regmap.c 63.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12
/*
 * Register map access API
 *
 * Copyright 2011 Wolfson Microelectronics plc
 *
 * Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

13
#include <linux/device.h>
14
#include <linux/slab.h>
15
#include <linux/export.h>
16 17
#include <linux/mutex.h>
#include <linux/err.h>
18
#include <linux/of.h>
19
#include <linux/rbtree.h>
20
#include <linux/sched.h>
21

M
Mark Brown 已提交
22 23 24
#define CREATE_TRACE_POINTS
#include <trace/events/regmap.h>

25
#include "internal.h"
26

27 28 29 30 31 32 33 34 35 36 37 38
/*
 * Sometimes for failures during very early init the trace
 * infrastructure isn't available early enough to be used.  For this
 * sort of problem defining LOG_DEVICE will add printks for basic
 * register I/O on a specific device.
 */
#undef LOG_DEVICE

static int _regmap_update_bits(struct regmap *map, unsigned int reg,
			       unsigned int mask, unsigned int val,
			       bool *change);

39 40
static int _regmap_bus_reg_read(void *context, unsigned int reg,
				unsigned int *val);
41 42
static int _regmap_bus_read(void *context, unsigned int reg,
			    unsigned int *val);
43 44
static int _regmap_bus_formatted_write(void *context, unsigned int reg,
				       unsigned int val);
45 46
static int _regmap_bus_reg_write(void *context, unsigned int reg,
				 unsigned int val);
47 48
static int _regmap_bus_raw_write(void *context, unsigned int reg,
				 unsigned int val);
49

50 51 52 53 54 55 56 57 58 59 60 61 62 63
bool regmap_reg_in_ranges(unsigned int reg,
			  const struct regmap_range *ranges,
			  unsigned int nranges)
{
	const struct regmap_range *r;
	int i;

	for (i = 0, r = ranges; i < nranges; i++, r++)
		if (regmap_reg_in_range(reg, r))
			return true;
	return false;
}
EXPORT_SYMBOL_GPL(regmap_reg_in_ranges);

64 65
bool regmap_check_range_table(struct regmap *map, unsigned int reg,
			      const struct regmap_access_table *table)
66 67 68 69 70 71 72 73 74 75 76 77
{
	/* Check "no ranges" first */
	if (regmap_reg_in_ranges(reg, table->no_ranges, table->n_no_ranges))
		return false;

	/* In case zero "yes ranges" are supplied, any reg is OK */
	if (!table->n_yes_ranges)
		return true;

	return regmap_reg_in_ranges(reg, table->yes_ranges,
				    table->n_yes_ranges);
}
78
EXPORT_SYMBOL_GPL(regmap_check_range_table);
79

80 81 82 83 84 85 86 87
bool regmap_writeable(struct regmap *map, unsigned int reg)
{
	if (map->max_register && reg > map->max_register)
		return false;

	if (map->writeable_reg)
		return map->writeable_reg(map->dev, reg);

88
	if (map->wr_table)
89
		return regmap_check_range_table(map, reg, map->wr_table);
90

91 92 93 94 95 96 97 98
	return true;
}

bool regmap_readable(struct regmap *map, unsigned int reg)
{
	if (map->max_register && reg > map->max_register)
		return false;

99 100 101
	if (map->format.format_write)
		return false;

102 103 104
	if (map->readable_reg)
		return map->readable_reg(map->dev, reg);

105
	if (map->rd_table)
106
		return regmap_check_range_table(map, reg, map->rd_table);
107

108 109 110 111 112
	return true;
}

bool regmap_volatile(struct regmap *map, unsigned int reg)
{
113
	if (!map->format.format_write && !regmap_readable(map, reg))
114 115 116 117 118
		return false;

	if (map->volatile_reg)
		return map->volatile_reg(map->dev, reg);

119
	if (map->volatile_table)
120
		return regmap_check_range_table(map, reg, map->volatile_table);
121

122 123 124 125
	if (map->cache_ops)
		return false;
	else
		return true;
126 127 128 129
}

bool regmap_precious(struct regmap *map, unsigned int reg)
{
130
	if (!regmap_readable(map, reg))
131 132 133 134 135
		return false;

	if (map->precious_reg)
		return map->precious_reg(map->dev, reg);

136
	if (map->precious_table)
137
		return regmap_check_range_table(map, reg, map->precious_table);
138

139 140 141
	return false;
}

142
static bool regmap_volatile_range(struct regmap *map, unsigned int reg,
P
Paul Bolle 已提交
143
	size_t num)
144 145 146 147 148 149 150 151 152 153
{
	unsigned int i;

	for (i = 0; i < num; i++)
		if (!regmap_volatile(map, reg + i))
			return false;

	return true;
}

154 155 156 157 158 159 160 161
static void regmap_format_2_6_write(struct regmap *map,
				     unsigned int reg, unsigned int val)
{
	u8 *out = map->work_buf;

	*out = (reg << 6) | val;
}

162 163 164 165 166 167 168 169 170 171 172 173 174 175
static void regmap_format_4_12_write(struct regmap *map,
				     unsigned int reg, unsigned int val)
{
	__be16 *out = map->work_buf;
	*out = cpu_to_be16((reg << 12) | val);
}

static void regmap_format_7_9_write(struct regmap *map,
				    unsigned int reg, unsigned int val)
{
	__be16 *out = map->work_buf;
	*out = cpu_to_be16((reg << 9) | val);
}

176 177 178 179 180 181 182 183 184 185
static void regmap_format_10_14_write(struct regmap *map,
				    unsigned int reg, unsigned int val)
{
	u8 *out = map->work_buf;

	out[2] = val;
	out[1] = (val >> 8) | (reg << 6);
	out[0] = reg >> 2;
}

186
static void regmap_format_8(void *buf, unsigned int val, unsigned int shift)
187 188 189
{
	u8 *b = buf;

190
	b[0] = val << shift;
191 192
}

193
static void regmap_format_16_be(void *buf, unsigned int val, unsigned int shift)
194 195 196
{
	__be16 *b = buf;

197
	b[0] = cpu_to_be16(val << shift);
198 199
}

200 201 202 203 204 205 206
static void regmap_format_16_le(void *buf, unsigned int val, unsigned int shift)
{
	__le16 *b = buf;

	b[0] = cpu_to_le16(val << shift);
}

207 208 209 210 211 212
static void regmap_format_16_native(void *buf, unsigned int val,
				    unsigned int shift)
{
	*(u16 *)buf = val << shift;
}

213
static void regmap_format_24(void *buf, unsigned int val, unsigned int shift)
214 215 216
{
	u8 *b = buf;

217 218
	val <<= shift;

219 220 221 222 223
	b[0] = val >> 16;
	b[1] = val >> 8;
	b[2] = val;
}

224
static void regmap_format_32_be(void *buf, unsigned int val, unsigned int shift)
225 226 227
{
	__be32 *b = buf;

228
	b[0] = cpu_to_be32(val << shift);
229 230
}

231 232 233 234 235 236 237
static void regmap_format_32_le(void *buf, unsigned int val, unsigned int shift)
{
	__le32 *b = buf;

	b[0] = cpu_to_le32(val << shift);
}

238 239 240 241 242 243
static void regmap_format_32_native(void *buf, unsigned int val,
				    unsigned int shift)
{
	*(u32 *)buf = val << shift;
}

244
static void regmap_parse_inplace_noop(void *buf)
245
{
246 247 248 249 250
}

static unsigned int regmap_parse_8(const void *buf)
{
	const u8 *b = buf;
251 252 253 254

	return b[0];
}

255 256 257 258 259 260 261
static unsigned int regmap_parse_16_be(const void *buf)
{
	const __be16 *b = buf;

	return be16_to_cpu(b[0]);
}

262 263 264 265 266 267 268
static unsigned int regmap_parse_16_le(const void *buf)
{
	const __le16 *b = buf;

	return le16_to_cpu(b[0]);
}

269
static void regmap_parse_16_be_inplace(void *buf)
270 271 272 273 274 275
{
	__be16 *b = buf;

	b[0] = be16_to_cpu(b[0]);
}

276 277 278 279 280 281 282
static void regmap_parse_16_le_inplace(void *buf)
{
	__le16 *b = buf;

	b[0] = le16_to_cpu(b[0]);
}

283
static unsigned int regmap_parse_16_native(const void *buf)
284 285 286 287
{
	return *(u16 *)buf;
}

288
static unsigned int regmap_parse_24(const void *buf)
289
{
290
	const u8 *b = buf;
291 292 293 294 295 296 297
	unsigned int ret = b[2];
	ret |= ((unsigned int)b[1]) << 8;
	ret |= ((unsigned int)b[0]) << 16;

	return ret;
}

298 299 300 301 302 303 304
static unsigned int regmap_parse_32_be(const void *buf)
{
	const __be32 *b = buf;

	return be32_to_cpu(b[0]);
}

305 306 307 308 309 310 311
static unsigned int regmap_parse_32_le(const void *buf)
{
	const __le32 *b = buf;

	return le32_to_cpu(b[0]);
}

312
static void regmap_parse_32_be_inplace(void *buf)
313 314 315 316 317 318
{
	__be32 *b = buf;

	b[0] = be32_to_cpu(b[0]);
}

319 320 321 322 323 324 325
static void regmap_parse_32_le_inplace(void *buf)
{
	__le32 *b = buf;

	b[0] = le32_to_cpu(b[0]);
}

326
static unsigned int regmap_parse_32_native(const void *buf)
327 328 329 330
{
	return *(u32 *)buf;
}

331
static void regmap_lock_mutex(void *__map)
332
{
333
	struct regmap *map = __map;
334 335 336
	mutex_lock(&map->mutex);
}

337
static void regmap_unlock_mutex(void *__map)
338
{
339
	struct regmap *map = __map;
340 341 342
	mutex_unlock(&map->mutex);
}

343
static void regmap_lock_spinlock(void *__map)
344
__acquires(&map->spinlock)
345
{
346
	struct regmap *map = __map;
347 348 349 350
	unsigned long flags;

	spin_lock_irqsave(&map->spinlock, flags);
	map->spinlock_flags = flags;
351 352
}

353
static void regmap_unlock_spinlock(void *__map)
354
__releases(&map->spinlock)
355
{
356
	struct regmap *map = __map;
357
	spin_unlock_irqrestore(&map->spinlock, map->spinlock_flags);
358 359
}

M
Mark Brown 已提交
360 361 362 363 364 365 366 367 368
static void dev_get_regmap_release(struct device *dev, void *res)
{
	/*
	 * We don't actually have anything to do here; the goal here
	 * is not to manage the regmap but to provide a simple way to
	 * get the regmap back given a struct device.
	 */
}

369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429
static bool _regmap_range_add(struct regmap *map,
			      struct regmap_range_node *data)
{
	struct rb_root *root = &map->range_tree;
	struct rb_node **new = &(root->rb_node), *parent = NULL;

	while (*new) {
		struct regmap_range_node *this =
			container_of(*new, struct regmap_range_node, node);

		parent = *new;
		if (data->range_max < this->range_min)
			new = &((*new)->rb_left);
		else if (data->range_min > this->range_max)
			new = &((*new)->rb_right);
		else
			return false;
	}

	rb_link_node(&data->node, parent, new);
	rb_insert_color(&data->node, root);

	return true;
}

static struct regmap_range_node *_regmap_range_lookup(struct regmap *map,
						      unsigned int reg)
{
	struct rb_node *node = map->range_tree.rb_node;

	while (node) {
		struct regmap_range_node *this =
			container_of(node, struct regmap_range_node, node);

		if (reg < this->range_min)
			node = node->rb_left;
		else if (reg > this->range_max)
			node = node->rb_right;
		else
			return this;
	}

	return NULL;
}

static void regmap_range_exit(struct regmap *map)
{
	struct rb_node *next;
	struct regmap_range_node *range_node;

	next = rb_first(&map->range_tree);
	while (next) {
		range_node = rb_entry(next, struct regmap_range_node, node);
		next = rb_next(&range_node->node);
		rb_erase(&range_node->node, &map->range_tree);
		kfree(range_node);
	}

	kfree(map->selector_work_buf);
}

430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451
int regmap_attach_dev(struct device *dev, struct regmap *map,
		      const struct regmap_config *config)
{
	struct regmap **m;

	map->dev = dev;

	regmap_debugfs_init(map, config->name);

	/* Add a devres resource for dev_get_regmap() */
	m = devres_alloc(dev_get_regmap_release, sizeof(*m), GFP_KERNEL);
	if (!m) {
		regmap_debugfs_exit(map);
		return -ENOMEM;
	}
	*m = map;
	devres_add(dev, m);

	return 0;
}
EXPORT_SYMBOL_GPL(regmap_attach_dev);

452 453 454 455 456 457 458 459 460 461 462 463 464 465 466
static enum regmap_endian regmap_get_reg_endian(const struct regmap_bus *bus,
					const struct regmap_config *config)
{
	enum regmap_endian endian;

	/* Retrieve the endianness specification from the regmap config */
	endian = config->reg_format_endian;

	/* If the regmap config specified a non-default value, use that */
	if (endian != REGMAP_ENDIAN_DEFAULT)
		return endian;

	/* Retrieve the endianness specification from the bus config */
	if (bus && bus->reg_format_endian_default)
		endian = bus->reg_format_endian_default;
467

468 469 470 471 472 473 474 475 476 477 478
	/* If the bus specified a non-default value, use that */
	if (endian != REGMAP_ENDIAN_DEFAULT)
		return endian;

	/* Use this if no other value was found */
	return REGMAP_ENDIAN_BIG;
}

static enum regmap_endian regmap_get_val_endian(struct device *dev,
					const struct regmap_bus *bus,
					const struct regmap_config *config)
479
{
480
	struct device_node *np;
481
	enum regmap_endian endian;
482

483
	/* Retrieve the endianness specification from the regmap config */
484
	endian = config->val_format_endian;
485

486
	/* If the regmap config specified a non-default value, use that */
487 488
	if (endian != REGMAP_ENDIAN_DEFAULT)
		return endian;
489

490 491 492
	/* If the dev and dev->of_node exist try to get endianness from DT */
	if (dev && dev->of_node) {
		np = dev->of_node;
493

494 495 496 497 498 499 500 501 502 503
		/* Parse the device's DT node for an endianness specification */
		if (of_property_read_bool(np, "big-endian"))
			endian = REGMAP_ENDIAN_BIG;
		else if (of_property_read_bool(np, "little-endian"))
			endian = REGMAP_ENDIAN_LITTLE;

		/* If the endianness was specified in DT, use that */
		if (endian != REGMAP_ENDIAN_DEFAULT)
			return endian;
	}
504 505

	/* Retrieve the endianness specification from the bus config */
506 507
	if (bus && bus->val_format_endian_default)
		endian = bus->val_format_endian_default;
508

509
	/* If the bus specified a non-default value, use that */
510 511
	if (endian != REGMAP_ENDIAN_DEFAULT)
		return endian;
512 513

	/* Use this if no other value was found */
514
	return REGMAP_ENDIAN_BIG;
515 516
}

517 518 519 520 521
/**
 * regmap_init(): Initialise register map
 *
 * @dev: Device that will be interacted with
 * @bus: Bus-specific callbacks to use with device
522
 * @bus_context: Data passed to bus-specific callbacks
523 524 525 526 527 528 529 530
 * @config: Configuration for register map
 *
 * The return value will be an ERR_PTR() on error or a valid pointer to
 * a struct regmap.  This function should generally not be called
 * directly, it should be called by bus-specific init functions.
 */
struct regmap *regmap_init(struct device *dev,
			   const struct regmap_bus *bus,
531
			   void *bus_context,
532 533
			   const struct regmap_config *config)
{
534
	struct regmap *map;
535
	int ret = -EINVAL;
536
	enum regmap_endian reg_endian, val_endian;
537
	int i, j;
538

539
	if (!config)
540
		goto err;
541 542 543 544 545 546 547

	map = kzalloc(sizeof(*map), GFP_KERNEL);
	if (map == NULL) {
		ret = -ENOMEM;
		goto err;
	}

548 549 550 551
	if (config->lock && config->unlock) {
		map->lock = config->lock;
		map->unlock = config->unlock;
		map->lock_arg = config->lock_arg;
552
	} else {
553 554
		if ((bus && bus->fast_io) ||
		    config->fast_io) {
555 556 557 558 559 560 561 562 563
			spin_lock_init(&map->spinlock);
			map->lock = regmap_lock_spinlock;
			map->unlock = regmap_unlock_spinlock;
		} else {
			mutex_init(&map->mutex);
			map->lock = regmap_lock_mutex;
			map->unlock = regmap_unlock_mutex;
		}
		map->lock_arg = map;
564
	}
565
	map->format.reg_bytes = DIV_ROUND_UP(config->reg_bits, 8);
566
	map->format.pad_bytes = config->pad_bits / 8;
567
	map->format.val_bytes = DIV_ROUND_UP(config->val_bits, 8);
568 569
	map->format.buf_size = DIV_ROUND_UP(config->reg_bits +
			config->val_bits + config->pad_bits, 8);
570
	map->reg_shift = config->pad_bits % 8;
571 572 573 574
	if (config->reg_stride)
		map->reg_stride = config->reg_stride;
	else
		map->reg_stride = 1;
575
	map->use_single_rw = config->use_single_rw;
576
	map->can_multi_write = config->can_multi_write;
577 578
	map->dev = dev;
	map->bus = bus;
579
	map->bus_context = bus_context;
580
	map->max_register = config->max_register;
581 582 583 584
	map->wr_table = config->wr_table;
	map->rd_table = config->rd_table;
	map->volatile_table = config->volatile_table;
	map->precious_table = config->precious_table;
585 586 587
	map->writeable_reg = config->writeable_reg;
	map->readable_reg = config->readable_reg;
	map->volatile_reg = config->volatile_reg;
588
	map->precious_reg = config->precious_reg;
589
	map->cache_type = config->cache_type;
M
Mark Brown 已提交
590
	map->name = config->name;
591

592 593
	spin_lock_init(&map->async_lock);
	INIT_LIST_HEAD(&map->async_list);
M
Mark Brown 已提交
594
	INIT_LIST_HEAD(&map->async_free);
595 596
	init_waitqueue_head(&map->async_waitq);

597 598 599
	if (config->read_flag_mask || config->write_flag_mask) {
		map->read_flag_mask = config->read_flag_mask;
		map->write_flag_mask = config->write_flag_mask;
600
	} else if (bus) {
601 602 603
		map->read_flag_mask = bus->read_flag_mask;
	}

604 605 606 607
	if (!bus) {
		map->reg_read  = config->reg_read;
		map->reg_write = config->reg_write;

608 609 610 611 612 613
		map->defer_caching = false;
		goto skip_format_initialization;
	} else if (!bus->read || !bus->write) {
		map->reg_read = _regmap_bus_reg_read;
		map->reg_write = _regmap_bus_reg_write;

614 615 616 617 618
		map->defer_caching = false;
		goto skip_format_initialization;
	} else {
		map->reg_read  = _regmap_bus_read;
	}
619

620 621
	reg_endian = regmap_get_reg_endian(bus, config);
	val_endian = regmap_get_val_endian(dev, bus, config);
622

623
	switch (config->reg_bits + map->reg_shift) {
624 625 626 627 628 629 630 631 632 633
	case 2:
		switch (config->val_bits) {
		case 6:
			map->format.format_write = regmap_format_2_6_write;
			break;
		default:
			goto err_map;
		}
		break;

634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653
	case 4:
		switch (config->val_bits) {
		case 12:
			map->format.format_write = regmap_format_4_12_write;
			break;
		default:
			goto err_map;
		}
		break;

	case 7:
		switch (config->val_bits) {
		case 9:
			map->format.format_write = regmap_format_7_9_write;
			break;
		default:
			goto err_map;
		}
		break;

654 655 656 657 658 659 660 661 662 663
	case 10:
		switch (config->val_bits) {
		case 14:
			map->format.format_write = regmap_format_10_14_write;
			break;
		default:
			goto err_map;
		}
		break;

664 665 666 667 668
	case 8:
		map->format.format_reg = regmap_format_8;
		break;

	case 16:
669 670 671 672 673 674 675 676 677 678
		switch (reg_endian) {
		case REGMAP_ENDIAN_BIG:
			map->format.format_reg = regmap_format_16_be;
			break;
		case REGMAP_ENDIAN_NATIVE:
			map->format.format_reg = regmap_format_16_native;
			break;
		default:
			goto err_map;
		}
679 680
		break;

681 682 683 684 685 686
	case 24:
		if (reg_endian != REGMAP_ENDIAN_BIG)
			goto err_map;
		map->format.format_reg = regmap_format_24;
		break;

687
	case 32:
688 689 690 691 692 693 694 695 696 697
		switch (reg_endian) {
		case REGMAP_ENDIAN_BIG:
			map->format.format_reg = regmap_format_32_be;
			break;
		case REGMAP_ENDIAN_NATIVE:
			map->format.format_reg = regmap_format_32_native;
			break;
		default:
			goto err_map;
		}
698 699
		break;

700 701 702 703
	default:
		goto err_map;
	}

704 705 706
	if (val_endian == REGMAP_ENDIAN_NATIVE)
		map->format.parse_inplace = regmap_parse_inplace_noop;

707 708 709 710
	switch (config->val_bits) {
	case 8:
		map->format.format_val = regmap_format_8;
		map->format.parse_val = regmap_parse_8;
711
		map->format.parse_inplace = regmap_parse_inplace_noop;
712 713
		break;
	case 16:
714 715 716 717
		switch (val_endian) {
		case REGMAP_ENDIAN_BIG:
			map->format.format_val = regmap_format_16_be;
			map->format.parse_val = regmap_parse_16_be;
718
			map->format.parse_inplace = regmap_parse_16_be_inplace;
719
			break;
720 721 722 723 724
		case REGMAP_ENDIAN_LITTLE:
			map->format.format_val = regmap_format_16_le;
			map->format.parse_val = regmap_parse_16_le;
			map->format.parse_inplace = regmap_parse_16_le_inplace;
			break;
725 726 727 728 729 730 731
		case REGMAP_ENDIAN_NATIVE:
			map->format.format_val = regmap_format_16_native;
			map->format.parse_val = regmap_parse_16_native;
			break;
		default:
			goto err_map;
		}
732
		break;
733
	case 24:
734 735
		if (val_endian != REGMAP_ENDIAN_BIG)
			goto err_map;
736 737 738
		map->format.format_val = regmap_format_24;
		map->format.parse_val = regmap_parse_24;
		break;
739
	case 32:
740 741 742 743
		switch (val_endian) {
		case REGMAP_ENDIAN_BIG:
			map->format.format_val = regmap_format_32_be;
			map->format.parse_val = regmap_parse_32_be;
744
			map->format.parse_inplace = regmap_parse_32_be_inplace;
745
			break;
746 747 748 749 750
		case REGMAP_ENDIAN_LITTLE:
			map->format.format_val = regmap_format_32_le;
			map->format.parse_val = regmap_parse_32_le;
			map->format.parse_inplace = regmap_parse_32_le_inplace;
			break;
751 752 753 754 755 756 757
		case REGMAP_ENDIAN_NATIVE:
			map->format.format_val = regmap_format_32_native;
			map->format.parse_val = regmap_parse_32_native;
			break;
		default:
			goto err_map;
		}
758
		break;
759 760
	}

761 762 763 764
	if (map->format.format_write) {
		if ((reg_endian != REGMAP_ENDIAN_BIG) ||
		    (val_endian != REGMAP_ENDIAN_BIG))
			goto err_map;
765
		map->use_single_rw = true;
766
	}
767

768 769 770 771
	if (!map->format.format_write &&
	    !(map->format.format_reg && map->format.format_val))
		goto err_map;

772
	map->work_buf = kzalloc(map->format.buf_size, GFP_KERNEL);
773 774
	if (map->work_buf == NULL) {
		ret = -ENOMEM;
775
		goto err_map;
776 777
	}

778 779
	if (map->format.format_write) {
		map->defer_caching = false;
780
		map->reg_write = _regmap_bus_formatted_write;
781 782
	} else if (map->format.format_val) {
		map->defer_caching = true;
783
		map->reg_write = _regmap_bus_raw_write;
784 785 786
	}

skip_format_initialization:
787

788
	map->range_tree = RB_ROOT;
M
Mark Brown 已提交
789
	for (i = 0; i < config->num_ranges; i++) {
790 791 792 793
		const struct regmap_range_cfg *range_cfg = &config->ranges[i];
		struct regmap_range_node *new;

		/* Sanity check */
794 795 796
		if (range_cfg->range_max < range_cfg->range_min) {
			dev_err(map->dev, "Invalid range %d: %d < %d\n", i,
				range_cfg->range_max, range_cfg->range_min);
797
			goto err_range;
798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816
		}

		if (range_cfg->range_max > map->max_register) {
			dev_err(map->dev, "Invalid range %d: %d > %d\n", i,
				range_cfg->range_max, map->max_register);
			goto err_range;
		}

		if (range_cfg->selector_reg > map->max_register) {
			dev_err(map->dev,
				"Invalid range %d: selector out of map\n", i);
			goto err_range;
		}

		if (range_cfg->window_len == 0) {
			dev_err(map->dev, "Invalid range %d: window_len 0\n",
				i);
			goto err_range;
		}
817 818 819

		/* Make sure, that this register range has no selector
		   or data window within its boundary */
M
Mark Brown 已提交
820
		for (j = 0; j < config->num_ranges; j++) {
821 822 823 824 825
			unsigned sel_reg = config->ranges[j].selector_reg;
			unsigned win_min = config->ranges[j].window_start;
			unsigned win_max = win_min +
					   config->ranges[j].window_len - 1;

826 827 828 829
			/* Allow data window inside its own virtual range */
			if (j == i)
				continue;

830 831
			if (range_cfg->range_min <= sel_reg &&
			    sel_reg <= range_cfg->range_max) {
832 833 834
				dev_err(map->dev,
					"Range %d: selector for %d in window\n",
					i, j);
835 836 837 838 839
				goto err_range;
			}

			if (!(win_max < range_cfg->range_min ||
			      win_min > range_cfg->range_max)) {
840 841 842
				dev_err(map->dev,
					"Range %d: window for %d in window\n",
					i, j);
843 844 845 846 847 848 849 850 851 852
				goto err_range;
			}
		}

		new = kzalloc(sizeof(*new), GFP_KERNEL);
		if (new == NULL) {
			ret = -ENOMEM;
			goto err_range;
		}

853
		new->map = map;
M
Mark Brown 已提交
854
		new->name = range_cfg->name;
855 856 857 858 859 860 861 862
		new->range_min = range_cfg->range_min;
		new->range_max = range_cfg->range_max;
		new->selector_reg = range_cfg->selector_reg;
		new->selector_mask = range_cfg->selector_mask;
		new->selector_shift = range_cfg->selector_shift;
		new->window_start = range_cfg->window_start;
		new->window_len = range_cfg->window_len;

N
Nenghua Cao 已提交
863
		if (!_regmap_range_add(map, new)) {
864
			dev_err(map->dev, "Failed to add range %d\n", i);
865 866 867 868 869 870 871 872 873 874 875 876 877
			kfree(new);
			goto err_range;
		}

		if (map->selector_work_buf == NULL) {
			map->selector_work_buf =
				kzalloc(map->format.buf_size, GFP_KERNEL);
			if (map->selector_work_buf == NULL) {
				ret = -ENOMEM;
				goto err_range;
			}
		}
	}
878

879
	ret = regcache_init(map, config);
880
	if (ret != 0)
881 882
		goto err_range;

883
	if (dev) {
884 885 886
		ret = regmap_attach_dev(dev, map, config);
		if (ret != 0)
			goto err_regcache;
887
	}
M
Mark Brown 已提交
888

889 890
	return map;

891
err_regcache:
M
Mark Brown 已提交
892
	regcache_exit(map);
893 894
err_range:
	regmap_range_exit(map);
895
	kfree(map->work_buf);
896 897 898 899 900 901 902
err_map:
	kfree(map);
err:
	return ERR_PTR(ret);
}
EXPORT_SYMBOL_GPL(regmap_init);

903 904 905 906 907 908 909 910 911 912
static void devm_regmap_release(struct device *dev, void *res)
{
	regmap_exit(*(struct regmap **)res);
}

/**
 * devm_regmap_init(): Initialise managed register map
 *
 * @dev: Device that will be interacted with
 * @bus: Bus-specific callbacks to use with device
913
 * @bus_context: Data passed to bus-specific callbacks
914 915 916 917 918 919 920 921 922
 * @config: Configuration for register map
 *
 * The return value will be an ERR_PTR() on error or a valid pointer
 * to a struct regmap.  This function should generally not be called
 * directly, it should be called by bus-specific init functions.  The
 * map will be automatically freed by the device management code.
 */
struct regmap *devm_regmap_init(struct device *dev,
				const struct regmap_bus *bus,
923
				void *bus_context,
924 925 926 927 928 929 930 931
				const struct regmap_config *config)
{
	struct regmap **ptr, *regmap;

	ptr = devres_alloc(devm_regmap_release, sizeof(*ptr), GFP_KERNEL);
	if (!ptr)
		return ERR_PTR(-ENOMEM);

932
	regmap = regmap_init(dev, bus, bus_context, config);
933 934 935 936 937 938 939 940 941 942 943
	if (!IS_ERR(regmap)) {
		*ptr = regmap;
		devres_add(dev, ptr);
	} else {
		devres_free(ptr);
	}

	return regmap;
}
EXPORT_SYMBOL_GPL(devm_regmap_init);

944 945 946 947 948 949 950 951
static void regmap_field_init(struct regmap_field *rm_field,
	struct regmap *regmap, struct reg_field reg_field)
{
	int field_bits = reg_field.msb - reg_field.lsb + 1;
	rm_field->regmap = regmap;
	rm_field->reg = reg_field.reg;
	rm_field->shift = reg_field.lsb;
	rm_field->mask = ((BIT(field_bits) - 1) << reg_field.lsb);
952 953
	rm_field->id_size = reg_field.id_size;
	rm_field->id_offset = reg_field.id_offset;
954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034
}

/**
 * devm_regmap_field_alloc(): Allocate and initialise a register field
 * in a register map.
 *
 * @dev: Device that will be interacted with
 * @regmap: regmap bank in which this register field is located.
 * @reg_field: Register field with in the bank.
 *
 * The return value will be an ERR_PTR() on error or a valid pointer
 * to a struct regmap_field. The regmap_field will be automatically freed
 * by the device management code.
 */
struct regmap_field *devm_regmap_field_alloc(struct device *dev,
		struct regmap *regmap, struct reg_field reg_field)
{
	struct regmap_field *rm_field = devm_kzalloc(dev,
					sizeof(*rm_field), GFP_KERNEL);
	if (!rm_field)
		return ERR_PTR(-ENOMEM);

	regmap_field_init(rm_field, regmap, reg_field);

	return rm_field;

}
EXPORT_SYMBOL_GPL(devm_regmap_field_alloc);

/**
 * devm_regmap_field_free(): Free register field allocated using
 * devm_regmap_field_alloc. Usally drivers need not call this function,
 * as the memory allocated via devm will be freed as per device-driver
 * life-cyle.
 *
 * @dev: Device that will be interacted with
 * @field: regmap field which should be freed.
 */
void devm_regmap_field_free(struct device *dev,
	struct regmap_field *field)
{
	devm_kfree(dev, field);
}
EXPORT_SYMBOL_GPL(devm_regmap_field_free);

/**
 * regmap_field_alloc(): Allocate and initialise a register field
 * in a register map.
 *
 * @regmap: regmap bank in which this register field is located.
 * @reg_field: Register field with in the bank.
 *
 * The return value will be an ERR_PTR() on error or a valid pointer
 * to a struct regmap_field. The regmap_field should be freed by the
 * user once its finished working with it using regmap_field_free().
 */
struct regmap_field *regmap_field_alloc(struct regmap *regmap,
		struct reg_field reg_field)
{
	struct regmap_field *rm_field = kzalloc(sizeof(*rm_field), GFP_KERNEL);

	if (!rm_field)
		return ERR_PTR(-ENOMEM);

	regmap_field_init(rm_field, regmap, reg_field);

	return rm_field;
}
EXPORT_SYMBOL_GPL(regmap_field_alloc);

/**
 * regmap_field_free(): Free register field allocated using regmap_field_alloc
 *
 * @field: regmap field which should be freed.
 */
void regmap_field_free(struct regmap_field *field)
{
	kfree(field);
}
EXPORT_SYMBOL_GPL(regmap_field_free);

1035 1036 1037 1038 1039 1040 1041 1042 1043 1044
/**
 * regmap_reinit_cache(): Reinitialise the current register cache
 *
 * @map: Register map to operate on.
 * @config: New configuration.  Only the cache data will be used.
 *
 * Discard any existing register cache for the map and initialize a
 * new cache.  This can be used to restore the cache to defaults or to
 * update the cache configuration to reflect runtime discovery of the
 * hardware.
1045 1046 1047
 *
 * No explicit locking is done here, the user needs to ensure that
 * this function will not race with other calls to regmap.
1048 1049 1050 1051
 */
int regmap_reinit_cache(struct regmap *map, const struct regmap_config *config)
{
	regcache_exit(map);
1052
	regmap_debugfs_exit(map);
1053 1054 1055 1056 1057 1058 1059 1060

	map->max_register = config->max_register;
	map->writeable_reg = config->writeable_reg;
	map->readable_reg = config->readable_reg;
	map->volatile_reg = config->volatile_reg;
	map->precious_reg = config->precious_reg;
	map->cache_type = config->cache_type;

1061
	regmap_debugfs_init(map, config->name);
1062

1063 1064 1065
	map->cache_bypass = false;
	map->cache_only = false;

1066
	return regcache_init(map, config);
1067
}
1068
EXPORT_SYMBOL_GPL(regmap_reinit_cache);
1069

1070 1071 1072 1073 1074
/**
 * regmap_exit(): Free a previously allocated register map
 */
void regmap_exit(struct regmap *map)
{
M
Mark Brown 已提交
1075 1076
	struct regmap_async *async;

1077
	regcache_exit(map);
1078
	regmap_debugfs_exit(map);
1079
	regmap_range_exit(map);
1080
	if (map->bus && map->bus->free_context)
1081
		map->bus->free_context(map->bus_context);
1082
	kfree(map->work_buf);
M
Mark Brown 已提交
1083 1084 1085 1086 1087 1088 1089 1090
	while (!list_empty(&map->async_free)) {
		async = list_first_entry_or_null(&map->async_free,
						 struct regmap_async,
						 list);
		list_del(&async->list);
		kfree(async->work_buf);
		kfree(async);
	}
1091 1092 1093 1094
	kfree(map);
}
EXPORT_SYMBOL_GPL(regmap_exit);

M
Mark Brown 已提交
1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132
static int dev_get_regmap_match(struct device *dev, void *res, void *data)
{
	struct regmap **r = res;
	if (!r || !*r) {
		WARN_ON(!r || !*r);
		return 0;
	}

	/* If the user didn't specify a name match any */
	if (data)
		return (*r)->name == data;
	else
		return 1;
}

/**
 * dev_get_regmap(): Obtain the regmap (if any) for a device
 *
 * @dev: Device to retrieve the map for
 * @name: Optional name for the register map, usually NULL.
 *
 * Returns the regmap for the device if one is present, or NULL.  If
 * name is specified then it must match the name specified when
 * registering the device, if it is NULL then the first regmap found
 * will be used.  Devices with multiple register maps are very rare,
 * generic code should normally not need to specify a name.
 */
struct regmap *dev_get_regmap(struct device *dev, const char *name)
{
	struct regmap **r = devres_find(dev, dev_get_regmap_release,
					dev_get_regmap_match, (void *)name);

	if (!r)
		return NULL;
	return *r;
}
EXPORT_SYMBOL_GPL(dev_get_regmap);

T
Tuomas Tynkkynen 已提交
1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143
/**
 * regmap_get_device(): Obtain the device from a regmap
 *
 * @map: Register map to operate on.
 *
 * Returns the underlying device that the regmap has been created for.
 */
struct device *regmap_get_device(struct regmap *map)
{
	return map->dev;
}
1144
EXPORT_SYMBOL_GPL(regmap_get_device);
T
Tuomas Tynkkynen 已提交
1145

1146
static int _regmap_select_page(struct regmap *map, unsigned int *reg,
1147
			       struct regmap_range_node *range,
1148 1149 1150 1151 1152 1153 1154 1155
			       unsigned int val_num)
{
	void *orig_work_buf;
	unsigned int win_offset;
	unsigned int win_page;
	bool page_chg;
	int ret;

1156 1157
	win_offset = (*reg - range->range_min) % range->window_len;
	win_page = (*reg - range->range_min) / range->window_len;
1158

1159 1160 1161 1162
	if (val_num > 1) {
		/* Bulk write shouldn't cross range boundary */
		if (*reg + val_num - 1 > range->range_max)
			return -EINVAL;
1163

1164 1165 1166 1167
		/* ... or single page boundary */
		if (val_num > range->window_len - win_offset)
			return -EINVAL;
	}
1168

1169 1170 1171 1172 1173 1174 1175 1176
	/* It is possible to have selector register inside data window.
	   In that case, selector register is located on every page and
	   it needs no page switching, when accessed alone. */
	if (val_num > 1 ||
	    range->window_start + win_offset != range->selector_reg) {
		/* Use separate work_buf during page switching */
		orig_work_buf = map->work_buf;
		map->work_buf = map->selector_work_buf;
1177

1178 1179 1180 1181
		ret = _regmap_update_bits(map, range->selector_reg,
					  range->selector_mask,
					  win_page << range->selector_shift,
					  &page_chg);
1182

1183
		map->work_buf = orig_work_buf;
1184

1185
		if (ret != 0)
1186
			return ret;
1187 1188
	}

1189 1190
	*reg = range->window_start + win_offset;

1191 1192 1193
	return 0;
}

1194
int _regmap_raw_write(struct regmap *map, unsigned int reg,
1195
		      const void *val, size_t val_len)
1196
{
1197
	struct regmap_range_node *range;
1198
	unsigned long flags;
1199
	u8 *u8 = map->work_buf;
1200 1201
	void *work_val = map->work_buf + map->format.reg_bytes +
		map->format.pad_bytes;
1202 1203 1204
	void *buf;
	int ret = -ENOTSUPP;
	size_t len;
1205 1206
	int i;

1207
	WARN_ON(!map->bus);
1208

1209 1210 1211
	/* Check for unwritable registers before we start */
	if (map->writeable_reg)
		for (i = 0; i < val_len / map->format.val_bytes; i++)
1212 1213
			if (!map->writeable_reg(map->dev,
						reg + (i * map->reg_stride)))
1214
				return -EINVAL;
1215

1216 1217 1218 1219
	if (!map->cache_bypass && map->format.parse_val) {
		unsigned int ival;
		int val_bytes = map->format.val_bytes;
		for (i = 0; i < val_len / val_bytes; i++) {
1220
			ival = map->format.parse_val(val + (i * val_bytes));
1221 1222
			ret = regcache_write(map, reg + (i * map->reg_stride),
					     ival);
1223 1224
			if (ret) {
				dev_err(map->dev,
1225
					"Error in caching of register: %x ret: %d\n",
1226 1227 1228 1229 1230 1231 1232 1233 1234 1235
					reg + i, ret);
				return ret;
			}
		}
		if (map->cache_only) {
			map->cache_dirty = true;
			return 0;
		}
	}

1236 1237
	range = _regmap_range_lookup(map, reg);
	if (range) {
1238 1239 1240 1241 1242 1243
		int val_num = val_len / map->format.val_bytes;
		int win_offset = (reg - range->range_min) % range->window_len;
		int win_residue = range->window_len - win_offset;

		/* If the write goes beyond the end of the window split it */
		while (val_num > win_residue) {
1244
			dev_dbg(map->dev, "Writing window %d/%zu\n",
1245 1246
				win_residue, val_len / map->format.val_bytes);
			ret = _regmap_raw_write(map, reg, val, win_residue *
1247
						map->format.val_bytes);
1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261
			if (ret != 0)
				return ret;

			reg += win_residue;
			val_num -= win_residue;
			val += win_residue * map->format.val_bytes;
			val_len -= win_residue * map->format.val_bytes;

			win_offset = (reg - range->range_min) %
				range->window_len;
			win_residue = range->window_len - win_offset;
		}

		ret = _regmap_select_page(map, &reg, range, val_num);
1262
		if (ret != 0)
1263 1264
			return ret;
	}
1265

1266
	map->format.format_reg(map->work_buf, reg, map->reg_shift);
1267

1268 1269
	u8[0] |= map->write_flag_mask;

1270 1271 1272 1273 1274 1275 1276 1277 1278 1279
	/*
	 * Essentially all I/O mechanisms will be faster with a single
	 * buffer to write.  Since register syncs often generate raw
	 * writes of single registers optimise that case.
	 */
	if (val != work_val && val_len == map->format.val_bytes) {
		memcpy(work_val, val, map->format.val_bytes);
		val = work_val;
	}

1280
	if (map->async && map->bus->async_write) {
M
Mark Brown 已提交
1281
		struct regmap_async *async;
1282

1283 1284
		trace_regmap_async_write_start(map->dev, reg, val_len);

M
Mark Brown 已提交
1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303
		spin_lock_irqsave(&map->async_lock, flags);
		async = list_first_entry_or_null(&map->async_free,
						 struct regmap_async,
						 list);
		if (async)
			list_del(&async->list);
		spin_unlock_irqrestore(&map->async_lock, flags);

		if (!async) {
			async = map->bus->async_alloc();
			if (!async)
				return -ENOMEM;

			async->work_buf = kzalloc(map->format.buf_size,
						  GFP_KERNEL | GFP_DMA);
			if (!async->work_buf) {
				kfree(async);
				return -ENOMEM;
			}
1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315
		}

		async->map = map;

		/* If the caller supplied the value we can use it safely. */
		memcpy(async->work_buf, map->work_buf, map->format.pad_bytes +
		       map->format.reg_bytes + map->format.val_bytes);

		spin_lock_irqsave(&map->async_lock, flags);
		list_add_tail(&async->list, &map->async_list);
		spin_unlock_irqrestore(&map->async_lock, flags);

1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327
		if (val != work_val)
			ret = map->bus->async_write(map->bus_context,
						    async->work_buf,
						    map->format.reg_bytes +
						    map->format.pad_bytes,
						    val, val_len, async);
		else
			ret = map->bus->async_write(map->bus_context,
						    async->work_buf,
						    map->format.reg_bytes +
						    map->format.pad_bytes +
						    val_len, NULL, 0, async);
1328 1329 1330 1331 1332 1333

		if (ret != 0) {
			dev_err(map->dev, "Failed to schedule write: %d\n",
				ret);

			spin_lock_irqsave(&map->async_lock, flags);
M
Mark Brown 已提交
1334
			list_move(&async->list, &map->async_free);
1335 1336
			spin_unlock_irqrestore(&map->async_lock, flags);
		}
M
Mark Brown 已提交
1337 1338

		return ret;
1339 1340
	}

M
Mark Brown 已提交
1341 1342 1343
	trace_regmap_hw_write_start(map->dev, reg,
				    val_len / map->format.val_bytes);

1344 1345 1346 1347
	/* If we're doing a single register write we can probably just
	 * send the work_buf directly, otherwise try to do a gather
	 * write.
	 */
1348
	if (val == work_val)
1349
		ret = map->bus->write(map->bus_context, map->work_buf,
1350 1351 1352
				      map->format.reg_bytes +
				      map->format.pad_bytes +
				      val_len);
1353
	else if (map->bus->gather_write)
1354
		ret = map->bus->gather_write(map->bus_context, map->work_buf,
1355 1356
					     map->format.reg_bytes +
					     map->format.pad_bytes,
1357 1358
					     val, val_len);

1359
	/* If that didn't work fall back on linearising by hand. */
1360
	if (ret == -ENOTSUPP) {
1361 1362
		len = map->format.reg_bytes + map->format.pad_bytes + val_len;
		buf = kzalloc(len, GFP_KERNEL);
1363 1364 1365 1366
		if (!buf)
			return -ENOMEM;

		memcpy(buf, map->work_buf, map->format.reg_bytes);
1367 1368
		memcpy(buf + map->format.reg_bytes + map->format.pad_bytes,
		       val, val_len);
1369
		ret = map->bus->write(map->bus_context, buf, len);
1370 1371 1372 1373

		kfree(buf);
	}

M
Mark Brown 已提交
1374 1375 1376
	trace_regmap_hw_write_done(map->dev, reg,
				   val_len / map->format.val_bytes);

1377 1378 1379
	return ret;
}

1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390
/**
 * regmap_can_raw_write - Test if regmap_raw_write() is supported
 *
 * @map: Map to check.
 */
bool regmap_can_raw_write(struct regmap *map)
{
	return map->bus && map->format.format_val && map->format.format_reg;
}
EXPORT_SYMBOL_GPL(regmap_can_raw_write);

1391 1392 1393 1394 1395 1396 1397
static int _regmap_bus_formatted_write(void *context, unsigned int reg,
				       unsigned int val)
{
	int ret;
	struct regmap_range_node *range;
	struct regmap *map = context;

1398
	WARN_ON(!map->bus || !map->format.format_write);
1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418

	range = _regmap_range_lookup(map, reg);
	if (range) {
		ret = _regmap_select_page(map, &reg, range, 1);
		if (ret != 0)
			return ret;
	}

	map->format.format_write(map, reg, val);

	trace_regmap_hw_write_start(map->dev, reg, 1);

	ret = map->bus->write(map->bus_context, map->work_buf,
			      map->format.buf_size);

	trace_regmap_hw_write_done(map->dev, reg, 1);

	return ret;
}

1419 1420 1421 1422 1423 1424 1425 1426
static int _regmap_bus_reg_write(void *context, unsigned int reg,
				 unsigned int val)
{
	struct regmap *map = context;

	return map->bus->reg_write(map->bus_context, reg, val);
}

1427 1428 1429 1430 1431
static int _regmap_bus_raw_write(void *context, unsigned int reg,
				 unsigned int val)
{
	struct regmap *map = context;

1432
	WARN_ON(!map->bus || !map->format.format_val);
1433 1434 1435 1436 1437 1438 1439

	map->format.format_val(map->work_buf + map->format.reg_bytes
			       + map->format.pad_bytes, val, 0);
	return _regmap_raw_write(map, reg,
				 map->work_buf +
				 map->format.reg_bytes +
				 map->format.pad_bytes,
1440
				 map->format.val_bytes);
1441 1442
}

1443 1444 1445 1446 1447
static inline void *_regmap_map_get_context(struct regmap *map)
{
	return (map->bus) ? map : map->bus_context;
}

1448 1449
int _regmap_write(struct regmap *map, unsigned int reg,
		  unsigned int val)
1450
{
M
Mark Brown 已提交
1451
	int ret;
1452
	void *context = _regmap_map_get_context(map);
1453

1454 1455 1456
	if (!regmap_writeable(map, reg))
		return -EIO;

1457
	if (!map->cache_bypass && !map->defer_caching) {
1458 1459 1460
		ret = regcache_write(map, reg, val);
		if (ret != 0)
			return ret;
1461 1462
		if (map->cache_only) {
			map->cache_dirty = true;
1463
			return 0;
1464
		}
1465 1466
	}

1467
#ifdef LOG_DEVICE
1468
	if (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0)
1469 1470 1471
		dev_info(map->dev, "%x <= %x\n", reg, val);
#endif

M
Mark Brown 已提交
1472 1473
	trace_regmap_reg_write(map->dev, reg, val);

1474
	return map->reg_write(context, reg, val);
1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490
}

/**
 * regmap_write(): Write a value to a single register
 *
 * @map: Register map to write to
 * @reg: Register to write to
 * @val: Value to be written
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_write(struct regmap *map, unsigned int reg, unsigned int val)
{
	int ret;

1491 1492 1493
	if (reg % map->reg_stride)
		return -EINVAL;

1494
	map->lock(map->lock_arg);
1495 1496 1497

	ret = _regmap_write(map, reg, val);

1498
	map->unlock(map->lock_arg);
1499 1500 1501 1502 1503

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_write);

1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534
/**
 * regmap_write_async(): Write a value to a single register asynchronously
 *
 * @map: Register map to write to
 * @reg: Register to write to
 * @val: Value to be written
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_write_async(struct regmap *map, unsigned int reg, unsigned int val)
{
	int ret;

	if (reg % map->reg_stride)
		return -EINVAL;

	map->lock(map->lock_arg);

	map->async = true;

	ret = _regmap_write(map, reg, val);

	map->async = false;

	map->unlock(map->lock_arg);

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_write_async);

1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555
/**
 * regmap_raw_write(): Write raw values to one or more registers
 *
 * @map: Register map to write to
 * @reg: Initial register to write to
 * @val: Block of data to be written, laid out for direct transmission to the
 *       device
 * @val_len: Length of data pointed to by val.
 *
 * This function is intended to be used for things like firmware
 * download where a large block of data needs to be transferred to the
 * device.  No formatting will be done on the data provided.
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_raw_write(struct regmap *map, unsigned int reg,
		     const void *val, size_t val_len)
{
	int ret;

1556
	if (!regmap_can_raw_write(map))
1557
		return -EINVAL;
1558 1559 1560
	if (val_len % map->format.val_bytes)
		return -EINVAL;

1561
	map->lock(map->lock_arg);
1562

1563
	ret = _regmap_raw_write(map, reg, val, val_len);
1564

1565
	map->unlock(map->lock_arg);
1566 1567 1568 1569 1570

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_raw_write);

1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586
/**
 * regmap_field_write(): Write a value to a single register field
 *
 * @field: Register field to write to
 * @val: Value to be written
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_field_write(struct regmap_field *field, unsigned int val)
{
	return regmap_update_bits(field->regmap, field->reg,
				field->mask, val << field->shift);
}
EXPORT_SYMBOL_GPL(regmap_field_write);

1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606
/**
 * regmap_field_update_bits():	Perform a read/modify/write cycle
 *                              on the register field
 *
 * @field: Register field to write to
 * @mask: Bitmask to change
 * @val: Value to be written
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_field_update_bits(struct regmap_field *field, unsigned int mask, unsigned int val)
{
	mask = (mask << field->shift) & field->mask;

	return regmap_update_bits(field->regmap, field->reg,
				  mask, val << field->shift);
}
EXPORT_SYMBOL_GPL(regmap_field_update_bits);

1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654
/**
 * regmap_fields_write(): Write a value to a single register field with port ID
 *
 * @field: Register field to write to
 * @id: port ID
 * @val: Value to be written
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_fields_write(struct regmap_field *field, unsigned int id,
			unsigned int val)
{
	if (id >= field->id_size)
		return -EINVAL;

	return regmap_update_bits(field->regmap,
				  field->reg + (field->id_offset * id),
				  field->mask, val << field->shift);
}
EXPORT_SYMBOL_GPL(regmap_fields_write);

/**
 * regmap_fields_update_bits():	Perform a read/modify/write cycle
 *                              on the register field
 *
 * @field: Register field to write to
 * @id: port ID
 * @mask: Bitmask to change
 * @val: Value to be written
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_fields_update_bits(struct regmap_field *field,  unsigned int id,
			      unsigned int mask, unsigned int val)
{
	if (id >= field->id_size)
		return -EINVAL;

	mask = (mask << field->shift) & field->mask;

	return regmap_update_bits(field->regmap,
				  field->reg + (field->id_offset * id),
				  mask, val << field->shift);
}
EXPORT_SYMBOL_GPL(regmap_fields_update_bits);

1655 1656 1657 1658 1659 1660 1661 1662 1663
/*
 * regmap_bulk_write(): Write multiple registers to the device
 *
 * @map: Register map to write to
 * @reg: First register to be write from
 * @val: Block of data to be written, in native register size for device
 * @val_count: Number of registers to write
 *
 * This function is intended to be used for writing a large block of
1664
 * data to the device either in single transfer or multiple transfer.
1665 1666 1667 1668 1669 1670 1671 1672 1673 1674
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_bulk_write(struct regmap *map, unsigned int reg, const void *val,
		     size_t val_count)
{
	int ret = 0, i;
	size_t val_bytes = map->format.val_bytes;

1675
	if (map->bus && !map->format.parse_inplace)
1676
		return -EINVAL;
1677 1678
	if (reg % map->reg_stride)
		return -EINVAL;
1679

1680 1681 1682 1683 1684
	/*
	 * Some devices don't support bulk write, for
	 * them we have a series of single write operations.
	 */
	if (!map->bus || map->use_single_rw) {
1685
		map->lock(map->lock_arg);
1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707
		for (i = 0; i < val_count; i++) {
			unsigned int ival;

			switch (val_bytes) {
			case 1:
				ival = *(u8 *)(val + (i * val_bytes));
				break;
			case 2:
				ival = *(u16 *)(val + (i * val_bytes));
				break;
			case 4:
				ival = *(u32 *)(val + (i * val_bytes));
				break;
#ifdef CONFIG_64BIT
			case 8:
				ival = *(u64 *)(val + (i * val_bytes));
				break;
#endif
			default:
				ret = -EINVAL;
				goto out;
			}
1708

1709 1710 1711 1712 1713
			ret = _regmap_write(map, reg + (i * map->reg_stride),
					ival);
			if (ret != 0)
				goto out;
		}
1714 1715
out:
		map->unlock(map->lock_arg);
1716
	} else {
1717 1718
		void *wval;

1719 1720 1721
		if (!val_count)
			return -EINVAL;

1722 1723 1724
		wval = kmemdup(val, val_count * val_bytes, GFP_KERNEL);
		if (!wval) {
			dev_err(map->dev, "Error in memory allocation\n");
1725
			return -ENOMEM;
1726 1727
		}
		for (i = 0; i < val_count * val_bytes; i += val_bytes)
1728
			map->format.parse_inplace(wval + i);
1729

1730
		map->lock(map->lock_arg);
1731
		ret = _regmap_raw_write(map, reg, wval, val_bytes * val_count);
1732
		map->unlock(map->lock_arg);
1733 1734

		kfree(wval);
1735
	}
1736 1737 1738 1739
	return ret;
}
EXPORT_SYMBOL_GPL(regmap_bulk_write);

1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760
/*
 * _regmap_raw_multi_reg_write()
 *
 * the (register,newvalue) pairs in regs have not been formatted, but
 * they are all in the same page and have been changed to being page
 * relative. The page register has been written if that was neccessary.
 */
static int _regmap_raw_multi_reg_write(struct regmap *map,
				       const struct reg_default *regs,
				       size_t num_regs)
{
	int ret;
	void *buf;
	int i;
	u8 *u8;
	size_t val_bytes = map->format.val_bytes;
	size_t reg_bytes = map->format.reg_bytes;
	size_t pad_bytes = map->format.pad_bytes;
	size_t pair_size = reg_bytes + pad_bytes + val_bytes;
	size_t len = pair_size * num_regs;

1761 1762 1763
	if (!len)
		return -EINVAL;

1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810
	buf = kzalloc(len, GFP_KERNEL);
	if (!buf)
		return -ENOMEM;

	/* We have to linearise by hand. */

	u8 = buf;

	for (i = 0; i < num_regs; i++) {
		int reg = regs[i].reg;
		int val = regs[i].def;
		trace_regmap_hw_write_start(map->dev, reg, 1);
		map->format.format_reg(u8, reg, map->reg_shift);
		u8 += reg_bytes + pad_bytes;
		map->format.format_val(u8, val, 0);
		u8 += val_bytes;
	}
	u8 = buf;
	*u8 |= map->write_flag_mask;

	ret = map->bus->write(map->bus_context, buf, len);

	kfree(buf);

	for (i = 0; i < num_regs; i++) {
		int reg = regs[i].reg;
		trace_regmap_hw_write_done(map->dev, reg, 1);
	}
	return ret;
}

static unsigned int _regmap_register_page(struct regmap *map,
					  unsigned int reg,
					  struct regmap_range_node *range)
{
	unsigned int win_page = (reg - range->range_min) / range->window_len;

	return win_page;
}

static int _regmap_range_multi_paged_reg_write(struct regmap *map,
					       struct reg_default *regs,
					       size_t num_regs)
{
	int ret;
	int i, n;
	struct reg_default *base;
1811
	unsigned int this_page = 0;
1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846
	/*
	 * the set of registers are not neccessarily in order, but
	 * since the order of write must be preserved this algorithm
	 * chops the set each time the page changes
	 */
	base = regs;
	for (i = 0, n = 0; i < num_regs; i++, n++) {
		unsigned int reg = regs[i].reg;
		struct regmap_range_node *range;

		range = _regmap_range_lookup(map, reg);
		if (range) {
			unsigned int win_page = _regmap_register_page(map, reg,
								      range);

			if (i == 0)
				this_page = win_page;
			if (win_page != this_page) {
				this_page = win_page;
				ret = _regmap_raw_multi_reg_write(map, base, n);
				if (ret != 0)
					return ret;
				base += n;
				n = 0;
			}
			ret = _regmap_select_page(map, &base[n].reg, range, 1);
			if (ret != 0)
				return ret;
		}
	}
	if (n > 0)
		return _regmap_raw_multi_reg_write(map, base, n);
	return 0;
}

1847 1848
static int _regmap_multi_reg_write(struct regmap *map,
				   const struct reg_default *regs,
1849
				   size_t num_regs)
1850
{
1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893
	int i;
	int ret;

	if (!map->can_multi_write) {
		for (i = 0; i < num_regs; i++) {
			ret = _regmap_write(map, regs[i].reg, regs[i].def);
			if (ret != 0)
				return ret;
		}
		return 0;
	}

	if (!map->format.parse_inplace)
		return -EINVAL;

	if (map->writeable_reg)
		for (i = 0; i < num_regs; i++) {
			int reg = regs[i].reg;
			if (!map->writeable_reg(map->dev, reg))
				return -EINVAL;
			if (reg % map->reg_stride)
				return -EINVAL;
		}

	if (!map->cache_bypass) {
		for (i = 0; i < num_regs; i++) {
			unsigned int val = regs[i].def;
			unsigned int reg = regs[i].reg;
			ret = regcache_write(map, reg, val);
			if (ret) {
				dev_err(map->dev,
				"Error in caching of register: %x ret: %d\n",
								reg, ret);
				return ret;
			}
		}
		if (map->cache_only) {
			map->cache_dirty = true;
			return 0;
		}
	}

	WARN_ON(!map->bus);
1894 1895

	for (i = 0; i < num_regs; i++) {
1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908
		unsigned int reg = regs[i].reg;
		struct regmap_range_node *range;
		range = _regmap_range_lookup(map, reg);
		if (range) {
			size_t len = sizeof(struct reg_default)*num_regs;
			struct reg_default *base = kmemdup(regs, len,
							   GFP_KERNEL);
			if (!base)
				return -ENOMEM;
			ret = _regmap_range_multi_paged_reg_write(map, base,
								  num_regs);
			kfree(base);

1909 1910 1911
			return ret;
		}
	}
1912
	return _regmap_raw_multi_reg_write(map, regs, num_regs);
1913 1914
}

1915 1916 1917
/*
 * regmap_multi_reg_write(): Write multiple registers to the device
 *
1918 1919
 * where the set of register,value pairs are supplied in any order,
 * possibly not all in a single range.
1920 1921 1922 1923 1924
 *
 * @map: Register map to write to
 * @regs: Array of structures containing register,value to be written
 * @num_regs: Number of registers to write
 *
1925 1926 1927 1928 1929
 * The 'normal' block write mode will send ultimately send data on the
 * target bus as R,V1,V2,V3,..,Vn where successively higer registers are
 * addressed. However, this alternative block multi write mode will send
 * the data as R1,V1,R2,V2,..,Rn,Vn on the target bus. The target device
 * must of course support the mode.
1930
 *
1931 1932
 * A value of zero will be returned on success, a negative errno will be
 * returned in error cases.
1933
 */
1934 1935
int regmap_multi_reg_write(struct regmap *map, const struct reg_default *regs,
			   int num_regs)
1936
{
1937
	int ret;
1938 1939 1940

	map->lock(map->lock_arg);

1941 1942
	ret = _regmap_multi_reg_write(map, regs, num_regs);

1943 1944 1945 1946 1947 1948
	map->unlock(map->lock_arg);

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_multi_reg_write);

1949 1950 1951 1952
/*
 * regmap_multi_reg_write_bypassed(): Write multiple registers to the
 *                                    device but not the cache
 *
1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965
 * where the set of register are supplied in any order
 *
 * @map: Register map to write to
 * @regs: Array of structures containing register,value to be written
 * @num_regs: Number of registers to write
 *
 * This function is intended to be used for writing a large block of data
 * atomically to the device in single transfer for those I2C client devices
 * that implement this alternative block write mode.
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
1966 1967 1968
int regmap_multi_reg_write_bypassed(struct regmap *map,
				    const struct reg_default *regs,
				    int num_regs)
1969
{
1970 1971
	int ret;
	bool bypass;
1972 1973 1974

	map->lock(map->lock_arg);

1975 1976 1977 1978 1979 1980 1981
	bypass = map->cache_bypass;
	map->cache_bypass = true;

	ret = _regmap_multi_reg_write(map, regs, num_regs);

	map->cache_bypass = bypass;

1982 1983 1984 1985
	map->unlock(map->lock_arg);

	return ret;
}
1986
EXPORT_SYMBOL_GPL(regmap_multi_reg_write_bypassed);
1987

1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021
/**
 * regmap_raw_write_async(): Write raw values to one or more registers
 *                           asynchronously
 *
 * @map: Register map to write to
 * @reg: Initial register to write to
 * @val: Block of data to be written, laid out for direct transmission to the
 *       device.  Must be valid until regmap_async_complete() is called.
 * @val_len: Length of data pointed to by val.
 *
 * This function is intended to be used for things like firmware
 * download where a large block of data needs to be transferred to the
 * device.  No formatting will be done on the data provided.
 *
 * If supported by the underlying bus the write will be scheduled
 * asynchronously, helping maximise I/O speed on higher speed buses
 * like SPI.  regmap_async_complete() can be called to ensure that all
 * asynchrnous writes have been completed.
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_raw_write_async(struct regmap *map, unsigned int reg,
			   const void *val, size_t val_len)
{
	int ret;

	if (val_len % map->format.val_bytes)
		return -EINVAL;
	if (reg % map->reg_stride)
		return -EINVAL;

	map->lock(map->lock_arg);

2022 2023 2024 2025 2026
	map->async = true;

	ret = _regmap_raw_write(map, reg, val, val_len);

	map->async = false;
2027 2028 2029 2030 2031 2032 2033

	map->unlock(map->lock_arg);

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_raw_write_async);

2034 2035 2036
static int _regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
			    unsigned int val_len)
{
2037
	struct regmap_range_node *range;
2038 2039 2040
	u8 *u8 = map->work_buf;
	int ret;

2041
	WARN_ON(!map->bus);
2042

2043 2044 2045 2046
	range = _regmap_range_lookup(map, reg);
	if (range) {
		ret = _regmap_select_page(map, &reg, range,
					  val_len / map->format.val_bytes);
2047
		if (ret != 0)
2048 2049
			return ret;
	}
2050

2051
	map->format.format_reg(map->work_buf, reg, map->reg_shift);
2052 2053

	/*
2054
	 * Some buses or devices flag reads by setting the high bits in the
2055 2056 2057 2058
	 * register addresss; since it's always the high bits for all
	 * current formats we can do this here rather than in
	 * formatting.  This may break if we get interesting formats.
	 */
2059
	u8[0] |= map->read_flag_mask;
2060

M
Mark Brown 已提交
2061 2062 2063
	trace_regmap_hw_read_start(map->dev, reg,
				   val_len / map->format.val_bytes);

2064
	ret = map->bus->read(map->bus_context, map->work_buf,
2065
			     map->format.reg_bytes + map->format.pad_bytes,
M
Mark Brown 已提交
2066
			     val, val_len);
2067

M
Mark Brown 已提交
2068 2069 2070 2071
	trace_regmap_hw_read_done(map->dev, reg,
				  val_len / map->format.val_bytes);

	return ret;
2072 2073
}

2074 2075 2076 2077 2078 2079 2080 2081
static int _regmap_bus_reg_read(void *context, unsigned int reg,
				unsigned int *val)
{
	struct regmap *map = context;

	return map->bus->reg_read(map->bus_context, reg, val);
}

2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097
static int _regmap_bus_read(void *context, unsigned int reg,
			    unsigned int *val)
{
	int ret;
	struct regmap *map = context;

	if (!map->format.parse_val)
		return -EINVAL;

	ret = _regmap_raw_read(map, reg, map->work_buf, map->format.val_bytes);
	if (ret == 0)
		*val = map->format.parse_val(map->work_buf);

	return ret;
}

2098 2099 2100 2101
static int _regmap_read(struct regmap *map, unsigned int reg,
			unsigned int *val)
{
	int ret;
2102 2103
	void *context = _regmap_map_get_context(map);

2104
	WARN_ON(!map->reg_read);
2105

2106 2107 2108 2109 2110 2111 2112 2113 2114
	if (!map->cache_bypass) {
		ret = regcache_read(map, reg, val);
		if (ret == 0)
			return 0;
	}

	if (map->cache_only)
		return -EBUSY;

2115 2116 2117
	if (!regmap_readable(map, reg))
		return -EIO;

2118
	ret = map->reg_read(context, reg, val);
M
Mark Brown 已提交
2119
	if (ret == 0) {
2120
#ifdef LOG_DEVICE
2121
		if (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0)
2122 2123 2124
			dev_info(map->dev, "%x => %x\n", reg, *val);
#endif

M
Mark Brown 已提交
2125
		trace_regmap_reg_read(map->dev, reg, *val);
2126

2127 2128 2129
		if (!map->cache_bypass)
			regcache_write(map, reg, *val);
	}
2130

2131 2132 2133 2134 2135 2136
	return ret;
}

/**
 * regmap_read(): Read a value from a single register
 *
2137
 * @map: Register map to read from
2138 2139 2140 2141 2142 2143 2144 2145 2146 2147
 * @reg: Register to be read from
 * @val: Pointer to store read value
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val)
{
	int ret;

2148 2149 2150
	if (reg % map->reg_stride)
		return -EINVAL;

2151
	map->lock(map->lock_arg);
2152 2153 2154

	ret = _regmap_read(map, reg, val);

2155
	map->unlock(map->lock_arg);
2156 2157 2158 2159 2160 2161 2162 2163

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_read);

/**
 * regmap_raw_read(): Read raw data from the device
 *
2164
 * @map: Register map to read from
2165 2166 2167 2168 2169 2170 2171 2172 2173 2174
 * @reg: First register to be read from
 * @val: Pointer to store read value
 * @val_len: Size of data to read
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
		    size_t val_len)
{
2175 2176 2177 2178
	size_t val_bytes = map->format.val_bytes;
	size_t val_count = val_len / val_bytes;
	unsigned int v;
	int ret, i;
2179

2180 2181
	if (!map->bus)
		return -EINVAL;
2182 2183
	if (val_len % map->format.val_bytes)
		return -EINVAL;
2184 2185
	if (reg % map->reg_stride)
		return -EINVAL;
2186

2187
	map->lock(map->lock_arg);
2188

2189 2190 2191 2192 2193 2194 2195 2196 2197 2198
	if (regmap_volatile_range(map, reg, val_count) || map->cache_bypass ||
	    map->cache_type == REGCACHE_NONE) {
		/* Physical block read if there's no cache involved */
		ret = _regmap_raw_read(map, reg, val, val_len);

	} else {
		/* Otherwise go word by word for the cache; should be low
		 * cost as we expect to hit the cache.
		 */
		for (i = 0; i < val_count; i++) {
2199 2200
			ret = _regmap_read(map, reg + (i * map->reg_stride),
					   &v);
2201 2202 2203
			if (ret != 0)
				goto out;

2204
			map->format.format_val(val + (i * val_bytes), v, 0);
2205 2206
		}
	}
2207

2208
 out:
2209
	map->unlock(map->lock_arg);
2210 2211 2212 2213 2214

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_raw_read);

2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239
/**
 * regmap_field_read(): Read a value to a single register field
 *
 * @field: Register field to read from
 * @val: Pointer to store read value
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_field_read(struct regmap_field *field, unsigned int *val)
{
	int ret;
	unsigned int reg_val;
	ret = regmap_read(field->regmap, field->reg, &reg_val);
	if (ret != 0)
		return ret;

	reg_val &= field->mask;
	reg_val >>= field->shift;
	*val = reg_val;

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_field_read);

2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272
/**
 * regmap_fields_read(): Read a value to a single register field with port ID
 *
 * @field: Register field to read from
 * @id: port ID
 * @val: Pointer to store read value
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_fields_read(struct regmap_field *field, unsigned int id,
		       unsigned int *val)
{
	int ret;
	unsigned int reg_val;

	if (id >= field->id_size)
		return -EINVAL;

	ret = regmap_read(field->regmap,
			  field->reg + (field->id_offset * id),
			  &reg_val);
	if (ret != 0)
		return ret;

	reg_val &= field->mask;
	reg_val >>= field->shift;
	*val = reg_val;

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_fields_read);

2273 2274 2275
/**
 * regmap_bulk_read(): Read multiple registers from the device
 *
2276
 * @map: Register map to read from
2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288
 * @reg: First register to be read from
 * @val: Pointer to store read value, in native register size for device
 * @val_count: Number of registers to read
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_bulk_read(struct regmap *map, unsigned int reg, void *val,
		     size_t val_count)
{
	int ret, i;
	size_t val_bytes = map->format.val_bytes;
2289
	bool vol = regmap_volatile_range(map, reg, val_count);
2290

2291 2292
	if (reg % map->reg_stride)
		return -EINVAL;
2293

2294
	if (map->bus && map->format.parse_inplace && (vol || map->cache_type == REGCACHE_NONE)) {
2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313
		/*
		 * Some devices does not support bulk read, for
		 * them we have a series of single read operations.
		 */
		if (map->use_single_rw) {
			for (i = 0; i < val_count; i++) {
				ret = regmap_raw_read(map,
						reg + (i * map->reg_stride),
						val + (i * val_bytes),
						val_bytes);
				if (ret != 0)
					return ret;
			}
		} else {
			ret = regmap_raw_read(map, reg, val,
					      val_bytes * val_count);
			if (ret != 0)
				return ret;
		}
2314 2315

		for (i = 0; i < val_count * val_bytes; i += val_bytes)
2316
			map->format.parse_inplace(val + i);
2317 2318
	} else {
		for (i = 0; i < val_count; i++) {
2319
			unsigned int ival;
2320
			ret = regmap_read(map, reg + (i * map->reg_stride),
2321
					  &ival);
2322 2323
			if (ret != 0)
				return ret;
2324
			memcpy(val + (i * val_bytes), &ival, val_bytes);
2325 2326
		}
	}
2327 2328 2329 2330 2331

	return 0;
}
EXPORT_SYMBOL_GPL(regmap_bulk_read);

2332 2333 2334
static int _regmap_update_bits(struct regmap *map, unsigned int reg,
			       unsigned int mask, unsigned int val,
			       bool *change)
2335 2336
{
	int ret;
2337
	unsigned int tmp, orig;
2338

2339
	ret = _regmap_read(map, reg, &orig);
2340
	if (ret != 0)
2341
		return ret;
2342

2343
	tmp = orig & ~mask;
2344 2345
	tmp |= val & mask;

2346
	if (tmp != orig) {
2347
		ret = _regmap_write(map, reg, tmp);
2348 2349
		if (change)
			*change = true;
2350
	} else {
2351 2352
		if (change)
			*change = false;
2353
	}
2354 2355 2356

	return ret;
}
2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370

/**
 * regmap_update_bits: Perform a read/modify/write cycle on the register map
 *
 * @map: Register map to update
 * @reg: Register to update
 * @mask: Bitmask to change
 * @val: New value for bitmask
 *
 * Returns zero for success, a negative number on error.
 */
int regmap_update_bits(struct regmap *map, unsigned int reg,
		       unsigned int mask, unsigned int val)
{
2371 2372
	int ret;

2373
	map->lock(map->lock_arg);
2374
	ret = _regmap_update_bits(map, reg, mask, val, NULL);
2375
	map->unlock(map->lock_arg);
2376 2377

	return ret;
2378
}
2379
EXPORT_SYMBOL_GPL(regmap_update_bits);
2380

2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404
/**
 * regmap_update_bits_async: Perform a read/modify/write cycle on the register
 *                           map asynchronously
 *
 * @map: Register map to update
 * @reg: Register to update
 * @mask: Bitmask to change
 * @val: New value for bitmask
 *
 * With most buses the read must be done synchronously so this is most
 * useful for devices with a cache which do not need to interact with
 * the hardware to determine the current register value.
 *
 * Returns zero for success, a negative number on error.
 */
int regmap_update_bits_async(struct regmap *map, unsigned int reg,
			     unsigned int mask, unsigned int val)
{
	int ret;

	map->lock(map->lock_arg);

	map->async = true;

2405
	ret = _regmap_update_bits(map, reg, mask, val, NULL);
2406 2407 2408 2409 2410 2411 2412 2413 2414

	map->async = false;

	map->unlock(map->lock_arg);

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_update_bits_async);

2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430
/**
 * regmap_update_bits_check: Perform a read/modify/write cycle on the
 *                           register map and report if updated
 *
 * @map: Register map to update
 * @reg: Register to update
 * @mask: Bitmask to change
 * @val: New value for bitmask
 * @change: Boolean indicating if a write was done
 *
 * Returns zero for success, a negative number on error.
 */
int regmap_update_bits_check(struct regmap *map, unsigned int reg,
			     unsigned int mask, unsigned int val,
			     bool *change)
{
2431 2432
	int ret;

2433
	map->lock(map->lock_arg);
2434
	ret = _regmap_update_bits(map, reg, mask, val, change);
2435
	map->unlock(map->lock_arg);
2436
	return ret;
2437 2438 2439
}
EXPORT_SYMBOL_GPL(regmap_update_bits_check);

2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476
/**
 * regmap_update_bits_check_async: Perform a read/modify/write cycle on the
 *                                 register map asynchronously and report if
 *                                 updated
 *
 * @map: Register map to update
 * @reg: Register to update
 * @mask: Bitmask to change
 * @val: New value for bitmask
 * @change: Boolean indicating if a write was done
 *
 * With most buses the read must be done synchronously so this is most
 * useful for devices with a cache which do not need to interact with
 * the hardware to determine the current register value.
 *
 * Returns zero for success, a negative number on error.
 */
int regmap_update_bits_check_async(struct regmap *map, unsigned int reg,
				   unsigned int mask, unsigned int val,
				   bool *change)
{
	int ret;

	map->lock(map->lock_arg);

	map->async = true;

	ret = _regmap_update_bits(map, reg, mask, val, change);

	map->async = false;

	map->unlock(map->lock_arg);

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_update_bits_check_async);

2477 2478 2479 2480 2481
void regmap_async_complete_cb(struct regmap_async *async, int ret)
{
	struct regmap *map = async->map;
	bool wake;

2482 2483
	trace_regmap_async_io_complete(map->dev);

2484
	spin_lock(&map->async_lock);
M
Mark Brown 已提交
2485
	list_move(&async->list, &map->async_free);
2486 2487 2488 2489 2490 2491 2492 2493 2494 2495
	wake = list_empty(&map->async_list);

	if (ret != 0)
		map->async_ret = ret;

	spin_unlock(&map->async_lock);

	if (wake)
		wake_up(&map->async_waitq);
}
2496
EXPORT_SYMBOL_GPL(regmap_async_complete_cb);
2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523

static int regmap_async_is_done(struct regmap *map)
{
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&map->async_lock, flags);
	ret = list_empty(&map->async_list);
	spin_unlock_irqrestore(&map->async_lock, flags);

	return ret;
}

/**
 * regmap_async_complete: Ensure all asynchronous I/O has completed.
 *
 * @map: Map to operate on.
 *
 * Blocks until any pending asynchronous I/O has completed.  Returns
 * an error code for any failed I/O operations.
 */
int regmap_async_complete(struct regmap *map)
{
	unsigned long flags;
	int ret;

	/* Nothing to do with no async support */
2524
	if (!map->bus || !map->bus->async_write)
2525 2526
		return 0;

2527 2528
	trace_regmap_async_complete_start(map->dev);

2529 2530 2531 2532 2533 2534 2535
	wait_event(map->async_waitq, regmap_async_is_done(map));

	spin_lock_irqsave(&map->async_lock, flags);
	ret = map->async_ret;
	map->async_ret = 0;
	spin_unlock_irqrestore(&map->async_lock, flags);

2536 2537
	trace_regmap_async_complete_done(map->dev);

2538 2539
	return ret;
}
2540
EXPORT_SYMBOL_GPL(regmap_async_complete);
2541

M
Mark Brown 已提交
2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554
/**
 * regmap_register_patch: Register and apply register updates to be applied
 *                        on device initialistion
 *
 * @map: Register map to apply updates to.
 * @regs: Values to update.
 * @num_regs: Number of entries in regs.
 *
 * Register a set of register updates to be applied to the device
 * whenever the device registers are synchronised with the cache and
 * apply them immediately.  Typically this is used to apply
 * corrections to be applied to the device defaults on startup, such
 * as the updates some vendors provide to undocumented registers.
2555 2556 2557
 *
 * The caller must ensure that this function cannot be called
 * concurrently with either itself or regcache_sync().
M
Mark Brown 已提交
2558 2559 2560 2561
 */
int regmap_register_patch(struct regmap *map, const struct reg_default *regs,
			  int num_regs)
{
2562
	struct reg_default *p;
2563
	int ret;
M
Mark Brown 已提交
2564 2565
	bool bypass;

2566 2567 2568 2569
	if (WARN_ONCE(num_regs <= 0, "invalid registers number (%d)\n",
	    num_regs))
		return 0;

2570 2571 2572 2573 2574 2575 2576
	p = krealloc(map->patch,
		     sizeof(struct reg_default) * (map->patch_regs + num_regs),
		     GFP_KERNEL);
	if (p) {
		memcpy(p + map->patch_regs, regs, num_regs * sizeof(*regs));
		map->patch = p;
		map->patch_regs += num_regs;
M
Mark Brown 已提交
2577
	} else {
2578
		return -ENOMEM;
M
Mark Brown 已提交
2579 2580
	}

2581
	map->lock(map->lock_arg);
M
Mark Brown 已提交
2582 2583 2584 2585

	bypass = map->cache_bypass;

	map->cache_bypass = true;
2586
	map->async = true;
M
Mark Brown 已提交
2587

2588 2589 2590
	ret = _regmap_multi_reg_write(map, regs, num_regs);
	if (ret != 0)
		goto out;
M
Mark Brown 已提交
2591 2592

out:
2593
	map->async = false;
M
Mark Brown 已提交
2594 2595
	map->cache_bypass = bypass;

2596
	map->unlock(map->lock_arg);
M
Mark Brown 已提交
2597

2598 2599
	regmap_async_complete(map);

M
Mark Brown 已提交
2600 2601 2602 2603
	return ret;
}
EXPORT_SYMBOL_GPL(regmap_register_patch);

2604
/*
2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618
 * regmap_get_val_bytes(): Report the size of a register value
 *
 * Report the size of a register value, mainly intended to for use by
 * generic infrastructure built on top of regmap.
 */
int regmap_get_val_bytes(struct regmap *map)
{
	if (map->format.format_write)
		return -EINVAL;

	return map->format.val_bytes;
}
EXPORT_SYMBOL_GPL(regmap_get_val_bytes);

N
Nenghua Cao 已提交
2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630
int regmap_parse_val(struct regmap *map, const void *buf,
			unsigned int *val)
{
	if (!map->format.parse_val)
		return -EINVAL;

	*val = map->format.parse_val(buf);

	return 0;
}
EXPORT_SYMBOL_GPL(regmap_parse_val);

2631 2632 2633 2634 2635 2636 2637
static int __init regmap_initcall(void)
{
	regmap_debugfs_initcall();

	return 0;
}
postcore_initcall(regmap_initcall);