regmap.c 63.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12
/*
 * Register map access API
 *
 * Copyright 2011 Wolfson Microelectronics plc
 *
 * Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

13
#include <linux/device.h>
14
#include <linux/slab.h>
15
#include <linux/export.h>
16 17
#include <linux/mutex.h>
#include <linux/err.h>
18
#include <linux/of.h>
19
#include <linux/rbtree.h>
20
#include <linux/sched.h>
21

M
Mark Brown 已提交
22 23 24
#define CREATE_TRACE_POINTS
#include <trace/events/regmap.h>

25
#include "internal.h"
26

27 28 29 30 31 32 33 34 35 36 37 38
/*
 * Sometimes for failures during very early init the trace
 * infrastructure isn't available early enough to be used.  For this
 * sort of problem defining LOG_DEVICE will add printks for basic
 * register I/O on a specific device.
 */
#undef LOG_DEVICE

static int _regmap_update_bits(struct regmap *map, unsigned int reg,
			       unsigned int mask, unsigned int val,
			       bool *change);

39 40
static int _regmap_bus_reg_read(void *context, unsigned int reg,
				unsigned int *val);
41 42
static int _regmap_bus_read(void *context, unsigned int reg,
			    unsigned int *val);
43 44
static int _regmap_bus_formatted_write(void *context, unsigned int reg,
				       unsigned int val);
45 46
static int _regmap_bus_reg_write(void *context, unsigned int reg,
				 unsigned int val);
47 48
static int _regmap_bus_raw_write(void *context, unsigned int reg,
				 unsigned int val);
49

50 51 52 53 54 55 56 57 58 59 60 61 62 63
bool regmap_reg_in_ranges(unsigned int reg,
			  const struct regmap_range *ranges,
			  unsigned int nranges)
{
	const struct regmap_range *r;
	int i;

	for (i = 0, r = ranges; i < nranges; i++, r++)
		if (regmap_reg_in_range(reg, r))
			return true;
	return false;
}
EXPORT_SYMBOL_GPL(regmap_reg_in_ranges);

64 65
bool regmap_check_range_table(struct regmap *map, unsigned int reg,
			      const struct regmap_access_table *table)
66 67 68 69 70 71 72 73 74 75 76 77
{
	/* Check "no ranges" first */
	if (regmap_reg_in_ranges(reg, table->no_ranges, table->n_no_ranges))
		return false;

	/* In case zero "yes ranges" are supplied, any reg is OK */
	if (!table->n_yes_ranges)
		return true;

	return regmap_reg_in_ranges(reg, table->yes_ranges,
				    table->n_yes_ranges);
}
78
EXPORT_SYMBOL_GPL(regmap_check_range_table);
79

80 81 82 83 84 85 86 87
bool regmap_writeable(struct regmap *map, unsigned int reg)
{
	if (map->max_register && reg > map->max_register)
		return false;

	if (map->writeable_reg)
		return map->writeable_reg(map->dev, reg);

88
	if (map->wr_table)
89
		return regmap_check_range_table(map, reg, map->wr_table);
90

91 92 93 94 95 96 97 98
	return true;
}

bool regmap_readable(struct regmap *map, unsigned int reg)
{
	if (map->max_register && reg > map->max_register)
		return false;

99 100 101
	if (map->format.format_write)
		return false;

102 103 104
	if (map->readable_reg)
		return map->readable_reg(map->dev, reg);

105
	if (map->rd_table)
106
		return regmap_check_range_table(map, reg, map->rd_table);
107

108 109 110 111 112
	return true;
}

bool regmap_volatile(struct regmap *map, unsigned int reg)
{
113
	if (!regmap_readable(map, reg))
114 115 116 117 118
		return false;

	if (map->volatile_reg)
		return map->volatile_reg(map->dev, reg);

119
	if (map->volatile_table)
120
		return regmap_check_range_table(map, reg, map->volatile_table);
121

122 123 124 125
	if (map->cache_ops)
		return false;
	else
		return true;
126 127 128 129
}

bool regmap_precious(struct regmap *map, unsigned int reg)
{
130
	if (!regmap_readable(map, reg))
131 132 133 134 135
		return false;

	if (map->precious_reg)
		return map->precious_reg(map->dev, reg);

136
	if (map->precious_table)
137
		return regmap_check_range_table(map, reg, map->precious_table);
138

139 140 141
	return false;
}

142
static bool regmap_volatile_range(struct regmap *map, unsigned int reg,
P
Paul Bolle 已提交
143
	size_t num)
144 145 146 147 148 149 150 151 152 153
{
	unsigned int i;

	for (i = 0; i < num; i++)
		if (!regmap_volatile(map, reg + i))
			return false;

	return true;
}

154 155 156 157 158 159 160 161
static void regmap_format_2_6_write(struct regmap *map,
				     unsigned int reg, unsigned int val)
{
	u8 *out = map->work_buf;

	*out = (reg << 6) | val;
}

162 163 164 165 166 167 168 169 170 171 172 173 174 175
static void regmap_format_4_12_write(struct regmap *map,
				     unsigned int reg, unsigned int val)
{
	__be16 *out = map->work_buf;
	*out = cpu_to_be16((reg << 12) | val);
}

static void regmap_format_7_9_write(struct regmap *map,
				    unsigned int reg, unsigned int val)
{
	__be16 *out = map->work_buf;
	*out = cpu_to_be16((reg << 9) | val);
}

176 177 178 179 180 181 182 183 184 185
static void regmap_format_10_14_write(struct regmap *map,
				    unsigned int reg, unsigned int val)
{
	u8 *out = map->work_buf;

	out[2] = val;
	out[1] = (val >> 8) | (reg << 6);
	out[0] = reg >> 2;
}

186
static void regmap_format_8(void *buf, unsigned int val, unsigned int shift)
187 188 189
{
	u8 *b = buf;

190
	b[0] = val << shift;
191 192
}

193
static void regmap_format_16_be(void *buf, unsigned int val, unsigned int shift)
194 195 196
{
	__be16 *b = buf;

197
	b[0] = cpu_to_be16(val << shift);
198 199
}

200 201 202 203 204 205 206
static void regmap_format_16_le(void *buf, unsigned int val, unsigned int shift)
{
	__le16 *b = buf;

	b[0] = cpu_to_le16(val << shift);
}

207 208 209 210 211 212
static void regmap_format_16_native(void *buf, unsigned int val,
				    unsigned int shift)
{
	*(u16 *)buf = val << shift;
}

213
static void regmap_format_24(void *buf, unsigned int val, unsigned int shift)
214 215 216
{
	u8 *b = buf;

217 218
	val <<= shift;

219 220 221 222 223
	b[0] = val >> 16;
	b[1] = val >> 8;
	b[2] = val;
}

224
static void regmap_format_32_be(void *buf, unsigned int val, unsigned int shift)
225 226 227
{
	__be32 *b = buf;

228
	b[0] = cpu_to_be32(val << shift);
229 230
}

231 232 233 234 235 236 237
static void regmap_format_32_le(void *buf, unsigned int val, unsigned int shift)
{
	__le32 *b = buf;

	b[0] = cpu_to_le32(val << shift);
}

238 239 240 241 242 243
static void regmap_format_32_native(void *buf, unsigned int val,
				    unsigned int shift)
{
	*(u32 *)buf = val << shift;
}

244
static void regmap_parse_inplace_noop(void *buf)
245
{
246 247 248 249 250
}

static unsigned int regmap_parse_8(const void *buf)
{
	const u8 *b = buf;
251 252 253 254

	return b[0];
}

255 256 257 258 259 260 261
static unsigned int regmap_parse_16_be(const void *buf)
{
	const __be16 *b = buf;

	return be16_to_cpu(b[0]);
}

262 263 264 265 266 267 268
static unsigned int regmap_parse_16_le(const void *buf)
{
	const __le16 *b = buf;

	return le16_to_cpu(b[0]);
}

269
static void regmap_parse_16_be_inplace(void *buf)
270 271 272 273 274 275
{
	__be16 *b = buf;

	b[0] = be16_to_cpu(b[0]);
}

276 277 278 279 280 281 282
static void regmap_parse_16_le_inplace(void *buf)
{
	__le16 *b = buf;

	b[0] = le16_to_cpu(b[0]);
}

283
static unsigned int regmap_parse_16_native(const void *buf)
284 285 286 287
{
	return *(u16 *)buf;
}

288
static unsigned int regmap_parse_24(const void *buf)
289
{
290
	const u8 *b = buf;
291 292 293 294 295 296 297
	unsigned int ret = b[2];
	ret |= ((unsigned int)b[1]) << 8;
	ret |= ((unsigned int)b[0]) << 16;

	return ret;
}

298 299 300 301 302 303 304
static unsigned int regmap_parse_32_be(const void *buf)
{
	const __be32 *b = buf;

	return be32_to_cpu(b[0]);
}

305 306 307 308 309 310 311
static unsigned int regmap_parse_32_le(const void *buf)
{
	const __le32 *b = buf;

	return le32_to_cpu(b[0]);
}

312
static void regmap_parse_32_be_inplace(void *buf)
313 314 315 316 317 318
{
	__be32 *b = buf;

	b[0] = be32_to_cpu(b[0]);
}

319 320 321 322 323 324 325
static void regmap_parse_32_le_inplace(void *buf)
{
	__le32 *b = buf;

	b[0] = le32_to_cpu(b[0]);
}

326
static unsigned int regmap_parse_32_native(const void *buf)
327 328 329 330
{
	return *(u32 *)buf;
}

331
static void regmap_lock_mutex(void *__map)
332
{
333
	struct regmap *map = __map;
334 335 336
	mutex_lock(&map->mutex);
}

337
static void regmap_unlock_mutex(void *__map)
338
{
339
	struct regmap *map = __map;
340 341 342
	mutex_unlock(&map->mutex);
}

343
static void regmap_lock_spinlock(void *__map)
344
__acquires(&map->spinlock)
345
{
346
	struct regmap *map = __map;
347 348 349 350
	unsigned long flags;

	spin_lock_irqsave(&map->spinlock, flags);
	map->spinlock_flags = flags;
351 352
}

353
static void regmap_unlock_spinlock(void *__map)
354
__releases(&map->spinlock)
355
{
356
	struct regmap *map = __map;
357
	spin_unlock_irqrestore(&map->spinlock, map->spinlock_flags);
358 359
}

M
Mark Brown 已提交
360 361 362 363 364 365 366 367 368
static void dev_get_regmap_release(struct device *dev, void *res)
{
	/*
	 * We don't actually have anything to do here; the goal here
	 * is not to manage the regmap but to provide a simple way to
	 * get the regmap back given a struct device.
	 */
}

369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429
static bool _regmap_range_add(struct regmap *map,
			      struct regmap_range_node *data)
{
	struct rb_root *root = &map->range_tree;
	struct rb_node **new = &(root->rb_node), *parent = NULL;

	while (*new) {
		struct regmap_range_node *this =
			container_of(*new, struct regmap_range_node, node);

		parent = *new;
		if (data->range_max < this->range_min)
			new = &((*new)->rb_left);
		else if (data->range_min > this->range_max)
			new = &((*new)->rb_right);
		else
			return false;
	}

	rb_link_node(&data->node, parent, new);
	rb_insert_color(&data->node, root);

	return true;
}

static struct regmap_range_node *_regmap_range_lookup(struct regmap *map,
						      unsigned int reg)
{
	struct rb_node *node = map->range_tree.rb_node;

	while (node) {
		struct regmap_range_node *this =
			container_of(node, struct regmap_range_node, node);

		if (reg < this->range_min)
			node = node->rb_left;
		else if (reg > this->range_max)
			node = node->rb_right;
		else
			return this;
	}

	return NULL;
}

static void regmap_range_exit(struct regmap *map)
{
	struct rb_node *next;
	struct regmap_range_node *range_node;

	next = rb_first(&map->range_tree);
	while (next) {
		range_node = rb_entry(next, struct regmap_range_node, node);
		next = rb_next(&range_node->node);
		rb_erase(&range_node->node, &map->range_tree);
		kfree(range_node);
	}

	kfree(map->selector_work_buf);
}

430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451
int regmap_attach_dev(struct device *dev, struct regmap *map,
		      const struct regmap_config *config)
{
	struct regmap **m;

	map->dev = dev;

	regmap_debugfs_init(map, config->name);

	/* Add a devres resource for dev_get_regmap() */
	m = devres_alloc(dev_get_regmap_release, sizeof(*m), GFP_KERNEL);
	if (!m) {
		regmap_debugfs_exit(map);
		return -ENOMEM;
	}
	*m = map;
	devres_add(dev, m);

	return 0;
}
EXPORT_SYMBOL_GPL(regmap_attach_dev);

452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508
enum regmap_endian_type {
	REGMAP_ENDIAN_REG,
	REGMAP_ENDIAN_VAL,
};

static int of_regmap_get_endian(struct device *dev,
				const struct regmap_bus *bus,
				const struct regmap_config *config,
				enum regmap_endian_type type,
				enum regmap_endian *endian)
{
	struct device_node *np = dev->of_node;

	if (!endian || !config)
		return -EINVAL;

	/*
	 * Firstly, try to parse the endianness from driver's config,
	 * this is to be compatible with the none DT or the old drivers.
	 * From the driver's config the endianness value maybe:
	 *   REGMAP_ENDIAN_BIG,
	 *   REGMAP_ENDIAN_LITTLE,
	 *   REGMAP_ENDIAN_NATIVE,
	 *   REGMAP_ENDIAN_DEFAULT.
	 */
	switch (type) {
	case REGMAP_ENDIAN_REG:
		*endian = config->reg_format_endian;
		break;
	case REGMAP_ENDIAN_VAL:
		*endian = config->val_format_endian;
		break;
	default:
		return -EINVAL;
	}

	/*
	 * If the endianness parsed from driver config is
	 * REGMAP_ENDIAN_DEFAULT, that means maybe we are using the DT
	 * node to specify the endianness information.
	 */
	if (*endian != REGMAP_ENDIAN_DEFAULT)
		return 0;

	/*
	 * Secondly, try to parse the endianness from DT node if the
	 * driver config does not specify it.
	 * From the DT node the endianness value maybe:
	 *   REGMAP_ENDIAN_BIG,
	 *   REGMAP_ENDIAN_LITTLE,
	 */
	switch (type) {
	case REGMAP_ENDIAN_VAL:
		if (of_property_read_bool(np, "big-endian"))
			*endian = REGMAP_ENDIAN_BIG;
		else if (of_property_read_bool(np, "little-endian"))
			*endian = REGMAP_ENDIAN_LITTLE;
509 510 511 512

		if (*endian != REGMAP_ENDIAN_DEFAULT)
			return 0;

513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539
		break;
	case REGMAP_ENDIAN_REG:
		break;
	default:
		return -EINVAL;
	}

	/*
	 * Finally, try to parse the endianness from regmap bus config
	 * if in device's DT node the endianness property is absent.
	 */
	switch (type) {
	case REGMAP_ENDIAN_REG:
		if (bus && bus->reg_format_endian_default)
			*endian = bus->reg_format_endian_default;
		break;
	case REGMAP_ENDIAN_VAL:
		if (bus && bus->val_format_endian_default)
			*endian = bus->val_format_endian_default;
		break;
	default:
		return -EINVAL;
	}

	return 0;
}

540 541 542 543 544
/**
 * regmap_init(): Initialise register map
 *
 * @dev: Device that will be interacted with
 * @bus: Bus-specific callbacks to use with device
545
 * @bus_context: Data passed to bus-specific callbacks
546 547 548 549 550 551 552 553
 * @config: Configuration for register map
 *
 * The return value will be an ERR_PTR() on error or a valid pointer to
 * a struct regmap.  This function should generally not be called
 * directly, it should be called by bus-specific init functions.
 */
struct regmap *regmap_init(struct device *dev,
			   const struct regmap_bus *bus,
554
			   void *bus_context,
555 556
			   const struct regmap_config *config)
{
557
	struct regmap *map;
558
	int ret = -EINVAL;
559
	enum regmap_endian reg_endian, val_endian;
560
	int i, j;
561

562
	if (!config)
563
		goto err;
564 565 566 567 568 569 570

	map = kzalloc(sizeof(*map), GFP_KERNEL);
	if (map == NULL) {
		ret = -ENOMEM;
		goto err;
	}

571 572 573 574
	if (config->lock && config->unlock) {
		map->lock = config->lock;
		map->unlock = config->unlock;
		map->lock_arg = config->lock_arg;
575
	} else {
576 577
		if ((bus && bus->fast_io) ||
		    config->fast_io) {
578 579 580 581 582 583 584 585 586
			spin_lock_init(&map->spinlock);
			map->lock = regmap_lock_spinlock;
			map->unlock = regmap_unlock_spinlock;
		} else {
			mutex_init(&map->mutex);
			map->lock = regmap_lock_mutex;
			map->unlock = regmap_unlock_mutex;
		}
		map->lock_arg = map;
587
	}
588
	map->format.reg_bytes = DIV_ROUND_UP(config->reg_bits, 8);
589
	map->format.pad_bytes = config->pad_bits / 8;
590
	map->format.val_bytes = DIV_ROUND_UP(config->val_bits, 8);
591 592
	map->format.buf_size = DIV_ROUND_UP(config->reg_bits +
			config->val_bits + config->pad_bits, 8);
593
	map->reg_shift = config->pad_bits % 8;
594 595 596 597
	if (config->reg_stride)
		map->reg_stride = config->reg_stride;
	else
		map->reg_stride = 1;
598
	map->use_single_rw = config->use_single_rw;
599
	map->can_multi_write = config->can_multi_write;
600 601
	map->dev = dev;
	map->bus = bus;
602
	map->bus_context = bus_context;
603
	map->max_register = config->max_register;
604 605 606 607
	map->wr_table = config->wr_table;
	map->rd_table = config->rd_table;
	map->volatile_table = config->volatile_table;
	map->precious_table = config->precious_table;
608 609 610
	map->writeable_reg = config->writeable_reg;
	map->readable_reg = config->readable_reg;
	map->volatile_reg = config->volatile_reg;
611
	map->precious_reg = config->precious_reg;
612
	map->cache_type = config->cache_type;
M
Mark Brown 已提交
613
	map->name = config->name;
614

615 616
	spin_lock_init(&map->async_lock);
	INIT_LIST_HEAD(&map->async_list);
M
Mark Brown 已提交
617
	INIT_LIST_HEAD(&map->async_free);
618 619
	init_waitqueue_head(&map->async_waitq);

620 621 622
	if (config->read_flag_mask || config->write_flag_mask) {
		map->read_flag_mask = config->read_flag_mask;
		map->write_flag_mask = config->write_flag_mask;
623
	} else if (bus) {
624 625 626
		map->read_flag_mask = bus->read_flag_mask;
	}

627 628 629 630
	if (!bus) {
		map->reg_read  = config->reg_read;
		map->reg_write = config->reg_write;

631 632 633 634 635 636
		map->defer_caching = false;
		goto skip_format_initialization;
	} else if (!bus->read || !bus->write) {
		map->reg_read = _regmap_bus_reg_read;
		map->reg_write = _regmap_bus_reg_write;

637 638 639 640 641
		map->defer_caching = false;
		goto skip_format_initialization;
	} else {
		map->reg_read  = _regmap_bus_read;
	}
642

643 644 645 646 647 648 649 650 651
	ret = of_regmap_get_endian(dev, bus, config, REGMAP_ENDIAN_REG,
				   &reg_endian);
	if (ret)
		return ERR_PTR(ret);

	ret = of_regmap_get_endian(dev, bus, config, REGMAP_ENDIAN_VAL,
				   &val_endian);
	if (ret)
		return ERR_PTR(ret);
652

653
	switch (config->reg_bits + map->reg_shift) {
654 655 656 657 658 659 660 661 662 663
	case 2:
		switch (config->val_bits) {
		case 6:
			map->format.format_write = regmap_format_2_6_write;
			break;
		default:
			goto err_map;
		}
		break;

664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683
	case 4:
		switch (config->val_bits) {
		case 12:
			map->format.format_write = regmap_format_4_12_write;
			break;
		default:
			goto err_map;
		}
		break;

	case 7:
		switch (config->val_bits) {
		case 9:
			map->format.format_write = regmap_format_7_9_write;
			break;
		default:
			goto err_map;
		}
		break;

684 685 686 687 688 689 690 691 692 693
	case 10:
		switch (config->val_bits) {
		case 14:
			map->format.format_write = regmap_format_10_14_write;
			break;
		default:
			goto err_map;
		}
		break;

694 695 696 697 698
	case 8:
		map->format.format_reg = regmap_format_8;
		break;

	case 16:
699 700 701 702 703 704 705 706 707 708
		switch (reg_endian) {
		case REGMAP_ENDIAN_BIG:
			map->format.format_reg = regmap_format_16_be;
			break;
		case REGMAP_ENDIAN_NATIVE:
			map->format.format_reg = regmap_format_16_native;
			break;
		default:
			goto err_map;
		}
709 710
		break;

711 712 713 714 715 716
	case 24:
		if (reg_endian != REGMAP_ENDIAN_BIG)
			goto err_map;
		map->format.format_reg = regmap_format_24;
		break;

717
	case 32:
718 719 720 721 722 723 724 725 726 727
		switch (reg_endian) {
		case REGMAP_ENDIAN_BIG:
			map->format.format_reg = regmap_format_32_be;
			break;
		case REGMAP_ENDIAN_NATIVE:
			map->format.format_reg = regmap_format_32_native;
			break;
		default:
			goto err_map;
		}
728 729
		break;

730 731 732 733
	default:
		goto err_map;
	}

734 735 736
	if (val_endian == REGMAP_ENDIAN_NATIVE)
		map->format.parse_inplace = regmap_parse_inplace_noop;

737 738 739 740
	switch (config->val_bits) {
	case 8:
		map->format.format_val = regmap_format_8;
		map->format.parse_val = regmap_parse_8;
741
		map->format.parse_inplace = regmap_parse_inplace_noop;
742 743
		break;
	case 16:
744 745 746 747
		switch (val_endian) {
		case REGMAP_ENDIAN_BIG:
			map->format.format_val = regmap_format_16_be;
			map->format.parse_val = regmap_parse_16_be;
748
			map->format.parse_inplace = regmap_parse_16_be_inplace;
749
			break;
750 751 752 753 754
		case REGMAP_ENDIAN_LITTLE:
			map->format.format_val = regmap_format_16_le;
			map->format.parse_val = regmap_parse_16_le;
			map->format.parse_inplace = regmap_parse_16_le_inplace;
			break;
755 756 757 758 759 760 761
		case REGMAP_ENDIAN_NATIVE:
			map->format.format_val = regmap_format_16_native;
			map->format.parse_val = regmap_parse_16_native;
			break;
		default:
			goto err_map;
		}
762
		break;
763
	case 24:
764 765
		if (val_endian != REGMAP_ENDIAN_BIG)
			goto err_map;
766 767 768
		map->format.format_val = regmap_format_24;
		map->format.parse_val = regmap_parse_24;
		break;
769
	case 32:
770 771 772 773
		switch (val_endian) {
		case REGMAP_ENDIAN_BIG:
			map->format.format_val = regmap_format_32_be;
			map->format.parse_val = regmap_parse_32_be;
774
			map->format.parse_inplace = regmap_parse_32_be_inplace;
775
			break;
776 777 778 779 780
		case REGMAP_ENDIAN_LITTLE:
			map->format.format_val = regmap_format_32_le;
			map->format.parse_val = regmap_parse_32_le;
			map->format.parse_inplace = regmap_parse_32_le_inplace;
			break;
781 782 783 784 785 786 787
		case REGMAP_ENDIAN_NATIVE:
			map->format.format_val = regmap_format_32_native;
			map->format.parse_val = regmap_parse_32_native;
			break;
		default:
			goto err_map;
		}
788
		break;
789 790
	}

791 792 793 794
	if (map->format.format_write) {
		if ((reg_endian != REGMAP_ENDIAN_BIG) ||
		    (val_endian != REGMAP_ENDIAN_BIG))
			goto err_map;
795
		map->use_single_rw = true;
796
	}
797

798 799 800 801
	if (!map->format.format_write &&
	    !(map->format.format_reg && map->format.format_val))
		goto err_map;

802
	map->work_buf = kzalloc(map->format.buf_size, GFP_KERNEL);
803 804
	if (map->work_buf == NULL) {
		ret = -ENOMEM;
805
		goto err_map;
806 807
	}

808 809
	if (map->format.format_write) {
		map->defer_caching = false;
810
		map->reg_write = _regmap_bus_formatted_write;
811 812
	} else if (map->format.format_val) {
		map->defer_caching = true;
813
		map->reg_write = _regmap_bus_raw_write;
814 815 816
	}

skip_format_initialization:
817

818
	map->range_tree = RB_ROOT;
M
Mark Brown 已提交
819
	for (i = 0; i < config->num_ranges; i++) {
820 821 822 823
		const struct regmap_range_cfg *range_cfg = &config->ranges[i];
		struct regmap_range_node *new;

		/* Sanity check */
824 825 826
		if (range_cfg->range_max < range_cfg->range_min) {
			dev_err(map->dev, "Invalid range %d: %d < %d\n", i,
				range_cfg->range_max, range_cfg->range_min);
827
			goto err_range;
828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846
		}

		if (range_cfg->range_max > map->max_register) {
			dev_err(map->dev, "Invalid range %d: %d > %d\n", i,
				range_cfg->range_max, map->max_register);
			goto err_range;
		}

		if (range_cfg->selector_reg > map->max_register) {
			dev_err(map->dev,
				"Invalid range %d: selector out of map\n", i);
			goto err_range;
		}

		if (range_cfg->window_len == 0) {
			dev_err(map->dev, "Invalid range %d: window_len 0\n",
				i);
			goto err_range;
		}
847 848 849

		/* Make sure, that this register range has no selector
		   or data window within its boundary */
M
Mark Brown 已提交
850
		for (j = 0; j < config->num_ranges; j++) {
851 852 853 854 855
			unsigned sel_reg = config->ranges[j].selector_reg;
			unsigned win_min = config->ranges[j].window_start;
			unsigned win_max = win_min +
					   config->ranges[j].window_len - 1;

856 857 858 859
			/* Allow data window inside its own virtual range */
			if (j == i)
				continue;

860 861
			if (range_cfg->range_min <= sel_reg &&
			    sel_reg <= range_cfg->range_max) {
862 863 864
				dev_err(map->dev,
					"Range %d: selector for %d in window\n",
					i, j);
865 866 867 868 869
				goto err_range;
			}

			if (!(win_max < range_cfg->range_min ||
			      win_min > range_cfg->range_max)) {
870 871 872
				dev_err(map->dev,
					"Range %d: window for %d in window\n",
					i, j);
873 874 875 876 877 878 879 880 881 882
				goto err_range;
			}
		}

		new = kzalloc(sizeof(*new), GFP_KERNEL);
		if (new == NULL) {
			ret = -ENOMEM;
			goto err_range;
		}

883
		new->map = map;
M
Mark Brown 已提交
884
		new->name = range_cfg->name;
885 886 887 888 889 890 891 892
		new->range_min = range_cfg->range_min;
		new->range_max = range_cfg->range_max;
		new->selector_reg = range_cfg->selector_reg;
		new->selector_mask = range_cfg->selector_mask;
		new->selector_shift = range_cfg->selector_shift;
		new->window_start = range_cfg->window_start;
		new->window_len = range_cfg->window_len;

N
Nenghua Cao 已提交
893
		if (!_regmap_range_add(map, new)) {
894
			dev_err(map->dev, "Failed to add range %d\n", i);
895 896 897 898 899 900 901 902 903 904 905 906 907
			kfree(new);
			goto err_range;
		}

		if (map->selector_work_buf == NULL) {
			map->selector_work_buf =
				kzalloc(map->format.buf_size, GFP_KERNEL);
			if (map->selector_work_buf == NULL) {
				ret = -ENOMEM;
				goto err_range;
			}
		}
	}
908

909
	ret = regcache_init(map, config);
910
	if (ret != 0)
911 912
		goto err_range;

913
	if (dev) {
914 915 916
		ret = regmap_attach_dev(dev, map, config);
		if (ret != 0)
			goto err_regcache;
917
	}
M
Mark Brown 已提交
918

919 920
	return map;

921
err_regcache:
M
Mark Brown 已提交
922
	regcache_exit(map);
923 924
err_range:
	regmap_range_exit(map);
925
	kfree(map->work_buf);
926 927 928 929 930 931 932
err_map:
	kfree(map);
err:
	return ERR_PTR(ret);
}
EXPORT_SYMBOL_GPL(regmap_init);

933 934 935 936 937 938 939 940 941 942
static void devm_regmap_release(struct device *dev, void *res)
{
	regmap_exit(*(struct regmap **)res);
}

/**
 * devm_regmap_init(): Initialise managed register map
 *
 * @dev: Device that will be interacted with
 * @bus: Bus-specific callbacks to use with device
943
 * @bus_context: Data passed to bus-specific callbacks
944 945 946 947 948 949 950 951 952
 * @config: Configuration for register map
 *
 * The return value will be an ERR_PTR() on error or a valid pointer
 * to a struct regmap.  This function should generally not be called
 * directly, it should be called by bus-specific init functions.  The
 * map will be automatically freed by the device management code.
 */
struct regmap *devm_regmap_init(struct device *dev,
				const struct regmap_bus *bus,
953
				void *bus_context,
954 955 956 957 958 959 960 961
				const struct regmap_config *config)
{
	struct regmap **ptr, *regmap;

	ptr = devres_alloc(devm_regmap_release, sizeof(*ptr), GFP_KERNEL);
	if (!ptr)
		return ERR_PTR(-ENOMEM);

962
	regmap = regmap_init(dev, bus, bus_context, config);
963 964 965 966 967 968 969 970 971 972 973
	if (!IS_ERR(regmap)) {
		*ptr = regmap;
		devres_add(dev, ptr);
	} else {
		devres_free(ptr);
	}

	return regmap;
}
EXPORT_SYMBOL_GPL(devm_regmap_init);

974 975 976 977 978 979 980 981
static void regmap_field_init(struct regmap_field *rm_field,
	struct regmap *regmap, struct reg_field reg_field)
{
	int field_bits = reg_field.msb - reg_field.lsb + 1;
	rm_field->regmap = regmap;
	rm_field->reg = reg_field.reg;
	rm_field->shift = reg_field.lsb;
	rm_field->mask = ((BIT(field_bits) - 1) << reg_field.lsb);
982 983
	rm_field->id_size = reg_field.id_size;
	rm_field->id_offset = reg_field.id_offset;
984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064
}

/**
 * devm_regmap_field_alloc(): Allocate and initialise a register field
 * in a register map.
 *
 * @dev: Device that will be interacted with
 * @regmap: regmap bank in which this register field is located.
 * @reg_field: Register field with in the bank.
 *
 * The return value will be an ERR_PTR() on error or a valid pointer
 * to a struct regmap_field. The regmap_field will be automatically freed
 * by the device management code.
 */
struct regmap_field *devm_regmap_field_alloc(struct device *dev,
		struct regmap *regmap, struct reg_field reg_field)
{
	struct regmap_field *rm_field = devm_kzalloc(dev,
					sizeof(*rm_field), GFP_KERNEL);
	if (!rm_field)
		return ERR_PTR(-ENOMEM);

	regmap_field_init(rm_field, regmap, reg_field);

	return rm_field;

}
EXPORT_SYMBOL_GPL(devm_regmap_field_alloc);

/**
 * devm_regmap_field_free(): Free register field allocated using
 * devm_regmap_field_alloc. Usally drivers need not call this function,
 * as the memory allocated via devm will be freed as per device-driver
 * life-cyle.
 *
 * @dev: Device that will be interacted with
 * @field: regmap field which should be freed.
 */
void devm_regmap_field_free(struct device *dev,
	struct regmap_field *field)
{
	devm_kfree(dev, field);
}
EXPORT_SYMBOL_GPL(devm_regmap_field_free);

/**
 * regmap_field_alloc(): Allocate and initialise a register field
 * in a register map.
 *
 * @regmap: regmap bank in which this register field is located.
 * @reg_field: Register field with in the bank.
 *
 * The return value will be an ERR_PTR() on error or a valid pointer
 * to a struct regmap_field. The regmap_field should be freed by the
 * user once its finished working with it using regmap_field_free().
 */
struct regmap_field *regmap_field_alloc(struct regmap *regmap,
		struct reg_field reg_field)
{
	struct regmap_field *rm_field = kzalloc(sizeof(*rm_field), GFP_KERNEL);

	if (!rm_field)
		return ERR_PTR(-ENOMEM);

	regmap_field_init(rm_field, regmap, reg_field);

	return rm_field;
}
EXPORT_SYMBOL_GPL(regmap_field_alloc);

/**
 * regmap_field_free(): Free register field allocated using regmap_field_alloc
 *
 * @field: regmap field which should be freed.
 */
void regmap_field_free(struct regmap_field *field)
{
	kfree(field);
}
EXPORT_SYMBOL_GPL(regmap_field_free);

1065 1066 1067 1068 1069 1070 1071 1072 1073 1074
/**
 * regmap_reinit_cache(): Reinitialise the current register cache
 *
 * @map: Register map to operate on.
 * @config: New configuration.  Only the cache data will be used.
 *
 * Discard any existing register cache for the map and initialize a
 * new cache.  This can be used to restore the cache to defaults or to
 * update the cache configuration to reflect runtime discovery of the
 * hardware.
1075 1076 1077
 *
 * No explicit locking is done here, the user needs to ensure that
 * this function will not race with other calls to regmap.
1078 1079 1080 1081
 */
int regmap_reinit_cache(struct regmap *map, const struct regmap_config *config)
{
	regcache_exit(map);
1082
	regmap_debugfs_exit(map);
1083 1084 1085 1086 1087 1088 1089 1090

	map->max_register = config->max_register;
	map->writeable_reg = config->writeable_reg;
	map->readable_reg = config->readable_reg;
	map->volatile_reg = config->volatile_reg;
	map->precious_reg = config->precious_reg;
	map->cache_type = config->cache_type;

1091
	regmap_debugfs_init(map, config->name);
1092

1093 1094 1095
	map->cache_bypass = false;
	map->cache_only = false;

1096
	return regcache_init(map, config);
1097
}
1098
EXPORT_SYMBOL_GPL(regmap_reinit_cache);
1099

1100 1101 1102 1103 1104
/**
 * regmap_exit(): Free a previously allocated register map
 */
void regmap_exit(struct regmap *map)
{
M
Mark Brown 已提交
1105 1106
	struct regmap_async *async;

1107
	regcache_exit(map);
1108
	regmap_debugfs_exit(map);
1109
	regmap_range_exit(map);
1110
	if (map->bus && map->bus->free_context)
1111
		map->bus->free_context(map->bus_context);
1112
	kfree(map->work_buf);
M
Mark Brown 已提交
1113 1114 1115 1116 1117 1118 1119 1120
	while (!list_empty(&map->async_free)) {
		async = list_first_entry_or_null(&map->async_free,
						 struct regmap_async,
						 list);
		list_del(&async->list);
		kfree(async->work_buf);
		kfree(async);
	}
1121 1122 1123 1124
	kfree(map);
}
EXPORT_SYMBOL_GPL(regmap_exit);

M
Mark Brown 已提交
1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162
static int dev_get_regmap_match(struct device *dev, void *res, void *data)
{
	struct regmap **r = res;
	if (!r || !*r) {
		WARN_ON(!r || !*r);
		return 0;
	}

	/* If the user didn't specify a name match any */
	if (data)
		return (*r)->name == data;
	else
		return 1;
}

/**
 * dev_get_regmap(): Obtain the regmap (if any) for a device
 *
 * @dev: Device to retrieve the map for
 * @name: Optional name for the register map, usually NULL.
 *
 * Returns the regmap for the device if one is present, or NULL.  If
 * name is specified then it must match the name specified when
 * registering the device, if it is NULL then the first regmap found
 * will be used.  Devices with multiple register maps are very rare,
 * generic code should normally not need to specify a name.
 */
struct regmap *dev_get_regmap(struct device *dev, const char *name)
{
	struct regmap **r = devres_find(dev, dev_get_regmap_release,
					dev_get_regmap_match, (void *)name);

	if (!r)
		return NULL;
	return *r;
}
EXPORT_SYMBOL_GPL(dev_get_regmap);

T
Tuomas Tynkkynen 已提交
1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173
/**
 * regmap_get_device(): Obtain the device from a regmap
 *
 * @map: Register map to operate on.
 *
 * Returns the underlying device that the regmap has been created for.
 */
struct device *regmap_get_device(struct regmap *map)
{
	return map->dev;
}
1174
EXPORT_SYMBOL_GPL(regmap_get_device);
T
Tuomas Tynkkynen 已提交
1175

1176
static int _regmap_select_page(struct regmap *map, unsigned int *reg,
1177
			       struct regmap_range_node *range,
1178 1179 1180 1181 1182 1183 1184 1185
			       unsigned int val_num)
{
	void *orig_work_buf;
	unsigned int win_offset;
	unsigned int win_page;
	bool page_chg;
	int ret;

1186 1187
	win_offset = (*reg - range->range_min) % range->window_len;
	win_page = (*reg - range->range_min) / range->window_len;
1188

1189 1190 1191 1192
	if (val_num > 1) {
		/* Bulk write shouldn't cross range boundary */
		if (*reg + val_num - 1 > range->range_max)
			return -EINVAL;
1193

1194 1195 1196 1197
		/* ... or single page boundary */
		if (val_num > range->window_len - win_offset)
			return -EINVAL;
	}
1198

1199 1200 1201 1202 1203 1204 1205 1206
	/* It is possible to have selector register inside data window.
	   In that case, selector register is located on every page and
	   it needs no page switching, when accessed alone. */
	if (val_num > 1 ||
	    range->window_start + win_offset != range->selector_reg) {
		/* Use separate work_buf during page switching */
		orig_work_buf = map->work_buf;
		map->work_buf = map->selector_work_buf;
1207

1208 1209 1210 1211
		ret = _regmap_update_bits(map, range->selector_reg,
					  range->selector_mask,
					  win_page << range->selector_shift,
					  &page_chg);
1212

1213
		map->work_buf = orig_work_buf;
1214

1215
		if (ret != 0)
1216
			return ret;
1217 1218
	}

1219 1220
	*reg = range->window_start + win_offset;

1221 1222 1223
	return 0;
}

1224
int _regmap_raw_write(struct regmap *map, unsigned int reg,
1225
		      const void *val, size_t val_len)
1226
{
1227
	struct regmap_range_node *range;
1228
	unsigned long flags;
1229
	u8 *u8 = map->work_buf;
1230 1231
	void *work_val = map->work_buf + map->format.reg_bytes +
		map->format.pad_bytes;
1232 1233 1234
	void *buf;
	int ret = -ENOTSUPP;
	size_t len;
1235 1236
	int i;

1237
	WARN_ON(!map->bus);
1238

1239 1240 1241
	/* Check for unwritable registers before we start */
	if (map->writeable_reg)
		for (i = 0; i < val_len / map->format.val_bytes; i++)
1242 1243
			if (!map->writeable_reg(map->dev,
						reg + (i * map->reg_stride)))
1244
				return -EINVAL;
1245

1246 1247 1248 1249
	if (!map->cache_bypass && map->format.parse_val) {
		unsigned int ival;
		int val_bytes = map->format.val_bytes;
		for (i = 0; i < val_len / val_bytes; i++) {
1250
			ival = map->format.parse_val(val + (i * val_bytes));
1251 1252
			ret = regcache_write(map, reg + (i * map->reg_stride),
					     ival);
1253 1254
			if (ret) {
				dev_err(map->dev,
1255
					"Error in caching of register: %x ret: %d\n",
1256 1257 1258 1259 1260 1261 1262 1263 1264 1265
					reg + i, ret);
				return ret;
			}
		}
		if (map->cache_only) {
			map->cache_dirty = true;
			return 0;
		}
	}

1266 1267
	range = _regmap_range_lookup(map, reg);
	if (range) {
1268 1269 1270 1271 1272 1273
		int val_num = val_len / map->format.val_bytes;
		int win_offset = (reg - range->range_min) % range->window_len;
		int win_residue = range->window_len - win_offset;

		/* If the write goes beyond the end of the window split it */
		while (val_num > win_residue) {
1274
			dev_dbg(map->dev, "Writing window %d/%zu\n",
1275 1276
				win_residue, val_len / map->format.val_bytes);
			ret = _regmap_raw_write(map, reg, val, win_residue *
1277
						map->format.val_bytes);
1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291
			if (ret != 0)
				return ret;

			reg += win_residue;
			val_num -= win_residue;
			val += win_residue * map->format.val_bytes;
			val_len -= win_residue * map->format.val_bytes;

			win_offset = (reg - range->range_min) %
				range->window_len;
			win_residue = range->window_len - win_offset;
		}

		ret = _regmap_select_page(map, &reg, range, val_num);
1292
		if (ret != 0)
1293 1294
			return ret;
	}
1295

1296
	map->format.format_reg(map->work_buf, reg, map->reg_shift);
1297

1298 1299
	u8[0] |= map->write_flag_mask;

1300 1301 1302 1303 1304 1305 1306 1307 1308 1309
	/*
	 * Essentially all I/O mechanisms will be faster with a single
	 * buffer to write.  Since register syncs often generate raw
	 * writes of single registers optimise that case.
	 */
	if (val != work_val && val_len == map->format.val_bytes) {
		memcpy(work_val, val, map->format.val_bytes);
		val = work_val;
	}

1310
	if (map->async && map->bus->async_write) {
M
Mark Brown 已提交
1311
		struct regmap_async *async;
1312

1313 1314
		trace_regmap_async_write_start(map->dev, reg, val_len);

M
Mark Brown 已提交
1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333
		spin_lock_irqsave(&map->async_lock, flags);
		async = list_first_entry_or_null(&map->async_free,
						 struct regmap_async,
						 list);
		if (async)
			list_del(&async->list);
		spin_unlock_irqrestore(&map->async_lock, flags);

		if (!async) {
			async = map->bus->async_alloc();
			if (!async)
				return -ENOMEM;

			async->work_buf = kzalloc(map->format.buf_size,
						  GFP_KERNEL | GFP_DMA);
			if (!async->work_buf) {
				kfree(async);
				return -ENOMEM;
			}
1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345
		}

		async->map = map;

		/* If the caller supplied the value we can use it safely. */
		memcpy(async->work_buf, map->work_buf, map->format.pad_bytes +
		       map->format.reg_bytes + map->format.val_bytes);

		spin_lock_irqsave(&map->async_lock, flags);
		list_add_tail(&async->list, &map->async_list);
		spin_unlock_irqrestore(&map->async_lock, flags);

1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357
		if (val != work_val)
			ret = map->bus->async_write(map->bus_context,
						    async->work_buf,
						    map->format.reg_bytes +
						    map->format.pad_bytes,
						    val, val_len, async);
		else
			ret = map->bus->async_write(map->bus_context,
						    async->work_buf,
						    map->format.reg_bytes +
						    map->format.pad_bytes +
						    val_len, NULL, 0, async);
1358 1359 1360 1361 1362 1363

		if (ret != 0) {
			dev_err(map->dev, "Failed to schedule write: %d\n",
				ret);

			spin_lock_irqsave(&map->async_lock, flags);
M
Mark Brown 已提交
1364
			list_move(&async->list, &map->async_free);
1365 1366
			spin_unlock_irqrestore(&map->async_lock, flags);
		}
M
Mark Brown 已提交
1367 1368

		return ret;
1369 1370
	}

M
Mark Brown 已提交
1371 1372 1373
	trace_regmap_hw_write_start(map->dev, reg,
				    val_len / map->format.val_bytes);

1374 1375 1376 1377
	/* If we're doing a single register write we can probably just
	 * send the work_buf directly, otherwise try to do a gather
	 * write.
	 */
1378
	if (val == work_val)
1379
		ret = map->bus->write(map->bus_context, map->work_buf,
1380 1381 1382
				      map->format.reg_bytes +
				      map->format.pad_bytes +
				      val_len);
1383
	else if (map->bus->gather_write)
1384
		ret = map->bus->gather_write(map->bus_context, map->work_buf,
1385 1386
					     map->format.reg_bytes +
					     map->format.pad_bytes,
1387 1388
					     val, val_len);

1389
	/* If that didn't work fall back on linearising by hand. */
1390
	if (ret == -ENOTSUPP) {
1391 1392
		len = map->format.reg_bytes + map->format.pad_bytes + val_len;
		buf = kzalloc(len, GFP_KERNEL);
1393 1394 1395 1396
		if (!buf)
			return -ENOMEM;

		memcpy(buf, map->work_buf, map->format.reg_bytes);
1397 1398
		memcpy(buf + map->format.reg_bytes + map->format.pad_bytes,
		       val, val_len);
1399
		ret = map->bus->write(map->bus_context, buf, len);
1400 1401 1402 1403

		kfree(buf);
	}

M
Mark Brown 已提交
1404 1405 1406
	trace_regmap_hw_write_done(map->dev, reg,
				   val_len / map->format.val_bytes);

1407 1408 1409
	return ret;
}

1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420
/**
 * regmap_can_raw_write - Test if regmap_raw_write() is supported
 *
 * @map: Map to check.
 */
bool regmap_can_raw_write(struct regmap *map)
{
	return map->bus && map->format.format_val && map->format.format_reg;
}
EXPORT_SYMBOL_GPL(regmap_can_raw_write);

1421 1422 1423 1424 1425 1426 1427
static int _regmap_bus_formatted_write(void *context, unsigned int reg,
				       unsigned int val)
{
	int ret;
	struct regmap_range_node *range;
	struct regmap *map = context;

1428
	WARN_ON(!map->bus || !map->format.format_write);
1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448

	range = _regmap_range_lookup(map, reg);
	if (range) {
		ret = _regmap_select_page(map, &reg, range, 1);
		if (ret != 0)
			return ret;
	}

	map->format.format_write(map, reg, val);

	trace_regmap_hw_write_start(map->dev, reg, 1);

	ret = map->bus->write(map->bus_context, map->work_buf,
			      map->format.buf_size);

	trace_regmap_hw_write_done(map->dev, reg, 1);

	return ret;
}

1449 1450 1451 1452 1453 1454 1455 1456
static int _regmap_bus_reg_write(void *context, unsigned int reg,
				 unsigned int val)
{
	struct regmap *map = context;

	return map->bus->reg_write(map->bus_context, reg, val);
}

1457 1458 1459 1460 1461
static int _regmap_bus_raw_write(void *context, unsigned int reg,
				 unsigned int val)
{
	struct regmap *map = context;

1462
	WARN_ON(!map->bus || !map->format.format_val);
1463 1464 1465 1466 1467 1468 1469

	map->format.format_val(map->work_buf + map->format.reg_bytes
			       + map->format.pad_bytes, val, 0);
	return _regmap_raw_write(map, reg,
				 map->work_buf +
				 map->format.reg_bytes +
				 map->format.pad_bytes,
1470
				 map->format.val_bytes);
1471 1472
}

1473 1474 1475 1476 1477
static inline void *_regmap_map_get_context(struct regmap *map)
{
	return (map->bus) ? map : map->bus_context;
}

1478 1479
int _regmap_write(struct regmap *map, unsigned int reg,
		  unsigned int val)
1480
{
M
Mark Brown 已提交
1481
	int ret;
1482
	void *context = _regmap_map_get_context(map);
1483

1484 1485 1486
	if (!regmap_writeable(map, reg))
		return -EIO;

1487
	if (!map->cache_bypass && !map->defer_caching) {
1488 1489 1490
		ret = regcache_write(map, reg, val);
		if (ret != 0)
			return ret;
1491 1492
		if (map->cache_only) {
			map->cache_dirty = true;
1493
			return 0;
1494
		}
1495 1496
	}

1497 1498 1499 1500 1501
#ifdef LOG_DEVICE
	if (strcmp(dev_name(map->dev), LOG_DEVICE) == 0)
		dev_info(map->dev, "%x <= %x\n", reg, val);
#endif

M
Mark Brown 已提交
1502 1503
	trace_regmap_reg_write(map->dev, reg, val);

1504
	return map->reg_write(context, reg, val);
1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520
}

/**
 * regmap_write(): Write a value to a single register
 *
 * @map: Register map to write to
 * @reg: Register to write to
 * @val: Value to be written
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_write(struct regmap *map, unsigned int reg, unsigned int val)
{
	int ret;

1521 1522 1523
	if (reg % map->reg_stride)
		return -EINVAL;

1524
	map->lock(map->lock_arg);
1525 1526 1527

	ret = _regmap_write(map, reg, val);

1528
	map->unlock(map->lock_arg);
1529 1530 1531 1532 1533

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_write);

1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564
/**
 * regmap_write_async(): Write a value to a single register asynchronously
 *
 * @map: Register map to write to
 * @reg: Register to write to
 * @val: Value to be written
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_write_async(struct regmap *map, unsigned int reg, unsigned int val)
{
	int ret;

	if (reg % map->reg_stride)
		return -EINVAL;

	map->lock(map->lock_arg);

	map->async = true;

	ret = _regmap_write(map, reg, val);

	map->async = false;

	map->unlock(map->lock_arg);

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_write_async);

1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585
/**
 * regmap_raw_write(): Write raw values to one or more registers
 *
 * @map: Register map to write to
 * @reg: Initial register to write to
 * @val: Block of data to be written, laid out for direct transmission to the
 *       device
 * @val_len: Length of data pointed to by val.
 *
 * This function is intended to be used for things like firmware
 * download where a large block of data needs to be transferred to the
 * device.  No formatting will be done on the data provided.
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_raw_write(struct regmap *map, unsigned int reg,
		     const void *val, size_t val_len)
{
	int ret;

1586
	if (!regmap_can_raw_write(map))
1587
		return -EINVAL;
1588 1589 1590
	if (val_len % map->format.val_bytes)
		return -EINVAL;

1591
	map->lock(map->lock_arg);
1592

1593
	ret = _regmap_raw_write(map, reg, val, val_len);
1594

1595
	map->unlock(map->lock_arg);
1596 1597 1598 1599 1600

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_raw_write);

1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616
/**
 * regmap_field_write(): Write a value to a single register field
 *
 * @field: Register field to write to
 * @val: Value to be written
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_field_write(struct regmap_field *field, unsigned int val)
{
	return regmap_update_bits(field->regmap, field->reg,
				field->mask, val << field->shift);
}
EXPORT_SYMBOL_GPL(regmap_field_write);

1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636
/**
 * regmap_field_update_bits():	Perform a read/modify/write cycle
 *                              on the register field
 *
 * @field: Register field to write to
 * @mask: Bitmask to change
 * @val: Value to be written
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_field_update_bits(struct regmap_field *field, unsigned int mask, unsigned int val)
{
	mask = (mask << field->shift) & field->mask;

	return regmap_update_bits(field->regmap, field->reg,
				  mask, val << field->shift);
}
EXPORT_SYMBOL_GPL(regmap_field_update_bits);

1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684
/**
 * regmap_fields_write(): Write a value to a single register field with port ID
 *
 * @field: Register field to write to
 * @id: port ID
 * @val: Value to be written
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_fields_write(struct regmap_field *field, unsigned int id,
			unsigned int val)
{
	if (id >= field->id_size)
		return -EINVAL;

	return regmap_update_bits(field->regmap,
				  field->reg + (field->id_offset * id),
				  field->mask, val << field->shift);
}
EXPORT_SYMBOL_GPL(regmap_fields_write);

/**
 * regmap_fields_update_bits():	Perform a read/modify/write cycle
 *                              on the register field
 *
 * @field: Register field to write to
 * @id: port ID
 * @mask: Bitmask to change
 * @val: Value to be written
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_fields_update_bits(struct regmap_field *field,  unsigned int id,
			      unsigned int mask, unsigned int val)
{
	if (id >= field->id_size)
		return -EINVAL;

	mask = (mask << field->shift) & field->mask;

	return regmap_update_bits(field->regmap,
				  field->reg + (field->id_offset * id),
				  mask, val << field->shift);
}
EXPORT_SYMBOL_GPL(regmap_fields_update_bits);

1685 1686 1687 1688 1689 1690 1691 1692 1693
/*
 * regmap_bulk_write(): Write multiple registers to the device
 *
 * @map: Register map to write to
 * @reg: First register to be write from
 * @val: Block of data to be written, in native register size for device
 * @val_count: Number of registers to write
 *
 * This function is intended to be used for writing a large block of
1694
 * data to the device either in single transfer or multiple transfer.
1695 1696 1697 1698 1699 1700 1701 1702 1703 1704
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_bulk_write(struct regmap *map, unsigned int reg, const void *val,
		     size_t val_count)
{
	int ret = 0, i;
	size_t val_bytes = map->format.val_bytes;

1705
	if (map->bus && !map->format.parse_inplace)
1706
		return -EINVAL;
1707 1708
	if (reg % map->reg_stride)
		return -EINVAL;
1709

1710 1711 1712 1713 1714
	/*
	 * Some devices don't support bulk write, for
	 * them we have a series of single write operations.
	 */
	if (!map->bus || map->use_single_rw) {
1715
		map->lock(map->lock_arg);
1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737
		for (i = 0; i < val_count; i++) {
			unsigned int ival;

			switch (val_bytes) {
			case 1:
				ival = *(u8 *)(val + (i * val_bytes));
				break;
			case 2:
				ival = *(u16 *)(val + (i * val_bytes));
				break;
			case 4:
				ival = *(u32 *)(val + (i * val_bytes));
				break;
#ifdef CONFIG_64BIT
			case 8:
				ival = *(u64 *)(val + (i * val_bytes));
				break;
#endif
			default:
				ret = -EINVAL;
				goto out;
			}
1738

1739 1740 1741 1742 1743
			ret = _regmap_write(map, reg + (i * map->reg_stride),
					ival);
			if (ret != 0)
				goto out;
		}
1744 1745
out:
		map->unlock(map->lock_arg);
1746
	} else {
1747 1748
		void *wval;

1749 1750 1751
		wval = kmemdup(val, val_count * val_bytes, GFP_KERNEL);
		if (!wval) {
			dev_err(map->dev, "Error in memory allocation\n");
1752
			return -ENOMEM;
1753 1754
		}
		for (i = 0; i < val_count * val_bytes; i += val_bytes)
1755
			map->format.parse_inplace(wval + i);
1756

1757
		map->lock(map->lock_arg);
1758
		ret = _regmap_raw_write(map, reg, wval, val_bytes * val_count);
1759
		map->unlock(map->lock_arg);
1760 1761

		kfree(wval);
1762
	}
1763 1764 1765 1766
	return ret;
}
EXPORT_SYMBOL_GPL(regmap_bulk_write);

1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787
/*
 * _regmap_raw_multi_reg_write()
 *
 * the (register,newvalue) pairs in regs have not been formatted, but
 * they are all in the same page and have been changed to being page
 * relative. The page register has been written if that was neccessary.
 */
static int _regmap_raw_multi_reg_write(struct regmap *map,
				       const struct reg_default *regs,
				       size_t num_regs)
{
	int ret;
	void *buf;
	int i;
	u8 *u8;
	size_t val_bytes = map->format.val_bytes;
	size_t reg_bytes = map->format.reg_bytes;
	size_t pad_bytes = map->format.pad_bytes;
	size_t pair_size = reg_bytes + pad_bytes + val_bytes;
	size_t len = pair_size * num_regs;

1788 1789 1790
	if (!len)
		return -EINVAL;

1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837
	buf = kzalloc(len, GFP_KERNEL);
	if (!buf)
		return -ENOMEM;

	/* We have to linearise by hand. */

	u8 = buf;

	for (i = 0; i < num_regs; i++) {
		int reg = regs[i].reg;
		int val = regs[i].def;
		trace_regmap_hw_write_start(map->dev, reg, 1);
		map->format.format_reg(u8, reg, map->reg_shift);
		u8 += reg_bytes + pad_bytes;
		map->format.format_val(u8, val, 0);
		u8 += val_bytes;
	}
	u8 = buf;
	*u8 |= map->write_flag_mask;

	ret = map->bus->write(map->bus_context, buf, len);

	kfree(buf);

	for (i = 0; i < num_regs; i++) {
		int reg = regs[i].reg;
		trace_regmap_hw_write_done(map->dev, reg, 1);
	}
	return ret;
}

static unsigned int _regmap_register_page(struct regmap *map,
					  unsigned int reg,
					  struct regmap_range_node *range)
{
	unsigned int win_page = (reg - range->range_min) / range->window_len;

	return win_page;
}

static int _regmap_range_multi_paged_reg_write(struct regmap *map,
					       struct reg_default *regs,
					       size_t num_regs)
{
	int ret;
	int i, n;
	struct reg_default *base;
1838
	unsigned int this_page = 0;
1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873
	/*
	 * the set of registers are not neccessarily in order, but
	 * since the order of write must be preserved this algorithm
	 * chops the set each time the page changes
	 */
	base = regs;
	for (i = 0, n = 0; i < num_regs; i++, n++) {
		unsigned int reg = regs[i].reg;
		struct regmap_range_node *range;

		range = _regmap_range_lookup(map, reg);
		if (range) {
			unsigned int win_page = _regmap_register_page(map, reg,
								      range);

			if (i == 0)
				this_page = win_page;
			if (win_page != this_page) {
				this_page = win_page;
				ret = _regmap_raw_multi_reg_write(map, base, n);
				if (ret != 0)
					return ret;
				base += n;
				n = 0;
			}
			ret = _regmap_select_page(map, &base[n].reg, range, 1);
			if (ret != 0)
				return ret;
		}
	}
	if (n > 0)
		return _regmap_raw_multi_reg_write(map, base, n);
	return 0;
}

1874 1875
static int _regmap_multi_reg_write(struct regmap *map,
				   const struct reg_default *regs,
1876
				   size_t num_regs)
1877
{
1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920
	int i;
	int ret;

	if (!map->can_multi_write) {
		for (i = 0; i < num_regs; i++) {
			ret = _regmap_write(map, regs[i].reg, regs[i].def);
			if (ret != 0)
				return ret;
		}
		return 0;
	}

	if (!map->format.parse_inplace)
		return -EINVAL;

	if (map->writeable_reg)
		for (i = 0; i < num_regs; i++) {
			int reg = regs[i].reg;
			if (!map->writeable_reg(map->dev, reg))
				return -EINVAL;
			if (reg % map->reg_stride)
				return -EINVAL;
		}

	if (!map->cache_bypass) {
		for (i = 0; i < num_regs; i++) {
			unsigned int val = regs[i].def;
			unsigned int reg = regs[i].reg;
			ret = regcache_write(map, reg, val);
			if (ret) {
				dev_err(map->dev,
				"Error in caching of register: %x ret: %d\n",
								reg, ret);
				return ret;
			}
		}
		if (map->cache_only) {
			map->cache_dirty = true;
			return 0;
		}
	}

	WARN_ON(!map->bus);
1921 1922

	for (i = 0; i < num_regs; i++) {
1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935
		unsigned int reg = regs[i].reg;
		struct regmap_range_node *range;
		range = _regmap_range_lookup(map, reg);
		if (range) {
			size_t len = sizeof(struct reg_default)*num_regs;
			struct reg_default *base = kmemdup(regs, len,
							   GFP_KERNEL);
			if (!base)
				return -ENOMEM;
			ret = _regmap_range_multi_paged_reg_write(map, base,
								  num_regs);
			kfree(base);

1936 1937 1938
			return ret;
		}
	}
1939
	return _regmap_raw_multi_reg_write(map, regs, num_regs);
1940 1941
}

1942 1943 1944
/*
 * regmap_multi_reg_write(): Write multiple registers to the device
 *
1945 1946
 * where the set of register,value pairs are supplied in any order,
 * possibly not all in a single range.
1947 1948 1949 1950 1951
 *
 * @map: Register map to write to
 * @regs: Array of structures containing register,value to be written
 * @num_regs: Number of registers to write
 *
1952 1953 1954 1955 1956
 * The 'normal' block write mode will send ultimately send data on the
 * target bus as R,V1,V2,V3,..,Vn where successively higer registers are
 * addressed. However, this alternative block multi write mode will send
 * the data as R1,V1,R2,V2,..,Rn,Vn on the target bus. The target device
 * must of course support the mode.
1957
 *
1958 1959
 * A value of zero will be returned on success, a negative errno will be
 * returned in error cases.
1960
 */
1961 1962
int regmap_multi_reg_write(struct regmap *map, const struct reg_default *regs,
			   int num_regs)
1963
{
1964
	int ret;
1965 1966 1967

	map->lock(map->lock_arg);

1968 1969
	ret = _regmap_multi_reg_write(map, regs, num_regs);

1970 1971 1972 1973 1974 1975
	map->unlock(map->lock_arg);

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_multi_reg_write);

1976 1977 1978 1979
/*
 * regmap_multi_reg_write_bypassed(): Write multiple registers to the
 *                                    device but not the cache
 *
1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992
 * where the set of register are supplied in any order
 *
 * @map: Register map to write to
 * @regs: Array of structures containing register,value to be written
 * @num_regs: Number of registers to write
 *
 * This function is intended to be used for writing a large block of data
 * atomically to the device in single transfer for those I2C client devices
 * that implement this alternative block write mode.
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
1993 1994 1995
int regmap_multi_reg_write_bypassed(struct regmap *map,
				    const struct reg_default *regs,
				    int num_regs)
1996
{
1997 1998
	int ret;
	bool bypass;
1999 2000 2001

	map->lock(map->lock_arg);

2002 2003 2004 2005 2006 2007 2008
	bypass = map->cache_bypass;
	map->cache_bypass = true;

	ret = _regmap_multi_reg_write(map, regs, num_regs);

	map->cache_bypass = bypass;

2009 2010 2011 2012
	map->unlock(map->lock_arg);

	return ret;
}
2013
EXPORT_SYMBOL_GPL(regmap_multi_reg_write_bypassed);
2014

2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048
/**
 * regmap_raw_write_async(): Write raw values to one or more registers
 *                           asynchronously
 *
 * @map: Register map to write to
 * @reg: Initial register to write to
 * @val: Block of data to be written, laid out for direct transmission to the
 *       device.  Must be valid until regmap_async_complete() is called.
 * @val_len: Length of data pointed to by val.
 *
 * This function is intended to be used for things like firmware
 * download where a large block of data needs to be transferred to the
 * device.  No formatting will be done on the data provided.
 *
 * If supported by the underlying bus the write will be scheduled
 * asynchronously, helping maximise I/O speed on higher speed buses
 * like SPI.  regmap_async_complete() can be called to ensure that all
 * asynchrnous writes have been completed.
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_raw_write_async(struct regmap *map, unsigned int reg,
			   const void *val, size_t val_len)
{
	int ret;

	if (val_len % map->format.val_bytes)
		return -EINVAL;
	if (reg % map->reg_stride)
		return -EINVAL;

	map->lock(map->lock_arg);

2049 2050 2051 2052 2053
	map->async = true;

	ret = _regmap_raw_write(map, reg, val, val_len);

	map->async = false;
2054 2055 2056 2057 2058 2059 2060

	map->unlock(map->lock_arg);

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_raw_write_async);

2061 2062 2063
static int _regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
			    unsigned int val_len)
{
2064
	struct regmap_range_node *range;
2065 2066 2067
	u8 *u8 = map->work_buf;
	int ret;

2068
	WARN_ON(!map->bus);
2069

2070 2071 2072 2073
	range = _regmap_range_lookup(map, reg);
	if (range) {
		ret = _regmap_select_page(map, &reg, range,
					  val_len / map->format.val_bytes);
2074
		if (ret != 0)
2075 2076
			return ret;
	}
2077

2078
	map->format.format_reg(map->work_buf, reg, map->reg_shift);
2079 2080

	/*
2081
	 * Some buses or devices flag reads by setting the high bits in the
2082 2083 2084 2085
	 * register addresss; since it's always the high bits for all
	 * current formats we can do this here rather than in
	 * formatting.  This may break if we get interesting formats.
	 */
2086
	u8[0] |= map->read_flag_mask;
2087

M
Mark Brown 已提交
2088 2089 2090
	trace_regmap_hw_read_start(map->dev, reg,
				   val_len / map->format.val_bytes);

2091
	ret = map->bus->read(map->bus_context, map->work_buf,
2092
			     map->format.reg_bytes + map->format.pad_bytes,
M
Mark Brown 已提交
2093
			     val, val_len);
2094

M
Mark Brown 已提交
2095 2096 2097 2098
	trace_regmap_hw_read_done(map->dev, reg,
				  val_len / map->format.val_bytes);

	return ret;
2099 2100
}

2101 2102 2103 2104 2105 2106 2107 2108
static int _regmap_bus_reg_read(void *context, unsigned int reg,
				unsigned int *val)
{
	struct regmap *map = context;

	return map->bus->reg_read(map->bus_context, reg, val);
}

2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124
static int _regmap_bus_read(void *context, unsigned int reg,
			    unsigned int *val)
{
	int ret;
	struct regmap *map = context;

	if (!map->format.parse_val)
		return -EINVAL;

	ret = _regmap_raw_read(map, reg, map->work_buf, map->format.val_bytes);
	if (ret == 0)
		*val = map->format.parse_val(map->work_buf);

	return ret;
}

2125 2126 2127 2128
static int _regmap_read(struct regmap *map, unsigned int reg,
			unsigned int *val)
{
	int ret;
2129 2130
	void *context = _regmap_map_get_context(map);

2131
	WARN_ON(!map->reg_read);
2132

2133 2134 2135 2136 2137 2138 2139 2140 2141
	if (!map->cache_bypass) {
		ret = regcache_read(map, reg, val);
		if (ret == 0)
			return 0;
	}

	if (map->cache_only)
		return -EBUSY;

2142 2143 2144
	if (!regmap_readable(map, reg))
		return -EIO;

2145
	ret = map->reg_read(context, reg, val);
M
Mark Brown 已提交
2146
	if (ret == 0) {
2147 2148 2149 2150 2151
#ifdef LOG_DEVICE
		if (strcmp(dev_name(map->dev), LOG_DEVICE) == 0)
			dev_info(map->dev, "%x => %x\n", reg, *val);
#endif

M
Mark Brown 已提交
2152
		trace_regmap_reg_read(map->dev, reg, *val);
2153

2154 2155 2156
		if (!map->cache_bypass)
			regcache_write(map, reg, *val);
	}
2157

2158 2159 2160 2161 2162 2163
	return ret;
}

/**
 * regmap_read(): Read a value from a single register
 *
2164
 * @map: Register map to read from
2165 2166 2167 2168 2169 2170 2171 2172 2173 2174
 * @reg: Register to be read from
 * @val: Pointer to store read value
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val)
{
	int ret;

2175 2176 2177
	if (reg % map->reg_stride)
		return -EINVAL;

2178
	map->lock(map->lock_arg);
2179 2180 2181

	ret = _regmap_read(map, reg, val);

2182
	map->unlock(map->lock_arg);
2183 2184 2185 2186 2187 2188 2189 2190

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_read);

/**
 * regmap_raw_read(): Read raw data from the device
 *
2191
 * @map: Register map to read from
2192 2193 2194 2195 2196 2197 2198 2199 2200 2201
 * @reg: First register to be read from
 * @val: Pointer to store read value
 * @val_len: Size of data to read
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
		    size_t val_len)
{
2202 2203 2204 2205
	size_t val_bytes = map->format.val_bytes;
	size_t val_count = val_len / val_bytes;
	unsigned int v;
	int ret, i;
2206

2207 2208
	if (!map->bus)
		return -EINVAL;
2209 2210
	if (val_len % map->format.val_bytes)
		return -EINVAL;
2211 2212
	if (reg % map->reg_stride)
		return -EINVAL;
2213

2214
	map->lock(map->lock_arg);
2215

2216 2217 2218 2219 2220 2221 2222 2223 2224 2225
	if (regmap_volatile_range(map, reg, val_count) || map->cache_bypass ||
	    map->cache_type == REGCACHE_NONE) {
		/* Physical block read if there's no cache involved */
		ret = _regmap_raw_read(map, reg, val, val_len);

	} else {
		/* Otherwise go word by word for the cache; should be low
		 * cost as we expect to hit the cache.
		 */
		for (i = 0; i < val_count; i++) {
2226 2227
			ret = _regmap_read(map, reg + (i * map->reg_stride),
					   &v);
2228 2229 2230
			if (ret != 0)
				goto out;

2231
			map->format.format_val(val + (i * val_bytes), v, 0);
2232 2233
		}
	}
2234

2235
 out:
2236
	map->unlock(map->lock_arg);
2237 2238 2239 2240 2241

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_raw_read);

2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266
/**
 * regmap_field_read(): Read a value to a single register field
 *
 * @field: Register field to read from
 * @val: Pointer to store read value
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_field_read(struct regmap_field *field, unsigned int *val)
{
	int ret;
	unsigned int reg_val;
	ret = regmap_read(field->regmap, field->reg, &reg_val);
	if (ret != 0)
		return ret;

	reg_val &= field->mask;
	reg_val >>= field->shift;
	*val = reg_val;

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_field_read);

2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299
/**
 * regmap_fields_read(): Read a value to a single register field with port ID
 *
 * @field: Register field to read from
 * @id: port ID
 * @val: Pointer to store read value
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_fields_read(struct regmap_field *field, unsigned int id,
		       unsigned int *val)
{
	int ret;
	unsigned int reg_val;

	if (id >= field->id_size)
		return -EINVAL;

	ret = regmap_read(field->regmap,
			  field->reg + (field->id_offset * id),
			  &reg_val);
	if (ret != 0)
		return ret;

	reg_val &= field->mask;
	reg_val >>= field->shift;
	*val = reg_val;

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_fields_read);

2300 2301 2302
/**
 * regmap_bulk_read(): Read multiple registers from the device
 *
2303
 * @map: Register map to read from
2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315
 * @reg: First register to be read from
 * @val: Pointer to store read value, in native register size for device
 * @val_count: Number of registers to read
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_bulk_read(struct regmap *map, unsigned int reg, void *val,
		     size_t val_count)
{
	int ret, i;
	size_t val_bytes = map->format.val_bytes;
2316
	bool vol = regmap_volatile_range(map, reg, val_count);
2317

2318 2319
	if (reg % map->reg_stride)
		return -EINVAL;
2320

2321
	if (map->bus && map->format.parse_inplace && (vol || map->cache_type == REGCACHE_NONE)) {
2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340
		/*
		 * Some devices does not support bulk read, for
		 * them we have a series of single read operations.
		 */
		if (map->use_single_rw) {
			for (i = 0; i < val_count; i++) {
				ret = regmap_raw_read(map,
						reg + (i * map->reg_stride),
						val + (i * val_bytes),
						val_bytes);
				if (ret != 0)
					return ret;
			}
		} else {
			ret = regmap_raw_read(map, reg, val,
					      val_bytes * val_count);
			if (ret != 0)
				return ret;
		}
2341 2342

		for (i = 0; i < val_count * val_bytes; i += val_bytes)
2343
			map->format.parse_inplace(val + i);
2344 2345
	} else {
		for (i = 0; i < val_count; i++) {
2346
			unsigned int ival;
2347
			ret = regmap_read(map, reg + (i * map->reg_stride),
2348
					  &ival);
2349 2350
			if (ret != 0)
				return ret;
2351
			memcpy(val + (i * val_bytes), &ival, val_bytes);
2352 2353
		}
	}
2354 2355 2356 2357 2358

	return 0;
}
EXPORT_SYMBOL_GPL(regmap_bulk_read);

2359 2360 2361
static int _regmap_update_bits(struct regmap *map, unsigned int reg,
			       unsigned int mask, unsigned int val,
			       bool *change)
2362 2363
{
	int ret;
2364
	unsigned int tmp, orig;
2365

2366
	ret = _regmap_read(map, reg, &orig);
2367
	if (ret != 0)
2368
		return ret;
2369

2370
	tmp = orig & ~mask;
2371 2372
	tmp |= val & mask;

2373
	if (tmp != orig) {
2374
		ret = _regmap_write(map, reg, tmp);
2375 2376
		if (change)
			*change = true;
2377
	} else {
2378 2379
		if (change)
			*change = false;
2380
	}
2381 2382 2383

	return ret;
}
2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397

/**
 * regmap_update_bits: Perform a read/modify/write cycle on the register map
 *
 * @map: Register map to update
 * @reg: Register to update
 * @mask: Bitmask to change
 * @val: New value for bitmask
 *
 * Returns zero for success, a negative number on error.
 */
int regmap_update_bits(struct regmap *map, unsigned int reg,
		       unsigned int mask, unsigned int val)
{
2398 2399
	int ret;

2400
	map->lock(map->lock_arg);
2401
	ret = _regmap_update_bits(map, reg, mask, val, NULL);
2402
	map->unlock(map->lock_arg);
2403 2404

	return ret;
2405
}
2406
EXPORT_SYMBOL_GPL(regmap_update_bits);
2407

2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431
/**
 * regmap_update_bits_async: Perform a read/modify/write cycle on the register
 *                           map asynchronously
 *
 * @map: Register map to update
 * @reg: Register to update
 * @mask: Bitmask to change
 * @val: New value for bitmask
 *
 * With most buses the read must be done synchronously so this is most
 * useful for devices with a cache which do not need to interact with
 * the hardware to determine the current register value.
 *
 * Returns zero for success, a negative number on error.
 */
int regmap_update_bits_async(struct regmap *map, unsigned int reg,
			     unsigned int mask, unsigned int val)
{
	int ret;

	map->lock(map->lock_arg);

	map->async = true;

2432
	ret = _regmap_update_bits(map, reg, mask, val, NULL);
2433 2434 2435 2436 2437 2438 2439 2440 2441

	map->async = false;

	map->unlock(map->lock_arg);

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_update_bits_async);

2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457
/**
 * regmap_update_bits_check: Perform a read/modify/write cycle on the
 *                           register map and report if updated
 *
 * @map: Register map to update
 * @reg: Register to update
 * @mask: Bitmask to change
 * @val: New value for bitmask
 * @change: Boolean indicating if a write was done
 *
 * Returns zero for success, a negative number on error.
 */
int regmap_update_bits_check(struct regmap *map, unsigned int reg,
			     unsigned int mask, unsigned int val,
			     bool *change)
{
2458 2459
	int ret;

2460
	map->lock(map->lock_arg);
2461
	ret = _regmap_update_bits(map, reg, mask, val, change);
2462
	map->unlock(map->lock_arg);
2463
	return ret;
2464 2465 2466
}
EXPORT_SYMBOL_GPL(regmap_update_bits_check);

2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503
/**
 * regmap_update_bits_check_async: Perform a read/modify/write cycle on the
 *                                 register map asynchronously and report if
 *                                 updated
 *
 * @map: Register map to update
 * @reg: Register to update
 * @mask: Bitmask to change
 * @val: New value for bitmask
 * @change: Boolean indicating if a write was done
 *
 * With most buses the read must be done synchronously so this is most
 * useful for devices with a cache which do not need to interact with
 * the hardware to determine the current register value.
 *
 * Returns zero for success, a negative number on error.
 */
int regmap_update_bits_check_async(struct regmap *map, unsigned int reg,
				   unsigned int mask, unsigned int val,
				   bool *change)
{
	int ret;

	map->lock(map->lock_arg);

	map->async = true;

	ret = _regmap_update_bits(map, reg, mask, val, change);

	map->async = false;

	map->unlock(map->lock_arg);

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_update_bits_check_async);

2504 2505 2506 2507 2508
void regmap_async_complete_cb(struct regmap_async *async, int ret)
{
	struct regmap *map = async->map;
	bool wake;

2509 2510
	trace_regmap_async_io_complete(map->dev);

2511
	spin_lock(&map->async_lock);
M
Mark Brown 已提交
2512
	list_move(&async->list, &map->async_free);
2513 2514 2515 2516 2517 2518 2519 2520 2521 2522
	wake = list_empty(&map->async_list);

	if (ret != 0)
		map->async_ret = ret;

	spin_unlock(&map->async_lock);

	if (wake)
		wake_up(&map->async_waitq);
}
2523
EXPORT_SYMBOL_GPL(regmap_async_complete_cb);
2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550

static int regmap_async_is_done(struct regmap *map)
{
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&map->async_lock, flags);
	ret = list_empty(&map->async_list);
	spin_unlock_irqrestore(&map->async_lock, flags);

	return ret;
}

/**
 * regmap_async_complete: Ensure all asynchronous I/O has completed.
 *
 * @map: Map to operate on.
 *
 * Blocks until any pending asynchronous I/O has completed.  Returns
 * an error code for any failed I/O operations.
 */
int regmap_async_complete(struct regmap *map)
{
	unsigned long flags;
	int ret;

	/* Nothing to do with no async support */
2551
	if (!map->bus || !map->bus->async_write)
2552 2553
		return 0;

2554 2555
	trace_regmap_async_complete_start(map->dev);

2556 2557 2558 2559 2560 2561 2562
	wait_event(map->async_waitq, regmap_async_is_done(map));

	spin_lock_irqsave(&map->async_lock, flags);
	ret = map->async_ret;
	map->async_ret = 0;
	spin_unlock_irqrestore(&map->async_lock, flags);

2563 2564
	trace_regmap_async_complete_done(map->dev);

2565 2566
	return ret;
}
2567
EXPORT_SYMBOL_GPL(regmap_async_complete);
2568

M
Mark Brown 已提交
2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581
/**
 * regmap_register_patch: Register and apply register updates to be applied
 *                        on device initialistion
 *
 * @map: Register map to apply updates to.
 * @regs: Values to update.
 * @num_regs: Number of entries in regs.
 *
 * Register a set of register updates to be applied to the device
 * whenever the device registers are synchronised with the cache and
 * apply them immediately.  Typically this is used to apply
 * corrections to be applied to the device defaults on startup, such
 * as the updates some vendors provide to undocumented registers.
2582 2583 2584
 *
 * The caller must ensure that this function cannot be called
 * concurrently with either itself or regcache_sync().
M
Mark Brown 已提交
2585 2586 2587 2588
 */
int regmap_register_patch(struct regmap *map, const struct reg_default *regs,
			  int num_regs)
{
2589
	struct reg_default *p;
2590
	int ret;
M
Mark Brown 已提交
2591 2592
	bool bypass;

2593 2594 2595 2596
	if (WARN_ONCE(num_regs <= 0, "invalid registers number (%d)\n",
	    num_regs))
		return 0;

2597 2598 2599 2600 2601 2602 2603
	p = krealloc(map->patch,
		     sizeof(struct reg_default) * (map->patch_regs + num_regs),
		     GFP_KERNEL);
	if (p) {
		memcpy(p + map->patch_regs, regs, num_regs * sizeof(*regs));
		map->patch = p;
		map->patch_regs += num_regs;
M
Mark Brown 已提交
2604
	} else {
2605
		return -ENOMEM;
M
Mark Brown 已提交
2606 2607
	}

2608
	map->lock(map->lock_arg);
M
Mark Brown 已提交
2609 2610 2611 2612

	bypass = map->cache_bypass;

	map->cache_bypass = true;
2613
	map->async = true;
M
Mark Brown 已提交
2614

2615 2616 2617
	ret = _regmap_multi_reg_write(map, regs, num_regs);
	if (ret != 0)
		goto out;
M
Mark Brown 已提交
2618 2619

out:
2620
	map->async = false;
M
Mark Brown 已提交
2621 2622
	map->cache_bypass = bypass;

2623
	map->unlock(map->lock_arg);
M
Mark Brown 已提交
2624

2625 2626
	regmap_async_complete(map);

M
Mark Brown 已提交
2627 2628 2629 2630
	return ret;
}
EXPORT_SYMBOL_GPL(regmap_register_patch);

2631
/*
2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645
 * regmap_get_val_bytes(): Report the size of a register value
 *
 * Report the size of a register value, mainly intended to for use by
 * generic infrastructure built on top of regmap.
 */
int regmap_get_val_bytes(struct regmap *map)
{
	if (map->format.format_write)
		return -EINVAL;

	return map->format.val_bytes;
}
EXPORT_SYMBOL_GPL(regmap_get_val_bytes);

N
Nenghua Cao 已提交
2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657
int regmap_parse_val(struct regmap *map, const void *buf,
			unsigned int *val)
{
	if (!map->format.parse_val)
		return -EINVAL;

	*val = map->format.parse_val(buf);

	return 0;
}
EXPORT_SYMBOL_GPL(regmap_parse_val);

2658 2659 2660 2661 2662 2663 2664
static int __init regmap_initcall(void)
{
	regmap_debugfs_initcall();

	return 0;
}
postcore_initcall(regmap_initcall);