regmap.c 69.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12
/*
 * Register map access API
 *
 * Copyright 2011 Wolfson Microelectronics plc
 *
 * Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

13
#include <linux/device.h>
14
#include <linux/slab.h>
15
#include <linux/export.h>
16 17
#include <linux/mutex.h>
#include <linux/err.h>
18
#include <linux/of.h>
19
#include <linux/rbtree.h>
20
#include <linux/sched.h>
21
#include <linux/delay.h>
22

M
Mark Brown 已提交
23
#define CREATE_TRACE_POINTS
24
#include "trace.h"
M
Mark Brown 已提交
25

26
#include "internal.h"
27

28 29 30 31 32 33 34 35 36 37
/*
 * Sometimes for failures during very early init the trace
 * infrastructure isn't available early enough to be used.  For this
 * sort of problem defining LOG_DEVICE will add printks for basic
 * register I/O on a specific device.
 */
#undef LOG_DEVICE

static int _regmap_update_bits(struct regmap *map, unsigned int reg,
			       unsigned int mask, unsigned int val,
38
			       bool *change, bool force_write);
39

40 41
static int _regmap_bus_reg_read(void *context, unsigned int reg,
				unsigned int *val);
42 43
static int _regmap_bus_read(void *context, unsigned int reg,
			    unsigned int *val);
44 45
static int _regmap_bus_formatted_write(void *context, unsigned int reg,
				       unsigned int val);
46 47
static int _regmap_bus_reg_write(void *context, unsigned int reg,
				 unsigned int val);
48 49
static int _regmap_bus_raw_write(void *context, unsigned int reg,
				 unsigned int val);
50

51 52 53 54 55 56 57 58 59 60 61 62 63 64
bool regmap_reg_in_ranges(unsigned int reg,
			  const struct regmap_range *ranges,
			  unsigned int nranges)
{
	const struct regmap_range *r;
	int i;

	for (i = 0, r = ranges; i < nranges; i++, r++)
		if (regmap_reg_in_range(reg, r))
			return true;
	return false;
}
EXPORT_SYMBOL_GPL(regmap_reg_in_ranges);

65 66
bool regmap_check_range_table(struct regmap *map, unsigned int reg,
			      const struct regmap_access_table *table)
67 68 69 70 71 72 73 74 75 76 77 78
{
	/* Check "no ranges" first */
	if (regmap_reg_in_ranges(reg, table->no_ranges, table->n_no_ranges))
		return false;

	/* In case zero "yes ranges" are supplied, any reg is OK */
	if (!table->n_yes_ranges)
		return true;

	return regmap_reg_in_ranges(reg, table->yes_ranges,
				    table->n_yes_ranges);
}
79
EXPORT_SYMBOL_GPL(regmap_check_range_table);
80

81 82 83 84 85 86 87 88
bool regmap_writeable(struct regmap *map, unsigned int reg)
{
	if (map->max_register && reg > map->max_register)
		return false;

	if (map->writeable_reg)
		return map->writeable_reg(map->dev, reg);

89
	if (map->wr_table)
90
		return regmap_check_range_table(map, reg, map->wr_table);
91

92 93 94 95 96
	return true;
}

bool regmap_readable(struct regmap *map, unsigned int reg)
{
97 98 99
	if (!map->reg_read)
		return false;

100 101 102
	if (map->max_register && reg > map->max_register)
		return false;

103 104 105
	if (map->format.format_write)
		return false;

106 107 108
	if (map->readable_reg)
		return map->readable_reg(map->dev, reg);

109
	if (map->rd_table)
110
		return regmap_check_range_table(map, reg, map->rd_table);
111

112 113 114 115 116
	return true;
}

bool regmap_volatile(struct regmap *map, unsigned int reg)
{
117
	if (!map->format.format_write && !regmap_readable(map, reg))
118 119 120 121 122
		return false;

	if (map->volatile_reg)
		return map->volatile_reg(map->dev, reg);

123
	if (map->volatile_table)
124
		return regmap_check_range_table(map, reg, map->volatile_table);
125

126 127 128 129
	if (map->cache_ops)
		return false;
	else
		return true;
130 131 132 133
}

bool regmap_precious(struct regmap *map, unsigned int reg)
{
134
	if (!regmap_readable(map, reg))
135 136 137 138 139
		return false;

	if (map->precious_reg)
		return map->precious_reg(map->dev, reg);

140
	if (map->precious_table)
141
		return regmap_check_range_table(map, reg, map->precious_table);
142

143 144 145
	return false;
}

146
static bool regmap_volatile_range(struct regmap *map, unsigned int reg,
P
Paul Bolle 已提交
147
	size_t num)
148 149 150 151 152 153 154 155 156 157
{
	unsigned int i;

	for (i = 0; i < num; i++)
		if (!regmap_volatile(map, reg + i))
			return false;

	return true;
}

158 159 160 161 162 163 164 165
static void regmap_format_2_6_write(struct regmap *map,
				     unsigned int reg, unsigned int val)
{
	u8 *out = map->work_buf;

	*out = (reg << 6) | val;
}

166 167 168 169 170 171 172 173 174 175 176 177 178 179
static void regmap_format_4_12_write(struct regmap *map,
				     unsigned int reg, unsigned int val)
{
	__be16 *out = map->work_buf;
	*out = cpu_to_be16((reg << 12) | val);
}

static void regmap_format_7_9_write(struct regmap *map,
				    unsigned int reg, unsigned int val)
{
	__be16 *out = map->work_buf;
	*out = cpu_to_be16((reg << 9) | val);
}

180 181 182 183 184 185 186 187 188 189
static void regmap_format_10_14_write(struct regmap *map,
				    unsigned int reg, unsigned int val)
{
	u8 *out = map->work_buf;

	out[2] = val;
	out[1] = (val >> 8) | (reg << 6);
	out[0] = reg >> 2;
}

190
static void regmap_format_8(void *buf, unsigned int val, unsigned int shift)
191 192 193
{
	u8 *b = buf;

194
	b[0] = val << shift;
195 196
}

197
static void regmap_format_16_be(void *buf, unsigned int val, unsigned int shift)
198 199 200
{
	__be16 *b = buf;

201
	b[0] = cpu_to_be16(val << shift);
202 203
}

204 205 206 207 208 209 210
static void regmap_format_16_le(void *buf, unsigned int val, unsigned int shift)
{
	__le16 *b = buf;

	b[0] = cpu_to_le16(val << shift);
}

211 212 213 214 215 216
static void regmap_format_16_native(void *buf, unsigned int val,
				    unsigned int shift)
{
	*(u16 *)buf = val << shift;
}

217
static void regmap_format_24(void *buf, unsigned int val, unsigned int shift)
218 219 220
{
	u8 *b = buf;

221 222
	val <<= shift;

223 224 225 226 227
	b[0] = val >> 16;
	b[1] = val >> 8;
	b[2] = val;
}

228
static void regmap_format_32_be(void *buf, unsigned int val, unsigned int shift)
229 230 231
{
	__be32 *b = buf;

232
	b[0] = cpu_to_be32(val << shift);
233 234
}

235 236 237 238 239 240 241
static void regmap_format_32_le(void *buf, unsigned int val, unsigned int shift)
{
	__le32 *b = buf;

	b[0] = cpu_to_le32(val << shift);
}

242 243 244 245 246 247
static void regmap_format_32_native(void *buf, unsigned int val,
				    unsigned int shift)
{
	*(u32 *)buf = val << shift;
}

248
static void regmap_parse_inplace_noop(void *buf)
249
{
250 251 252 253 254
}

static unsigned int regmap_parse_8(const void *buf)
{
	const u8 *b = buf;
255 256 257 258

	return b[0];
}

259 260 261 262 263 264 265
static unsigned int regmap_parse_16_be(const void *buf)
{
	const __be16 *b = buf;

	return be16_to_cpu(b[0]);
}

266 267 268 269 270 271 272
static unsigned int regmap_parse_16_le(const void *buf)
{
	const __le16 *b = buf;

	return le16_to_cpu(b[0]);
}

273
static void regmap_parse_16_be_inplace(void *buf)
274 275 276 277 278 279
{
	__be16 *b = buf;

	b[0] = be16_to_cpu(b[0]);
}

280 281 282 283 284 285 286
static void regmap_parse_16_le_inplace(void *buf)
{
	__le16 *b = buf;

	b[0] = le16_to_cpu(b[0]);
}

287
static unsigned int regmap_parse_16_native(const void *buf)
288 289 290 291
{
	return *(u16 *)buf;
}

292
static unsigned int regmap_parse_24(const void *buf)
293
{
294
	const u8 *b = buf;
295 296 297 298 299 300 301
	unsigned int ret = b[2];
	ret |= ((unsigned int)b[1]) << 8;
	ret |= ((unsigned int)b[0]) << 16;

	return ret;
}

302 303 304 305 306 307 308
static unsigned int regmap_parse_32_be(const void *buf)
{
	const __be32 *b = buf;

	return be32_to_cpu(b[0]);
}

309 310 311 312 313 314 315
static unsigned int regmap_parse_32_le(const void *buf)
{
	const __le32 *b = buf;

	return le32_to_cpu(b[0]);
}

316
static void regmap_parse_32_be_inplace(void *buf)
317 318 319 320 321 322
{
	__be32 *b = buf;

	b[0] = be32_to_cpu(b[0]);
}

323 324 325 326 327 328 329
static void regmap_parse_32_le_inplace(void *buf)
{
	__le32 *b = buf;

	b[0] = le32_to_cpu(b[0]);
}

330
static unsigned int regmap_parse_32_native(const void *buf)
331 332 333 334
{
	return *(u32 *)buf;
}

335
static void regmap_lock_mutex(void *__map)
336
{
337
	struct regmap *map = __map;
338 339 340
	mutex_lock(&map->mutex);
}

341
static void regmap_unlock_mutex(void *__map)
342
{
343
	struct regmap *map = __map;
344 345 346
	mutex_unlock(&map->mutex);
}

347
static void regmap_lock_spinlock(void *__map)
348
__acquires(&map->spinlock)
349
{
350
	struct regmap *map = __map;
351 352 353 354
	unsigned long flags;

	spin_lock_irqsave(&map->spinlock, flags);
	map->spinlock_flags = flags;
355 356
}

357
static void regmap_unlock_spinlock(void *__map)
358
__releases(&map->spinlock)
359
{
360
	struct regmap *map = __map;
361
	spin_unlock_irqrestore(&map->spinlock, map->spinlock_flags);
362 363
}

M
Mark Brown 已提交
364 365 366 367 368 369 370 371 372
static void dev_get_regmap_release(struct device *dev, void *res)
{
	/*
	 * We don't actually have anything to do here; the goal here
	 * is not to manage the regmap but to provide a simple way to
	 * get the regmap back given a struct device.
	 */
}

373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433
static bool _regmap_range_add(struct regmap *map,
			      struct regmap_range_node *data)
{
	struct rb_root *root = &map->range_tree;
	struct rb_node **new = &(root->rb_node), *parent = NULL;

	while (*new) {
		struct regmap_range_node *this =
			container_of(*new, struct regmap_range_node, node);

		parent = *new;
		if (data->range_max < this->range_min)
			new = &((*new)->rb_left);
		else if (data->range_min > this->range_max)
			new = &((*new)->rb_right);
		else
			return false;
	}

	rb_link_node(&data->node, parent, new);
	rb_insert_color(&data->node, root);

	return true;
}

static struct regmap_range_node *_regmap_range_lookup(struct regmap *map,
						      unsigned int reg)
{
	struct rb_node *node = map->range_tree.rb_node;

	while (node) {
		struct regmap_range_node *this =
			container_of(node, struct regmap_range_node, node);

		if (reg < this->range_min)
			node = node->rb_left;
		else if (reg > this->range_max)
			node = node->rb_right;
		else
			return this;
	}

	return NULL;
}

static void regmap_range_exit(struct regmap *map)
{
	struct rb_node *next;
	struct regmap_range_node *range_node;

	next = rb_first(&map->range_tree);
	while (next) {
		range_node = rb_entry(next, struct regmap_range_node, node);
		next = rb_next(&range_node->node);
		rb_erase(&range_node->node, &map->range_tree);
		kfree(range_node);
	}

	kfree(map->selector_work_buf);
}

434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455
int regmap_attach_dev(struct device *dev, struct regmap *map,
		      const struct regmap_config *config)
{
	struct regmap **m;

	map->dev = dev;

	regmap_debugfs_init(map, config->name);

	/* Add a devres resource for dev_get_regmap() */
	m = devres_alloc(dev_get_regmap_release, sizeof(*m), GFP_KERNEL);
	if (!m) {
		regmap_debugfs_exit(map);
		return -ENOMEM;
	}
	*m = map;
	devres_add(dev, m);

	return 0;
}
EXPORT_SYMBOL_GPL(regmap_attach_dev);

456 457 458 459 460 461 462 463 464 465 466 467 468 469 470
static enum regmap_endian regmap_get_reg_endian(const struct regmap_bus *bus,
					const struct regmap_config *config)
{
	enum regmap_endian endian;

	/* Retrieve the endianness specification from the regmap config */
	endian = config->reg_format_endian;

	/* If the regmap config specified a non-default value, use that */
	if (endian != REGMAP_ENDIAN_DEFAULT)
		return endian;

	/* Retrieve the endianness specification from the bus config */
	if (bus && bus->reg_format_endian_default)
		endian = bus->reg_format_endian_default;
471

472 473 474 475 476 477 478 479
	/* If the bus specified a non-default value, use that */
	if (endian != REGMAP_ENDIAN_DEFAULT)
		return endian;

	/* Use this if no other value was found */
	return REGMAP_ENDIAN_BIG;
}

480 481 482
enum regmap_endian regmap_get_val_endian(struct device *dev,
					 const struct regmap_bus *bus,
					 const struct regmap_config *config)
483
{
484
	struct device_node *np;
485
	enum regmap_endian endian;
486

487
	/* Retrieve the endianness specification from the regmap config */
488
	endian = config->val_format_endian;
489

490
	/* If the regmap config specified a non-default value, use that */
491 492
	if (endian != REGMAP_ENDIAN_DEFAULT)
		return endian;
493

494 495 496
	/* If the dev and dev->of_node exist try to get endianness from DT */
	if (dev && dev->of_node) {
		np = dev->of_node;
497

498 499 500 501 502 503 504 505 506 507
		/* Parse the device's DT node for an endianness specification */
		if (of_property_read_bool(np, "big-endian"))
			endian = REGMAP_ENDIAN_BIG;
		else if (of_property_read_bool(np, "little-endian"))
			endian = REGMAP_ENDIAN_LITTLE;

		/* If the endianness was specified in DT, use that */
		if (endian != REGMAP_ENDIAN_DEFAULT)
			return endian;
	}
508 509

	/* Retrieve the endianness specification from the bus config */
510 511
	if (bus && bus->val_format_endian_default)
		endian = bus->val_format_endian_default;
512

513
	/* If the bus specified a non-default value, use that */
514 515
	if (endian != REGMAP_ENDIAN_DEFAULT)
		return endian;
516 517

	/* Use this if no other value was found */
518
	return REGMAP_ENDIAN_BIG;
519
}
520
EXPORT_SYMBOL_GPL(regmap_get_val_endian);
521

522 523 524 525 526 527
struct regmap *__regmap_init(struct device *dev,
			     const struct regmap_bus *bus,
			     void *bus_context,
			     const struct regmap_config *config,
			     struct lock_class_key *lock_key,
			     const char *lock_name)
528
{
529
	struct regmap *map;
530
	int ret = -EINVAL;
531
	enum regmap_endian reg_endian, val_endian;
532
	int i, j;
533

534
	if (!config)
535
		goto err;
536 537 538 539 540 541 542

	map = kzalloc(sizeof(*map), GFP_KERNEL);
	if (map == NULL) {
		ret = -ENOMEM;
		goto err;
	}

543 544 545 546
	if (config->lock && config->unlock) {
		map->lock = config->lock;
		map->unlock = config->unlock;
		map->lock_arg = config->lock_arg;
547
	} else {
548 549
		if ((bus && bus->fast_io) ||
		    config->fast_io) {
550 551 552
			spin_lock_init(&map->spinlock);
			map->lock = regmap_lock_spinlock;
			map->unlock = regmap_unlock_spinlock;
553 554
			lockdep_set_class_and_name(&map->spinlock,
						   lock_key, lock_name);
555 556 557 558
		} else {
			mutex_init(&map->mutex);
			map->lock = regmap_lock_mutex;
			map->unlock = regmap_unlock_mutex;
559 560
			lockdep_set_class_and_name(&map->mutex,
						   lock_key, lock_name);
561 562
		}
		map->lock_arg = map;
563
	}
564 565 566 567 568 569 570 571 572 573

	/*
	 * When we write in fast-paths with regmap_bulk_write() don't allocate
	 * scratch buffers with sleeping allocations.
	 */
	if ((bus && bus->fast_io) || config->fast_io)
		map->alloc_flags = GFP_ATOMIC;
	else
		map->alloc_flags = GFP_KERNEL;

574
	map->format.reg_bytes = DIV_ROUND_UP(config->reg_bits, 8);
575
	map->format.pad_bytes = config->pad_bits / 8;
576
	map->format.val_bytes = DIV_ROUND_UP(config->val_bits, 8);
577 578
	map->format.buf_size = DIV_ROUND_UP(config->reg_bits +
			config->val_bits + config->pad_bits, 8);
579
	map->reg_shift = config->pad_bits % 8;
580 581 582 583
	if (config->reg_stride)
		map->reg_stride = config->reg_stride;
	else
		map->reg_stride = 1;
584 585
	map->use_single_read = config->use_single_rw || !bus || !bus->read;
	map->use_single_write = config->use_single_rw || !bus || !bus->write;
586
	map->can_multi_write = config->can_multi_write && bus && bus->write;
587 588 589 590
	if (bus) {
		map->max_raw_read = bus->max_raw_read;
		map->max_raw_write = bus->max_raw_write;
	}
591 592
	map->dev = dev;
	map->bus = bus;
593
	map->bus_context = bus_context;
594
	map->max_register = config->max_register;
595 596 597 598
	map->wr_table = config->wr_table;
	map->rd_table = config->rd_table;
	map->volatile_table = config->volatile_table;
	map->precious_table = config->precious_table;
599 600 601
	map->writeable_reg = config->writeable_reg;
	map->readable_reg = config->readable_reg;
	map->volatile_reg = config->volatile_reg;
602
	map->precious_reg = config->precious_reg;
603
	map->cache_type = config->cache_type;
M
Mark Brown 已提交
604
	map->name = config->name;
605

606 607
	spin_lock_init(&map->async_lock);
	INIT_LIST_HEAD(&map->async_list);
M
Mark Brown 已提交
608
	INIT_LIST_HEAD(&map->async_free);
609 610
	init_waitqueue_head(&map->async_waitq);

611 612 613
	if (config->read_flag_mask || config->write_flag_mask) {
		map->read_flag_mask = config->read_flag_mask;
		map->write_flag_mask = config->write_flag_mask;
614
	} else if (bus) {
615 616 617
		map->read_flag_mask = bus->read_flag_mask;
	}

618 619 620 621
	if (!bus) {
		map->reg_read  = config->reg_read;
		map->reg_write = config->reg_write;

622 623 624 625 626 627
		map->defer_caching = false;
		goto skip_format_initialization;
	} else if (!bus->read || !bus->write) {
		map->reg_read = _regmap_bus_reg_read;
		map->reg_write = _regmap_bus_reg_write;

628 629 630 631
		map->defer_caching = false;
		goto skip_format_initialization;
	} else {
		map->reg_read  = _regmap_bus_read;
632
		map->reg_update_bits = bus->reg_update_bits;
633
	}
634

635 636
	reg_endian = regmap_get_reg_endian(bus, config);
	val_endian = regmap_get_val_endian(dev, bus, config);
637

638
	switch (config->reg_bits + map->reg_shift) {
639 640 641 642 643 644 645 646 647 648
	case 2:
		switch (config->val_bits) {
		case 6:
			map->format.format_write = regmap_format_2_6_write;
			break;
		default:
			goto err_map;
		}
		break;

649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668
	case 4:
		switch (config->val_bits) {
		case 12:
			map->format.format_write = regmap_format_4_12_write;
			break;
		default:
			goto err_map;
		}
		break;

	case 7:
		switch (config->val_bits) {
		case 9:
			map->format.format_write = regmap_format_7_9_write;
			break;
		default:
			goto err_map;
		}
		break;

669 670 671 672 673 674 675 676 677 678
	case 10:
		switch (config->val_bits) {
		case 14:
			map->format.format_write = regmap_format_10_14_write;
			break;
		default:
			goto err_map;
		}
		break;

679 680 681 682 683
	case 8:
		map->format.format_reg = regmap_format_8;
		break;

	case 16:
684 685 686 687 688 689 690 691 692 693
		switch (reg_endian) {
		case REGMAP_ENDIAN_BIG:
			map->format.format_reg = regmap_format_16_be;
			break;
		case REGMAP_ENDIAN_NATIVE:
			map->format.format_reg = regmap_format_16_native;
			break;
		default:
			goto err_map;
		}
694 695
		break;

696 697 698 699 700 701
	case 24:
		if (reg_endian != REGMAP_ENDIAN_BIG)
			goto err_map;
		map->format.format_reg = regmap_format_24;
		break;

702
	case 32:
703 704 705 706 707 708 709 710 711 712
		switch (reg_endian) {
		case REGMAP_ENDIAN_BIG:
			map->format.format_reg = regmap_format_32_be;
			break;
		case REGMAP_ENDIAN_NATIVE:
			map->format.format_reg = regmap_format_32_native;
			break;
		default:
			goto err_map;
		}
713 714
		break;

715 716 717 718
	default:
		goto err_map;
	}

719 720 721
	if (val_endian == REGMAP_ENDIAN_NATIVE)
		map->format.parse_inplace = regmap_parse_inplace_noop;

722 723 724 725
	switch (config->val_bits) {
	case 8:
		map->format.format_val = regmap_format_8;
		map->format.parse_val = regmap_parse_8;
726
		map->format.parse_inplace = regmap_parse_inplace_noop;
727 728
		break;
	case 16:
729 730 731 732
		switch (val_endian) {
		case REGMAP_ENDIAN_BIG:
			map->format.format_val = regmap_format_16_be;
			map->format.parse_val = regmap_parse_16_be;
733
			map->format.parse_inplace = regmap_parse_16_be_inplace;
734
			break;
735 736 737 738 739
		case REGMAP_ENDIAN_LITTLE:
			map->format.format_val = regmap_format_16_le;
			map->format.parse_val = regmap_parse_16_le;
			map->format.parse_inplace = regmap_parse_16_le_inplace;
			break;
740 741 742 743 744 745 746
		case REGMAP_ENDIAN_NATIVE:
			map->format.format_val = regmap_format_16_native;
			map->format.parse_val = regmap_parse_16_native;
			break;
		default:
			goto err_map;
		}
747
		break;
748
	case 24:
749 750
		if (val_endian != REGMAP_ENDIAN_BIG)
			goto err_map;
751 752 753
		map->format.format_val = regmap_format_24;
		map->format.parse_val = regmap_parse_24;
		break;
754
	case 32:
755 756 757 758
		switch (val_endian) {
		case REGMAP_ENDIAN_BIG:
			map->format.format_val = regmap_format_32_be;
			map->format.parse_val = regmap_parse_32_be;
759
			map->format.parse_inplace = regmap_parse_32_be_inplace;
760
			break;
761 762 763 764 765
		case REGMAP_ENDIAN_LITTLE:
			map->format.format_val = regmap_format_32_le;
			map->format.parse_val = regmap_parse_32_le;
			map->format.parse_inplace = regmap_parse_32_le_inplace;
			break;
766 767 768 769 770 771 772
		case REGMAP_ENDIAN_NATIVE:
			map->format.format_val = regmap_format_32_native;
			map->format.parse_val = regmap_parse_32_native;
			break;
		default:
			goto err_map;
		}
773
		break;
774 775
	}

776 777 778 779
	if (map->format.format_write) {
		if ((reg_endian != REGMAP_ENDIAN_BIG) ||
		    (val_endian != REGMAP_ENDIAN_BIG))
			goto err_map;
780
		map->use_single_write = true;
781
	}
782

783 784 785 786
	if (!map->format.format_write &&
	    !(map->format.format_reg && map->format.format_val))
		goto err_map;

787
	map->work_buf = kzalloc(map->format.buf_size, GFP_KERNEL);
788 789
	if (map->work_buf == NULL) {
		ret = -ENOMEM;
790
		goto err_map;
791 792
	}

793 794
	if (map->format.format_write) {
		map->defer_caching = false;
795
		map->reg_write = _regmap_bus_formatted_write;
796 797
	} else if (map->format.format_val) {
		map->defer_caching = true;
798
		map->reg_write = _regmap_bus_raw_write;
799 800 801
	}

skip_format_initialization:
802

803
	map->range_tree = RB_ROOT;
M
Mark Brown 已提交
804
	for (i = 0; i < config->num_ranges; i++) {
805 806 807 808
		const struct regmap_range_cfg *range_cfg = &config->ranges[i];
		struct regmap_range_node *new;

		/* Sanity check */
809 810 811
		if (range_cfg->range_max < range_cfg->range_min) {
			dev_err(map->dev, "Invalid range %d: %d < %d\n", i,
				range_cfg->range_max, range_cfg->range_min);
812
			goto err_range;
813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831
		}

		if (range_cfg->range_max > map->max_register) {
			dev_err(map->dev, "Invalid range %d: %d > %d\n", i,
				range_cfg->range_max, map->max_register);
			goto err_range;
		}

		if (range_cfg->selector_reg > map->max_register) {
			dev_err(map->dev,
				"Invalid range %d: selector out of map\n", i);
			goto err_range;
		}

		if (range_cfg->window_len == 0) {
			dev_err(map->dev, "Invalid range %d: window_len 0\n",
				i);
			goto err_range;
		}
832 833 834

		/* Make sure, that this register range has no selector
		   or data window within its boundary */
M
Mark Brown 已提交
835
		for (j = 0; j < config->num_ranges; j++) {
836 837 838 839 840
			unsigned sel_reg = config->ranges[j].selector_reg;
			unsigned win_min = config->ranges[j].window_start;
			unsigned win_max = win_min +
					   config->ranges[j].window_len - 1;

841 842 843 844
			/* Allow data window inside its own virtual range */
			if (j == i)
				continue;

845 846
			if (range_cfg->range_min <= sel_reg &&
			    sel_reg <= range_cfg->range_max) {
847 848 849
				dev_err(map->dev,
					"Range %d: selector for %d in window\n",
					i, j);
850 851 852 853 854
				goto err_range;
			}

			if (!(win_max < range_cfg->range_min ||
			      win_min > range_cfg->range_max)) {
855 856 857
				dev_err(map->dev,
					"Range %d: window for %d in window\n",
					i, j);
858 859 860 861 862 863 864 865 866 867
				goto err_range;
			}
		}

		new = kzalloc(sizeof(*new), GFP_KERNEL);
		if (new == NULL) {
			ret = -ENOMEM;
			goto err_range;
		}

868
		new->map = map;
M
Mark Brown 已提交
869
		new->name = range_cfg->name;
870 871 872 873 874 875 876 877
		new->range_min = range_cfg->range_min;
		new->range_max = range_cfg->range_max;
		new->selector_reg = range_cfg->selector_reg;
		new->selector_mask = range_cfg->selector_mask;
		new->selector_shift = range_cfg->selector_shift;
		new->window_start = range_cfg->window_start;
		new->window_len = range_cfg->window_len;

N
Nenghua Cao 已提交
878
		if (!_regmap_range_add(map, new)) {
879
			dev_err(map->dev, "Failed to add range %d\n", i);
880 881 882 883 884 885 886 887 888 889 890 891 892
			kfree(new);
			goto err_range;
		}

		if (map->selector_work_buf == NULL) {
			map->selector_work_buf =
				kzalloc(map->format.buf_size, GFP_KERNEL);
			if (map->selector_work_buf == NULL) {
				ret = -ENOMEM;
				goto err_range;
			}
		}
	}
893

894
	ret = regcache_init(map, config);
895
	if (ret != 0)
896 897
		goto err_range;

898
	if (dev) {
899 900 901
		ret = regmap_attach_dev(dev, map, config);
		if (ret != 0)
			goto err_regcache;
902
	}
M
Mark Brown 已提交
903

904 905
	return map;

906
err_regcache:
M
Mark Brown 已提交
907
	regcache_exit(map);
908 909
err_range:
	regmap_range_exit(map);
910
	kfree(map->work_buf);
911 912 913 914 915
err_map:
	kfree(map);
err:
	return ERR_PTR(ret);
}
916
EXPORT_SYMBOL_GPL(__regmap_init);
917

918 919 920 921 922
static void devm_regmap_release(struct device *dev, void *res)
{
	regmap_exit(*(struct regmap **)res);
}

923 924 925 926 927 928
struct regmap *__devm_regmap_init(struct device *dev,
				  const struct regmap_bus *bus,
				  void *bus_context,
				  const struct regmap_config *config,
				  struct lock_class_key *lock_key,
				  const char *lock_name)
929 930 931 932 933 934 935
{
	struct regmap **ptr, *regmap;

	ptr = devres_alloc(devm_regmap_release, sizeof(*ptr), GFP_KERNEL);
	if (!ptr)
		return ERR_PTR(-ENOMEM);

936 937
	regmap = __regmap_init(dev, bus, bus_context, config,
			       lock_key, lock_name);
938 939 940 941 942 943 944 945 946
	if (!IS_ERR(regmap)) {
		*ptr = regmap;
		devres_add(dev, ptr);
	} else {
		devres_free(ptr);
	}

	return regmap;
}
947
EXPORT_SYMBOL_GPL(__devm_regmap_init);
948

949 950 951 952 953 954
static void regmap_field_init(struct regmap_field *rm_field,
	struct regmap *regmap, struct reg_field reg_field)
{
	rm_field->regmap = regmap;
	rm_field->reg = reg_field.reg;
	rm_field->shift = reg_field.lsb;
955
	rm_field->mask = GENMASK(reg_field.msb, reg_field.lsb);
956 957
	rm_field->id_size = reg_field.id_size;
	rm_field->id_offset = reg_field.id_offset;
958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038
}

/**
 * devm_regmap_field_alloc(): Allocate and initialise a register field
 * in a register map.
 *
 * @dev: Device that will be interacted with
 * @regmap: regmap bank in which this register field is located.
 * @reg_field: Register field with in the bank.
 *
 * The return value will be an ERR_PTR() on error or a valid pointer
 * to a struct regmap_field. The regmap_field will be automatically freed
 * by the device management code.
 */
struct regmap_field *devm_regmap_field_alloc(struct device *dev,
		struct regmap *regmap, struct reg_field reg_field)
{
	struct regmap_field *rm_field = devm_kzalloc(dev,
					sizeof(*rm_field), GFP_KERNEL);
	if (!rm_field)
		return ERR_PTR(-ENOMEM);

	regmap_field_init(rm_field, regmap, reg_field);

	return rm_field;

}
EXPORT_SYMBOL_GPL(devm_regmap_field_alloc);

/**
 * devm_regmap_field_free(): Free register field allocated using
 * devm_regmap_field_alloc. Usally drivers need not call this function,
 * as the memory allocated via devm will be freed as per device-driver
 * life-cyle.
 *
 * @dev: Device that will be interacted with
 * @field: regmap field which should be freed.
 */
void devm_regmap_field_free(struct device *dev,
	struct regmap_field *field)
{
	devm_kfree(dev, field);
}
EXPORT_SYMBOL_GPL(devm_regmap_field_free);

/**
 * regmap_field_alloc(): Allocate and initialise a register field
 * in a register map.
 *
 * @regmap: regmap bank in which this register field is located.
 * @reg_field: Register field with in the bank.
 *
 * The return value will be an ERR_PTR() on error or a valid pointer
 * to a struct regmap_field. The regmap_field should be freed by the
 * user once its finished working with it using regmap_field_free().
 */
struct regmap_field *regmap_field_alloc(struct regmap *regmap,
		struct reg_field reg_field)
{
	struct regmap_field *rm_field = kzalloc(sizeof(*rm_field), GFP_KERNEL);

	if (!rm_field)
		return ERR_PTR(-ENOMEM);

	regmap_field_init(rm_field, regmap, reg_field);

	return rm_field;
}
EXPORT_SYMBOL_GPL(regmap_field_alloc);

/**
 * regmap_field_free(): Free register field allocated using regmap_field_alloc
 *
 * @field: regmap field which should be freed.
 */
void regmap_field_free(struct regmap_field *field)
{
	kfree(field);
}
EXPORT_SYMBOL_GPL(regmap_field_free);

1039 1040 1041 1042 1043 1044 1045 1046 1047 1048
/**
 * regmap_reinit_cache(): Reinitialise the current register cache
 *
 * @map: Register map to operate on.
 * @config: New configuration.  Only the cache data will be used.
 *
 * Discard any existing register cache for the map and initialize a
 * new cache.  This can be used to restore the cache to defaults or to
 * update the cache configuration to reflect runtime discovery of the
 * hardware.
1049 1050 1051
 *
 * No explicit locking is done here, the user needs to ensure that
 * this function will not race with other calls to regmap.
1052 1053 1054 1055
 */
int regmap_reinit_cache(struct regmap *map, const struct regmap_config *config)
{
	regcache_exit(map);
1056
	regmap_debugfs_exit(map);
1057 1058 1059 1060 1061 1062 1063 1064

	map->max_register = config->max_register;
	map->writeable_reg = config->writeable_reg;
	map->readable_reg = config->readable_reg;
	map->volatile_reg = config->volatile_reg;
	map->precious_reg = config->precious_reg;
	map->cache_type = config->cache_type;

1065
	regmap_debugfs_init(map, config->name);
1066

1067 1068 1069
	map->cache_bypass = false;
	map->cache_only = false;

1070
	return regcache_init(map, config);
1071
}
1072
EXPORT_SYMBOL_GPL(regmap_reinit_cache);
1073

1074 1075 1076 1077 1078
/**
 * regmap_exit(): Free a previously allocated register map
 */
void regmap_exit(struct regmap *map)
{
M
Mark Brown 已提交
1079 1080
	struct regmap_async *async;

1081
	regcache_exit(map);
1082
	regmap_debugfs_exit(map);
1083
	regmap_range_exit(map);
1084
	if (map->bus && map->bus->free_context)
1085
		map->bus->free_context(map->bus_context);
1086
	kfree(map->work_buf);
M
Mark Brown 已提交
1087 1088 1089 1090 1091 1092 1093 1094
	while (!list_empty(&map->async_free)) {
		async = list_first_entry_or_null(&map->async_free,
						 struct regmap_async,
						 list);
		list_del(&async->list);
		kfree(async->work_buf);
		kfree(async);
	}
1095 1096 1097 1098
	kfree(map);
}
EXPORT_SYMBOL_GPL(regmap_exit);

M
Mark Brown 已提交
1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136
static int dev_get_regmap_match(struct device *dev, void *res, void *data)
{
	struct regmap **r = res;
	if (!r || !*r) {
		WARN_ON(!r || !*r);
		return 0;
	}

	/* If the user didn't specify a name match any */
	if (data)
		return (*r)->name == data;
	else
		return 1;
}

/**
 * dev_get_regmap(): Obtain the regmap (if any) for a device
 *
 * @dev: Device to retrieve the map for
 * @name: Optional name for the register map, usually NULL.
 *
 * Returns the regmap for the device if one is present, or NULL.  If
 * name is specified then it must match the name specified when
 * registering the device, if it is NULL then the first regmap found
 * will be used.  Devices with multiple register maps are very rare,
 * generic code should normally not need to specify a name.
 */
struct regmap *dev_get_regmap(struct device *dev, const char *name)
{
	struct regmap **r = devres_find(dev, dev_get_regmap_release,
					dev_get_regmap_match, (void *)name);

	if (!r)
		return NULL;
	return *r;
}
EXPORT_SYMBOL_GPL(dev_get_regmap);

T
Tuomas Tynkkynen 已提交
1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147
/**
 * regmap_get_device(): Obtain the device from a regmap
 *
 * @map: Register map to operate on.
 *
 * Returns the underlying device that the regmap has been created for.
 */
struct device *regmap_get_device(struct regmap *map)
{
	return map->dev;
}
1148
EXPORT_SYMBOL_GPL(regmap_get_device);
T
Tuomas Tynkkynen 已提交
1149

1150
static int _regmap_select_page(struct regmap *map, unsigned int *reg,
1151
			       struct regmap_range_node *range,
1152 1153 1154 1155 1156 1157 1158 1159
			       unsigned int val_num)
{
	void *orig_work_buf;
	unsigned int win_offset;
	unsigned int win_page;
	bool page_chg;
	int ret;

1160 1161
	win_offset = (*reg - range->range_min) % range->window_len;
	win_page = (*reg - range->range_min) / range->window_len;
1162

1163 1164 1165 1166
	if (val_num > 1) {
		/* Bulk write shouldn't cross range boundary */
		if (*reg + val_num - 1 > range->range_max)
			return -EINVAL;
1167

1168 1169 1170 1171
		/* ... or single page boundary */
		if (val_num > range->window_len - win_offset)
			return -EINVAL;
	}
1172

1173 1174 1175 1176 1177 1178 1179 1180
	/* It is possible to have selector register inside data window.
	   In that case, selector register is located on every page and
	   it needs no page switching, when accessed alone. */
	if (val_num > 1 ||
	    range->window_start + win_offset != range->selector_reg) {
		/* Use separate work_buf during page switching */
		orig_work_buf = map->work_buf;
		map->work_buf = map->selector_work_buf;
1181

1182 1183 1184
		ret = _regmap_update_bits(map, range->selector_reg,
					  range->selector_mask,
					  win_page << range->selector_shift,
1185
					  &page_chg, false);
1186

1187
		map->work_buf = orig_work_buf;
1188

1189
		if (ret != 0)
1190
			return ret;
1191 1192
	}

1193 1194
	*reg = range->window_start + win_offset;

1195 1196 1197
	return 0;
}

1198
int _regmap_raw_write(struct regmap *map, unsigned int reg,
1199
		      const void *val, size_t val_len)
1200
{
1201
	struct regmap_range_node *range;
1202
	unsigned long flags;
1203
	u8 *u8 = map->work_buf;
1204 1205
	void *work_val = map->work_buf + map->format.reg_bytes +
		map->format.pad_bytes;
1206 1207 1208
	void *buf;
	int ret = -ENOTSUPP;
	size_t len;
1209 1210
	int i;

1211
	WARN_ON(!map->bus);
1212

1213 1214 1215
	/* Check for unwritable registers before we start */
	if (map->writeable_reg)
		for (i = 0; i < val_len / map->format.val_bytes; i++)
1216 1217
			if (!map->writeable_reg(map->dev,
						reg + (i * map->reg_stride)))
1218
				return -EINVAL;
1219

1220 1221 1222 1223
	if (!map->cache_bypass && map->format.parse_val) {
		unsigned int ival;
		int val_bytes = map->format.val_bytes;
		for (i = 0; i < val_len / val_bytes; i++) {
1224
			ival = map->format.parse_val(val + (i * val_bytes));
1225 1226
			ret = regcache_write(map, reg + (i * map->reg_stride),
					     ival);
1227 1228
			if (ret) {
				dev_err(map->dev,
1229
					"Error in caching of register: %x ret: %d\n",
1230 1231 1232 1233 1234 1235 1236 1237 1238 1239
					reg + i, ret);
				return ret;
			}
		}
		if (map->cache_only) {
			map->cache_dirty = true;
			return 0;
		}
	}

1240 1241
	range = _regmap_range_lookup(map, reg);
	if (range) {
1242 1243 1244 1245 1246 1247
		int val_num = val_len / map->format.val_bytes;
		int win_offset = (reg - range->range_min) % range->window_len;
		int win_residue = range->window_len - win_offset;

		/* If the write goes beyond the end of the window split it */
		while (val_num > win_residue) {
1248
			dev_dbg(map->dev, "Writing window %d/%zu\n",
1249 1250
				win_residue, val_len / map->format.val_bytes);
			ret = _regmap_raw_write(map, reg, val, win_residue *
1251
						map->format.val_bytes);
1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265
			if (ret != 0)
				return ret;

			reg += win_residue;
			val_num -= win_residue;
			val += win_residue * map->format.val_bytes;
			val_len -= win_residue * map->format.val_bytes;

			win_offset = (reg - range->range_min) %
				range->window_len;
			win_residue = range->window_len - win_offset;
		}

		ret = _regmap_select_page(map, &reg, range, val_num);
1266
		if (ret != 0)
1267 1268
			return ret;
	}
1269

1270
	map->format.format_reg(map->work_buf, reg, map->reg_shift);
1271

1272 1273
	u8[0] |= map->write_flag_mask;

1274 1275 1276 1277 1278 1279 1280 1281 1282 1283
	/*
	 * Essentially all I/O mechanisms will be faster with a single
	 * buffer to write.  Since register syncs often generate raw
	 * writes of single registers optimise that case.
	 */
	if (val != work_val && val_len == map->format.val_bytes) {
		memcpy(work_val, val, map->format.val_bytes);
		val = work_val;
	}

1284
	if (map->async && map->bus->async_write) {
M
Mark Brown 已提交
1285
		struct regmap_async *async;
1286

1287
		trace_regmap_async_write_start(map, reg, val_len);
1288

M
Mark Brown 已提交
1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307
		spin_lock_irqsave(&map->async_lock, flags);
		async = list_first_entry_or_null(&map->async_free,
						 struct regmap_async,
						 list);
		if (async)
			list_del(&async->list);
		spin_unlock_irqrestore(&map->async_lock, flags);

		if (!async) {
			async = map->bus->async_alloc();
			if (!async)
				return -ENOMEM;

			async->work_buf = kzalloc(map->format.buf_size,
						  GFP_KERNEL | GFP_DMA);
			if (!async->work_buf) {
				kfree(async);
				return -ENOMEM;
			}
1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319
		}

		async->map = map;

		/* If the caller supplied the value we can use it safely. */
		memcpy(async->work_buf, map->work_buf, map->format.pad_bytes +
		       map->format.reg_bytes + map->format.val_bytes);

		spin_lock_irqsave(&map->async_lock, flags);
		list_add_tail(&async->list, &map->async_list);
		spin_unlock_irqrestore(&map->async_lock, flags);

1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331
		if (val != work_val)
			ret = map->bus->async_write(map->bus_context,
						    async->work_buf,
						    map->format.reg_bytes +
						    map->format.pad_bytes,
						    val, val_len, async);
		else
			ret = map->bus->async_write(map->bus_context,
						    async->work_buf,
						    map->format.reg_bytes +
						    map->format.pad_bytes +
						    val_len, NULL, 0, async);
1332 1333 1334 1335 1336 1337

		if (ret != 0) {
			dev_err(map->dev, "Failed to schedule write: %d\n",
				ret);

			spin_lock_irqsave(&map->async_lock, flags);
M
Mark Brown 已提交
1338
			list_move(&async->list, &map->async_free);
1339 1340
			spin_unlock_irqrestore(&map->async_lock, flags);
		}
M
Mark Brown 已提交
1341 1342

		return ret;
1343 1344
	}

1345
	trace_regmap_hw_write_start(map, reg, val_len / map->format.val_bytes);
M
Mark Brown 已提交
1346

1347 1348 1349 1350
	/* If we're doing a single register write we can probably just
	 * send the work_buf directly, otherwise try to do a gather
	 * write.
	 */
1351
	if (val == work_val)
1352
		ret = map->bus->write(map->bus_context, map->work_buf,
1353 1354 1355
				      map->format.reg_bytes +
				      map->format.pad_bytes +
				      val_len);
1356
	else if (map->bus->gather_write)
1357
		ret = map->bus->gather_write(map->bus_context, map->work_buf,
1358 1359
					     map->format.reg_bytes +
					     map->format.pad_bytes,
1360 1361
					     val, val_len);

1362
	/* If that didn't work fall back on linearising by hand. */
1363
	if (ret == -ENOTSUPP) {
1364 1365
		len = map->format.reg_bytes + map->format.pad_bytes + val_len;
		buf = kzalloc(len, GFP_KERNEL);
1366 1367 1368 1369
		if (!buf)
			return -ENOMEM;

		memcpy(buf, map->work_buf, map->format.reg_bytes);
1370 1371
		memcpy(buf + map->format.reg_bytes + map->format.pad_bytes,
		       val, val_len);
1372
		ret = map->bus->write(map->bus_context, buf, len);
1373 1374 1375 1376

		kfree(buf);
	}

1377
	trace_regmap_hw_write_done(map, reg, val_len / map->format.val_bytes);
M
Mark Brown 已提交
1378

1379 1380 1381
	return ret;
}

1382 1383 1384 1385 1386 1387 1388
/**
 * regmap_can_raw_write - Test if regmap_raw_write() is supported
 *
 * @map: Map to check.
 */
bool regmap_can_raw_write(struct regmap *map)
{
1389 1390
	return map->bus && map->bus->write && map->format.format_val &&
		map->format.format_reg;
1391 1392 1393
}
EXPORT_SYMBOL_GPL(regmap_can_raw_write);

1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415
/**
 * regmap_get_raw_read_max - Get the maximum size we can read
 *
 * @map: Map to check.
 */
size_t regmap_get_raw_read_max(struct regmap *map)
{
	return map->max_raw_read;
}
EXPORT_SYMBOL_GPL(regmap_get_raw_read_max);

/**
 * regmap_get_raw_write_max - Get the maximum size we can read
 *
 * @map: Map to check.
 */
size_t regmap_get_raw_write_max(struct regmap *map)
{
	return map->max_raw_write;
}
EXPORT_SYMBOL_GPL(regmap_get_raw_write_max);

1416 1417 1418 1419 1420 1421 1422
static int _regmap_bus_formatted_write(void *context, unsigned int reg,
				       unsigned int val)
{
	int ret;
	struct regmap_range_node *range;
	struct regmap *map = context;

1423
	WARN_ON(!map->bus || !map->format.format_write);
1424 1425 1426 1427 1428 1429 1430 1431 1432 1433

	range = _regmap_range_lookup(map, reg);
	if (range) {
		ret = _regmap_select_page(map, &reg, range, 1);
		if (ret != 0)
			return ret;
	}

	map->format.format_write(map, reg, val);

1434
	trace_regmap_hw_write_start(map, reg, 1);
1435 1436 1437 1438

	ret = map->bus->write(map->bus_context, map->work_buf,
			      map->format.buf_size);

1439
	trace_regmap_hw_write_done(map, reg, 1);
1440 1441 1442 1443

	return ret;
}

1444 1445 1446 1447 1448 1449 1450 1451
static int _regmap_bus_reg_write(void *context, unsigned int reg,
				 unsigned int val)
{
	struct regmap *map = context;

	return map->bus->reg_write(map->bus_context, reg, val);
}

1452 1453 1454 1455 1456
static int _regmap_bus_raw_write(void *context, unsigned int reg,
				 unsigned int val)
{
	struct regmap *map = context;

1457
	WARN_ON(!map->bus || !map->format.format_val);
1458 1459 1460 1461 1462 1463 1464

	map->format.format_val(map->work_buf + map->format.reg_bytes
			       + map->format.pad_bytes, val, 0);
	return _regmap_raw_write(map, reg,
				 map->work_buf +
				 map->format.reg_bytes +
				 map->format.pad_bytes,
1465
				 map->format.val_bytes);
1466 1467
}

1468 1469 1470 1471 1472
static inline void *_regmap_map_get_context(struct regmap *map)
{
	return (map->bus) ? map : map->bus_context;
}

1473 1474
int _regmap_write(struct regmap *map, unsigned int reg,
		  unsigned int val)
1475
{
M
Mark Brown 已提交
1476
	int ret;
1477
	void *context = _regmap_map_get_context(map);
1478

1479 1480 1481
	if (!regmap_writeable(map, reg))
		return -EIO;

1482
	if (!map->cache_bypass && !map->defer_caching) {
1483 1484 1485
		ret = regcache_write(map, reg, val);
		if (ret != 0)
			return ret;
1486 1487
		if (map->cache_only) {
			map->cache_dirty = true;
1488
			return 0;
1489
		}
1490 1491
	}

1492
#ifdef LOG_DEVICE
1493
	if (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0)
1494 1495 1496
		dev_info(map->dev, "%x <= %x\n", reg, val);
#endif

1497
	trace_regmap_reg_write(map, reg, val);
M
Mark Brown 已提交
1498

1499
	return map->reg_write(context, reg, val);
1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515
}

/**
 * regmap_write(): Write a value to a single register
 *
 * @map: Register map to write to
 * @reg: Register to write to
 * @val: Value to be written
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_write(struct regmap *map, unsigned int reg, unsigned int val)
{
	int ret;

1516 1517 1518
	if (reg % map->reg_stride)
		return -EINVAL;

1519
	map->lock(map->lock_arg);
1520 1521 1522

	ret = _regmap_write(map, reg, val);

1523
	map->unlock(map->lock_arg);
1524 1525 1526 1527 1528

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_write);

1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559
/**
 * regmap_write_async(): Write a value to a single register asynchronously
 *
 * @map: Register map to write to
 * @reg: Register to write to
 * @val: Value to be written
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_write_async(struct regmap *map, unsigned int reg, unsigned int val)
{
	int ret;

	if (reg % map->reg_stride)
		return -EINVAL;

	map->lock(map->lock_arg);

	map->async = true;

	ret = _regmap_write(map, reg, val);

	map->async = false;

	map->unlock(map->lock_arg);

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_write_async);

1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580
/**
 * regmap_raw_write(): Write raw values to one or more registers
 *
 * @map: Register map to write to
 * @reg: Initial register to write to
 * @val: Block of data to be written, laid out for direct transmission to the
 *       device
 * @val_len: Length of data pointed to by val.
 *
 * This function is intended to be used for things like firmware
 * download where a large block of data needs to be transferred to the
 * device.  No formatting will be done on the data provided.
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_raw_write(struct regmap *map, unsigned int reg,
		     const void *val, size_t val_len)
{
	int ret;

1581
	if (!regmap_can_raw_write(map))
1582
		return -EINVAL;
1583 1584
	if (val_len % map->format.val_bytes)
		return -EINVAL;
1585 1586
	if (map->max_raw_write && map->max_raw_write > val_len)
		return -E2BIG;
1587

1588
	map->lock(map->lock_arg);
1589

1590
	ret = _regmap_raw_write(map, reg, val, val_len);
1591

1592
	map->unlock(map->lock_arg);
1593 1594 1595 1596 1597

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_raw_write);

1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613
/**
 * regmap_field_write(): Write a value to a single register field
 *
 * @field: Register field to write to
 * @val: Value to be written
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_field_write(struct regmap_field *field, unsigned int val)
{
	return regmap_update_bits(field->regmap, field->reg,
				field->mask, val << field->shift);
}
EXPORT_SYMBOL_GPL(regmap_field_write);

1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633
/**
 * regmap_field_update_bits():	Perform a read/modify/write cycle
 *                              on the register field
 *
 * @field: Register field to write to
 * @mask: Bitmask to change
 * @val: Value to be written
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_field_update_bits(struct regmap_field *field, unsigned int mask, unsigned int val)
{
	mask = (mask << field->shift) & field->mask;

	return regmap_update_bits(field->regmap, field->reg,
				  mask, val << field->shift);
}
EXPORT_SYMBOL_GPL(regmap_field_update_bits);

1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655
/**
 * regmap_fields_write(): Write a value to a single register field with port ID
 *
 * @field: Register field to write to
 * @id: port ID
 * @val: Value to be written
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_fields_write(struct regmap_field *field, unsigned int id,
			unsigned int val)
{
	if (id >= field->id_size)
		return -EINVAL;

	return regmap_update_bits(field->regmap,
				  field->reg + (field->id_offset * id),
				  field->mask, val << field->shift);
}
EXPORT_SYMBOL_GPL(regmap_fields_write);

1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667
int regmap_fields_force_write(struct regmap_field *field, unsigned int id,
			unsigned int val)
{
	if (id >= field->id_size)
		return -EINVAL;

	return regmap_write_bits(field->regmap,
				  field->reg + (field->id_offset * id),
				  field->mask, val << field->shift);
}
EXPORT_SYMBOL_GPL(regmap_fields_force_write);

1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693
/**
 * regmap_fields_update_bits():	Perform a read/modify/write cycle
 *                              on the register field
 *
 * @field: Register field to write to
 * @id: port ID
 * @mask: Bitmask to change
 * @val: Value to be written
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_fields_update_bits(struct regmap_field *field,  unsigned int id,
			      unsigned int mask, unsigned int val)
{
	if (id >= field->id_size)
		return -EINVAL;

	mask = (mask << field->shift) & field->mask;

	return regmap_update_bits(field->regmap,
				  field->reg + (field->id_offset * id),
				  mask, val << field->shift);
}
EXPORT_SYMBOL_GPL(regmap_fields_update_bits);

1694 1695 1696 1697 1698 1699 1700 1701 1702
/*
 * regmap_bulk_write(): Write multiple registers to the device
 *
 * @map: Register map to write to
 * @reg: First register to be write from
 * @val: Block of data to be written, in native register size for device
 * @val_count: Number of registers to write
 *
 * This function is intended to be used for writing a large block of
1703
 * data to the device either in single transfer or multiple transfer.
1704 1705 1706 1707 1708 1709 1710 1711 1712
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_bulk_write(struct regmap *map, unsigned int reg, const void *val,
		     size_t val_count)
{
	int ret = 0, i;
	size_t val_bytes = map->format.val_bytes;
1713
	size_t total_size = val_bytes * val_count;
1714

1715
	if (map->bus && !map->format.parse_inplace)
1716
		return -EINVAL;
1717 1718
	if (reg % map->reg_stride)
		return -EINVAL;
1719

1720 1721
	/*
	 * Some devices don't support bulk write, for
1722 1723 1724 1725 1726 1727 1728
	 * them we have a series of single write operations in the first two if
	 * blocks.
	 *
	 * The first if block is used for memory mapped io. It does not allow
	 * val_bytes of 3 for example.
	 * The second one is used for busses which do not have this limitation
	 * and can write arbitrary value lengths.
1729
	 */
1730
	if (!map->bus) {
1731
		map->lock(map->lock_arg);
1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753
		for (i = 0; i < val_count; i++) {
			unsigned int ival;

			switch (val_bytes) {
			case 1:
				ival = *(u8 *)(val + (i * val_bytes));
				break;
			case 2:
				ival = *(u16 *)(val + (i * val_bytes));
				break;
			case 4:
				ival = *(u32 *)(val + (i * val_bytes));
				break;
#ifdef CONFIG_64BIT
			case 8:
				ival = *(u64 *)(val + (i * val_bytes));
				break;
#endif
			default:
				ret = -EINVAL;
				goto out;
			}
1754

1755 1756 1757 1758 1759
			ret = _regmap_write(map, reg + (i * map->reg_stride),
					ival);
			if (ret != 0)
				goto out;
		}
1760 1761
out:
		map->unlock(map->lock_arg);
1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775
	} else if (map->use_single_write ||
		   (map->max_raw_write && map->max_raw_write < total_size)) {
		int chunk_stride = map->reg_stride;
		size_t chunk_size = val_bytes;
		size_t chunk_count = val_count;

		if (!map->use_single_write) {
			chunk_size = map->max_raw_write;
			if (chunk_size % val_bytes)
				chunk_size -= chunk_size % val_bytes;
			chunk_count = total_size / chunk_size;
			chunk_stride *= chunk_size / val_bytes;
		}

1776
		map->lock(map->lock_arg);
1777 1778
		/* Write as many bytes as possible with chunk_size */
		for (i = 0; i < chunk_count; i++) {
1779
			ret = _regmap_raw_write(map,
1780 1781 1782
						reg + (i * chunk_stride),
						val + (i * chunk_size),
						chunk_size);
1783 1784 1785
			if (ret)
				break;
		}
1786 1787 1788 1789 1790 1791 1792

		/* Write remaining bytes */
		if (!ret && chunk_size * i < total_size) {
			ret = _regmap_raw_write(map, reg + (i * chunk_stride),
						val + (i * chunk_size),
						total_size - i * chunk_size);
		}
1793
		map->unlock(map->lock_arg);
1794
	} else {
1795 1796
		void *wval;

1797 1798 1799
		if (!val_count)
			return -EINVAL;

1800
		wval = kmemdup(val, val_count * val_bytes, map->alloc_flags);
1801 1802
		if (!wval) {
			dev_err(map->dev, "Error in memory allocation\n");
1803
			return -ENOMEM;
1804 1805
		}
		for (i = 0; i < val_count * val_bytes; i += val_bytes)
1806
			map->format.parse_inplace(wval + i);
1807

1808
		map->lock(map->lock_arg);
1809
		ret = _regmap_raw_write(map, reg, wval, val_bytes * val_count);
1810
		map->unlock(map->lock_arg);
1811 1812

		kfree(wval);
1813
	}
1814 1815 1816 1817
	return ret;
}
EXPORT_SYMBOL_GPL(regmap_bulk_write);

1818 1819 1820 1821 1822
/*
 * _regmap_raw_multi_reg_write()
 *
 * the (register,newvalue) pairs in regs have not been formatted, but
 * they are all in the same page and have been changed to being page
X
Xiubo Li 已提交
1823
 * relative. The page register has been written if that was necessary.
1824 1825
 */
static int _regmap_raw_multi_reg_write(struct regmap *map,
1826
				       const struct reg_sequence *regs,
1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838
				       size_t num_regs)
{
	int ret;
	void *buf;
	int i;
	u8 *u8;
	size_t val_bytes = map->format.val_bytes;
	size_t reg_bytes = map->format.reg_bytes;
	size_t pad_bytes = map->format.pad_bytes;
	size_t pair_size = reg_bytes + pad_bytes + val_bytes;
	size_t len = pair_size * num_regs;

1839 1840 1841
	if (!len)
		return -EINVAL;

1842 1843 1844 1845 1846 1847 1848 1849 1850
	buf = kzalloc(len, GFP_KERNEL);
	if (!buf)
		return -ENOMEM;

	/* We have to linearise by hand. */

	u8 = buf;

	for (i = 0; i < num_regs; i++) {
1851 1852
		unsigned int reg = regs[i].reg;
		unsigned int val = regs[i].def;
1853
		trace_regmap_hw_write_start(map, reg, 1);
1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867
		map->format.format_reg(u8, reg, map->reg_shift);
		u8 += reg_bytes + pad_bytes;
		map->format.format_val(u8, val, 0);
		u8 += val_bytes;
	}
	u8 = buf;
	*u8 |= map->write_flag_mask;

	ret = map->bus->write(map->bus_context, buf, len);

	kfree(buf);

	for (i = 0; i < num_regs; i++) {
		int reg = regs[i].reg;
1868
		trace_regmap_hw_write_done(map, reg, 1);
1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882
	}
	return ret;
}

static unsigned int _regmap_register_page(struct regmap *map,
					  unsigned int reg,
					  struct regmap_range_node *range)
{
	unsigned int win_page = (reg - range->range_min) / range->window_len;

	return win_page;
}

static int _regmap_range_multi_paged_reg_write(struct regmap *map,
1883
					       struct reg_sequence *regs,
1884 1885 1886 1887
					       size_t num_regs)
{
	int ret;
	int i, n;
1888
	struct reg_sequence *base;
1889
	unsigned int this_page = 0;
1890
	unsigned int page_change = 0;
1891 1892 1893
	/*
	 * the set of registers are not neccessarily in order, but
	 * since the order of write must be preserved this algorithm
1894 1895
	 * chops the set each time the page changes. This also applies
	 * if there is a delay required at any point in the sequence.
1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910
	 */
	base = regs;
	for (i = 0, n = 0; i < num_regs; i++, n++) {
		unsigned int reg = regs[i].reg;
		struct regmap_range_node *range;

		range = _regmap_range_lookup(map, reg);
		if (range) {
			unsigned int win_page = _regmap_register_page(map, reg,
								      range);

			if (i == 0)
				this_page = win_page;
			if (win_page != this_page) {
				this_page = win_page;
1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930
				page_change = 1;
			}
		}

		/* If we have both a page change and a delay make sure to
		 * write the regs and apply the delay before we change the
		 * page.
		 */

		if (page_change || regs[i].delay_us) {

				/* For situations where the first write requires
				 * a delay we need to make sure we don't call
				 * raw_multi_reg_write with n=0
				 * This can't occur with page breaks as we
				 * never write on the first iteration
				 */
				if (regs[i].delay_us && i == 0)
					n = 1;

1931 1932 1933
				ret = _regmap_raw_multi_reg_write(map, base, n);
				if (ret != 0)
					return ret;
1934 1935 1936 1937

				if (regs[i].delay_us)
					udelay(regs[i].delay_us);

1938 1939
				base += n;
				n = 0;
1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950

				if (page_change) {
					ret = _regmap_select_page(map,
								  &base[n].reg,
								  range, 1);
					if (ret != 0)
						return ret;

					page_change = 0;
				}

1951
		}
1952

1953 1954 1955 1956 1957 1958
	}
	if (n > 0)
		return _regmap_raw_multi_reg_write(map, base, n);
	return 0;
}

1959
static int _regmap_multi_reg_write(struct regmap *map,
1960
				   const struct reg_sequence *regs,
1961
				   size_t num_regs)
1962
{
1963 1964 1965 1966 1967 1968 1969 1970
	int i;
	int ret;

	if (!map->can_multi_write) {
		for (i = 0; i < num_regs; i++) {
			ret = _regmap_write(map, regs[i].reg, regs[i].def);
			if (ret != 0)
				return ret;
1971 1972 1973

			if (regs[i].delay_us)
				udelay(regs[i].delay_us);
1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008
		}
		return 0;
	}

	if (!map->format.parse_inplace)
		return -EINVAL;

	if (map->writeable_reg)
		for (i = 0; i < num_regs; i++) {
			int reg = regs[i].reg;
			if (!map->writeable_reg(map->dev, reg))
				return -EINVAL;
			if (reg % map->reg_stride)
				return -EINVAL;
		}

	if (!map->cache_bypass) {
		for (i = 0; i < num_regs; i++) {
			unsigned int val = regs[i].def;
			unsigned int reg = regs[i].reg;
			ret = regcache_write(map, reg, val);
			if (ret) {
				dev_err(map->dev,
				"Error in caching of register: %x ret: %d\n",
								reg, ret);
				return ret;
			}
		}
		if (map->cache_only) {
			map->cache_dirty = true;
			return 0;
		}
	}

	WARN_ON(!map->bus);
2009 2010

	for (i = 0; i < num_regs; i++) {
2011 2012
		unsigned int reg = regs[i].reg;
		struct regmap_range_node *range;
2013 2014 2015 2016

		/* Coalesce all the writes between a page break or a delay
		 * in a sequence
		 */
2017
		range = _regmap_range_lookup(map, reg);
2018
		if (range || regs[i].delay_us) {
2019 2020
			size_t len = sizeof(struct reg_sequence)*num_regs;
			struct reg_sequence *base = kmemdup(regs, len,
2021 2022 2023 2024 2025 2026 2027
							   GFP_KERNEL);
			if (!base)
				return -ENOMEM;
			ret = _regmap_range_multi_paged_reg_write(map, base,
								  num_regs);
			kfree(base);

2028 2029 2030
			return ret;
		}
	}
2031
	return _regmap_raw_multi_reg_write(map, regs, num_regs);
2032 2033
}

2034 2035 2036
/*
 * regmap_multi_reg_write(): Write multiple registers to the device
 *
2037 2038
 * where the set of register,value pairs are supplied in any order,
 * possibly not all in a single range.
2039 2040 2041 2042 2043
 *
 * @map: Register map to write to
 * @regs: Array of structures containing register,value to be written
 * @num_regs: Number of registers to write
 *
2044 2045 2046 2047 2048
 * The 'normal' block write mode will send ultimately send data on the
 * target bus as R,V1,V2,V3,..,Vn where successively higer registers are
 * addressed. However, this alternative block multi write mode will send
 * the data as R1,V1,R2,V2,..,Rn,Vn on the target bus. The target device
 * must of course support the mode.
2049
 *
2050 2051
 * A value of zero will be returned on success, a negative errno will be
 * returned in error cases.
2052
 */
2053
int regmap_multi_reg_write(struct regmap *map, const struct reg_sequence *regs,
2054
			   int num_regs)
2055
{
2056
	int ret;
2057 2058 2059

	map->lock(map->lock_arg);

2060 2061
	ret = _regmap_multi_reg_write(map, regs, num_regs);

2062 2063 2064 2065 2066 2067
	map->unlock(map->lock_arg);

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_multi_reg_write);

2068 2069 2070 2071
/*
 * regmap_multi_reg_write_bypassed(): Write multiple registers to the
 *                                    device but not the cache
 *
2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084
 * where the set of register are supplied in any order
 *
 * @map: Register map to write to
 * @regs: Array of structures containing register,value to be written
 * @num_regs: Number of registers to write
 *
 * This function is intended to be used for writing a large block of data
 * atomically to the device in single transfer for those I2C client devices
 * that implement this alternative block write mode.
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
2085
int regmap_multi_reg_write_bypassed(struct regmap *map,
2086
				    const struct reg_sequence *regs,
2087
				    int num_regs)
2088
{
2089 2090
	int ret;
	bool bypass;
2091 2092 2093

	map->lock(map->lock_arg);

2094 2095 2096 2097 2098 2099 2100
	bypass = map->cache_bypass;
	map->cache_bypass = true;

	ret = _regmap_multi_reg_write(map, regs, num_regs);

	map->cache_bypass = bypass;

2101 2102 2103 2104
	map->unlock(map->lock_arg);

	return ret;
}
2105
EXPORT_SYMBOL_GPL(regmap_multi_reg_write_bypassed);
2106

2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140
/**
 * regmap_raw_write_async(): Write raw values to one or more registers
 *                           asynchronously
 *
 * @map: Register map to write to
 * @reg: Initial register to write to
 * @val: Block of data to be written, laid out for direct transmission to the
 *       device.  Must be valid until regmap_async_complete() is called.
 * @val_len: Length of data pointed to by val.
 *
 * This function is intended to be used for things like firmware
 * download where a large block of data needs to be transferred to the
 * device.  No formatting will be done on the data provided.
 *
 * If supported by the underlying bus the write will be scheduled
 * asynchronously, helping maximise I/O speed on higher speed buses
 * like SPI.  regmap_async_complete() can be called to ensure that all
 * asynchrnous writes have been completed.
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_raw_write_async(struct regmap *map, unsigned int reg,
			   const void *val, size_t val_len)
{
	int ret;

	if (val_len % map->format.val_bytes)
		return -EINVAL;
	if (reg % map->reg_stride)
		return -EINVAL;

	map->lock(map->lock_arg);

2141 2142 2143 2144 2145
	map->async = true;

	ret = _regmap_raw_write(map, reg, val, val_len);

	map->async = false;
2146 2147 2148 2149 2150 2151 2152

	map->unlock(map->lock_arg);

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_raw_write_async);

2153 2154 2155
static int _regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
			    unsigned int val_len)
{
2156
	struct regmap_range_node *range;
2157 2158 2159
	u8 *u8 = map->work_buf;
	int ret;

2160
	WARN_ON(!map->bus);
2161

2162 2163 2164 2165
	range = _regmap_range_lookup(map, reg);
	if (range) {
		ret = _regmap_select_page(map, &reg, range,
					  val_len / map->format.val_bytes);
2166
		if (ret != 0)
2167 2168
			return ret;
	}
2169

2170
	map->format.format_reg(map->work_buf, reg, map->reg_shift);
2171 2172

	/*
2173
	 * Some buses or devices flag reads by setting the high bits in the
X
Xiubo Li 已提交
2174
	 * register address; since it's always the high bits for all
2175 2176 2177
	 * current formats we can do this here rather than in
	 * formatting.  This may break if we get interesting formats.
	 */
2178
	u8[0] |= map->read_flag_mask;
2179

2180
	trace_regmap_hw_read_start(map, reg, val_len / map->format.val_bytes);
M
Mark Brown 已提交
2181

2182
	ret = map->bus->read(map->bus_context, map->work_buf,
2183
			     map->format.reg_bytes + map->format.pad_bytes,
M
Mark Brown 已提交
2184
			     val, val_len);
2185

2186
	trace_regmap_hw_read_done(map, reg, val_len / map->format.val_bytes);
M
Mark Brown 已提交
2187 2188

	return ret;
2189 2190
}

2191 2192 2193 2194 2195 2196 2197 2198
static int _regmap_bus_reg_read(void *context, unsigned int reg,
				unsigned int *val)
{
	struct regmap *map = context;

	return map->bus->reg_read(map->bus_context, reg, val);
}

2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214
static int _regmap_bus_read(void *context, unsigned int reg,
			    unsigned int *val)
{
	int ret;
	struct regmap *map = context;

	if (!map->format.parse_val)
		return -EINVAL;

	ret = _regmap_raw_read(map, reg, map->work_buf, map->format.val_bytes);
	if (ret == 0)
		*val = map->format.parse_val(map->work_buf);

	return ret;
}

2215 2216 2217 2218
static int _regmap_read(struct regmap *map, unsigned int reg,
			unsigned int *val)
{
	int ret;
2219 2220
	void *context = _regmap_map_get_context(map);

2221 2222 2223 2224 2225 2226 2227 2228 2229
	if (!map->cache_bypass) {
		ret = regcache_read(map, reg, val);
		if (ret == 0)
			return 0;
	}

	if (map->cache_only)
		return -EBUSY;

2230 2231 2232
	if (!regmap_readable(map, reg))
		return -EIO;

2233
	ret = map->reg_read(context, reg, val);
M
Mark Brown 已提交
2234
	if (ret == 0) {
2235
#ifdef LOG_DEVICE
2236
		if (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0)
2237 2238 2239
			dev_info(map->dev, "%x => %x\n", reg, *val);
#endif

2240
		trace_regmap_reg_read(map, reg, *val);
2241

2242 2243 2244
		if (!map->cache_bypass)
			regcache_write(map, reg, *val);
	}
2245

2246 2247 2248 2249 2250 2251
	return ret;
}

/**
 * regmap_read(): Read a value from a single register
 *
2252
 * @map: Register map to read from
2253 2254 2255 2256 2257 2258 2259 2260 2261 2262
 * @reg: Register to be read from
 * @val: Pointer to store read value
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val)
{
	int ret;

2263 2264 2265
	if (reg % map->reg_stride)
		return -EINVAL;

2266
	map->lock(map->lock_arg);
2267 2268 2269

	ret = _regmap_read(map, reg, val);

2270
	map->unlock(map->lock_arg);
2271 2272 2273 2274 2275 2276 2277 2278

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_read);

/**
 * regmap_raw_read(): Read raw data from the device
 *
2279
 * @map: Register map to read from
2280 2281 2282 2283 2284 2285 2286 2287 2288 2289
 * @reg: First register to be read from
 * @val: Pointer to store read value
 * @val_len: Size of data to read
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
		    size_t val_len)
{
2290 2291 2292 2293
	size_t val_bytes = map->format.val_bytes;
	size_t val_count = val_len / val_bytes;
	unsigned int v;
	int ret, i;
2294

2295 2296
	if (!map->bus)
		return -EINVAL;
2297 2298
	if (val_len % map->format.val_bytes)
		return -EINVAL;
2299 2300
	if (reg % map->reg_stride)
		return -EINVAL;
2301 2302
	if (val_count == 0)
		return -EINVAL;
2303

2304
	map->lock(map->lock_arg);
2305

2306 2307
	if (regmap_volatile_range(map, reg, val_count) || map->cache_bypass ||
	    map->cache_type == REGCACHE_NONE) {
2308 2309 2310 2311
		if (!map->bus->read) {
			ret = -ENOTSUPP;
			goto out;
		}
2312 2313 2314 2315
		if (map->max_raw_read && map->max_raw_read < val_len) {
			ret = -E2BIG;
			goto out;
		}
2316

2317 2318 2319 2320 2321 2322 2323 2324
		/* Physical block read if there's no cache involved */
		ret = _regmap_raw_read(map, reg, val, val_len);

	} else {
		/* Otherwise go word by word for the cache; should be low
		 * cost as we expect to hit the cache.
		 */
		for (i = 0; i < val_count; i++) {
2325 2326
			ret = _regmap_read(map, reg + (i * map->reg_stride),
					   &v);
2327 2328 2329
			if (ret != 0)
				goto out;

2330
			map->format.format_val(val + (i * val_bytes), v, 0);
2331 2332
		}
	}
2333

2334
 out:
2335
	map->unlock(map->lock_arg);
2336 2337 2338 2339 2340

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_raw_read);

2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365
/**
 * regmap_field_read(): Read a value to a single register field
 *
 * @field: Register field to read from
 * @val: Pointer to store read value
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_field_read(struct regmap_field *field, unsigned int *val)
{
	int ret;
	unsigned int reg_val;
	ret = regmap_read(field->regmap, field->reg, &reg_val);
	if (ret != 0)
		return ret;

	reg_val &= field->mask;
	reg_val >>= field->shift;
	*val = reg_val;

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_field_read);

2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398
/**
 * regmap_fields_read(): Read a value to a single register field with port ID
 *
 * @field: Register field to read from
 * @id: port ID
 * @val: Pointer to store read value
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_fields_read(struct regmap_field *field, unsigned int id,
		       unsigned int *val)
{
	int ret;
	unsigned int reg_val;

	if (id >= field->id_size)
		return -EINVAL;

	ret = regmap_read(field->regmap,
			  field->reg + (field->id_offset * id),
			  &reg_val);
	if (ret != 0)
		return ret;

	reg_val &= field->mask;
	reg_val >>= field->shift;
	*val = reg_val;

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_fields_read);

2399 2400 2401
/**
 * regmap_bulk_read(): Read multiple registers from the device
 *
2402
 * @map: Register map to read from
2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414
 * @reg: First register to be read from
 * @val: Pointer to store read value, in native register size for device
 * @val_count: Number of registers to read
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_bulk_read(struct regmap *map, unsigned int reg, void *val,
		     size_t val_count)
{
	int ret, i;
	size_t val_bytes = map->format.val_bytes;
2415
	bool vol = regmap_volatile_range(map, reg, val_count);
2416

2417 2418
	if (reg % map->reg_stride)
		return -EINVAL;
2419

2420
	if (map->bus && map->format.parse_inplace && (vol || map->cache_type == REGCACHE_NONE)) {
2421 2422 2423 2424
		/*
		 * Some devices does not support bulk read, for
		 * them we have a series of single read operations.
		 */
2425 2426 2427 2428
		size_t total_size = val_bytes * val_count;

		if (!map->use_single_read &&
		    (!map->max_raw_read || map->max_raw_read > total_size)) {
2429 2430 2431 2432
			ret = regmap_raw_read(map, reg, val,
					      val_bytes * val_count);
			if (ret != 0)
				return ret;
2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469
		} else {
			/*
			 * Some devices do not support bulk read or do not
			 * support large bulk reads, for them we have a series
			 * of read operations.
			 */
			int chunk_stride = map->reg_stride;
			size_t chunk_size = val_bytes;
			size_t chunk_count = val_count;

			if (!map->use_single_read) {
				chunk_size = map->max_raw_read;
				if (chunk_size % val_bytes)
					chunk_size -= chunk_size % val_bytes;
				chunk_count = total_size / chunk_size;
				chunk_stride *= chunk_size / val_bytes;
			}

			/* Read bytes that fit into a multiple of chunk_size */
			for (i = 0; i < chunk_count; i++) {
				ret = regmap_raw_read(map,
						      reg + (i * chunk_stride),
						      val + (i * chunk_size),
						      chunk_size);
				if (ret != 0)
					return ret;
			}

			/* Read remaining bytes */
			if (chunk_size * i < total_size) {
				ret = regmap_raw_read(map,
						      reg + (i * chunk_stride),
						      val + (i * chunk_size),
						      total_size - i * chunk_size);
				if (ret != 0)
					return ret;
			}
2470
		}
2471 2472

		for (i = 0; i < val_count * val_bytes; i += val_bytes)
2473
			map->format.parse_inplace(val + i);
2474 2475
	} else {
		for (i = 0; i < val_count; i++) {
2476
			unsigned int ival;
2477
			ret = regmap_read(map, reg + (i * map->reg_stride),
2478
					  &ival);
2479 2480
			if (ret != 0)
				return ret;
2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508

			if (map->format.format_val) {
				map->format.format_val(val + (i * val_bytes), ival, 0);
			} else {
				/* Devices providing read and write
				 * operations can use the bulk I/O
				 * functions if they define a val_bytes,
				 * we assume that the values are native
				 * endian.
				 */
				u32 *u32 = val;
				u16 *u16 = val;
				u8 *u8 = val;

				switch (map->format.val_bytes) {
				case 4:
					u32[i] = ival;
					break;
				case 2:
					u16[i] = ival;
					break;
				case 1:
					u8[i] = ival;
					break;
				default:
					return -EINVAL;
				}
			}
2509 2510
		}
	}
2511 2512 2513 2514 2515

	return 0;
}
EXPORT_SYMBOL_GPL(regmap_bulk_read);

2516 2517
static int _regmap_update_bits(struct regmap *map, unsigned int reg,
			       unsigned int mask, unsigned int val,
2518
			       bool *change, bool force_write)
2519 2520
{
	int ret;
2521
	unsigned int tmp, orig;
2522

2523 2524
	if (change)
		*change = false;
2525

2526 2527 2528
	if (regmap_volatile(map, reg) && map->reg_update_bits) {
		ret = map->reg_update_bits(map->bus_context, reg, mask, val);
		if (ret == 0 && change)
2529
			*change = true;
2530
	} else {
2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542
		ret = _regmap_read(map, reg, &orig);
		if (ret != 0)
			return ret;

		tmp = orig & ~mask;
		tmp |= val & mask;

		if (force_write || (tmp != orig)) {
			ret = _regmap_write(map, reg, tmp);
			if (ret == 0 && change)
				*change = true;
		}
2543
	}
2544 2545 2546

	return ret;
}
2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560

/**
 * regmap_update_bits: Perform a read/modify/write cycle on the register map
 *
 * @map: Register map to update
 * @reg: Register to update
 * @mask: Bitmask to change
 * @val: New value for bitmask
 *
 * Returns zero for success, a negative number on error.
 */
int regmap_update_bits(struct regmap *map, unsigned int reg,
		       unsigned int mask, unsigned int val)
{
2561 2562
	int ret;

2563
	map->lock(map->lock_arg);
2564
	ret = _regmap_update_bits(map, reg, mask, val, NULL, false);
2565
	map->unlock(map->lock_arg);
2566 2567

	return ret;
2568
}
2569
EXPORT_SYMBOL_GPL(regmap_update_bits);
2570

2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593
/**
 * regmap_write_bits: Perform a read/modify/write cycle on the register map
 *
 * @map: Register map to update
 * @reg: Register to update
 * @mask: Bitmask to change
 * @val: New value for bitmask
 *
 * Returns zero for success, a negative number on error.
 */
int regmap_write_bits(struct regmap *map, unsigned int reg,
		      unsigned int mask, unsigned int val)
{
	int ret;

	map->lock(map->lock_arg);
	ret = _regmap_update_bits(map, reg, mask, val, NULL, true);
	map->unlock(map->lock_arg);

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_write_bits);

2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617
/**
 * regmap_update_bits_async: Perform a read/modify/write cycle on the register
 *                           map asynchronously
 *
 * @map: Register map to update
 * @reg: Register to update
 * @mask: Bitmask to change
 * @val: New value for bitmask
 *
 * With most buses the read must be done synchronously so this is most
 * useful for devices with a cache which do not need to interact with
 * the hardware to determine the current register value.
 *
 * Returns zero for success, a negative number on error.
 */
int regmap_update_bits_async(struct regmap *map, unsigned int reg,
			     unsigned int mask, unsigned int val)
{
	int ret;

	map->lock(map->lock_arg);

	map->async = true;

2618
	ret = _regmap_update_bits(map, reg, mask, val, NULL, false);
2619 2620 2621 2622 2623 2624 2625 2626 2627

	map->async = false;

	map->unlock(map->lock_arg);

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_update_bits_async);

2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643
/**
 * regmap_update_bits_check: Perform a read/modify/write cycle on the
 *                           register map and report if updated
 *
 * @map: Register map to update
 * @reg: Register to update
 * @mask: Bitmask to change
 * @val: New value for bitmask
 * @change: Boolean indicating if a write was done
 *
 * Returns zero for success, a negative number on error.
 */
int regmap_update_bits_check(struct regmap *map, unsigned int reg,
			     unsigned int mask, unsigned int val,
			     bool *change)
{
2644 2645
	int ret;

2646
	map->lock(map->lock_arg);
2647
	ret = _regmap_update_bits(map, reg, mask, val, change, false);
2648
	map->unlock(map->lock_arg);
2649
	return ret;
2650 2651 2652
}
EXPORT_SYMBOL_GPL(regmap_update_bits_check);

2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679
/**
 * regmap_update_bits_check_async: Perform a read/modify/write cycle on the
 *                                 register map asynchronously and report if
 *                                 updated
 *
 * @map: Register map to update
 * @reg: Register to update
 * @mask: Bitmask to change
 * @val: New value for bitmask
 * @change: Boolean indicating if a write was done
 *
 * With most buses the read must be done synchronously so this is most
 * useful for devices with a cache which do not need to interact with
 * the hardware to determine the current register value.
 *
 * Returns zero for success, a negative number on error.
 */
int regmap_update_bits_check_async(struct regmap *map, unsigned int reg,
				   unsigned int mask, unsigned int val,
				   bool *change)
{
	int ret;

	map->lock(map->lock_arg);

	map->async = true;

2680
	ret = _regmap_update_bits(map, reg, mask, val, change, false);
2681 2682 2683 2684 2685 2686 2687 2688 2689

	map->async = false;

	map->unlock(map->lock_arg);

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_update_bits_check_async);

2690 2691 2692 2693 2694
void regmap_async_complete_cb(struct regmap_async *async, int ret)
{
	struct regmap *map = async->map;
	bool wake;

2695
	trace_regmap_async_io_complete(map);
2696

2697
	spin_lock(&map->async_lock);
M
Mark Brown 已提交
2698
	list_move(&async->list, &map->async_free);
2699 2700 2701 2702 2703 2704 2705 2706 2707 2708
	wake = list_empty(&map->async_list);

	if (ret != 0)
		map->async_ret = ret;

	spin_unlock(&map->async_lock);

	if (wake)
		wake_up(&map->async_waitq);
}
2709
EXPORT_SYMBOL_GPL(regmap_async_complete_cb);
2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736

static int regmap_async_is_done(struct regmap *map)
{
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&map->async_lock, flags);
	ret = list_empty(&map->async_list);
	spin_unlock_irqrestore(&map->async_lock, flags);

	return ret;
}

/**
 * regmap_async_complete: Ensure all asynchronous I/O has completed.
 *
 * @map: Map to operate on.
 *
 * Blocks until any pending asynchronous I/O has completed.  Returns
 * an error code for any failed I/O operations.
 */
int regmap_async_complete(struct regmap *map)
{
	unsigned long flags;
	int ret;

	/* Nothing to do with no async support */
2737
	if (!map->bus || !map->bus->async_write)
2738 2739
		return 0;

2740
	trace_regmap_async_complete_start(map);
2741

2742 2743 2744 2745 2746 2747 2748
	wait_event(map->async_waitq, regmap_async_is_done(map));

	spin_lock_irqsave(&map->async_lock, flags);
	ret = map->async_ret;
	map->async_ret = 0;
	spin_unlock_irqrestore(&map->async_lock, flags);

2749
	trace_regmap_async_complete_done(map);
2750

2751 2752
	return ret;
}
2753
EXPORT_SYMBOL_GPL(regmap_async_complete);
2754

M
Mark Brown 已提交
2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767
/**
 * regmap_register_patch: Register and apply register updates to be applied
 *                        on device initialistion
 *
 * @map: Register map to apply updates to.
 * @regs: Values to update.
 * @num_regs: Number of entries in regs.
 *
 * Register a set of register updates to be applied to the device
 * whenever the device registers are synchronised with the cache and
 * apply them immediately.  Typically this is used to apply
 * corrections to be applied to the device defaults on startup, such
 * as the updates some vendors provide to undocumented registers.
2768 2769 2770
 *
 * The caller must ensure that this function cannot be called
 * concurrently with either itself or regcache_sync().
M
Mark Brown 已提交
2771
 */
2772
int regmap_register_patch(struct regmap *map, const struct reg_sequence *regs,
M
Mark Brown 已提交
2773 2774
			  int num_regs)
{
2775
	struct reg_sequence *p;
2776
	int ret;
M
Mark Brown 已提交
2777 2778
	bool bypass;

2779 2780 2781 2782
	if (WARN_ONCE(num_regs <= 0, "invalid registers number (%d)\n",
	    num_regs))
		return 0;

2783
	p = krealloc(map->patch,
2784
		     sizeof(struct reg_sequence) * (map->patch_regs + num_regs),
2785 2786 2787 2788 2789
		     GFP_KERNEL);
	if (p) {
		memcpy(p + map->patch_regs, regs, num_regs * sizeof(*regs));
		map->patch = p;
		map->patch_regs += num_regs;
M
Mark Brown 已提交
2790
	} else {
2791
		return -ENOMEM;
M
Mark Brown 已提交
2792 2793
	}

2794
	map->lock(map->lock_arg);
M
Mark Brown 已提交
2795 2796 2797 2798

	bypass = map->cache_bypass;

	map->cache_bypass = true;
2799
	map->async = true;
M
Mark Brown 已提交
2800

2801
	ret = _regmap_multi_reg_write(map, regs, num_regs);
M
Mark Brown 已提交
2802

2803
	map->async = false;
M
Mark Brown 已提交
2804 2805
	map->cache_bypass = bypass;

2806
	map->unlock(map->lock_arg);
M
Mark Brown 已提交
2807

2808 2809
	regmap_async_complete(map);

M
Mark Brown 已提交
2810 2811 2812 2813
	return ret;
}
EXPORT_SYMBOL_GPL(regmap_register_patch);

2814
/*
2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828
 * regmap_get_val_bytes(): Report the size of a register value
 *
 * Report the size of a register value, mainly intended to for use by
 * generic infrastructure built on top of regmap.
 */
int regmap_get_val_bytes(struct regmap *map)
{
	if (map->format.format_write)
		return -EINVAL;

	return map->format.val_bytes;
}
EXPORT_SYMBOL_GPL(regmap_get_val_bytes);

2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840
/**
 * regmap_get_max_register(): Report the max register value
 *
 * Report the max register value, mainly intended to for use by
 * generic infrastructure built on top of regmap.
 */
int regmap_get_max_register(struct regmap *map)
{
	return map->max_register ? map->max_register : -EINVAL;
}
EXPORT_SYMBOL_GPL(regmap_get_max_register);

2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852
/**
 * regmap_get_reg_stride(): Report the register address stride
 *
 * Report the register address stride, mainly intended to for use by
 * generic infrastructure built on top of regmap.
 */
int regmap_get_reg_stride(struct regmap *map)
{
	return map->reg_stride;
}
EXPORT_SYMBOL_GPL(regmap_get_reg_stride);

N
Nenghua Cao 已提交
2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864
int regmap_parse_val(struct regmap *map, const void *buf,
			unsigned int *val)
{
	if (!map->format.parse_val)
		return -EINVAL;

	*val = map->format.parse_val(buf);

	return 0;
}
EXPORT_SYMBOL_GPL(regmap_parse_val);

2865 2866 2867 2868 2869 2870 2871
static int __init regmap_initcall(void)
{
	regmap_debugfs_initcall();

	return 0;
}
postcore_initcall(regmap_initcall);