regmap.c 71.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12
/*
 * Register map access API
 *
 * Copyright 2011 Wolfson Microelectronics plc
 *
 * Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

13
#include <linux/device.h>
14
#include <linux/slab.h>
15
#include <linux/export.h>
16 17
#include <linux/mutex.h>
#include <linux/err.h>
18
#include <linux/of.h>
19
#include <linux/rbtree.h>
20
#include <linux/sched.h>
21
#include <linux/delay.h>
22

M
Mark Brown 已提交
23
#define CREATE_TRACE_POINTS
24
#include "trace.h"
M
Mark Brown 已提交
25

26
#include "internal.h"
27

28 29 30 31 32 33 34 35 36 37
/*
 * Sometimes for failures during very early init the trace
 * infrastructure isn't available early enough to be used.  For this
 * sort of problem defining LOG_DEVICE will add printks for basic
 * register I/O on a specific device.
 */
#undef LOG_DEVICE

static int _regmap_update_bits(struct regmap *map, unsigned int reg,
			       unsigned int mask, unsigned int val,
38
			       bool *change, bool force_write);
39

40 41
static int _regmap_bus_reg_read(void *context, unsigned int reg,
				unsigned int *val);
42 43
static int _regmap_bus_read(void *context, unsigned int reg,
			    unsigned int *val);
44 45
static int _regmap_bus_formatted_write(void *context, unsigned int reg,
				       unsigned int val);
46 47
static int _regmap_bus_reg_write(void *context, unsigned int reg,
				 unsigned int val);
48 49
static int _regmap_bus_raw_write(void *context, unsigned int reg,
				 unsigned int val);
50

51 52 53 54 55 56 57 58 59 60 61 62 63 64
bool regmap_reg_in_ranges(unsigned int reg,
			  const struct regmap_range *ranges,
			  unsigned int nranges)
{
	const struct regmap_range *r;
	int i;

	for (i = 0, r = ranges; i < nranges; i++, r++)
		if (regmap_reg_in_range(reg, r))
			return true;
	return false;
}
EXPORT_SYMBOL_GPL(regmap_reg_in_ranges);

65 66
bool regmap_check_range_table(struct regmap *map, unsigned int reg,
			      const struct regmap_access_table *table)
67 68 69 70 71 72 73 74 75 76 77 78
{
	/* Check "no ranges" first */
	if (regmap_reg_in_ranges(reg, table->no_ranges, table->n_no_ranges))
		return false;

	/* In case zero "yes ranges" are supplied, any reg is OK */
	if (!table->n_yes_ranges)
		return true;

	return regmap_reg_in_ranges(reg, table->yes_ranges,
				    table->n_yes_ranges);
}
79
EXPORT_SYMBOL_GPL(regmap_check_range_table);
80

81 82 83 84 85 86 87 88
bool regmap_writeable(struct regmap *map, unsigned int reg)
{
	if (map->max_register && reg > map->max_register)
		return false;

	if (map->writeable_reg)
		return map->writeable_reg(map->dev, reg);

89
	if (map->wr_table)
90
		return regmap_check_range_table(map, reg, map->wr_table);
91

92 93 94 95 96
	return true;
}

bool regmap_readable(struct regmap *map, unsigned int reg)
{
97 98 99
	if (!map->reg_read)
		return false;

100 101 102
	if (map->max_register && reg > map->max_register)
		return false;

103 104 105
	if (map->format.format_write)
		return false;

106 107 108
	if (map->readable_reg)
		return map->readable_reg(map->dev, reg);

109
	if (map->rd_table)
110
		return regmap_check_range_table(map, reg, map->rd_table);
111

112 113 114 115 116
	return true;
}

bool regmap_volatile(struct regmap *map, unsigned int reg)
{
117
	if (!map->format.format_write && !regmap_readable(map, reg))
118 119 120 121 122
		return false;

	if (map->volatile_reg)
		return map->volatile_reg(map->dev, reg);

123
	if (map->volatile_table)
124
		return regmap_check_range_table(map, reg, map->volatile_table);
125

126 127 128 129
	if (map->cache_ops)
		return false;
	else
		return true;
130 131 132 133
}

bool regmap_precious(struct regmap *map, unsigned int reg)
{
134
	if (!regmap_readable(map, reg))
135 136 137 138 139
		return false;

	if (map->precious_reg)
		return map->precious_reg(map->dev, reg);

140
	if (map->precious_table)
141
		return regmap_check_range_table(map, reg, map->precious_table);
142

143 144 145
	return false;
}

146
static bool regmap_volatile_range(struct regmap *map, unsigned int reg,
P
Paul Bolle 已提交
147
	size_t num)
148 149 150 151 152 153 154 155 156 157
{
	unsigned int i;

	for (i = 0; i < num; i++)
		if (!regmap_volatile(map, reg + i))
			return false;

	return true;
}

158 159 160 161 162 163 164 165
static void regmap_format_2_6_write(struct regmap *map,
				     unsigned int reg, unsigned int val)
{
	u8 *out = map->work_buf;

	*out = (reg << 6) | val;
}

166 167 168 169 170 171 172 173 174 175 176 177 178 179
static void regmap_format_4_12_write(struct regmap *map,
				     unsigned int reg, unsigned int val)
{
	__be16 *out = map->work_buf;
	*out = cpu_to_be16((reg << 12) | val);
}

static void regmap_format_7_9_write(struct regmap *map,
				    unsigned int reg, unsigned int val)
{
	__be16 *out = map->work_buf;
	*out = cpu_to_be16((reg << 9) | val);
}

180 181 182 183 184 185 186 187 188 189
static void regmap_format_10_14_write(struct regmap *map,
				    unsigned int reg, unsigned int val)
{
	u8 *out = map->work_buf;

	out[2] = val;
	out[1] = (val >> 8) | (reg << 6);
	out[0] = reg >> 2;
}

190
static void regmap_format_8(void *buf, unsigned int val, unsigned int shift)
191 192 193
{
	u8 *b = buf;

194
	b[0] = val << shift;
195 196
}

197
static void regmap_format_16_be(void *buf, unsigned int val, unsigned int shift)
198 199 200
{
	__be16 *b = buf;

201
	b[0] = cpu_to_be16(val << shift);
202 203
}

204 205 206 207 208 209 210
static void regmap_format_16_le(void *buf, unsigned int val, unsigned int shift)
{
	__le16 *b = buf;

	b[0] = cpu_to_le16(val << shift);
}

211 212 213 214 215 216
static void regmap_format_16_native(void *buf, unsigned int val,
				    unsigned int shift)
{
	*(u16 *)buf = val << shift;
}

217
static void regmap_format_24(void *buf, unsigned int val, unsigned int shift)
218 219 220
{
	u8 *b = buf;

221 222
	val <<= shift;

223 224 225 226 227
	b[0] = val >> 16;
	b[1] = val >> 8;
	b[2] = val;
}

228
static void regmap_format_32_be(void *buf, unsigned int val, unsigned int shift)
229 230 231
{
	__be32 *b = buf;

232
	b[0] = cpu_to_be32(val << shift);
233 234
}

235 236 237 238 239 240 241
static void regmap_format_32_le(void *buf, unsigned int val, unsigned int shift)
{
	__le32 *b = buf;

	b[0] = cpu_to_le32(val << shift);
}

242 243 244 245 246 247
static void regmap_format_32_native(void *buf, unsigned int val,
				    unsigned int shift)
{
	*(u32 *)buf = val << shift;
}

X
Xiubo Li 已提交
248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
#ifdef CONFIG_64BIT
static void regmap_format_64_be(void *buf, unsigned int val, unsigned int shift)
{
	__be64 *b = buf;

	b[0] = cpu_to_be64(val << shift);
}

static void regmap_format_64_le(void *buf, unsigned int val, unsigned int shift)
{
	__le64 *b = buf;

	b[0] = cpu_to_le64(val << shift);
}

static void regmap_format_64_native(void *buf, unsigned int val,
				    unsigned int shift)
{
	*(u64 *)buf = val << shift;
}
#endif

270
static void regmap_parse_inplace_noop(void *buf)
271
{
272 273 274 275 276
}

static unsigned int regmap_parse_8(const void *buf)
{
	const u8 *b = buf;
277 278 279 280

	return b[0];
}

281 282 283 284 285 286 287
static unsigned int regmap_parse_16_be(const void *buf)
{
	const __be16 *b = buf;

	return be16_to_cpu(b[0]);
}

288 289 290 291 292 293 294
static unsigned int regmap_parse_16_le(const void *buf)
{
	const __le16 *b = buf;

	return le16_to_cpu(b[0]);
}

295
static void regmap_parse_16_be_inplace(void *buf)
296 297 298 299 300 301
{
	__be16 *b = buf;

	b[0] = be16_to_cpu(b[0]);
}

302 303 304 305 306 307 308
static void regmap_parse_16_le_inplace(void *buf)
{
	__le16 *b = buf;

	b[0] = le16_to_cpu(b[0]);
}

309
static unsigned int regmap_parse_16_native(const void *buf)
310 311 312 313
{
	return *(u16 *)buf;
}

314
static unsigned int regmap_parse_24(const void *buf)
315
{
316
	const u8 *b = buf;
317 318 319 320 321 322 323
	unsigned int ret = b[2];
	ret |= ((unsigned int)b[1]) << 8;
	ret |= ((unsigned int)b[0]) << 16;

	return ret;
}

324 325 326 327 328 329 330
static unsigned int regmap_parse_32_be(const void *buf)
{
	const __be32 *b = buf;

	return be32_to_cpu(b[0]);
}

331 332 333 334 335 336 337
static unsigned int regmap_parse_32_le(const void *buf)
{
	const __le32 *b = buf;

	return le32_to_cpu(b[0]);
}

338
static void regmap_parse_32_be_inplace(void *buf)
339 340 341 342 343 344
{
	__be32 *b = buf;

	b[0] = be32_to_cpu(b[0]);
}

345 346 347 348 349 350 351
static void regmap_parse_32_le_inplace(void *buf)
{
	__le32 *b = buf;

	b[0] = le32_to_cpu(b[0]);
}

352
static unsigned int regmap_parse_32_native(const void *buf)
353 354 355 356
{
	return *(u32 *)buf;
}

X
Xiubo Li 已提交
357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391
#ifdef CONFIG_64BIT
static unsigned int regmap_parse_64_be(const void *buf)
{
	const __be64 *b = buf;

	return be64_to_cpu(b[0]);
}

static unsigned int regmap_parse_64_le(const void *buf)
{
	const __le64 *b = buf;

	return le64_to_cpu(b[0]);
}

static void regmap_parse_64_be_inplace(void *buf)
{
	__be64 *b = buf;

	b[0] = be64_to_cpu(b[0]);
}

static void regmap_parse_64_le_inplace(void *buf)
{
	__le64 *b = buf;

	b[0] = le64_to_cpu(b[0]);
}

static unsigned int regmap_parse_64_native(const void *buf)
{
	return *(u64 *)buf;
}
#endif

392
static void regmap_lock_mutex(void *__map)
393
{
394
	struct regmap *map = __map;
395 396 397
	mutex_lock(&map->mutex);
}

398
static void regmap_unlock_mutex(void *__map)
399
{
400
	struct regmap *map = __map;
401 402 403
	mutex_unlock(&map->mutex);
}

404
static void regmap_lock_spinlock(void *__map)
405
__acquires(&map->spinlock)
406
{
407
	struct regmap *map = __map;
408 409 410 411
	unsigned long flags;

	spin_lock_irqsave(&map->spinlock, flags);
	map->spinlock_flags = flags;
412 413
}

414
static void regmap_unlock_spinlock(void *__map)
415
__releases(&map->spinlock)
416
{
417
	struct regmap *map = __map;
418
	spin_unlock_irqrestore(&map->spinlock, map->spinlock_flags);
419 420
}

M
Mark Brown 已提交
421 422 423 424 425 426 427 428 429
static void dev_get_regmap_release(struct device *dev, void *res)
{
	/*
	 * We don't actually have anything to do here; the goal here
	 * is not to manage the regmap but to provide a simple way to
	 * get the regmap back given a struct device.
	 */
}

430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490
static bool _regmap_range_add(struct regmap *map,
			      struct regmap_range_node *data)
{
	struct rb_root *root = &map->range_tree;
	struct rb_node **new = &(root->rb_node), *parent = NULL;

	while (*new) {
		struct regmap_range_node *this =
			container_of(*new, struct regmap_range_node, node);

		parent = *new;
		if (data->range_max < this->range_min)
			new = &((*new)->rb_left);
		else if (data->range_min > this->range_max)
			new = &((*new)->rb_right);
		else
			return false;
	}

	rb_link_node(&data->node, parent, new);
	rb_insert_color(&data->node, root);

	return true;
}

static struct regmap_range_node *_regmap_range_lookup(struct regmap *map,
						      unsigned int reg)
{
	struct rb_node *node = map->range_tree.rb_node;

	while (node) {
		struct regmap_range_node *this =
			container_of(node, struct regmap_range_node, node);

		if (reg < this->range_min)
			node = node->rb_left;
		else if (reg > this->range_max)
			node = node->rb_right;
		else
			return this;
	}

	return NULL;
}

static void regmap_range_exit(struct regmap *map)
{
	struct rb_node *next;
	struct regmap_range_node *range_node;

	next = rb_first(&map->range_tree);
	while (next) {
		range_node = rb_entry(next, struct regmap_range_node, node);
		next = rb_next(&range_node->node);
		rb_erase(&range_node->node, &map->range_tree);
		kfree(range_node);
	}

	kfree(map->selector_work_buf);
}

491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512
int regmap_attach_dev(struct device *dev, struct regmap *map,
		      const struct regmap_config *config)
{
	struct regmap **m;

	map->dev = dev;

	regmap_debugfs_init(map, config->name);

	/* Add a devres resource for dev_get_regmap() */
	m = devres_alloc(dev_get_regmap_release, sizeof(*m), GFP_KERNEL);
	if (!m) {
		regmap_debugfs_exit(map);
		return -ENOMEM;
	}
	*m = map;
	devres_add(dev, m);

	return 0;
}
EXPORT_SYMBOL_GPL(regmap_attach_dev);

513 514 515 516 517 518 519 520 521 522 523 524 525 526 527
static enum regmap_endian regmap_get_reg_endian(const struct regmap_bus *bus,
					const struct regmap_config *config)
{
	enum regmap_endian endian;

	/* Retrieve the endianness specification from the regmap config */
	endian = config->reg_format_endian;

	/* If the regmap config specified a non-default value, use that */
	if (endian != REGMAP_ENDIAN_DEFAULT)
		return endian;

	/* Retrieve the endianness specification from the bus config */
	if (bus && bus->reg_format_endian_default)
		endian = bus->reg_format_endian_default;
528

529 530 531 532 533 534 535 536
	/* If the bus specified a non-default value, use that */
	if (endian != REGMAP_ENDIAN_DEFAULT)
		return endian;

	/* Use this if no other value was found */
	return REGMAP_ENDIAN_BIG;
}

537 538 539
enum regmap_endian regmap_get_val_endian(struct device *dev,
					 const struct regmap_bus *bus,
					 const struct regmap_config *config)
540
{
541
	struct device_node *np;
542
	enum regmap_endian endian;
543

544
	/* Retrieve the endianness specification from the regmap config */
545
	endian = config->val_format_endian;
546

547
	/* If the regmap config specified a non-default value, use that */
548 549
	if (endian != REGMAP_ENDIAN_DEFAULT)
		return endian;
550

551 552 553
	/* If the dev and dev->of_node exist try to get endianness from DT */
	if (dev && dev->of_node) {
		np = dev->of_node;
554

555 556 557 558 559 560 561 562 563 564
		/* Parse the device's DT node for an endianness specification */
		if (of_property_read_bool(np, "big-endian"))
			endian = REGMAP_ENDIAN_BIG;
		else if (of_property_read_bool(np, "little-endian"))
			endian = REGMAP_ENDIAN_LITTLE;

		/* If the endianness was specified in DT, use that */
		if (endian != REGMAP_ENDIAN_DEFAULT)
			return endian;
	}
565 566

	/* Retrieve the endianness specification from the bus config */
567 568
	if (bus && bus->val_format_endian_default)
		endian = bus->val_format_endian_default;
569

570
	/* If the bus specified a non-default value, use that */
571 572
	if (endian != REGMAP_ENDIAN_DEFAULT)
		return endian;
573 574

	/* Use this if no other value was found */
575
	return REGMAP_ENDIAN_BIG;
576
}
577
EXPORT_SYMBOL_GPL(regmap_get_val_endian);
578

579 580 581 582 583 584
struct regmap *__regmap_init(struct device *dev,
			     const struct regmap_bus *bus,
			     void *bus_context,
			     const struct regmap_config *config,
			     struct lock_class_key *lock_key,
			     const char *lock_name)
585
{
586
	struct regmap *map;
587
	int ret = -EINVAL;
588
	enum regmap_endian reg_endian, val_endian;
589
	int i, j;
590

591
	if (!config)
592
		goto err;
593 594 595 596 597 598 599

	map = kzalloc(sizeof(*map), GFP_KERNEL);
	if (map == NULL) {
		ret = -ENOMEM;
		goto err;
	}

600 601 602 603
	if (config->lock && config->unlock) {
		map->lock = config->lock;
		map->unlock = config->unlock;
		map->lock_arg = config->lock_arg;
604
	} else {
605 606
		if ((bus && bus->fast_io) ||
		    config->fast_io) {
607 608 609
			spin_lock_init(&map->spinlock);
			map->lock = regmap_lock_spinlock;
			map->unlock = regmap_unlock_spinlock;
610 611
			lockdep_set_class_and_name(&map->spinlock,
						   lock_key, lock_name);
612 613 614 615
		} else {
			mutex_init(&map->mutex);
			map->lock = regmap_lock_mutex;
			map->unlock = regmap_unlock_mutex;
616 617
			lockdep_set_class_and_name(&map->mutex,
						   lock_key, lock_name);
618 619
		}
		map->lock_arg = map;
620
	}
621 622 623 624 625 626 627 628 629 630

	/*
	 * When we write in fast-paths with regmap_bulk_write() don't allocate
	 * scratch buffers with sleeping allocations.
	 */
	if ((bus && bus->fast_io) || config->fast_io)
		map->alloc_flags = GFP_ATOMIC;
	else
		map->alloc_flags = GFP_KERNEL;

631
	map->format.reg_bytes = DIV_ROUND_UP(config->reg_bits, 8);
632
	map->format.pad_bytes = config->pad_bits / 8;
633
	map->format.val_bytes = DIV_ROUND_UP(config->val_bits, 8);
634 635
	map->format.buf_size = DIV_ROUND_UP(config->reg_bits +
			config->val_bits + config->pad_bits, 8);
636
	map->reg_shift = config->pad_bits % 8;
637 638 639 640
	if (config->reg_stride)
		map->reg_stride = config->reg_stride;
	else
		map->reg_stride = 1;
641 642
	map->use_single_read = config->use_single_rw || !bus || !bus->read;
	map->use_single_write = config->use_single_rw || !bus || !bus->write;
643
	map->can_multi_write = config->can_multi_write && bus && bus->write;
644 645 646 647
	if (bus) {
		map->max_raw_read = bus->max_raw_read;
		map->max_raw_write = bus->max_raw_write;
	}
648 649
	map->dev = dev;
	map->bus = bus;
650
	map->bus_context = bus_context;
651
	map->max_register = config->max_register;
652 653 654 655
	map->wr_table = config->wr_table;
	map->rd_table = config->rd_table;
	map->volatile_table = config->volatile_table;
	map->precious_table = config->precious_table;
656 657 658
	map->writeable_reg = config->writeable_reg;
	map->readable_reg = config->readable_reg;
	map->volatile_reg = config->volatile_reg;
659
	map->precious_reg = config->precious_reg;
660
	map->cache_type = config->cache_type;
M
Mark Brown 已提交
661
	map->name = config->name;
662

663 664
	spin_lock_init(&map->async_lock);
	INIT_LIST_HEAD(&map->async_list);
M
Mark Brown 已提交
665
	INIT_LIST_HEAD(&map->async_free);
666 667
	init_waitqueue_head(&map->async_waitq);

668 669 670
	if (config->read_flag_mask || config->write_flag_mask) {
		map->read_flag_mask = config->read_flag_mask;
		map->write_flag_mask = config->write_flag_mask;
671
	} else if (bus) {
672 673 674
		map->read_flag_mask = bus->read_flag_mask;
	}

675 676 677 678
	if (!bus) {
		map->reg_read  = config->reg_read;
		map->reg_write = config->reg_write;

679 680 681 682 683 684
		map->defer_caching = false;
		goto skip_format_initialization;
	} else if (!bus->read || !bus->write) {
		map->reg_read = _regmap_bus_reg_read;
		map->reg_write = _regmap_bus_reg_write;

685 686 687 688
		map->defer_caching = false;
		goto skip_format_initialization;
	} else {
		map->reg_read  = _regmap_bus_read;
689
		map->reg_update_bits = bus->reg_update_bits;
690
	}
691

692 693
	reg_endian = regmap_get_reg_endian(bus, config);
	val_endian = regmap_get_val_endian(dev, bus, config);
694

695
	switch (config->reg_bits + map->reg_shift) {
696 697 698 699 700 701 702 703 704 705
	case 2:
		switch (config->val_bits) {
		case 6:
			map->format.format_write = regmap_format_2_6_write;
			break;
		default:
			goto err_map;
		}
		break;

706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725
	case 4:
		switch (config->val_bits) {
		case 12:
			map->format.format_write = regmap_format_4_12_write;
			break;
		default:
			goto err_map;
		}
		break;

	case 7:
		switch (config->val_bits) {
		case 9:
			map->format.format_write = regmap_format_7_9_write;
			break;
		default:
			goto err_map;
		}
		break;

726 727 728 729 730 731 732 733 734 735
	case 10:
		switch (config->val_bits) {
		case 14:
			map->format.format_write = regmap_format_10_14_write;
			break;
		default:
			goto err_map;
		}
		break;

736 737 738 739 740
	case 8:
		map->format.format_reg = regmap_format_8;
		break;

	case 16:
741 742 743 744 745 746 747 748 749 750
		switch (reg_endian) {
		case REGMAP_ENDIAN_BIG:
			map->format.format_reg = regmap_format_16_be;
			break;
		case REGMAP_ENDIAN_NATIVE:
			map->format.format_reg = regmap_format_16_native;
			break;
		default:
			goto err_map;
		}
751 752
		break;

753 754 755 756 757 758
	case 24:
		if (reg_endian != REGMAP_ENDIAN_BIG)
			goto err_map;
		map->format.format_reg = regmap_format_24;
		break;

759
	case 32:
760 761 762 763 764 765 766 767 768 769
		switch (reg_endian) {
		case REGMAP_ENDIAN_BIG:
			map->format.format_reg = regmap_format_32_be;
			break;
		case REGMAP_ENDIAN_NATIVE:
			map->format.format_reg = regmap_format_32_native;
			break;
		default:
			goto err_map;
		}
770 771
		break;

X
Xiubo Li 已提交
772 773 774 775 776 777 778 779 780 781 782 783 784 785 786
#ifdef CONFIG_64BIT
	case 64:
		switch (reg_endian) {
		case REGMAP_ENDIAN_BIG:
			map->format.format_reg = regmap_format_64_be;
			break;
		case REGMAP_ENDIAN_NATIVE:
			map->format.format_reg = regmap_format_64_native;
			break;
		default:
			goto err_map;
		}
		break;
#endif

787 788 789 790
	default:
		goto err_map;
	}

791 792 793
	if (val_endian == REGMAP_ENDIAN_NATIVE)
		map->format.parse_inplace = regmap_parse_inplace_noop;

794 795 796 797
	switch (config->val_bits) {
	case 8:
		map->format.format_val = regmap_format_8;
		map->format.parse_val = regmap_parse_8;
798
		map->format.parse_inplace = regmap_parse_inplace_noop;
799 800
		break;
	case 16:
801 802 803 804
		switch (val_endian) {
		case REGMAP_ENDIAN_BIG:
			map->format.format_val = regmap_format_16_be;
			map->format.parse_val = regmap_parse_16_be;
805
			map->format.parse_inplace = regmap_parse_16_be_inplace;
806
			break;
807 808 809 810 811
		case REGMAP_ENDIAN_LITTLE:
			map->format.format_val = regmap_format_16_le;
			map->format.parse_val = regmap_parse_16_le;
			map->format.parse_inplace = regmap_parse_16_le_inplace;
			break;
812 813 814 815 816 817 818
		case REGMAP_ENDIAN_NATIVE:
			map->format.format_val = regmap_format_16_native;
			map->format.parse_val = regmap_parse_16_native;
			break;
		default:
			goto err_map;
		}
819
		break;
820
	case 24:
821 822
		if (val_endian != REGMAP_ENDIAN_BIG)
			goto err_map;
823 824 825
		map->format.format_val = regmap_format_24;
		map->format.parse_val = regmap_parse_24;
		break;
826
	case 32:
827 828 829 830
		switch (val_endian) {
		case REGMAP_ENDIAN_BIG:
			map->format.format_val = regmap_format_32_be;
			map->format.parse_val = regmap_parse_32_be;
831
			map->format.parse_inplace = regmap_parse_32_be_inplace;
832
			break;
833 834 835 836 837
		case REGMAP_ENDIAN_LITTLE:
			map->format.format_val = regmap_format_32_le;
			map->format.parse_val = regmap_parse_32_le;
			map->format.parse_inplace = regmap_parse_32_le_inplace;
			break;
838 839 840 841 842 843 844
		case REGMAP_ENDIAN_NATIVE:
			map->format.format_val = regmap_format_32_native;
			map->format.parse_val = regmap_parse_32_native;
			break;
		default:
			goto err_map;
		}
845
		break;
X
Xiubo Li 已提交
846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866
#ifdef CONFIG_64BIT
		switch (val_endian) {
		case REGMAP_ENDIAN_BIG:
			map->format.format_val = regmap_format_64_be;
			map->format.parse_val = regmap_parse_64_be;
			map->format.parse_inplace = regmap_parse_64_be_inplace;
			break;
		case REGMAP_ENDIAN_LITTLE:
			map->format.format_val = regmap_format_64_le;
			map->format.parse_val = regmap_parse_64_le;
			map->format.parse_inplace = regmap_parse_64_le_inplace;
			break;
		case REGMAP_ENDIAN_NATIVE:
			map->format.format_val = regmap_format_64_native;
			map->format.parse_val = regmap_parse_64_native;
			break;
		default:
			goto err_map;
		}
		break;
#endif
867 868
	}

869 870 871 872
	if (map->format.format_write) {
		if ((reg_endian != REGMAP_ENDIAN_BIG) ||
		    (val_endian != REGMAP_ENDIAN_BIG))
			goto err_map;
873
		map->use_single_write = true;
874
	}
875

876 877 878 879
	if (!map->format.format_write &&
	    !(map->format.format_reg && map->format.format_val))
		goto err_map;

880
	map->work_buf = kzalloc(map->format.buf_size, GFP_KERNEL);
881 882
	if (map->work_buf == NULL) {
		ret = -ENOMEM;
883
		goto err_map;
884 885
	}

886 887
	if (map->format.format_write) {
		map->defer_caching = false;
888
		map->reg_write = _regmap_bus_formatted_write;
889 890
	} else if (map->format.format_val) {
		map->defer_caching = true;
891
		map->reg_write = _regmap_bus_raw_write;
892 893 894
	}

skip_format_initialization:
895

896
	map->range_tree = RB_ROOT;
M
Mark Brown 已提交
897
	for (i = 0; i < config->num_ranges; i++) {
898 899 900 901
		const struct regmap_range_cfg *range_cfg = &config->ranges[i];
		struct regmap_range_node *new;

		/* Sanity check */
902 903 904
		if (range_cfg->range_max < range_cfg->range_min) {
			dev_err(map->dev, "Invalid range %d: %d < %d\n", i,
				range_cfg->range_max, range_cfg->range_min);
905
			goto err_range;
906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924
		}

		if (range_cfg->range_max > map->max_register) {
			dev_err(map->dev, "Invalid range %d: %d > %d\n", i,
				range_cfg->range_max, map->max_register);
			goto err_range;
		}

		if (range_cfg->selector_reg > map->max_register) {
			dev_err(map->dev,
				"Invalid range %d: selector out of map\n", i);
			goto err_range;
		}

		if (range_cfg->window_len == 0) {
			dev_err(map->dev, "Invalid range %d: window_len 0\n",
				i);
			goto err_range;
		}
925 926 927

		/* Make sure, that this register range has no selector
		   or data window within its boundary */
M
Mark Brown 已提交
928
		for (j = 0; j < config->num_ranges; j++) {
929 930 931 932 933
			unsigned sel_reg = config->ranges[j].selector_reg;
			unsigned win_min = config->ranges[j].window_start;
			unsigned win_max = win_min +
					   config->ranges[j].window_len - 1;

934 935 936 937
			/* Allow data window inside its own virtual range */
			if (j == i)
				continue;

938 939
			if (range_cfg->range_min <= sel_reg &&
			    sel_reg <= range_cfg->range_max) {
940 941 942
				dev_err(map->dev,
					"Range %d: selector for %d in window\n",
					i, j);
943 944 945 946 947
				goto err_range;
			}

			if (!(win_max < range_cfg->range_min ||
			      win_min > range_cfg->range_max)) {
948 949 950
				dev_err(map->dev,
					"Range %d: window for %d in window\n",
					i, j);
951 952 953 954 955 956 957 958 959 960
				goto err_range;
			}
		}

		new = kzalloc(sizeof(*new), GFP_KERNEL);
		if (new == NULL) {
			ret = -ENOMEM;
			goto err_range;
		}

961
		new->map = map;
M
Mark Brown 已提交
962
		new->name = range_cfg->name;
963 964 965 966 967 968 969 970
		new->range_min = range_cfg->range_min;
		new->range_max = range_cfg->range_max;
		new->selector_reg = range_cfg->selector_reg;
		new->selector_mask = range_cfg->selector_mask;
		new->selector_shift = range_cfg->selector_shift;
		new->window_start = range_cfg->window_start;
		new->window_len = range_cfg->window_len;

N
Nenghua Cao 已提交
971
		if (!_regmap_range_add(map, new)) {
972
			dev_err(map->dev, "Failed to add range %d\n", i);
973 974 975 976 977 978 979 980 981 982 983 984 985
			kfree(new);
			goto err_range;
		}

		if (map->selector_work_buf == NULL) {
			map->selector_work_buf =
				kzalloc(map->format.buf_size, GFP_KERNEL);
			if (map->selector_work_buf == NULL) {
				ret = -ENOMEM;
				goto err_range;
			}
		}
	}
986

987
	ret = regcache_init(map, config);
988
	if (ret != 0)
989 990
		goto err_range;

991
	if (dev) {
992 993 994
		ret = regmap_attach_dev(dev, map, config);
		if (ret != 0)
			goto err_regcache;
995
	}
M
Mark Brown 已提交
996

997 998
	return map;

999
err_regcache:
M
Mark Brown 已提交
1000
	regcache_exit(map);
1001 1002
err_range:
	regmap_range_exit(map);
1003
	kfree(map->work_buf);
1004 1005 1006 1007 1008
err_map:
	kfree(map);
err:
	return ERR_PTR(ret);
}
1009
EXPORT_SYMBOL_GPL(__regmap_init);
1010

1011 1012 1013 1014 1015
static void devm_regmap_release(struct device *dev, void *res)
{
	regmap_exit(*(struct regmap **)res);
}

1016 1017 1018 1019 1020 1021
struct regmap *__devm_regmap_init(struct device *dev,
				  const struct regmap_bus *bus,
				  void *bus_context,
				  const struct regmap_config *config,
				  struct lock_class_key *lock_key,
				  const char *lock_name)
1022 1023 1024 1025 1026 1027 1028
{
	struct regmap **ptr, *regmap;

	ptr = devres_alloc(devm_regmap_release, sizeof(*ptr), GFP_KERNEL);
	if (!ptr)
		return ERR_PTR(-ENOMEM);

1029 1030
	regmap = __regmap_init(dev, bus, bus_context, config,
			       lock_key, lock_name);
1031 1032 1033 1034 1035 1036 1037 1038 1039
	if (!IS_ERR(regmap)) {
		*ptr = regmap;
		devres_add(dev, ptr);
	} else {
		devres_free(ptr);
	}

	return regmap;
}
1040
EXPORT_SYMBOL_GPL(__devm_regmap_init);
1041

1042 1043 1044 1045 1046 1047
static void regmap_field_init(struct regmap_field *rm_field,
	struct regmap *regmap, struct reg_field reg_field)
{
	rm_field->regmap = regmap;
	rm_field->reg = reg_field.reg;
	rm_field->shift = reg_field.lsb;
1048
	rm_field->mask = GENMASK(reg_field.msb, reg_field.lsb);
1049 1050
	rm_field->id_size = reg_field.id_size;
	rm_field->id_offset = reg_field.id_offset;
1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131
}

/**
 * devm_regmap_field_alloc(): Allocate and initialise a register field
 * in a register map.
 *
 * @dev: Device that will be interacted with
 * @regmap: regmap bank in which this register field is located.
 * @reg_field: Register field with in the bank.
 *
 * The return value will be an ERR_PTR() on error or a valid pointer
 * to a struct regmap_field. The regmap_field will be automatically freed
 * by the device management code.
 */
struct regmap_field *devm_regmap_field_alloc(struct device *dev,
		struct regmap *regmap, struct reg_field reg_field)
{
	struct regmap_field *rm_field = devm_kzalloc(dev,
					sizeof(*rm_field), GFP_KERNEL);
	if (!rm_field)
		return ERR_PTR(-ENOMEM);

	regmap_field_init(rm_field, regmap, reg_field);

	return rm_field;

}
EXPORT_SYMBOL_GPL(devm_regmap_field_alloc);

/**
 * devm_regmap_field_free(): Free register field allocated using
 * devm_regmap_field_alloc. Usally drivers need not call this function,
 * as the memory allocated via devm will be freed as per device-driver
 * life-cyle.
 *
 * @dev: Device that will be interacted with
 * @field: regmap field which should be freed.
 */
void devm_regmap_field_free(struct device *dev,
	struct regmap_field *field)
{
	devm_kfree(dev, field);
}
EXPORT_SYMBOL_GPL(devm_regmap_field_free);

/**
 * regmap_field_alloc(): Allocate and initialise a register field
 * in a register map.
 *
 * @regmap: regmap bank in which this register field is located.
 * @reg_field: Register field with in the bank.
 *
 * The return value will be an ERR_PTR() on error or a valid pointer
 * to a struct regmap_field. The regmap_field should be freed by the
 * user once its finished working with it using regmap_field_free().
 */
struct regmap_field *regmap_field_alloc(struct regmap *regmap,
		struct reg_field reg_field)
{
	struct regmap_field *rm_field = kzalloc(sizeof(*rm_field), GFP_KERNEL);

	if (!rm_field)
		return ERR_PTR(-ENOMEM);

	regmap_field_init(rm_field, regmap, reg_field);

	return rm_field;
}
EXPORT_SYMBOL_GPL(regmap_field_alloc);

/**
 * regmap_field_free(): Free register field allocated using regmap_field_alloc
 *
 * @field: regmap field which should be freed.
 */
void regmap_field_free(struct regmap_field *field)
{
	kfree(field);
}
EXPORT_SYMBOL_GPL(regmap_field_free);

1132 1133 1134 1135 1136 1137 1138 1139 1140 1141
/**
 * regmap_reinit_cache(): Reinitialise the current register cache
 *
 * @map: Register map to operate on.
 * @config: New configuration.  Only the cache data will be used.
 *
 * Discard any existing register cache for the map and initialize a
 * new cache.  This can be used to restore the cache to defaults or to
 * update the cache configuration to reflect runtime discovery of the
 * hardware.
1142 1143 1144
 *
 * No explicit locking is done here, the user needs to ensure that
 * this function will not race with other calls to regmap.
1145 1146 1147 1148
 */
int regmap_reinit_cache(struct regmap *map, const struct regmap_config *config)
{
	regcache_exit(map);
1149
	regmap_debugfs_exit(map);
1150 1151 1152 1153 1154 1155 1156 1157

	map->max_register = config->max_register;
	map->writeable_reg = config->writeable_reg;
	map->readable_reg = config->readable_reg;
	map->volatile_reg = config->volatile_reg;
	map->precious_reg = config->precious_reg;
	map->cache_type = config->cache_type;

1158
	regmap_debugfs_init(map, config->name);
1159

1160 1161 1162
	map->cache_bypass = false;
	map->cache_only = false;

1163
	return regcache_init(map, config);
1164
}
1165
EXPORT_SYMBOL_GPL(regmap_reinit_cache);
1166

1167 1168 1169 1170 1171
/**
 * regmap_exit(): Free a previously allocated register map
 */
void regmap_exit(struct regmap *map)
{
M
Mark Brown 已提交
1172 1173
	struct regmap_async *async;

1174
	regcache_exit(map);
1175
	regmap_debugfs_exit(map);
1176
	regmap_range_exit(map);
1177
	if (map->bus && map->bus->free_context)
1178
		map->bus->free_context(map->bus_context);
1179
	kfree(map->work_buf);
M
Mark Brown 已提交
1180 1181 1182 1183 1184 1185 1186 1187
	while (!list_empty(&map->async_free)) {
		async = list_first_entry_or_null(&map->async_free,
						 struct regmap_async,
						 list);
		list_del(&async->list);
		kfree(async->work_buf);
		kfree(async);
	}
1188 1189 1190 1191
	kfree(map);
}
EXPORT_SYMBOL_GPL(regmap_exit);

M
Mark Brown 已提交
1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229
static int dev_get_regmap_match(struct device *dev, void *res, void *data)
{
	struct regmap **r = res;
	if (!r || !*r) {
		WARN_ON(!r || !*r);
		return 0;
	}

	/* If the user didn't specify a name match any */
	if (data)
		return (*r)->name == data;
	else
		return 1;
}

/**
 * dev_get_regmap(): Obtain the regmap (if any) for a device
 *
 * @dev: Device to retrieve the map for
 * @name: Optional name for the register map, usually NULL.
 *
 * Returns the regmap for the device if one is present, or NULL.  If
 * name is specified then it must match the name specified when
 * registering the device, if it is NULL then the first regmap found
 * will be used.  Devices with multiple register maps are very rare,
 * generic code should normally not need to specify a name.
 */
struct regmap *dev_get_regmap(struct device *dev, const char *name)
{
	struct regmap **r = devres_find(dev, dev_get_regmap_release,
					dev_get_regmap_match, (void *)name);

	if (!r)
		return NULL;
	return *r;
}
EXPORT_SYMBOL_GPL(dev_get_regmap);

T
Tuomas Tynkkynen 已提交
1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240
/**
 * regmap_get_device(): Obtain the device from a regmap
 *
 * @map: Register map to operate on.
 *
 * Returns the underlying device that the regmap has been created for.
 */
struct device *regmap_get_device(struct regmap *map)
{
	return map->dev;
}
1241
EXPORT_SYMBOL_GPL(regmap_get_device);
T
Tuomas Tynkkynen 已提交
1242

1243
static int _regmap_select_page(struct regmap *map, unsigned int *reg,
1244
			       struct regmap_range_node *range,
1245 1246 1247 1248 1249 1250 1251 1252
			       unsigned int val_num)
{
	void *orig_work_buf;
	unsigned int win_offset;
	unsigned int win_page;
	bool page_chg;
	int ret;

1253 1254
	win_offset = (*reg - range->range_min) % range->window_len;
	win_page = (*reg - range->range_min) / range->window_len;
1255

1256 1257 1258 1259
	if (val_num > 1) {
		/* Bulk write shouldn't cross range boundary */
		if (*reg + val_num - 1 > range->range_max)
			return -EINVAL;
1260

1261 1262 1263 1264
		/* ... or single page boundary */
		if (val_num > range->window_len - win_offset)
			return -EINVAL;
	}
1265

1266 1267 1268 1269 1270 1271 1272 1273
	/* It is possible to have selector register inside data window.
	   In that case, selector register is located on every page and
	   it needs no page switching, when accessed alone. */
	if (val_num > 1 ||
	    range->window_start + win_offset != range->selector_reg) {
		/* Use separate work_buf during page switching */
		orig_work_buf = map->work_buf;
		map->work_buf = map->selector_work_buf;
1274

1275 1276 1277
		ret = _regmap_update_bits(map, range->selector_reg,
					  range->selector_mask,
					  win_page << range->selector_shift,
1278
					  &page_chg, false);
1279

1280
		map->work_buf = orig_work_buf;
1281

1282
		if (ret != 0)
1283
			return ret;
1284 1285
	}

1286 1287
	*reg = range->window_start + win_offset;

1288 1289 1290
	return 0;
}

1291
int _regmap_raw_write(struct regmap *map, unsigned int reg,
1292
		      const void *val, size_t val_len)
1293
{
1294
	struct regmap_range_node *range;
1295
	unsigned long flags;
1296
	u8 *u8 = map->work_buf;
1297 1298
	void *work_val = map->work_buf + map->format.reg_bytes +
		map->format.pad_bytes;
1299 1300 1301
	void *buf;
	int ret = -ENOTSUPP;
	size_t len;
1302 1303
	int i;

1304
	WARN_ON(!map->bus);
1305

1306 1307 1308
	/* Check for unwritable registers before we start */
	if (map->writeable_reg)
		for (i = 0; i < val_len / map->format.val_bytes; i++)
1309 1310
			if (!map->writeable_reg(map->dev,
						reg + (i * map->reg_stride)))
1311
				return -EINVAL;
1312

1313 1314 1315 1316
	if (!map->cache_bypass && map->format.parse_val) {
		unsigned int ival;
		int val_bytes = map->format.val_bytes;
		for (i = 0; i < val_len / val_bytes; i++) {
1317
			ival = map->format.parse_val(val + (i * val_bytes));
1318 1319
			ret = regcache_write(map, reg + (i * map->reg_stride),
					     ival);
1320 1321
			if (ret) {
				dev_err(map->dev,
1322
					"Error in caching of register: %x ret: %d\n",
1323 1324 1325 1326 1327 1328 1329 1330 1331 1332
					reg + i, ret);
				return ret;
			}
		}
		if (map->cache_only) {
			map->cache_dirty = true;
			return 0;
		}
	}

1333 1334
	range = _regmap_range_lookup(map, reg);
	if (range) {
1335 1336 1337 1338 1339 1340
		int val_num = val_len / map->format.val_bytes;
		int win_offset = (reg - range->range_min) % range->window_len;
		int win_residue = range->window_len - win_offset;

		/* If the write goes beyond the end of the window split it */
		while (val_num > win_residue) {
1341
			dev_dbg(map->dev, "Writing window %d/%zu\n",
1342 1343
				win_residue, val_len / map->format.val_bytes);
			ret = _regmap_raw_write(map, reg, val, win_residue *
1344
						map->format.val_bytes);
1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358
			if (ret != 0)
				return ret;

			reg += win_residue;
			val_num -= win_residue;
			val += win_residue * map->format.val_bytes;
			val_len -= win_residue * map->format.val_bytes;

			win_offset = (reg - range->range_min) %
				range->window_len;
			win_residue = range->window_len - win_offset;
		}

		ret = _regmap_select_page(map, &reg, range, val_num);
1359
		if (ret != 0)
1360 1361
			return ret;
	}
1362

1363
	map->format.format_reg(map->work_buf, reg, map->reg_shift);
1364

1365 1366
	u8[0] |= map->write_flag_mask;

1367 1368 1369 1370 1371 1372 1373 1374 1375 1376
	/*
	 * Essentially all I/O mechanisms will be faster with a single
	 * buffer to write.  Since register syncs often generate raw
	 * writes of single registers optimise that case.
	 */
	if (val != work_val && val_len == map->format.val_bytes) {
		memcpy(work_val, val, map->format.val_bytes);
		val = work_val;
	}

1377
	if (map->async && map->bus->async_write) {
M
Mark Brown 已提交
1378
		struct regmap_async *async;
1379

1380
		trace_regmap_async_write_start(map, reg, val_len);
1381

M
Mark Brown 已提交
1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400
		spin_lock_irqsave(&map->async_lock, flags);
		async = list_first_entry_or_null(&map->async_free,
						 struct regmap_async,
						 list);
		if (async)
			list_del(&async->list);
		spin_unlock_irqrestore(&map->async_lock, flags);

		if (!async) {
			async = map->bus->async_alloc();
			if (!async)
				return -ENOMEM;

			async->work_buf = kzalloc(map->format.buf_size,
						  GFP_KERNEL | GFP_DMA);
			if (!async->work_buf) {
				kfree(async);
				return -ENOMEM;
			}
1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412
		}

		async->map = map;

		/* If the caller supplied the value we can use it safely. */
		memcpy(async->work_buf, map->work_buf, map->format.pad_bytes +
		       map->format.reg_bytes + map->format.val_bytes);

		spin_lock_irqsave(&map->async_lock, flags);
		list_add_tail(&async->list, &map->async_list);
		spin_unlock_irqrestore(&map->async_lock, flags);

1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424
		if (val != work_val)
			ret = map->bus->async_write(map->bus_context,
						    async->work_buf,
						    map->format.reg_bytes +
						    map->format.pad_bytes,
						    val, val_len, async);
		else
			ret = map->bus->async_write(map->bus_context,
						    async->work_buf,
						    map->format.reg_bytes +
						    map->format.pad_bytes +
						    val_len, NULL, 0, async);
1425 1426 1427 1428 1429 1430

		if (ret != 0) {
			dev_err(map->dev, "Failed to schedule write: %d\n",
				ret);

			spin_lock_irqsave(&map->async_lock, flags);
M
Mark Brown 已提交
1431
			list_move(&async->list, &map->async_free);
1432 1433
			spin_unlock_irqrestore(&map->async_lock, flags);
		}
M
Mark Brown 已提交
1434 1435

		return ret;
1436 1437
	}

1438
	trace_regmap_hw_write_start(map, reg, val_len / map->format.val_bytes);
M
Mark Brown 已提交
1439

1440 1441 1442 1443
	/* If we're doing a single register write we can probably just
	 * send the work_buf directly, otherwise try to do a gather
	 * write.
	 */
1444
	if (val == work_val)
1445
		ret = map->bus->write(map->bus_context, map->work_buf,
1446 1447 1448
				      map->format.reg_bytes +
				      map->format.pad_bytes +
				      val_len);
1449
	else if (map->bus->gather_write)
1450
		ret = map->bus->gather_write(map->bus_context, map->work_buf,
1451 1452
					     map->format.reg_bytes +
					     map->format.pad_bytes,
1453 1454
					     val, val_len);

1455
	/* If that didn't work fall back on linearising by hand. */
1456
	if (ret == -ENOTSUPP) {
1457 1458
		len = map->format.reg_bytes + map->format.pad_bytes + val_len;
		buf = kzalloc(len, GFP_KERNEL);
1459 1460 1461 1462
		if (!buf)
			return -ENOMEM;

		memcpy(buf, map->work_buf, map->format.reg_bytes);
1463 1464
		memcpy(buf + map->format.reg_bytes + map->format.pad_bytes,
		       val, val_len);
1465
		ret = map->bus->write(map->bus_context, buf, len);
1466 1467 1468 1469

		kfree(buf);
	}

1470
	trace_regmap_hw_write_done(map, reg, val_len / map->format.val_bytes);
M
Mark Brown 已提交
1471

1472 1473 1474
	return ret;
}

1475 1476 1477 1478 1479 1480 1481
/**
 * regmap_can_raw_write - Test if regmap_raw_write() is supported
 *
 * @map: Map to check.
 */
bool regmap_can_raw_write(struct regmap *map)
{
1482 1483
	return map->bus && map->bus->write && map->format.format_val &&
		map->format.format_reg;
1484 1485 1486
}
EXPORT_SYMBOL_GPL(regmap_can_raw_write);

1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508
/**
 * regmap_get_raw_read_max - Get the maximum size we can read
 *
 * @map: Map to check.
 */
size_t regmap_get_raw_read_max(struct regmap *map)
{
	return map->max_raw_read;
}
EXPORT_SYMBOL_GPL(regmap_get_raw_read_max);

/**
 * regmap_get_raw_write_max - Get the maximum size we can read
 *
 * @map: Map to check.
 */
size_t regmap_get_raw_write_max(struct regmap *map)
{
	return map->max_raw_write;
}
EXPORT_SYMBOL_GPL(regmap_get_raw_write_max);

1509 1510 1511 1512 1513 1514 1515
static int _regmap_bus_formatted_write(void *context, unsigned int reg,
				       unsigned int val)
{
	int ret;
	struct regmap_range_node *range;
	struct regmap *map = context;

1516
	WARN_ON(!map->bus || !map->format.format_write);
1517 1518 1519 1520 1521 1522 1523 1524 1525 1526

	range = _regmap_range_lookup(map, reg);
	if (range) {
		ret = _regmap_select_page(map, &reg, range, 1);
		if (ret != 0)
			return ret;
	}

	map->format.format_write(map, reg, val);

1527
	trace_regmap_hw_write_start(map, reg, 1);
1528 1529 1530 1531

	ret = map->bus->write(map->bus_context, map->work_buf,
			      map->format.buf_size);

1532
	trace_regmap_hw_write_done(map, reg, 1);
1533 1534 1535 1536

	return ret;
}

1537 1538 1539 1540 1541 1542 1543 1544
static int _regmap_bus_reg_write(void *context, unsigned int reg,
				 unsigned int val)
{
	struct regmap *map = context;

	return map->bus->reg_write(map->bus_context, reg, val);
}

1545 1546 1547 1548 1549
static int _regmap_bus_raw_write(void *context, unsigned int reg,
				 unsigned int val)
{
	struct regmap *map = context;

1550
	WARN_ON(!map->bus || !map->format.format_val);
1551 1552 1553 1554 1555 1556 1557

	map->format.format_val(map->work_buf + map->format.reg_bytes
			       + map->format.pad_bytes, val, 0);
	return _regmap_raw_write(map, reg,
				 map->work_buf +
				 map->format.reg_bytes +
				 map->format.pad_bytes,
1558
				 map->format.val_bytes);
1559 1560
}

1561 1562 1563 1564 1565
static inline void *_regmap_map_get_context(struct regmap *map)
{
	return (map->bus) ? map : map->bus_context;
}

1566 1567
int _regmap_write(struct regmap *map, unsigned int reg,
		  unsigned int val)
1568
{
M
Mark Brown 已提交
1569
	int ret;
1570
	void *context = _regmap_map_get_context(map);
1571

1572 1573 1574
	if (!regmap_writeable(map, reg))
		return -EIO;

1575
	if (!map->cache_bypass && !map->defer_caching) {
1576 1577 1578
		ret = regcache_write(map, reg, val);
		if (ret != 0)
			return ret;
1579 1580
		if (map->cache_only) {
			map->cache_dirty = true;
1581
			return 0;
1582
		}
1583 1584
	}

1585
#ifdef LOG_DEVICE
1586
	if (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0)
1587 1588 1589
		dev_info(map->dev, "%x <= %x\n", reg, val);
#endif

1590
	trace_regmap_reg_write(map, reg, val);
M
Mark Brown 已提交
1591

1592
	return map->reg_write(context, reg, val);
1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608
}

/**
 * regmap_write(): Write a value to a single register
 *
 * @map: Register map to write to
 * @reg: Register to write to
 * @val: Value to be written
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_write(struct regmap *map, unsigned int reg, unsigned int val)
{
	int ret;

1609 1610 1611
	if (reg % map->reg_stride)
		return -EINVAL;

1612
	map->lock(map->lock_arg);
1613 1614 1615

	ret = _regmap_write(map, reg, val);

1616
	map->unlock(map->lock_arg);
1617 1618 1619 1620 1621

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_write);

1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652
/**
 * regmap_write_async(): Write a value to a single register asynchronously
 *
 * @map: Register map to write to
 * @reg: Register to write to
 * @val: Value to be written
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_write_async(struct regmap *map, unsigned int reg, unsigned int val)
{
	int ret;

	if (reg % map->reg_stride)
		return -EINVAL;

	map->lock(map->lock_arg);

	map->async = true;

	ret = _regmap_write(map, reg, val);

	map->async = false;

	map->unlock(map->lock_arg);

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_write_async);

1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673
/**
 * regmap_raw_write(): Write raw values to one or more registers
 *
 * @map: Register map to write to
 * @reg: Initial register to write to
 * @val: Block of data to be written, laid out for direct transmission to the
 *       device
 * @val_len: Length of data pointed to by val.
 *
 * This function is intended to be used for things like firmware
 * download where a large block of data needs to be transferred to the
 * device.  No formatting will be done on the data provided.
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_raw_write(struct regmap *map, unsigned int reg,
		     const void *val, size_t val_len)
{
	int ret;

1674
	if (!regmap_can_raw_write(map))
1675
		return -EINVAL;
1676 1677
	if (val_len % map->format.val_bytes)
		return -EINVAL;
1678 1679
	if (map->max_raw_write && map->max_raw_write > val_len)
		return -E2BIG;
1680

1681
	map->lock(map->lock_arg);
1682

1683
	ret = _regmap_raw_write(map, reg, val, val_len);
1684

1685
	map->unlock(map->lock_arg);
1686 1687 1688 1689 1690

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_raw_write);

1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706
/**
 * regmap_field_write(): Write a value to a single register field
 *
 * @field: Register field to write to
 * @val: Value to be written
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_field_write(struct regmap_field *field, unsigned int val)
{
	return regmap_update_bits(field->regmap, field->reg,
				field->mask, val << field->shift);
}
EXPORT_SYMBOL_GPL(regmap_field_write);

1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726
/**
 * regmap_field_update_bits():	Perform a read/modify/write cycle
 *                              on the register field
 *
 * @field: Register field to write to
 * @mask: Bitmask to change
 * @val: Value to be written
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_field_update_bits(struct regmap_field *field, unsigned int mask, unsigned int val)
{
	mask = (mask << field->shift) & field->mask;

	return regmap_update_bits(field->regmap, field->reg,
				  mask, val << field->shift);
}
EXPORT_SYMBOL_GPL(regmap_field_update_bits);

1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748
/**
 * regmap_fields_write(): Write a value to a single register field with port ID
 *
 * @field: Register field to write to
 * @id: port ID
 * @val: Value to be written
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_fields_write(struct regmap_field *field, unsigned int id,
			unsigned int val)
{
	if (id >= field->id_size)
		return -EINVAL;

	return regmap_update_bits(field->regmap,
				  field->reg + (field->id_offset * id),
				  field->mask, val << field->shift);
}
EXPORT_SYMBOL_GPL(regmap_fields_write);

1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760
int regmap_fields_force_write(struct regmap_field *field, unsigned int id,
			unsigned int val)
{
	if (id >= field->id_size)
		return -EINVAL;

	return regmap_write_bits(field->regmap,
				  field->reg + (field->id_offset * id),
				  field->mask, val << field->shift);
}
EXPORT_SYMBOL_GPL(regmap_fields_force_write);

1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786
/**
 * regmap_fields_update_bits():	Perform a read/modify/write cycle
 *                              on the register field
 *
 * @field: Register field to write to
 * @id: port ID
 * @mask: Bitmask to change
 * @val: Value to be written
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_fields_update_bits(struct regmap_field *field,  unsigned int id,
			      unsigned int mask, unsigned int val)
{
	if (id >= field->id_size)
		return -EINVAL;

	mask = (mask << field->shift) & field->mask;

	return regmap_update_bits(field->regmap,
				  field->reg + (field->id_offset * id),
				  mask, val << field->shift);
}
EXPORT_SYMBOL_GPL(regmap_fields_update_bits);

1787 1788 1789 1790 1791 1792 1793 1794 1795
/*
 * regmap_bulk_write(): Write multiple registers to the device
 *
 * @map: Register map to write to
 * @reg: First register to be write from
 * @val: Block of data to be written, in native register size for device
 * @val_count: Number of registers to write
 *
 * This function is intended to be used for writing a large block of
1796
 * data to the device either in single transfer or multiple transfer.
1797 1798 1799 1800 1801 1802 1803 1804 1805
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_bulk_write(struct regmap *map, unsigned int reg, const void *val,
		     size_t val_count)
{
	int ret = 0, i;
	size_t val_bytes = map->format.val_bytes;
1806
	size_t total_size = val_bytes * val_count;
1807

1808
	if (map->bus && !map->format.parse_inplace)
1809
		return -EINVAL;
1810 1811
	if (reg % map->reg_stride)
		return -EINVAL;
1812

1813 1814
	/*
	 * Some devices don't support bulk write, for
1815 1816 1817 1818 1819 1820 1821
	 * them we have a series of single write operations in the first two if
	 * blocks.
	 *
	 * The first if block is used for memory mapped io. It does not allow
	 * val_bytes of 3 for example.
	 * The second one is used for busses which do not have this limitation
	 * and can write arbitrary value lengths.
1822
	 */
1823
	if (!map->bus) {
1824
		map->lock(map->lock_arg);
1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846
		for (i = 0; i < val_count; i++) {
			unsigned int ival;

			switch (val_bytes) {
			case 1:
				ival = *(u8 *)(val + (i * val_bytes));
				break;
			case 2:
				ival = *(u16 *)(val + (i * val_bytes));
				break;
			case 4:
				ival = *(u32 *)(val + (i * val_bytes));
				break;
#ifdef CONFIG_64BIT
			case 8:
				ival = *(u64 *)(val + (i * val_bytes));
				break;
#endif
			default:
				ret = -EINVAL;
				goto out;
			}
1847

1848 1849 1850 1851 1852
			ret = _regmap_write(map, reg + (i * map->reg_stride),
					ival);
			if (ret != 0)
				goto out;
		}
1853 1854
out:
		map->unlock(map->lock_arg);
1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868
	} else if (map->use_single_write ||
		   (map->max_raw_write && map->max_raw_write < total_size)) {
		int chunk_stride = map->reg_stride;
		size_t chunk_size = val_bytes;
		size_t chunk_count = val_count;

		if (!map->use_single_write) {
			chunk_size = map->max_raw_write;
			if (chunk_size % val_bytes)
				chunk_size -= chunk_size % val_bytes;
			chunk_count = total_size / chunk_size;
			chunk_stride *= chunk_size / val_bytes;
		}

1869
		map->lock(map->lock_arg);
1870 1871
		/* Write as many bytes as possible with chunk_size */
		for (i = 0; i < chunk_count; i++) {
1872
			ret = _regmap_raw_write(map,
1873 1874 1875
						reg + (i * chunk_stride),
						val + (i * chunk_size),
						chunk_size);
1876 1877 1878
			if (ret)
				break;
		}
1879 1880 1881 1882 1883 1884 1885

		/* Write remaining bytes */
		if (!ret && chunk_size * i < total_size) {
			ret = _regmap_raw_write(map, reg + (i * chunk_stride),
						val + (i * chunk_size),
						total_size - i * chunk_size);
		}
1886
		map->unlock(map->lock_arg);
1887
	} else {
1888 1889
		void *wval;

1890 1891 1892
		if (!val_count)
			return -EINVAL;

1893
		wval = kmemdup(val, val_count * val_bytes, map->alloc_flags);
1894 1895
		if (!wval) {
			dev_err(map->dev, "Error in memory allocation\n");
1896
			return -ENOMEM;
1897 1898
		}
		for (i = 0; i < val_count * val_bytes; i += val_bytes)
1899
			map->format.parse_inplace(wval + i);
1900

1901
		map->lock(map->lock_arg);
1902
		ret = _regmap_raw_write(map, reg, wval, val_bytes * val_count);
1903
		map->unlock(map->lock_arg);
1904 1905

		kfree(wval);
1906
	}
1907 1908 1909 1910
	return ret;
}
EXPORT_SYMBOL_GPL(regmap_bulk_write);

1911 1912 1913 1914 1915
/*
 * _regmap_raw_multi_reg_write()
 *
 * the (register,newvalue) pairs in regs have not been formatted, but
 * they are all in the same page and have been changed to being page
X
Xiubo Li 已提交
1916
 * relative. The page register has been written if that was necessary.
1917 1918
 */
static int _regmap_raw_multi_reg_write(struct regmap *map,
1919
				       const struct reg_sequence *regs,
1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931
				       size_t num_regs)
{
	int ret;
	void *buf;
	int i;
	u8 *u8;
	size_t val_bytes = map->format.val_bytes;
	size_t reg_bytes = map->format.reg_bytes;
	size_t pad_bytes = map->format.pad_bytes;
	size_t pair_size = reg_bytes + pad_bytes + val_bytes;
	size_t len = pair_size * num_regs;

1932 1933 1934
	if (!len)
		return -EINVAL;

1935 1936 1937 1938 1939 1940 1941 1942 1943
	buf = kzalloc(len, GFP_KERNEL);
	if (!buf)
		return -ENOMEM;

	/* We have to linearise by hand. */

	u8 = buf;

	for (i = 0; i < num_regs; i++) {
1944 1945
		unsigned int reg = regs[i].reg;
		unsigned int val = regs[i].def;
1946
		trace_regmap_hw_write_start(map, reg, 1);
1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960
		map->format.format_reg(u8, reg, map->reg_shift);
		u8 += reg_bytes + pad_bytes;
		map->format.format_val(u8, val, 0);
		u8 += val_bytes;
	}
	u8 = buf;
	*u8 |= map->write_flag_mask;

	ret = map->bus->write(map->bus_context, buf, len);

	kfree(buf);

	for (i = 0; i < num_regs; i++) {
		int reg = regs[i].reg;
1961
		trace_regmap_hw_write_done(map, reg, 1);
1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975
	}
	return ret;
}

static unsigned int _regmap_register_page(struct regmap *map,
					  unsigned int reg,
					  struct regmap_range_node *range)
{
	unsigned int win_page = (reg - range->range_min) / range->window_len;

	return win_page;
}

static int _regmap_range_multi_paged_reg_write(struct regmap *map,
1976
					       struct reg_sequence *regs,
1977 1978 1979 1980
					       size_t num_regs)
{
	int ret;
	int i, n;
1981
	struct reg_sequence *base;
1982
	unsigned int this_page = 0;
1983
	unsigned int page_change = 0;
1984 1985 1986
	/*
	 * the set of registers are not neccessarily in order, but
	 * since the order of write must be preserved this algorithm
1987 1988
	 * chops the set each time the page changes. This also applies
	 * if there is a delay required at any point in the sequence.
1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003
	 */
	base = regs;
	for (i = 0, n = 0; i < num_regs; i++, n++) {
		unsigned int reg = regs[i].reg;
		struct regmap_range_node *range;

		range = _regmap_range_lookup(map, reg);
		if (range) {
			unsigned int win_page = _regmap_register_page(map, reg,
								      range);

			if (i == 0)
				this_page = win_page;
			if (win_page != this_page) {
				this_page = win_page;
2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023
				page_change = 1;
			}
		}

		/* If we have both a page change and a delay make sure to
		 * write the regs and apply the delay before we change the
		 * page.
		 */

		if (page_change || regs[i].delay_us) {

				/* For situations where the first write requires
				 * a delay we need to make sure we don't call
				 * raw_multi_reg_write with n=0
				 * This can't occur with page breaks as we
				 * never write on the first iteration
				 */
				if (regs[i].delay_us && i == 0)
					n = 1;

2024 2025 2026
				ret = _regmap_raw_multi_reg_write(map, base, n);
				if (ret != 0)
					return ret;
2027 2028 2029 2030

				if (regs[i].delay_us)
					udelay(regs[i].delay_us);

2031 2032
				base += n;
				n = 0;
2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043

				if (page_change) {
					ret = _regmap_select_page(map,
								  &base[n].reg,
								  range, 1);
					if (ret != 0)
						return ret;

					page_change = 0;
				}

2044
		}
2045

2046 2047 2048 2049 2050 2051
	}
	if (n > 0)
		return _regmap_raw_multi_reg_write(map, base, n);
	return 0;
}

2052
static int _regmap_multi_reg_write(struct regmap *map,
2053
				   const struct reg_sequence *regs,
2054
				   size_t num_regs)
2055
{
2056 2057 2058 2059 2060 2061 2062 2063
	int i;
	int ret;

	if (!map->can_multi_write) {
		for (i = 0; i < num_regs; i++) {
			ret = _regmap_write(map, regs[i].reg, regs[i].def);
			if (ret != 0)
				return ret;
2064 2065 2066

			if (regs[i].delay_us)
				udelay(regs[i].delay_us);
2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101
		}
		return 0;
	}

	if (!map->format.parse_inplace)
		return -EINVAL;

	if (map->writeable_reg)
		for (i = 0; i < num_regs; i++) {
			int reg = regs[i].reg;
			if (!map->writeable_reg(map->dev, reg))
				return -EINVAL;
			if (reg % map->reg_stride)
				return -EINVAL;
		}

	if (!map->cache_bypass) {
		for (i = 0; i < num_regs; i++) {
			unsigned int val = regs[i].def;
			unsigned int reg = regs[i].reg;
			ret = regcache_write(map, reg, val);
			if (ret) {
				dev_err(map->dev,
				"Error in caching of register: %x ret: %d\n",
								reg, ret);
				return ret;
			}
		}
		if (map->cache_only) {
			map->cache_dirty = true;
			return 0;
		}
	}

	WARN_ON(!map->bus);
2102 2103

	for (i = 0; i < num_regs; i++) {
2104 2105
		unsigned int reg = regs[i].reg;
		struct regmap_range_node *range;
2106 2107 2108 2109

		/* Coalesce all the writes between a page break or a delay
		 * in a sequence
		 */
2110
		range = _regmap_range_lookup(map, reg);
2111
		if (range || regs[i].delay_us) {
2112 2113
			size_t len = sizeof(struct reg_sequence)*num_regs;
			struct reg_sequence *base = kmemdup(regs, len,
2114 2115 2116 2117 2118 2119 2120
							   GFP_KERNEL);
			if (!base)
				return -ENOMEM;
			ret = _regmap_range_multi_paged_reg_write(map, base,
								  num_regs);
			kfree(base);

2121 2122 2123
			return ret;
		}
	}
2124
	return _regmap_raw_multi_reg_write(map, regs, num_regs);
2125 2126
}

2127 2128 2129
/*
 * regmap_multi_reg_write(): Write multiple registers to the device
 *
2130 2131
 * where the set of register,value pairs are supplied in any order,
 * possibly not all in a single range.
2132 2133 2134 2135 2136
 *
 * @map: Register map to write to
 * @regs: Array of structures containing register,value to be written
 * @num_regs: Number of registers to write
 *
2137 2138 2139 2140 2141
 * The 'normal' block write mode will send ultimately send data on the
 * target bus as R,V1,V2,V3,..,Vn where successively higer registers are
 * addressed. However, this alternative block multi write mode will send
 * the data as R1,V1,R2,V2,..,Rn,Vn on the target bus. The target device
 * must of course support the mode.
2142
 *
2143 2144
 * A value of zero will be returned on success, a negative errno will be
 * returned in error cases.
2145
 */
2146
int regmap_multi_reg_write(struct regmap *map, const struct reg_sequence *regs,
2147
			   int num_regs)
2148
{
2149
	int ret;
2150 2151 2152

	map->lock(map->lock_arg);

2153 2154
	ret = _regmap_multi_reg_write(map, regs, num_regs);

2155 2156 2157 2158 2159 2160
	map->unlock(map->lock_arg);

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_multi_reg_write);

2161 2162 2163 2164
/*
 * regmap_multi_reg_write_bypassed(): Write multiple registers to the
 *                                    device but not the cache
 *
2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177
 * where the set of register are supplied in any order
 *
 * @map: Register map to write to
 * @regs: Array of structures containing register,value to be written
 * @num_regs: Number of registers to write
 *
 * This function is intended to be used for writing a large block of data
 * atomically to the device in single transfer for those I2C client devices
 * that implement this alternative block write mode.
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
2178
int regmap_multi_reg_write_bypassed(struct regmap *map,
2179
				    const struct reg_sequence *regs,
2180
				    int num_regs)
2181
{
2182 2183
	int ret;
	bool bypass;
2184 2185 2186

	map->lock(map->lock_arg);

2187 2188 2189 2190 2191 2192 2193
	bypass = map->cache_bypass;
	map->cache_bypass = true;

	ret = _regmap_multi_reg_write(map, regs, num_regs);

	map->cache_bypass = bypass;

2194 2195 2196 2197
	map->unlock(map->lock_arg);

	return ret;
}
2198
EXPORT_SYMBOL_GPL(regmap_multi_reg_write_bypassed);
2199

2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233
/**
 * regmap_raw_write_async(): Write raw values to one or more registers
 *                           asynchronously
 *
 * @map: Register map to write to
 * @reg: Initial register to write to
 * @val: Block of data to be written, laid out for direct transmission to the
 *       device.  Must be valid until regmap_async_complete() is called.
 * @val_len: Length of data pointed to by val.
 *
 * This function is intended to be used for things like firmware
 * download where a large block of data needs to be transferred to the
 * device.  No formatting will be done on the data provided.
 *
 * If supported by the underlying bus the write will be scheduled
 * asynchronously, helping maximise I/O speed on higher speed buses
 * like SPI.  regmap_async_complete() can be called to ensure that all
 * asynchrnous writes have been completed.
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_raw_write_async(struct regmap *map, unsigned int reg,
			   const void *val, size_t val_len)
{
	int ret;

	if (val_len % map->format.val_bytes)
		return -EINVAL;
	if (reg % map->reg_stride)
		return -EINVAL;

	map->lock(map->lock_arg);

2234 2235 2236 2237 2238
	map->async = true;

	ret = _regmap_raw_write(map, reg, val, val_len);

	map->async = false;
2239 2240 2241 2242 2243 2244 2245

	map->unlock(map->lock_arg);

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_raw_write_async);

2246 2247 2248
static int _regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
			    unsigned int val_len)
{
2249
	struct regmap_range_node *range;
2250 2251 2252
	u8 *u8 = map->work_buf;
	int ret;

2253
	WARN_ON(!map->bus);
2254

2255 2256 2257 2258
	range = _regmap_range_lookup(map, reg);
	if (range) {
		ret = _regmap_select_page(map, &reg, range,
					  val_len / map->format.val_bytes);
2259
		if (ret != 0)
2260 2261
			return ret;
	}
2262

2263
	map->format.format_reg(map->work_buf, reg, map->reg_shift);
2264 2265

	/*
2266
	 * Some buses or devices flag reads by setting the high bits in the
X
Xiubo Li 已提交
2267
	 * register address; since it's always the high bits for all
2268 2269 2270
	 * current formats we can do this here rather than in
	 * formatting.  This may break if we get interesting formats.
	 */
2271
	u8[0] |= map->read_flag_mask;
2272

2273
	trace_regmap_hw_read_start(map, reg, val_len / map->format.val_bytes);
M
Mark Brown 已提交
2274

2275
	ret = map->bus->read(map->bus_context, map->work_buf,
2276
			     map->format.reg_bytes + map->format.pad_bytes,
M
Mark Brown 已提交
2277
			     val, val_len);
2278

2279
	trace_regmap_hw_read_done(map, reg, val_len / map->format.val_bytes);
M
Mark Brown 已提交
2280 2281

	return ret;
2282 2283
}

2284 2285 2286 2287 2288 2289 2290 2291
static int _regmap_bus_reg_read(void *context, unsigned int reg,
				unsigned int *val)
{
	struct regmap *map = context;

	return map->bus->reg_read(map->bus_context, reg, val);
}

2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307
static int _regmap_bus_read(void *context, unsigned int reg,
			    unsigned int *val)
{
	int ret;
	struct regmap *map = context;

	if (!map->format.parse_val)
		return -EINVAL;

	ret = _regmap_raw_read(map, reg, map->work_buf, map->format.val_bytes);
	if (ret == 0)
		*val = map->format.parse_val(map->work_buf);

	return ret;
}

2308 2309 2310 2311
static int _regmap_read(struct regmap *map, unsigned int reg,
			unsigned int *val)
{
	int ret;
2312 2313
	void *context = _regmap_map_get_context(map);

2314 2315 2316 2317 2318 2319 2320 2321 2322
	if (!map->cache_bypass) {
		ret = regcache_read(map, reg, val);
		if (ret == 0)
			return 0;
	}

	if (map->cache_only)
		return -EBUSY;

2323 2324 2325
	if (!regmap_readable(map, reg))
		return -EIO;

2326
	ret = map->reg_read(context, reg, val);
M
Mark Brown 已提交
2327
	if (ret == 0) {
2328
#ifdef LOG_DEVICE
2329
		if (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0)
2330 2331 2332
			dev_info(map->dev, "%x => %x\n", reg, *val);
#endif

2333
		trace_regmap_reg_read(map, reg, *val);
2334

2335 2336 2337
		if (!map->cache_bypass)
			regcache_write(map, reg, *val);
	}
2338

2339 2340 2341 2342 2343 2344
	return ret;
}

/**
 * regmap_read(): Read a value from a single register
 *
2345
 * @map: Register map to read from
2346 2347 2348 2349 2350 2351 2352 2353 2354 2355
 * @reg: Register to be read from
 * @val: Pointer to store read value
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val)
{
	int ret;

2356 2357 2358
	if (reg % map->reg_stride)
		return -EINVAL;

2359
	map->lock(map->lock_arg);
2360 2361 2362

	ret = _regmap_read(map, reg, val);

2363
	map->unlock(map->lock_arg);
2364 2365 2366 2367 2368 2369 2370 2371

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_read);

/**
 * regmap_raw_read(): Read raw data from the device
 *
2372
 * @map: Register map to read from
2373 2374 2375 2376 2377 2378 2379 2380 2381 2382
 * @reg: First register to be read from
 * @val: Pointer to store read value
 * @val_len: Size of data to read
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
		    size_t val_len)
{
2383 2384 2385 2386
	size_t val_bytes = map->format.val_bytes;
	size_t val_count = val_len / val_bytes;
	unsigned int v;
	int ret, i;
2387

2388 2389
	if (!map->bus)
		return -EINVAL;
2390 2391
	if (val_len % map->format.val_bytes)
		return -EINVAL;
2392 2393
	if (reg % map->reg_stride)
		return -EINVAL;
2394 2395
	if (val_count == 0)
		return -EINVAL;
2396

2397
	map->lock(map->lock_arg);
2398

2399 2400
	if (regmap_volatile_range(map, reg, val_count) || map->cache_bypass ||
	    map->cache_type == REGCACHE_NONE) {
2401 2402 2403 2404
		if (!map->bus->read) {
			ret = -ENOTSUPP;
			goto out;
		}
2405 2406 2407 2408
		if (map->max_raw_read && map->max_raw_read < val_len) {
			ret = -E2BIG;
			goto out;
		}
2409

2410 2411 2412 2413 2414 2415 2416 2417
		/* Physical block read if there's no cache involved */
		ret = _regmap_raw_read(map, reg, val, val_len);

	} else {
		/* Otherwise go word by word for the cache; should be low
		 * cost as we expect to hit the cache.
		 */
		for (i = 0; i < val_count; i++) {
2418 2419
			ret = _regmap_read(map, reg + (i * map->reg_stride),
					   &v);
2420 2421 2422
			if (ret != 0)
				goto out;

2423
			map->format.format_val(val + (i * val_bytes), v, 0);
2424 2425
		}
	}
2426

2427
 out:
2428
	map->unlock(map->lock_arg);
2429 2430 2431 2432 2433

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_raw_read);

2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458
/**
 * regmap_field_read(): Read a value to a single register field
 *
 * @field: Register field to read from
 * @val: Pointer to store read value
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_field_read(struct regmap_field *field, unsigned int *val)
{
	int ret;
	unsigned int reg_val;
	ret = regmap_read(field->regmap, field->reg, &reg_val);
	if (ret != 0)
		return ret;

	reg_val &= field->mask;
	reg_val >>= field->shift;
	*val = reg_val;

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_field_read);

2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491
/**
 * regmap_fields_read(): Read a value to a single register field with port ID
 *
 * @field: Register field to read from
 * @id: port ID
 * @val: Pointer to store read value
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_fields_read(struct regmap_field *field, unsigned int id,
		       unsigned int *val)
{
	int ret;
	unsigned int reg_val;

	if (id >= field->id_size)
		return -EINVAL;

	ret = regmap_read(field->regmap,
			  field->reg + (field->id_offset * id),
			  &reg_val);
	if (ret != 0)
		return ret;

	reg_val &= field->mask;
	reg_val >>= field->shift;
	*val = reg_val;

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_fields_read);

2492 2493 2494
/**
 * regmap_bulk_read(): Read multiple registers from the device
 *
2495
 * @map: Register map to read from
2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507
 * @reg: First register to be read from
 * @val: Pointer to store read value, in native register size for device
 * @val_count: Number of registers to read
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_bulk_read(struct regmap *map, unsigned int reg, void *val,
		     size_t val_count)
{
	int ret, i;
	size_t val_bytes = map->format.val_bytes;
2508
	bool vol = regmap_volatile_range(map, reg, val_count);
2509

2510 2511
	if (reg % map->reg_stride)
		return -EINVAL;
2512

2513
	if (map->bus && map->format.parse_inplace && (vol || map->cache_type == REGCACHE_NONE)) {
2514 2515 2516 2517
		/*
		 * Some devices does not support bulk read, for
		 * them we have a series of single read operations.
		 */
2518 2519 2520 2521
		size_t total_size = val_bytes * val_count;

		if (!map->use_single_read &&
		    (!map->max_raw_read || map->max_raw_read > total_size)) {
2522 2523 2524 2525
			ret = regmap_raw_read(map, reg, val,
					      val_bytes * val_count);
			if (ret != 0)
				return ret;
2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562
		} else {
			/*
			 * Some devices do not support bulk read or do not
			 * support large bulk reads, for them we have a series
			 * of read operations.
			 */
			int chunk_stride = map->reg_stride;
			size_t chunk_size = val_bytes;
			size_t chunk_count = val_count;

			if (!map->use_single_read) {
				chunk_size = map->max_raw_read;
				if (chunk_size % val_bytes)
					chunk_size -= chunk_size % val_bytes;
				chunk_count = total_size / chunk_size;
				chunk_stride *= chunk_size / val_bytes;
			}

			/* Read bytes that fit into a multiple of chunk_size */
			for (i = 0; i < chunk_count; i++) {
				ret = regmap_raw_read(map,
						      reg + (i * chunk_stride),
						      val + (i * chunk_size),
						      chunk_size);
				if (ret != 0)
					return ret;
			}

			/* Read remaining bytes */
			if (chunk_size * i < total_size) {
				ret = regmap_raw_read(map,
						      reg + (i * chunk_stride),
						      val + (i * chunk_size),
						      total_size - i * chunk_size);
				if (ret != 0)
					return ret;
			}
2563
		}
2564 2565

		for (i = 0; i < val_count * val_bytes; i += val_bytes)
2566
			map->format.parse_inplace(val + i);
2567 2568
	} else {
		for (i = 0; i < val_count; i++) {
2569
			unsigned int ival;
2570
			ret = regmap_read(map, reg + (i * map->reg_stride),
2571
					  &ival);
2572 2573
			if (ret != 0)
				return ret;
2574 2575 2576 2577 2578 2579 2580 2581 2582 2583

			if (map->format.format_val) {
				map->format.format_val(val + (i * val_bytes), ival, 0);
			} else {
				/* Devices providing read and write
				 * operations can use the bulk I/O
				 * functions if they define a val_bytes,
				 * we assume that the values are native
				 * endian.
				 */
2584
#ifdef CONFIG_64BIT
X
Xiubo Li 已提交
2585
				u64 *u64 = val;
2586
#endif
2587 2588 2589 2590 2591
				u32 *u32 = val;
				u16 *u16 = val;
				u8 *u8 = val;

				switch (map->format.val_bytes) {
X
Xiubo Li 已提交
2592 2593 2594 2595 2596
#ifdef CONFIG_64BIT
				case 8:
					u64[i] = ival;
					break;
#endif
2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609
				case 4:
					u32[i] = ival;
					break;
				case 2:
					u16[i] = ival;
					break;
				case 1:
					u8[i] = ival;
					break;
				default:
					return -EINVAL;
				}
			}
2610 2611
		}
	}
2612 2613 2614 2615 2616

	return 0;
}
EXPORT_SYMBOL_GPL(regmap_bulk_read);

2617 2618
static int _regmap_update_bits(struct regmap *map, unsigned int reg,
			       unsigned int mask, unsigned int val,
2619
			       bool *change, bool force_write)
2620 2621
{
	int ret;
2622
	unsigned int tmp, orig;
2623

2624 2625
	if (change)
		*change = false;
2626

2627 2628 2629
	if (regmap_volatile(map, reg) && map->reg_update_bits) {
		ret = map->reg_update_bits(map->bus_context, reg, mask, val);
		if (ret == 0 && change)
2630
			*change = true;
2631
	} else {
2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643
		ret = _regmap_read(map, reg, &orig);
		if (ret != 0)
			return ret;

		tmp = orig & ~mask;
		tmp |= val & mask;

		if (force_write || (tmp != orig)) {
			ret = _regmap_write(map, reg, tmp);
			if (ret == 0 && change)
				*change = true;
		}
2644
	}
2645 2646 2647

	return ret;
}
2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661

/**
 * regmap_update_bits: Perform a read/modify/write cycle on the register map
 *
 * @map: Register map to update
 * @reg: Register to update
 * @mask: Bitmask to change
 * @val: New value for bitmask
 *
 * Returns zero for success, a negative number on error.
 */
int regmap_update_bits(struct regmap *map, unsigned int reg,
		       unsigned int mask, unsigned int val)
{
2662 2663
	int ret;

2664
	map->lock(map->lock_arg);
2665
	ret = _regmap_update_bits(map, reg, mask, val, NULL, false);
2666
	map->unlock(map->lock_arg);
2667 2668

	return ret;
2669
}
2670
EXPORT_SYMBOL_GPL(regmap_update_bits);
2671

2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694
/**
 * regmap_write_bits: Perform a read/modify/write cycle on the register map
 *
 * @map: Register map to update
 * @reg: Register to update
 * @mask: Bitmask to change
 * @val: New value for bitmask
 *
 * Returns zero for success, a negative number on error.
 */
int regmap_write_bits(struct regmap *map, unsigned int reg,
		      unsigned int mask, unsigned int val)
{
	int ret;

	map->lock(map->lock_arg);
	ret = _regmap_update_bits(map, reg, mask, val, NULL, true);
	map->unlock(map->lock_arg);

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_write_bits);

2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718
/**
 * regmap_update_bits_async: Perform a read/modify/write cycle on the register
 *                           map asynchronously
 *
 * @map: Register map to update
 * @reg: Register to update
 * @mask: Bitmask to change
 * @val: New value for bitmask
 *
 * With most buses the read must be done synchronously so this is most
 * useful for devices with a cache which do not need to interact with
 * the hardware to determine the current register value.
 *
 * Returns zero for success, a negative number on error.
 */
int regmap_update_bits_async(struct regmap *map, unsigned int reg,
			     unsigned int mask, unsigned int val)
{
	int ret;

	map->lock(map->lock_arg);

	map->async = true;

2719
	ret = _regmap_update_bits(map, reg, mask, val, NULL, false);
2720 2721 2722 2723 2724 2725 2726 2727 2728

	map->async = false;

	map->unlock(map->lock_arg);

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_update_bits_async);

2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744
/**
 * regmap_update_bits_check: Perform a read/modify/write cycle on the
 *                           register map and report if updated
 *
 * @map: Register map to update
 * @reg: Register to update
 * @mask: Bitmask to change
 * @val: New value for bitmask
 * @change: Boolean indicating if a write was done
 *
 * Returns zero for success, a negative number on error.
 */
int regmap_update_bits_check(struct regmap *map, unsigned int reg,
			     unsigned int mask, unsigned int val,
			     bool *change)
{
2745 2746
	int ret;

2747
	map->lock(map->lock_arg);
2748
	ret = _regmap_update_bits(map, reg, mask, val, change, false);
2749
	map->unlock(map->lock_arg);
2750
	return ret;
2751 2752 2753
}
EXPORT_SYMBOL_GPL(regmap_update_bits_check);

2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780
/**
 * regmap_update_bits_check_async: Perform a read/modify/write cycle on the
 *                                 register map asynchronously and report if
 *                                 updated
 *
 * @map: Register map to update
 * @reg: Register to update
 * @mask: Bitmask to change
 * @val: New value for bitmask
 * @change: Boolean indicating if a write was done
 *
 * With most buses the read must be done synchronously so this is most
 * useful for devices with a cache which do not need to interact with
 * the hardware to determine the current register value.
 *
 * Returns zero for success, a negative number on error.
 */
int regmap_update_bits_check_async(struct regmap *map, unsigned int reg,
				   unsigned int mask, unsigned int val,
				   bool *change)
{
	int ret;

	map->lock(map->lock_arg);

	map->async = true;

2781
	ret = _regmap_update_bits(map, reg, mask, val, change, false);
2782 2783 2784 2785 2786 2787 2788 2789 2790

	map->async = false;

	map->unlock(map->lock_arg);

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_update_bits_check_async);

2791 2792 2793 2794 2795
void regmap_async_complete_cb(struct regmap_async *async, int ret)
{
	struct regmap *map = async->map;
	bool wake;

2796
	trace_regmap_async_io_complete(map);
2797

2798
	spin_lock(&map->async_lock);
M
Mark Brown 已提交
2799
	list_move(&async->list, &map->async_free);
2800 2801 2802 2803 2804 2805 2806 2807 2808 2809
	wake = list_empty(&map->async_list);

	if (ret != 0)
		map->async_ret = ret;

	spin_unlock(&map->async_lock);

	if (wake)
		wake_up(&map->async_waitq);
}
2810
EXPORT_SYMBOL_GPL(regmap_async_complete_cb);
2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837

static int regmap_async_is_done(struct regmap *map)
{
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&map->async_lock, flags);
	ret = list_empty(&map->async_list);
	spin_unlock_irqrestore(&map->async_lock, flags);

	return ret;
}

/**
 * regmap_async_complete: Ensure all asynchronous I/O has completed.
 *
 * @map: Map to operate on.
 *
 * Blocks until any pending asynchronous I/O has completed.  Returns
 * an error code for any failed I/O operations.
 */
int regmap_async_complete(struct regmap *map)
{
	unsigned long flags;
	int ret;

	/* Nothing to do with no async support */
2838
	if (!map->bus || !map->bus->async_write)
2839 2840
		return 0;

2841
	trace_regmap_async_complete_start(map);
2842

2843 2844 2845 2846 2847 2848 2849
	wait_event(map->async_waitq, regmap_async_is_done(map));

	spin_lock_irqsave(&map->async_lock, flags);
	ret = map->async_ret;
	map->async_ret = 0;
	spin_unlock_irqrestore(&map->async_lock, flags);

2850
	trace_regmap_async_complete_done(map);
2851

2852 2853
	return ret;
}
2854
EXPORT_SYMBOL_GPL(regmap_async_complete);
2855

M
Mark Brown 已提交
2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868
/**
 * regmap_register_patch: Register and apply register updates to be applied
 *                        on device initialistion
 *
 * @map: Register map to apply updates to.
 * @regs: Values to update.
 * @num_regs: Number of entries in regs.
 *
 * Register a set of register updates to be applied to the device
 * whenever the device registers are synchronised with the cache and
 * apply them immediately.  Typically this is used to apply
 * corrections to be applied to the device defaults on startup, such
 * as the updates some vendors provide to undocumented registers.
2869 2870 2871
 *
 * The caller must ensure that this function cannot be called
 * concurrently with either itself or regcache_sync().
M
Mark Brown 已提交
2872
 */
2873
int regmap_register_patch(struct regmap *map, const struct reg_sequence *regs,
M
Mark Brown 已提交
2874 2875
			  int num_regs)
{
2876
	struct reg_sequence *p;
2877
	int ret;
M
Mark Brown 已提交
2878 2879
	bool bypass;

2880 2881 2882 2883
	if (WARN_ONCE(num_regs <= 0, "invalid registers number (%d)\n",
	    num_regs))
		return 0;

2884
	p = krealloc(map->patch,
2885
		     sizeof(struct reg_sequence) * (map->patch_regs + num_regs),
2886 2887 2888 2889 2890
		     GFP_KERNEL);
	if (p) {
		memcpy(p + map->patch_regs, regs, num_regs * sizeof(*regs));
		map->patch = p;
		map->patch_regs += num_regs;
M
Mark Brown 已提交
2891
	} else {
2892
		return -ENOMEM;
M
Mark Brown 已提交
2893 2894
	}

2895
	map->lock(map->lock_arg);
M
Mark Brown 已提交
2896 2897 2898 2899

	bypass = map->cache_bypass;

	map->cache_bypass = true;
2900
	map->async = true;
M
Mark Brown 已提交
2901

2902
	ret = _regmap_multi_reg_write(map, regs, num_regs);
M
Mark Brown 已提交
2903

2904
	map->async = false;
M
Mark Brown 已提交
2905 2906
	map->cache_bypass = bypass;

2907
	map->unlock(map->lock_arg);
M
Mark Brown 已提交
2908

2909 2910
	regmap_async_complete(map);

M
Mark Brown 已提交
2911 2912 2913 2914
	return ret;
}
EXPORT_SYMBOL_GPL(regmap_register_patch);

2915
/*
2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929
 * regmap_get_val_bytes(): Report the size of a register value
 *
 * Report the size of a register value, mainly intended to for use by
 * generic infrastructure built on top of regmap.
 */
int regmap_get_val_bytes(struct regmap *map)
{
	if (map->format.format_write)
		return -EINVAL;

	return map->format.val_bytes;
}
EXPORT_SYMBOL_GPL(regmap_get_val_bytes);

2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941
/**
 * regmap_get_max_register(): Report the max register value
 *
 * Report the max register value, mainly intended to for use by
 * generic infrastructure built on top of regmap.
 */
int regmap_get_max_register(struct regmap *map)
{
	return map->max_register ? map->max_register : -EINVAL;
}
EXPORT_SYMBOL_GPL(regmap_get_max_register);

2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953
/**
 * regmap_get_reg_stride(): Report the register address stride
 *
 * Report the register address stride, mainly intended to for use by
 * generic infrastructure built on top of regmap.
 */
int regmap_get_reg_stride(struct regmap *map)
{
	return map->reg_stride;
}
EXPORT_SYMBOL_GPL(regmap_get_reg_stride);

N
Nenghua Cao 已提交
2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965
int regmap_parse_val(struct regmap *map, const void *buf,
			unsigned int *val)
{
	if (!map->format.parse_val)
		return -EINVAL;

	*val = map->format.parse_val(buf);

	return 0;
}
EXPORT_SYMBOL_GPL(regmap_parse_val);

2966 2967 2968 2969 2970 2971 2972
static int __init regmap_initcall(void)
{
	regmap_debugfs_initcall();

	return 0;
}
postcore_initcall(regmap_initcall);