296 1297 1298
 */
void regmap_exit(struct regmap *map)
{
M
Mark Brown 已提交
1299 1300
	struct regmap_async *async;

1301
	regcache_exit(map);
1302
	regmap_debugfs_exit(map);
1303
	regmap_range_exit(map);
1304
	if (map->bus && map->bus->free_context)
1305
		map->bus->free_context(map->bus_context);
1306
	kfree(map->work_buf);
M
Mark Brown 已提交
1307 1308 1309 1310 1311 1312 1313 1314
	while (!list_empty(&map->async_free)) {
		async = list_first_entry_or_null(&map->async_free,
						 struct regmap_async,
						 list);
		list_del(&async->list);
		kfree(async->work_buf);
		kfree(async);
	}
1315 1316
	if (IS_ENABLED(REGMAP_HWSPINLOCK) && map->hwlock)
		hwspin_lock_free(map->hwlock);
1317 1318 1319 1320
	kfree(map);
}
EXPORT_SYMBOL_GPL(regmap_exit);

M
Mark Brown 已提交
1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336
static int dev_get_regmap_match(struct device *dev, void *res, void *data)
{
	struct regmap **r = res;
	if (!r || !*r) {
		WARN_ON(!r || !*r);
		return 0;
	}

	/* If the user didn't specify a name match any */
	if (data)
		return (*r)->name == data;
	else
		return 1;
}

/**
1337
 * dev_get_regmap() - Obtain the regmap (if any) for a device
M
Mark Brown 已提交
1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358
 *
 * @dev: Device to retrieve the map for
 * @name: Optional name for the register map, usually NULL.
 *
 * Returns the regmap for the device if one is present, or NULL.  If
 * name is specified then it must match the name specified when
 * registering the device, if it is NULL then the first regmap found
 * will be used.  Devices with multiple register maps are very rare,
 * generic code should normally not need to specify a name.
 */
struct regmap *dev_get_regmap(struct device *dev, const char *name)
{
	struct regmap **r = devres_find(dev, dev_get_regmap_release,
					dev_get_regmap_match, (void *)name);

	if (!r)
		return NULL;
	return *r;
}
EXPORT_SYMBOL_GPL(dev_get_regmap);

T
Tuomas Tynkkynen 已提交
1359
/**
1360
 * regmap_get_device() - Obtain the device from a regmap
T
Tuomas Tynkkynen 已提交
1361 1362 1363 1364 1365 1366 1367 1368 1369
 *
 * @map: Register map to operate on.
 *
 * Returns the underlying device that the regmap has been created for.
 */
struct device *regmap_get_device(struct regmap *map)
{
	return map->dev;
}
1370
EXPORT_SYMBOL_GPL(regmap_get_device);
T
Tuomas Tynkkynen 已提交
1371

1372
static int _regmap_select_page(struct regmap *map, unsigned int *reg,
1373
			       struct regmap_range_node *range,
1374 1375 1376 1377 1378 1379 1380 1381
			       unsigned int val_num)
{
	void *orig_work_buf;
	unsigned int win_offset;
	unsigned int win_page;
	bool page_chg;
	int ret;

1382 1383
	win_offset = (*reg - range->range_min) % range->window_len;
	win_page = (*reg - range->range_min) / range->window_len;
1384

1385 1386 1387 1388
	if (val_num > 1) {
		/* Bulk write shouldn't cross range boundary */
		if (*reg + val_num - 1 > range->range_max)
			return -EINVAL;
1389

1390 1391 1392 1393
		/* ... or single page boundary */
		if (val_num > range->window_len - win_offset)
			return -EINVAL;
	}
1394

1395 1396 1397 1398 1399 1400 1401 1402
	/* It is possible to have selector register inside data window.
	   In that case, selector register is located on every page and
	   it needs no page switching, when accessed alone. */
	if (val_num > 1 ||
	    range->window_start + win_offset != range->selector_reg) {
		/* Use separate work_buf during page switching */
		orig_work_buf = map->work_buf;
		map->work_buf = map->selector_work_buf;
1403

1404 1405 1406
		ret = _regmap_update_bits(map, range->selector_reg,
					  range->selector_mask,
					  win_page << range->selector_shift,
1407
					  &page_chg, false);
1408

1409
		map->work_buf = orig_work_buf;
1410

1411
		if (ret != 0)
1412
			return ret;
1413 1414
	}

1415 1416
	*reg = range->window_start + win_offset;

1417 1418 1419
	return 0;
}

1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434
static void regmap_set_work_buf_flag_mask(struct regmap *map, int max_bytes,
					  unsigned long mask)
{
	u8 *buf;
	int i;

	if (!mask || !map->work_buf)
		return;

	buf = map->work_buf;

	for (i = 0; i < max_bytes; i++)
		buf[i] |= (mask >> (8 * i)) & 0xff;
}

1435
int _regmap_raw_write(struct regmap *map, unsigned int reg,
1436
		      const void *val, size_t val_len)
1437
{
1438
	struct regmap_range_node *range;
1439 1440 1441
	unsigned long flags;
	void *work_val = map->work_buf + map->format.reg_bytes +
		map->format.pad_bytes;
1442 1443 1444
	void *buf;
	int ret = -ENOTSUPP;
	size_t len;
1445 1446
	int i;

1447
	WARN_ON(!map->bus);
1448

1449 1450 1451
	/* Check for unwritable registers before we start */
	if (map->writeable_reg)
		for (i = 0; i < val_len / map->format.val_bytes; i++)
1452
			if (!map->writeable_reg(map->dev,
1453
					       reg + regmap_get_offset(map, i)))
1454
				return -EINVAL;
1455

1456 1457 1458 1459
	if (!map->cache_bypass && map->format.parse_val) {
		unsigned int ival;
		int val_bytes = map->format.val_bytes;
		for (i = 0; i < val_len / val_bytes; i++) {
1460
			ival = map->format.parse_val(val + (i * val_bytes));
1461 1462
			ret = regcache_write(map,
					     reg + regmap_get_offset(map, i),
1463
					     ival);
1464 1465
			if (ret) {
				dev_err(map->dev,
1466
					"Error in caching of register: %x ret: %d\n",
1467 1468 1469 1470 1471 1472 1473 1474 1475 1476
					reg + i, ret);
				return ret;
			}
		}
		if (map->cache_only) {
			map->cache_dirty = true;
			return 0;
		}
	}

1477 1478
	range = _regmap_range_lookup(map, reg);
	if (range) {
1479 1480 1481 1482 1483 1484
		int val_num = val_len / map->format.val_bytes;
		int win_offset = (reg - range->range_min) % range->window_len;
		int win_residue = range->window_len - win_offset;

		/* If the write goes beyond the end of the window split it */
		while (val_num > win_residue) {
1485
			dev_dbg(map->dev, "Writing window %d/%zu\n",
1486 1487
				win_residue, val_len / map->format.val_bytes);
			ret = _regmap_raw_write(map, reg, val, win_residue *
1488
						map->format.val_bytes);
1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502
			if (ret != 0)
				return ret;

			reg += win_residue;
			val_num -= win_residue;
			val += win_residue * map->format.val_bytes;
			val_len -= win_residue * map->format.val_bytes;

			win_offset = (reg - range->range_min) %
				range->window_len;
			win_residue = range->window_len - win_offset;
		}

		ret = _regmap_select_page(map, &reg, range, val_num);
1503
		if (ret != 0)
1504 1505
			return ret;
	}
1506

1507
	map->format.format_reg(map->work_buf, reg, map->reg_shift);
1508 1509
	regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
				      map->write_flag_mask);
1510

1511 1512 1513 1514 1515 1516 1517 1518 1519 1520
	/*
	 * Essentially all I/O mechanisms will be faster with a single
	 * buffer to write.  Since register syncs often generate raw
	 * writes of single registers optimise that case.
	 */
	if (val != work_val && val_len == map->format.val_bytes) {
		memcpy(work_val, val, map->format.val_bytes);
		val = work_val;
	}

1521
	if (map->async && map->bus->async_write) {
M
Mark Brown 已提交
1522
		struct regmap_async *async;
1523

1524
		trace_regmap_async_write_start(map, reg, val_len);
1525

M
Mark Brown 已提交
1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544
		spin_lock_irqsave(&map->async_lock, flags);
		async = list_first_entry_or_null(&map->async_free,
						 struct regmap_async,
						 list);
		if (async)
			list_del(&async->list);
		spin_unlock_irqrestore(&map->async_lock, flags);

		if (!async) {
			async = map->bus->async_alloc();
			if (!async)
				return -ENOMEM;

			async->work_buf = kzalloc(map->format.buf_size,
						  GFP_KERNEL | GFP_DMA);
			if (!async->work_buf) {
				kfree(async);
				return -ENOMEM;
			}
1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556
		}

		async->map = map;

		/* If the caller supplied the value we can use it safely. */
		memcpy(async->work_buf, map->work_buf, map->format.pad_bytes +
		       map->format.reg_bytes + map->format.val_bytes);

		spin_lock_irqsave(&map->async_lock, flags);
		list_add_tail(&async->list, &map->async_list);
		spin_unlock_irqrestore(&map->async_lock, flags);

1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568
		if (val != work_val)
			ret = map->bus->async_write(map->bus_context,
						    async->work_buf,
						    map->format.reg_bytes +
						    map->format.pad_bytes,
						    val, val_len, async);
		else
			ret = map->bus->async_write(map->bus_context,
						    async->work_buf,
						    map->format.reg_bytes +
						    map->format.pad_bytes +
						    val_len, NULL, 0, async);
1569 1570 1571 1572 1573 1574

		if (ret != 0) {
			dev_err(map->dev, "Failed to schedule write: %d\n",
				ret);

			spin_lock_irqsave(&map->async_lock, flags);
M
Mark Brown 已提交
1575
			list_move(&async->list, &map->async_free);
1576 1577
			spin_unlock_irqrestore(&map->async_lock, flags);
		}
M
Mark Brown 已提交
1578 1579

		return ret;
1580 1581
	}

1582
	trace_regmap_hw_write_start(map, reg, val_len / map->format.val_bytes);
M
Mark Brown 已提交
1583

1584 1585 1586 1587
	/* If we're doing a single register write we can probably just
	 * send the work_buf directly, otherwise try to do a gather
	 * write.
	 */
1588
	if (val == work_val)
1589
		ret = map->bus->write(map->bus_context, map->work_buf,
1590 1591 1592
				      map->format.reg_bytes +
				      map->format.pad_bytes +
				      val_len);
1593
	else if (map->bus->gather_write)
1594
		ret = map->bus->gather_write(map->bus_context, map->work_buf,
1595 1596
					     map->format.reg_bytes +
					     map->format.pad_bytes,
1597 1598
					     val, val_len);

1599
	/* If that didn't work fall back on linearising by hand. */
1600
	if (ret == -ENOTSUPP) {
1601 1602
		len = map->format.reg_bytes + map->format.pad_bytes + val_len;
		buf = kzalloc(len, GFP_KERNEL);
1603 1604 1605 1606
		if (!buf)
			return -ENOMEM;

		memcpy(buf, map->work_buf, map->format.reg_bytes);
1607 1608
		memcpy(buf + map->format.reg_bytes + map->format.pad_bytes,
		       val, val_len);
1609
		ret = map->bus->write(map->bus_context, buf, len);
1610 1611

		kfree(buf);
1612
	} else if (ret != 0 && !map->cache_bypass && map->format.parse_val) {
1613 1614 1615 1616 1617
		/* regcache_drop_region() takes lock that we already have,
		 * thus call map->cache_ops->drop() directly
		 */
		if (map->cache_ops && map->cache_ops->drop)
			map->cache_ops->drop(map, reg, reg + 1);
1618 1619
	}

1620
	trace_regmap_hw_write_done(map, reg, val_len / map->format.val_bytes);
M
Mark Brown 已提交
1621

1622 1623 1624
	return ret;
}

1625 1626 1627 1628 1629 1630 1631
/**
 * regmap_can_raw_write - Test if regmap_raw_write() is supported
 *
 * @map: Map to check.
 */
bool regmap_can_raw_write(struct regmap *map)
{
1632 1633
	return map->bus && map->bus->write && map->format.format_val &&
		map->format.format_reg;
1634 1635 1636
}
EXPORT_SYMBOL_GPL(regmap_can_raw_write);

1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658
/**
 * regmap_get_raw_read_max - Get the maximum size we can read
 *
 * @map: Map to check.
 */
size_t regmap_get_raw_read_max(struct regmap *map)
{
	return map->max_raw_read;
}
EXPORT_SYMBOL_GPL(regmap_get_raw_read_max);

/**
 * regmap_get_raw_write_max - Get the maximum size we can read
 *
 * @map: Map to check.
 */
size_t regmap_get_raw_write_max(struct regmap *map)
{
	return map->max_raw_write;
}
EXPORT_SYMBOL_GPL(regmap_get_raw_write_max);

1659 1660 1661 1662 1663 1664 1665
static int _regmap_bus_formatted_write(void *context, unsigned int reg,
				       unsigned int val)
{
	int ret;
	struct regmap_range_node *range;
	struct regmap *map = context;

1666
	WARN_ON(!map->bus || !map->format.format_write);
1667 1668 1669 1670 1671 1672 1673 1674 1675 1676

	range = _regmap_range_lookup(map, reg);
	if (range) {
		ret = _regmap_select_page(map, &reg, range, 1);
		if (ret != 0)
			return ret;
	}

	map->format.format_write(map, reg, val);

1677
	trace_regmap_hw_write_start(map, reg, 1);
1678 1679 1680 1681

	ret = map->bus->write(map->bus_context, map->work_buf,
			      map->format.buf_size);

1682
	trace_regmap_hw_write_done(map, reg, 1);
1683 1684 1685 1686

	return ret;
}

1687 1688 1689 1690 1691 1692 1693 1694
static int _regmap_bus_reg_write(void *context, unsigned int reg,
				 unsigned int val)
{
	struct regmap *map = context;

	return map->bus->reg_write(map->bus_context, reg, val);
}

1695 1696 1697 1698 1699
static int _regmap_bus_raw_write(void *context, unsigned int reg,
				 unsigned int val)
{
	struct regmap *map = context;

1700
	WARN_ON(!map->bus || !map->format.format_val);
1701 1702 1703 1704 1705 1706 1707

	map->format.format_val(map->work_buf + map->format.reg_bytes
			       + map->format.pad_bytes, val, 0);
	return _regmap_raw_write(map, reg,
				 map->work_buf +
				 map->format.reg_bytes +
				 map->format.pad_bytes,
1708
				 map->format.val_bytes);
1709 1710
}

1711 1712 1713 1714 1715
static inline void *_regmap_map_get_context(struct regmap *map)
{
	return (map->bus) ? map : map->bus_context;
}

1716 1717
int _regmap_write(struct regmap *map, unsigned int reg,
		  unsigned int val)
1718
{
M
Mark Brown 已提交
1719
	int ret;
1720
	void *context = _regmap_map_get_context(map);
1721

1722 1723 1724
	if (!regmap_writeable(map, reg))
		return -EIO;

1725
	if (!map->cache_bypass && !map->defer_caching) {
1726 1727 1728
		ret = regcache_write(map, reg, val);
		if (ret != 0)
			return ret;
1729 1730
		if (map->cache_only) {
			map->cache_dirty = true;
1731
			return 0;
1732
		}
1733 1734
	}

1735
#ifdef LOG_DEVICE
1736
	if (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0)
1737 1738 1739
		dev_info(map->dev, "%x <= %x\n", reg, val);
#endif

1740
	trace_regmap_reg_write(map, reg, val);
M
Mark Brown 已提交
1741

1742
	return map->reg_write(context, reg, val);
1743 1744 1745
}

/**
1746
 * regmap_write() - Write a value to a single register
1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758
 *
 * @map: Register map to write to
 * @reg: Register to write to
 * @val: Value to be written
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_write(struct regmap *map, unsigned int reg, unsigned int val)
{
	int ret;

1759
	if (!IS_ALIGNED(reg, map->reg_stride))
1760 1761
		return -EINVAL;

1762
	map->lock(map->lock_arg);
1763 1764 1765

	ret = _regmap_write(map, reg, val);

1766
	map->unlock(map->lock_arg);
1767 1768 1769 1770 1771

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_write);

1772
/**
1773
 * regmap_write_async() - Write a value to a single register asynchronously
1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785
 *
 * @map: Register map to write to
 * @reg: Register to write to
 * @val: Value to be written
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_write_async(struct regmap *map, unsigned int reg, unsigned int val)
{
	int ret;

1786
	if (!IS_ALIGNED(reg, map->reg_stride))
1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802
		return -EINVAL;

	map->lock(map->lock_arg);

	map->async = true;

	ret = _regmap_write(map, reg, val);

	map->async = false;

	map->unlock(map->lock_arg);

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_write_async);

1803
/**
1804
 * regmap_raw_write() - Write raw values to one or more registers
1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823
 *
 * @map: Register map to write to
 * @reg: Initial register to write to
 * @val: Block of data to be written, laid out for direct transmission to the
 *       device
 * @val_len: Length of data pointed to by val.
 *
 * This function is intended to be used for things like firmware
 * download where a large block of data needs to be transferred to the
 * device.  No formatting will be done on the data provided.
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_raw_write(struct regmap *map, unsigned int reg,
		     const void *val, size_t val_len)
{
	int ret;

1824
	if (!regmap_can_raw_write(map))
1825
		return -EINVAL;
1826 1827
	if (val_len % map->format.val_bytes)
		return -EINVAL;
1828 1829
	if (map->max_raw_write && map->max_raw_write > val_len)
		return -E2BIG;
1830

1831
	map->lock(map->lock_arg);
1832

1833
	ret = _regmap_raw_write(map, reg, val, val_len);
1834

1835
	map->unlock(map->lock_arg);
1836 1837 1838 1839 1840

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_raw_write);

1841
/**
1842 1843
 * regmap_field_update_bits_base() - Perform a read/modify/write cycle a
 *                                   register field.
1844 1845 1846 1847
 *
 * @field: Register field to write to
 * @mask: Bitmask to change
 * @val: Value to be written
1848 1849 1850
 * @change: Boolean indicating if a write was done
 * @async: Boolean indicating asynchronously
 * @force: Boolean indicating use force update
1851
 *
1852 1853 1854
 * Perform a read/modify/write cycle on the register field with change,
 * async, force option.
 *
1855 1856 1857
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
1858 1859 1860
int regmap_field_update_bits_base(struct regmap_field *field,
				  unsigned int mask, unsigned int val,
				  bool *change, bool async, bool force)
1861 1862 1863
{
	mask = (mask << field->shift) & field->mask;

1864 1865 1866
	return regmap_update_bits_base(field->regmap, field->reg,
				       mask, val << field->shift,
				       change, async, force);
1867
}
1868
EXPORT_SYMBOL_GPL(regmap_field_update_bits_base);
1869

1870
/**
1871 1872
 * regmap_fields_update_bits_base() - Perform a read/modify/write cycle a
 *                                    register field with port ID
1873 1874 1875 1876 1877
 *
 * @field: Register field to write to
 * @id: port ID
 * @mask: Bitmask to change
 * @val: Value to be written
1878 1879 1880
 * @change: Boolean indicating if a write was done
 * @async: Boolean indicating asynchronously
 * @force: Boolean indicating use force update
1881 1882 1883 1884
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
1885 1886 1887
int regmap_fields_update_bits_base(struct regmap_field *field,  unsigned int id,
				   unsigned int mask, unsigned int val,
				   bool *change, bool async, bool force)
1888 1889 1890 1891 1892 1893
{
	if (id >= field->id_size)
		return -EINVAL;

	mask = (mask << field->shift) & field->mask;

1894 1895 1896 1897
	return regmap_update_bits_base(field->regmap,
				       field->reg + (field->id_offset * id),
				       mask, val << field->shift,
				       change, async, force);
1898
}
1899
EXPORT_SYMBOL_GPL(regmap_fields_update_bits_base);
1900

1901 1902
/**
 * regmap_bulk_write() - Write multiple registers to the device
1903 1904 1905 1906 1907 1908 1909
 *
 * @map: Register map to write to
 * @reg: First register to be write from
 * @val: Block of data to be written, in native register size for device
 * @val_count: Number of registers to write
 *
 * This function is intended to be used for writing a large block of
1910
 * data to the device either in single transfer or multiple transfer.
1911 1912 1913 1914 1915 1916 1917 1918 1919
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_bulk_write(struct regmap *map, unsigned int reg, const void *val,
		     size_t val_count)
{
	int ret = 0, i;
	size_t val_bytes = map->format.val_bytes;
1920
	size_t total_size = val_bytes * val_count;
1921

1922
	if (!IS_ALIGNED(reg, map->reg_stride))
1923
		return -EINVAL;
1924

1925 1926
	/*
	 * Some devices don't support bulk write, for
1927 1928 1929 1930 1931
	 * them we have a series of single write operations in the first two if
	 * blocks.
	 *
	 * The first if block is used for memory mapped io. It does not allow
	 * val_bytes of 3 for example.
1932 1933
	 * The second one is for busses that do not provide raw I/O.
	 * The third one is used for busses which do not have these limitations
1934
	 * and can write arbitrary value lengths.
1935
	 */
1936
	if (!map->bus) {
1937
		map->lock(map->lock_arg);
1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959
		for (i = 0; i < val_count; i++) {
			unsigned int ival;

			switch (val_bytes) {
			case 1:
				ival = *(u8 *)(val + (i * val_bytes));
				break;
			case 2:
				ival = *(u16 *)(val + (i * val_bytes));
				break;
			case 4:
				ival = *(u32 *)(val + (i * val_bytes));
				break;
#ifdef CONFIG_64BIT
			case 8:
				ival = *(u64 *)(val + (i * val_bytes));
				break;
#endif
			default:
				ret = -EINVAL;
				goto out;
			}
1960

1961 1962 1963
			ret = _regmap_write(map,
					    reg + regmap_get_offset(map, i),
					    ival);
1964 1965 1966
			if (ret != 0)
				goto out;
		}
1967 1968
out:
		map->unlock(map->lock_arg);
1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994
	} else if (map->bus && !map->format.parse_inplace) {
		const u8 *u8 = val;
		const u16 *u16 = val;
		const u32 *u32 = val;
		unsigned int ival;

		for (i = 0; i < val_count; i++) {
			switch (map->format.val_bytes) {
			case 4:
				ival = u32[i];
				break;
			case 2:
				ival = u16[i];
				break;
			case 1:
				ival = u8[i];
				break;
			default:
				return -EINVAL;
			}

			ret = regmap_write(map, reg + (i * map->reg_stride),
					   ival);
			if (ret)
				return ret;
		}
1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008
	} else if (map->use_single_write ||
		   (map->max_raw_write && map->max_raw_write < total_size)) {
		int chunk_stride = map->reg_stride;
		size_t chunk_size = val_bytes;
		size_t chunk_count = val_count;

		if (!map->use_single_write) {
			chunk_size = map->max_raw_write;
			if (chunk_size % val_bytes)
				chunk_size -= chunk_size % val_bytes;
			chunk_count = total_size / chunk_size;
			chunk_stride *= chunk_size / val_bytes;
		}

2009
		map->lock(map->lock_arg);
2010 2011
		/* Write as many bytes as possible with chunk_size */
		for (i = 0; i < chunk_count; i++) {
2012
			ret = _regmap_raw_write(map,
2013 2014 2015
						reg + (i * chunk_stride),
						val + (i * chunk_size),
						chunk_size);
2016 2017 2018
			if (ret)
				break;
		}
2019 2020 2021 2022 2023 2024 2025

		/* Write remaining bytes */
		if (!ret && chunk_size * i < total_size) {
			ret = _regmap_raw_write(map, reg + (i * chunk_stride),
						val + (i * chunk_size),
						total_size - i * chunk_size);
		}
2026
		map->unlock(map->lock_arg);
2027
	} else {
2028 2029
		void *wval;

2030 2031 2032
		if (!val_count)
			return -EINVAL;

2033
		wval = kmemdup(val, val_count * val_bytes, map->alloc_flags);
2034 2035
		if (!wval) {
			dev_err(map->dev, "Error in memory allocation\n");
2036
			return -ENOMEM;
2037 2038
		}
		for (i = 0; i < val_count * val_bytes; i += val_bytes)
2039
			map->format.parse_inplace(wval + i);
2040

2041
		map->lock(map->lock_arg);
2042
		ret = _regmap_raw_write(map, reg, wval, val_bytes * val_count);
2043
		map->unlock(map->lock_arg);
2044 2045

		kfree(wval);
2046
	}
2047 2048 2049 2050
	return ret;
}
EXPORT_SYMBOL_GPL(regmap_bulk_write);

2051 2052 2053 2054 2055
/*
 * _regmap_raw_multi_reg_write()
 *
 * the (register,newvalue) pairs in regs have not been formatted, but
 * they are all in the same page and have been changed to being page
X
Xiubo Li 已提交
2056
 * relative. The page register has been written if that was necessary.
2057 2058
 */
static int _regmap_raw_multi_reg_write(struct regmap *map,
2059
				       const struct reg_sequence *regs,
2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071
				       size_t num_regs)
{
	int ret;
	void *buf;
	int i;
	u8 *u8;
	size_t val_bytes = map->format.val_bytes;
	size_t reg_bytes = map->format.reg_bytes;
	size_t pad_bytes = map->format.pad_bytes;
	size_t pair_size = reg_bytes + pad_bytes + val_bytes;
	size_t len = pair_size * num_regs;

2072 2073 2074
	if (!len)
		return -EINVAL;

2075 2076 2077 2078 2079 2080 2081 2082 2083
	buf = kzalloc(len, GFP_KERNEL);
	if (!buf)
		return -ENOMEM;

	/* We have to linearise by hand. */

	u8 = buf;

	for (i = 0; i < num_regs; i++) {
2084 2085
		unsigned int reg = regs[i].reg;
		unsigned int val = regs[i].def;
2086
		trace_regmap_hw_write_start(map, reg, 1);
2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100
		map->format.format_reg(u8, reg, map->reg_shift);
		u8 += reg_bytes + pad_bytes;
		map->format.format_val(u8, val, 0);
		u8 += val_bytes;
	}
	u8 = buf;
	*u8 |= map->write_flag_mask;

	ret = map->bus->write(map->bus_context, buf, len);

	kfree(buf);

	for (i = 0; i < num_regs; i++) {
		int reg = regs[i].reg;
2101
		trace_regmap_hw_write_done(map, reg, 1);
2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115
	}
	return ret;
}

static unsigned int _regmap_register_page(struct regmap *map,
					  unsigned int reg,
					  struct regmap_range_node *range)
{
	unsigned int win_page = (reg - range->range_min) / range->window_len;

	return win_page;
}

static int _regmap_range_multi_paged_reg_write(struct regmap *map,
2116
					       struct reg_sequence *regs,
2117 2118 2119 2120
					       size_t num_regs)
{
	int ret;
	int i, n;
2121
	struct reg_sequence *base;
2122
	unsigned int this_page = 0;
2123
	unsigned int page_change = 0;
2124 2125 2126
	/*
	 * the set of registers are not neccessarily in order, but
	 * since the order of write must be preserved this algorithm
2127 2128
	 * chops the set each time the page changes. This also applies
	 * if there is a delay required at any point in the sequence.
2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143
	 */
	base = regs;
	for (i = 0, n = 0; i < num_regs; i++, n++) {
		unsigned int reg = regs[i].reg;
		struct regmap_range_node *range;

		range = _regmap_range_lookup(map, reg);
		if (range) {
			unsigned int win_page = _regmap_register_page(map, reg,
								      range);

			if (i == 0)
				this_page = win_page;
			if (win_page != this_page) {
				this_page = win_page;
2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163
				page_change = 1;
			}
		}

		/* If we have both a page change and a delay make sure to
		 * write the regs and apply the delay before we change the
		 * page.
		 */

		if (page_change || regs[i].delay_us) {

				/* For situations where the first write requires
				 * a delay we need to make sure we don't call
				 * raw_multi_reg_write with n=0
				 * This can't occur with page breaks as we
				 * never write on the first iteration
				 */
				if (regs[i].delay_us && i == 0)
					n = 1;

2164 2165 2166
				ret = _regmap_raw_multi_reg_write(map, base, n);
				if (ret != 0)
					return ret;
2167 2168 2169 2170

				if (regs[i].delay_us)
					udelay(regs[i].delay_us);

2171 2172
				base += n;
				n = 0;
2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183

				if (page_change) {
					ret = _regmap_select_page(map,
								  &base[n].reg,
								  range, 1);
					if (ret != 0)
						return ret;

					page_change = 0;
				}

2184
		}
2185

2186 2187 2188 2189 2190 2191
	}
	if (n > 0)
		return _regmap_raw_multi_reg_write(map, base, n);
	return 0;
}

2192
static int _regmap_multi_reg_write(struct regmap *map,
2193
				   const struct reg_sequence *regs,
2194
				   size_t num_regs)
2195
{
2196 2197 2198 2199 2200 2201 2202 2203
	int i;
	int ret;

	if (!map->can_multi_write) {
		for (i = 0; i < num_regs; i++) {
			ret = _regmap_write(map, regs[i].reg, regs[i].def);
			if (ret != 0)
				return ret;
2204 2205 2206

			if (regs[i].delay_us)
				udelay(regs[i].delay_us);
2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218
		}
		return 0;
	}

	if (!map->format.parse_inplace)
		return -EINVAL;

	if (map->writeable_reg)
		for (i = 0; i < num_regs; i++) {
			int reg = regs[i].reg;
			if (!map->writeable_reg(map->dev, reg))
				return -EINVAL;
2219
			if (!IS_ALIGNED(reg, map->reg_stride))
2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241
				return -EINVAL;
		}

	if (!map->cache_bypass) {
		for (i = 0; i < num_regs; i++) {
			unsigned int val = regs[i].def;
			unsigned int reg = regs[i].reg;
			ret = regcache_write(map, reg, val);
			if (ret) {
				dev_err(map->dev,
				"Error in caching of register: %x ret: %d\n",
								reg, ret);
				return ret;
			}
		}
		if (map->cache_only) {
			map->cache_dirty = true;
			return 0;
		}
	}

	WARN_ON(!map->bus);
2242 2243

	for (i = 0; i < num_regs; i++) {
2244 2245
		unsigned int reg = regs[i].reg;
		struct regmap_range_node *range;
2246 2247 2248 2249

		/* Coalesce all the writes between a page break or a delay
		 * in a sequence
		 */
2250
		range = _regmap_range_lookup(map, reg);
2251
		if (range || regs[i].delay_us) {
2252 2253
			size_t len = sizeof(struct reg_sequence)*num_regs;
			struct reg_sequence *base = kmemdup(regs, len,
2254 2255 2256 2257 2258 2259 2260
							   GFP_KERNEL);
			if (!base)
				return -ENOMEM;
			ret = _regmap_range_multi_paged_reg_write(map, base,
								  num_regs);
			kfree(base);

2261 2262 2263
			return ret;
		}
	}
2264
	return _regmap_raw_multi_reg_write(map, regs, num_regs);
2265 2266
}

2267 2268
/**
 * regmap_multi_reg_write() - Write multiple registers to the device
2269 2270 2271 2272 2273
 *
 * @map: Register map to write to
 * @regs: Array of structures containing register,value to be written
 * @num_regs: Number of registers to write
 *
2274 2275 2276
 * Write multiple registers to the device where the set of register, value
 * pairs are supplied in any order, possibly not all in a single range.
 *
2277
 * The 'normal' block write mode will send ultimately send data on the
2278
 * target bus as R,V1,V2,V3,..,Vn where successively higher registers are
2279 2280 2281
 * addressed. However, this alternative block multi write mode will send
 * the data as R1,V1,R2,V2,..,Rn,Vn on the target bus. The target device
 * must of course support the mode.
2282
 *
2283 2284
 * A value of zero will be returned on success, a negative errno will be
 * returned in error cases.
2285
 */
2286
int regmap_multi_reg_write(struct regmap *map, const struct reg_sequence *regs,
2287
			   int num_regs)
2288
{
2289
	int ret;
2290 2291 2292

	map->lock(map->lock_arg);

2293 2294
	ret = _regmap_multi_reg_write(map, regs, num_regs);

2295 2296 2297 2298 2299 2300
	map->unlock(map->lock_arg);

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_multi_reg_write);

2301 2302 2303
/**
 * regmap_multi_reg_write_bypassed() - Write multiple registers to the
 *                                     device but not the cache
2304 2305 2306 2307 2308
 *
 * @map: Register map to write to
 * @regs: Array of structures containing register,value to be written
 * @num_regs: Number of registers to write
 *
2309 2310 2311
 * Write multiple registers to the device but not the cache where the set
 * of register are supplied in any order.
 *
2312 2313 2314 2315 2316 2317 2318
 * This function is intended to be used for writing a large block of data
 * atomically to the device in single transfer for those I2C client devices
 * that implement this alternative block write mode.
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
2319
int regmap_multi_reg_write_bypassed(struct regmap *map,
2320
				    const struct reg_sequence *regs,
2321
				    int num_regs)
2322
{
2323 2324
	int ret;
	bool bypass;
2325 2326 2327

	map->lock(map->lock_arg);

2328 2329 2330 2331 2332 2333 2334
	bypass = map->cache_bypass;
	map->cache_bypass = true;

	ret = _regmap_multi_reg_write(map, regs, num_regs);

	map->cache_bypass = bypass;

2335 2336 2337 2338
	map->unlock(map->lock_arg);

	return ret;
}
2339
EXPORT_SYMBOL_GPL(regmap_multi_reg_write_bypassed);
2340

2341
/**
2342 2343
 * regmap_raw_write_async() - Write raw values to one or more registers
 *                            asynchronously
2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369
 *
 * @map: Register map to write to
 * @reg: Initial register to write to
 * @val: Block of data to be written, laid out for direct transmission to the
 *       device.  Must be valid until regmap_async_complete() is called.
 * @val_len: Length of data pointed to by val.
 *
 * This function is intended to be used for things like firmware
 * download where a large block of data needs to be transferred to the
 * device.  No formatting will be done on the data provided.
 *
 * If supported by the underlying bus the write will be scheduled
 * asynchronously, helping maximise I/O speed on higher speed buses
 * like SPI.  regmap_async_complete() can be called to ensure that all
 * asynchrnous writes have been completed.
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_raw_write_async(struct regmap *map, unsigned int reg,
			   const void *val, size_t val_len)
{
	int ret;

	if (val_len % map->format.val_bytes)
		return -EINVAL;
2370
	if (!IS_ALIGNED(reg, map->reg_stride))
2371 2372 2373 2374
		return -EINVAL;

	map->lock(map->lock_arg);

2375 2376 2377 2378 2379
	map->async = true;

	ret = _regmap_raw_write(map, reg, val, val_len);

	map->async = false;
2380 2381 2382 2383 2384 2385 2386

	map->unlock(map->lock_arg);

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_raw_write_async);

2387 2388 2389
static int _regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
			    unsigned int val_len)
{
2390
	struct regmap_range_node *range;
2391 2392
	int ret;

2393
	WARN_ON(!map->bus);
2394

2395 2396 2397
	if (!map->bus || !map->bus->read)
		return -EINVAL;

2398 2399 2400 2401
	range = _regmap_range_lookup(map, reg);
	if (range) {
		ret = _regmap_select_page(map, &reg, range,
					  val_len / map->format.val_bytes);
2402
		if (ret != 0)
2403 2404
			return ret;
	}
2405

2406
	map->format.format_reg(map->work_buf, reg, map->reg_shift);
2407 2408
	regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
				      map->read_flag_mask);
2409
	trace_regmap_hw_read_start(map, reg, val_len / map->format.val_bytes);
M
Mark Brown 已提交
2410

2411
	ret = map->bus->read(map->bus_context, map->work_buf,
2412
			     map->format.reg_bytes + map->format.pad_bytes,
M
Mark Brown 已提交
2413
			     val, val_len);
2414

2415
	trace_regmap_hw_read_done(map, reg, val_len / map->format.val_bytes);
M
Mark Brown 已提交
2416 2417

	return ret;
2418 2419
}

2420 2421 2422 2423 2424 2425 2426 2427
static int _regmap_bus_reg_read(void *context, unsigned int reg,
				unsigned int *val)
{
	struct regmap *map = context;

	return map->bus->reg_read(map->bus_context, reg, val);
}

2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443
static int _regmap_bus_read(void *context, unsigned int reg,
			    unsigned int *val)
{
	int ret;
	struct regmap *map = context;

	if (!map->format.parse_val)
		return -EINVAL;

	ret = _regmap_raw_read(map, reg, map->work_buf, map->format.val_bytes);
	if (ret == 0)
		*val = map->format.parse_val(map->work_buf);

	return ret;
}

2444 2445 2446 2447
static int _regmap_read(struct regmap *map, unsigned int reg,
			unsigned int *val)
{
	int ret;
2448 2449
	void *context = _regmap_map_get_context(map);

2450 2451 2452 2453 2454 2455 2456 2457 2458
	if (!map->cache_bypass) {
		ret = regcache_read(map, reg, val);
		if (ret == 0)
			return 0;
	}

	if (map->cache_only)
		return -EBUSY;

2459 2460 2461
	if (!regmap_readable(map, reg))
		return -EIO;

2462
	ret = map->reg_read(context, reg, val);
M
Mark Brown 已提交
2463
	if (ret == 0) {
2464
#ifdef LOG_DEVICE
2465
		if (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0)
2466 2467 2468
			dev_info(map->dev, "%x => %x\n", reg, *val);
#endif

2469
		trace_regmap_reg_read(map, reg, *val);
2470

2471 2472 2473
		if (!map->cache_bypass)
			regcache_write(map, reg, *val);
	}
2474

2475 2476 2477 2478
	return ret;
}

/**
2479
 * regmap_read() - Read a value from a single register
2480
 *
2481
 * @map: Register map to read from
2482 2483 2484 2485 2486 2487 2488 2489 2490 2491
 * @reg: Register to be read from
 * @val: Pointer to store read value
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val)
{
	int ret;

2492
	if (!IS_ALIGNED(reg, map->reg_stride))
2493 2494
		return -EINVAL;

2495
	map->lock(map->lock_arg);
2496 2497 2498

	ret = _regmap_read(map, reg, val);

2499
	map->unlock(map->lock_arg);
2500 2501 2502 2503 2504 2505

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_read);

/**
2506
 * regmap_raw_read() - Read raw data from the device
2507
 *
2508
 * @map: Register map to read from
2509 2510 2511 2512 2513 2514 2515 2516 2517 2518
 * @reg: First register to be read from
 * @val: Pointer to store read value
 * @val_len: Size of data to read
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
		    size_t val_len)
{
2519 2520 2521 2522
	size_t val_bytes = map->format.val_bytes;
	size_t val_count = val_len / val_bytes;
	unsigned int v;
	int ret, i;
2523

2524 2525
	if (!map->bus)
		return -EINVAL;
2526 2527
	if (val_len % map->format.val_bytes)
		return -EINVAL;
2528
	if (!IS_ALIGNED(reg, map->reg_stride))
2529
		return -EINVAL;
2530 2531
	if (val_count == 0)
		return -EINVAL;
2532

2533
	map->lock(map->lock_arg);
2534

2535 2536
	if (regmap_volatile_range(map, reg, val_count) || map->cache_bypass ||
	    map->cache_type == REGCACHE_NONE) {
2537 2538 2539 2540
		if (!map->bus->read) {
			ret = -ENOTSUPP;
			goto out;
		}
2541 2542 2543 2544
		if (map->max_raw_read && map->max_raw_read < val_len) {
			ret = -E2BIG;
			goto out;
		}
2545

2546 2547 2548 2549 2550 2551 2552 2553
		/* Physical block read if there's no cache involved */
		ret = _regmap_raw_read(map, reg, val, val_len);

	} else {
		/* Otherwise go word by word for the cache; should be low
		 * cost as we expect to hit the cache.
		 */
		for (i = 0; i < val_count; i++) {
2554
			ret = _regmap_read(map, reg + regmap_get_offset(map, i),
2555
					   &v);
2556 2557 2558
			if (ret != 0)
				goto out;

2559
			map->format.format_val(val + (i * val_bytes), v, 0);
2560 2561
		}
	}
2562

2563
 out:
2564
	map->unlock(map->lock_arg);
2565 2566 2567 2568 2569

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_raw_read);

2570
/**
2571
 * regmap_field_read() - Read a value to a single register field
2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594
 *
 * @field: Register field to read from
 * @val: Pointer to store read value
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_field_read(struct regmap_field *field, unsigned int *val)
{
	int ret;
	unsigned int reg_val;
	ret = regmap_read(field->regmap, field->reg, &reg_val);
	if (ret != 0)
		return ret;

	reg_val &= field->mask;
	reg_val >>= field->shift;
	*val = reg_val;

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_field_read);

2595
/**
2596
 * regmap_fields_read() - Read a value to a single register field with port ID
2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627
 *
 * @field: Register field to read from
 * @id: port ID
 * @val: Pointer to store read value
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_fields_read(struct regmap_field *field, unsigned int id,
		       unsigned int *val)
{
	int ret;
	unsigned int reg_val;

	if (id >= field->id_size)
		return -EINVAL;

	ret = regmap_read(field->regmap,
			  field->reg + (field->id_offset * id),
			  &reg_val);
	if (ret != 0)
		return ret;

	reg_val &= field->mask;
	reg_val >>= field->shift;
	*val = reg_val;

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_fields_read);

2628
/**
2629
 * regmap_bulk_read() - Read multiple registers from the device
2630
 *
2631
 * @map: Register map to read from
2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643
 * @reg: First register to be read from
 * @val: Pointer to store read value, in native register size for device
 * @val_count: Number of registers to read
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_bulk_read(struct regmap *map, unsigned int reg, void *val,
		     size_t val_count)
{
	int ret, i;
	size_t val_bytes = map->format.val_bytes;
2644
	bool vol = regmap_volatile_range(map, reg, val_count);
2645

2646
	if (!IS_ALIGNED(reg, map->reg_stride))
2647
		return -EINVAL;
2648

2649
	if (map->bus && map->format.parse_inplace && (vol || map->cache_type == REGCACHE_NONE)) {
2650 2651 2652 2653
		/*
		 * Some devices does not support bulk read, for
		 * them we have a series of single read operations.
		 */
2654 2655 2656 2657
		size_t total_size = val_bytes * val_count;

		if (!map->use_single_read &&
		    (!map->max_raw_read || map->max_raw_read > total_size)) {
2658 2659 2660 2661
			ret = regmap_raw_read(map, reg, val,
					      val_bytes * val_count);
			if (ret != 0)
				return ret;
2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698
		} else {
			/*
			 * Some devices do not support bulk read or do not
			 * support large bulk reads, for them we have a series
			 * of read operations.
			 */
			int chunk_stride = map->reg_stride;
			size_t chunk_size = val_bytes;
			size_t chunk_count = val_count;

			if (!map->use_single_read) {
				chunk_size = map->max_raw_read;
				if (chunk_size % val_bytes)
					chunk_size -= chunk_size % val_bytes;
				chunk_count = total_size / chunk_size;
				chunk_stride *= chunk_size / val_bytes;
			}

			/* Read bytes that fit into a multiple of chunk_size */
			for (i = 0; i < chunk_count; i++) {
				ret = regmap_raw_read(map,
						      reg + (i * chunk_stride),
						      val + (i * chunk_size),
						      chunk_size);
				if (ret != 0)
					return ret;
			}

			/* Read remaining bytes */
			if (chunk_size * i < total_size) {
				ret = regmap_raw_read(map,
						      reg + (i * chunk_stride),
						      val + (i * chunk_size),
						      total_size - i * chunk_size);
				if (ret != 0)
					return ret;
			}
2699
		}
2700 2701

		for (i = 0; i < val_count * val_bytes; i += val_bytes)
2702
			map->format.parse_inplace(val + i);
2703 2704
	} else {
		for (i = 0; i < val_count; i++) {
2705
			unsigned int ival;
2706
			ret = regmap_read(map, reg + regmap_get_offset(map, i),
2707
					  &ival);
2708 2709
			if (ret != 0)
				return ret;
2710 2711 2712 2713 2714 2715 2716 2717 2718 2719

			if (map->format.format_val) {
				map->format.format_val(val + (i * val_bytes), ival, 0);
			} else {
				/* Devices providing read and write
				 * operations can use the bulk I/O
				 * functions if they define a val_bytes,
				 * we assume that the values are native
				 * endian.
				 */
2720
#ifdef CONFIG_64BIT
X
Xiubo Li 已提交
2721
				u64 *u64 = val;
2722
#endif
2723 2724 2725 2726 2727
				u32 *u32 = val;
				u16 *u16 = val;
				u8 *u8 = val;

				switch (map->format.val_bytes) {
X
Xiubo Li 已提交
2728 2729 2730 2731 2732
#ifdef CONFIG_64BIT
				case 8:
					u64[i] = ival;
					break;
#endif
2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745
				case 4:
					u32[i] = ival;
					break;
				case 2:
					u16[i] = ival;
					break;
				case 1:
					u8[i] = ival;
					break;
				default:
					return -EINVAL;
				}
			}
2746 2747
		}
	}
2748 2749 2750 2751 2752

	return 0;
}
EXPORT_SYMBOL_GPL(regmap_bulk_read);

2753 2754
static int _regmap_update_bits(struct regmap *map, unsigned int reg,
			       unsigned int mask, unsigned int val,
2755
			       bool *change, bool force_write)
2756 2757
{
	int ret;
2758
	unsigned int tmp, orig;
2759

2760 2761
	if (change)
		*change = false;
2762

2763 2764 2765
	if (regmap_volatile(map, reg) && map->reg_update_bits) {
		ret = map->reg_update_bits(map->bus_context, reg, mask, val);
		if (ret == 0 && change)
2766
			*change = true;
2767
	} else {
2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779
		ret = _regmap_read(map, reg, &orig);
		if (ret != 0)
			return ret;

		tmp = orig & ~mask;
		tmp |= val & mask;

		if (force_write || (tmp != orig)) {
			ret = _regmap_write(map, reg, tmp);
			if (ret == 0 && change)
				*change = true;
		}
2780
	}
2781 2782 2783

	return ret;
}
2784 2785

/**
2786
 * regmap_update_bits_base() - Perform a read/modify/write cycle on a register
2787 2788 2789 2790 2791 2792
 *
 * @map: Register map to update
 * @reg: Register to update
 * @mask: Bitmask to change
 * @val: New value for bitmask
 * @change: Boolean indicating if a write was done
2793 2794
 * @async: Boolean indicating asynchronously
 * @force: Boolean indicating use force update
2795
 *
2796 2797 2798 2799 2800 2801 2802 2803
 * Perform a read/modify/write cycle on a register map with change, async, force
 * options.
 *
 * If async is true:
 *
 * With most buses the read must be done synchronously so this is most useful
 * for devices with a cache which do not need to interact with the hardware to
 * determine the current register value.
2804 2805 2806
 *
 * Returns zero for success, a negative number on error.
 */
2807 2808 2809
int regmap_update_bits_base(struct regmap *map, unsigned int reg,
			    unsigned int mask, unsigned int val,
			    bool *change, bool async, bool force)
2810 2811 2812 2813 2814
{
	int ret;

	map->lock(map->lock_arg);

2815
	map->async = async;
2816

2817
	ret = _regmap_update_bits(map, reg, mask, val, change, force);
2818 2819 2820 2821 2822 2823 2824

	map->async = false;

	map->unlock(map->lock_arg);

	return ret;
}
2825
EXPORT_SYMBOL_GPL(regmap_update_bits_base);
2826

2827 2828 2829 2830 2831
void regmap_async_complete_cb(struct regmap_async *async, int ret)
{
	struct regmap *map = async->map;
	bool wake;

2832
	trace_regmap_async_io_complete(map);
2833

2834
	spin_lock(&map->async_lock);
M
Mark Brown 已提交
2835
	list_move(&async->list, &map->async_free);
2836 2837 2838 2839 2840 2841 2842 2843 2844 2845
	wake = list_empty(&map->async_list);

	if (ret != 0)
		map->async_ret = ret;

	spin_unlock(&map->async_lock);

	if (wake)
		wake_up(&map->async_waitq);
}
2846
EXPORT_SYMBOL_GPL(regmap_async_complete_cb);
2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860

static int regmap_async_is_done(struct regmap *map)
{
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&map->async_lock, flags);
	ret = list_empty(&map->async_list);
	spin_unlock_irqrestore(&map->async_lock, flags);

	return ret;
}

/**
2861
 * regmap_async_complete - Ensure all asynchronous I/O has completed.
2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873
 *
 * @map: Map to operate on.
 *
 * Blocks until any pending asynchronous I/O has completed.  Returns
 * an error code for any failed I/O operations.
 */
int regmap_async_complete(struct regmap *map)
{
	unsigned long flags;
	int ret;

	/* Nothing to do with no async support */
2874
	if (!map->bus || !map->bus->async_write)
2875 2876
		return 0;

2877
	trace_regmap_async_complete_start(map);
2878

2879 2880 2881 2882 2883 2884 2885
	wait_event(map->async_waitq, regmap_async_is_done(map));

	spin_lock_irqsave(&map->async_lock, flags);
	ret = map->async_ret;
	map->async_ret = 0;
	spin_unlock_irqrestore(&map->async_lock, flags);

2886
	trace_regmap_async_complete_done(map);
2887

2888 2889
	return ret;
}
2890
EXPORT_SYMBOL_GPL(regmap_async_complete);
2891

M
Mark Brown 已提交
2892
/**
2893 2894
 * regmap_register_patch - Register and apply register updates to be applied
 *                         on device initialistion
M
Mark Brown 已提交
2895 2896 2897 2898 2899 2900 2901 2902 2903 2904
 *
 * @map: Register map to apply updates to.
 * @regs: Values to update.
 * @num_regs: Number of entries in regs.
 *
 * Register a set of register updates to be applied to the device
 * whenever the device registers are synchronised with the cache and
 * apply them immediately.  Typically this is used to apply
 * corrections to be applied to the device defaults on startup, such
 * as the updates some vendors provide to undocumented registers.
2905 2906 2907
 *
 * The caller must ensure that this function cannot be called
 * concurrently with either itself or regcache_sync().
M
Mark Brown 已提交
2908
 */
2909
int regmap_register_patch(struct regmap *map, const struct reg_sequence *regs,
M
Mark Brown 已提交
2910 2911
			  int num_regs)
{
2912
	struct reg_sequence *p;
2913
	int ret;
M
Mark Brown 已提交
2914 2915
	bool bypass;

2916 2917 2918 2919
	if (WARN_ONCE(num_regs <= 0, "invalid registers number (%d)\n",
	    num_regs))
		return 0;

2920
	p = krealloc(map->patch,
2921
		     sizeof(struct reg_sequence) * (map->patch_regs + num_regs),
2922 2923 2924 2925 2926
		     GFP_KERNEL);
	if (p) {
		memcpy(p + map->patch_regs, regs, num_regs * sizeof(*regs));
		map->patch = p;
		map->patch_regs += num_regs;
M
Mark Brown 已提交
2927
	} else {
2928
		return -ENOMEM;
M
Mark Brown 已提交
2929 2930
	}

2931
	map->lock(map->lock_arg);
M
Mark Brown 已提交
2932 2933 2934 2935

	bypass = map->cache_bypass;

	map->cache_bypass = true;
2936
	map->async = true;
M
Mark Brown 已提交
2937

2938
	ret = _regmap_multi_reg_write(map, regs, num_regs);
M
Mark Brown 已提交
2939

2940
	map->async = false;
M
Mark Brown 已提交
2941 2942
	map->cache_bypass = bypass;

2943
	map->unlock(map->lock_arg);
M
Mark Brown 已提交
2944

2945 2946
	regmap_async_complete(map);

M
Mark Brown 已提交
2947 2948 2949 2950
	return ret;
}
EXPORT_SYMBOL_GPL(regmap_register_patch);

2951 2952 2953 2954
/**
 * regmap_get_val_bytes() - Report the size of a register value
 *
 * @map: Register map to operate on.
2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967
 *
 * Report the size of a register value, mainly intended to for use by
 * generic infrastructure built on top of regmap.
 */
int regmap_get_val_bytes(struct regmap *map)
{
	if (map->format.format_write)
		return -EINVAL;

	return map->format.val_bytes;
}
EXPORT_SYMBOL_GPL(regmap_get_val_bytes);

2968
/**
2969 2970 2971
 * regmap_get_max_register() - Report the max register value
 *
 * @map: Register map to operate on.
2972 2973 2974 2975 2976 2977 2978 2979 2980 2981
 *
 * Report the max register value, mainly intended to for use by
 * generic infrastructure built on top of regmap.
 */
int regmap_get_max_register(struct regmap *map)
{
	return map->max_register ? map->max_register : -EINVAL;
}
EXPORT_SYMBOL_GPL(regmap_get_max_register);

2982
/**
2983 2984 2985
 * regmap_get_reg_stride() - Report the register address stride
 *
 * @map: Register map to operate on.
2986 2987 2988 2989 2990 2991 2992 2993 2994 2995
 *
 * Report the register address stride, mainly intended to for use by
 * generic infrastructure built on top of regmap.
 */
int regmap_get_reg_stride(struct regmap *map)
{
	return map->reg_stride;
}
EXPORT_SYMBOL_GPL(regmap_get_reg_stride);

N
Nenghua Cao 已提交
2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007
int regmap_parse_val(struct regmap *map, const void *buf,
			unsigned int *val)
{
	if (!map->format.parse_val)
		return -EINVAL;

	*val = map->format.parse_val(buf);

	return 0;
}
EXPORT_SYMBOL_GPL(regmap_parse_val);

3008 3009 3010 3011 3012 3013 3014
static int __init regmap_initcall(void)
{
	regmap_debugfs_initcall();

	return 0;
}
postcore_initcall(regmap_initcall);