regmap.c 53.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12
/*
 * Register map access API
 *
 * Copyright 2011 Wolfson Microelectronics plc
 *
 * Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

13
#include <linux/device.h>
14
#include <linux/slab.h>
15
#include <linux/export.h>
16 17
#include <linux/mutex.h>
#include <linux/err.h>
18
#include <linux/rbtree.h>
19
#include <linux/sched.h>
20

M
Mark Brown 已提交
21 22 23
#define CREATE_TRACE_POINTS
#include <trace/events/regmap.h>

24
#include "internal.h"
25

26 27 28 29 30 31 32 33 34 35 36 37
/*
 * Sometimes for failures during very early init the trace
 * infrastructure isn't available early enough to be used.  For this
 * sort of problem defining LOG_DEVICE will add printks for basic
 * register I/O on a specific device.
 */
#undef LOG_DEVICE

static int _regmap_update_bits(struct regmap *map, unsigned int reg,
			       unsigned int mask, unsigned int val,
			       bool *change);

38 39
static int _regmap_bus_read(void *context, unsigned int reg,
			    unsigned int *val);
40 41 42 43
static int _regmap_bus_formatted_write(void *context, unsigned int reg,
				       unsigned int val);
static int _regmap_bus_raw_write(void *context, unsigned int reg,
				 unsigned int val);
44

45 46 47 48 49 50 51 52 53 54 55 56 57 58
bool regmap_reg_in_ranges(unsigned int reg,
			  const struct regmap_range *ranges,
			  unsigned int nranges)
{
	const struct regmap_range *r;
	int i;

	for (i = 0, r = ranges; i < nranges; i++, r++)
		if (regmap_reg_in_range(reg, r))
			return true;
	return false;
}
EXPORT_SYMBOL_GPL(regmap_reg_in_ranges);

59 60
bool regmap_check_range_table(struct regmap *map, unsigned int reg,
			      const struct regmap_access_table *table)
61 62 63 64 65 66 67 68 69 70 71 72
{
	/* Check "no ranges" first */
	if (regmap_reg_in_ranges(reg, table->no_ranges, table->n_no_ranges))
		return false;

	/* In case zero "yes ranges" are supplied, any reg is OK */
	if (!table->n_yes_ranges)
		return true;

	return regmap_reg_in_ranges(reg, table->yes_ranges,
				    table->n_yes_ranges);
}
73
EXPORT_SYMBOL_GPL(regmap_check_range_table);
74

75 76 77 78 79 80 81 82
bool regmap_writeable(struct regmap *map, unsigned int reg)
{
	if (map->max_register && reg > map->max_register)
		return false;

	if (map->writeable_reg)
		return map->writeable_reg(map->dev, reg);

83
	if (map->wr_table)
84
		return regmap_check_range_table(map, reg, map->wr_table);
85

86 87 88 89 90 91 92 93
	return true;
}

bool regmap_readable(struct regmap *map, unsigned int reg)
{
	if (map->max_register && reg > map->max_register)
		return false;

94 95 96
	if (map->format.format_write)
		return false;

97 98 99
	if (map->readable_reg)
		return map->readable_reg(map->dev, reg);

100
	if (map->rd_table)
101
		return regmap_check_range_table(map, reg, map->rd_table);
102

103 104 105 106 107
	return true;
}

bool regmap_volatile(struct regmap *map, unsigned int reg)
{
108
	if (!regmap_readable(map, reg))
109 110 111 112 113
		return false;

	if (map->volatile_reg)
		return map->volatile_reg(map->dev, reg);

114
	if (map->volatile_table)
115
		return regmap_check_range_table(map, reg, map->volatile_table);
116

117 118 119 120
	if (map->cache_ops)
		return false;
	else
		return true;
121 122 123 124
}

bool regmap_precious(struct regmap *map, unsigned int reg)
{
125
	if (!regmap_readable(map, reg))
126 127 128 129 130
		return false;

	if (map->precious_reg)
		return map->precious_reg(map->dev, reg);

131
	if (map->precious_table)
132
		return regmap_check_range_table(map, reg, map->precious_table);
133

134 135 136
	return false;
}

137
static bool regmap_volatile_range(struct regmap *map, unsigned int reg,
P
Paul Bolle 已提交
138
	size_t num)
139 140 141 142 143 144 145 146 147 148
{
	unsigned int i;

	for (i = 0; i < num; i++)
		if (!regmap_volatile(map, reg + i))
			return false;

	return true;
}

149 150 151 152 153 154 155 156
static void regmap_format_2_6_write(struct regmap *map,
				     unsigned int reg, unsigned int val)
{
	u8 *out = map->work_buf;

	*out = (reg << 6) | val;
}

157 158 159 160 161 162 163 164 165 166 167 168 169 170
static void regmap_format_4_12_write(struct regmap *map,
				     unsigned int reg, unsigned int val)
{
	__be16 *out = map->work_buf;
	*out = cpu_to_be16((reg << 12) | val);
}

static void regmap_format_7_9_write(struct regmap *map,
				    unsigned int reg, unsigned int val)
{
	__be16 *out = map->work_buf;
	*out = cpu_to_be16((reg << 9) | val);
}

171 172 173 174 175 176 177 178 179 180
static void regmap_format_10_14_write(struct regmap *map,
				    unsigned int reg, unsigned int val)
{
	u8 *out = map->work_buf;

	out[2] = val;
	out[1] = (val >> 8) | (reg << 6);
	out[0] = reg >> 2;
}

181
static void regmap_format_8(void *buf, unsigned int val, unsigned int shift)
182 183 184
{
	u8 *b = buf;

185
	b[0] = val << shift;
186 187
}

188
static void regmap_format_16_be(void *buf, unsigned int val, unsigned int shift)
189 190 191
{
	__be16 *b = buf;

192
	b[0] = cpu_to_be16(val << shift);
193 194
}

195 196 197 198 199 200
static void regmap_format_16_native(void *buf, unsigned int val,
				    unsigned int shift)
{
	*(u16 *)buf = val << shift;
}

201
static void regmap_format_24(void *buf, unsigned int val, unsigned int shift)
202 203 204
{
	u8 *b = buf;

205 206
	val <<= shift;

207 208 209 210 211
	b[0] = val >> 16;
	b[1] = val >> 8;
	b[2] = val;
}

212
static void regmap_format_32_be(void *buf, unsigned int val, unsigned int shift)
213 214 215
{
	__be32 *b = buf;

216
	b[0] = cpu_to_be32(val << shift);
217 218
}

219 220 221 222 223 224
static void regmap_format_32_native(void *buf, unsigned int val,
				    unsigned int shift)
{
	*(u32 *)buf = val << shift;
}

225
static void regmap_parse_inplace_noop(void *buf)
226
{
227 228 229 230 231
}

static unsigned int regmap_parse_8(const void *buf)
{
	const u8 *b = buf;
232 233 234 235

	return b[0];
}

236 237 238 239 240 241 242 243
static unsigned int regmap_parse_16_be(const void *buf)
{
	const __be16 *b = buf;

	return be16_to_cpu(b[0]);
}

static void regmap_parse_16_be_inplace(void *buf)
244 245 246 247 248 249
{
	__be16 *b = buf;

	b[0] = be16_to_cpu(b[0]);
}

250
static unsigned int regmap_parse_16_native(const void *buf)
251 252 253 254
{
	return *(u16 *)buf;
}

255
static unsigned int regmap_parse_24(const void *buf)
256
{
257
	const u8 *b = buf;
258 259 260 261 262 263 264
	unsigned int ret = b[2];
	ret |= ((unsigned int)b[1]) << 8;
	ret |= ((unsigned int)b[0]) << 16;

	return ret;
}

265 266 267 268 269 270 271 272
static unsigned int regmap_parse_32_be(const void *buf)
{
	const __be32 *b = buf;

	return be32_to_cpu(b[0]);
}

static void regmap_parse_32_be_inplace(void *buf)
273 274 275 276 277 278
{
	__be32 *b = buf;

	b[0] = be32_to_cpu(b[0]);
}

279
static unsigned int regmap_parse_32_native(const void *buf)
280 281 282 283
{
	return *(u32 *)buf;
}

284
static void regmap_lock_mutex(void *__map)
285
{
286
	struct regmap *map = __map;
287 288 289
	mutex_lock(&map->mutex);
}

290
static void regmap_unlock_mutex(void *__map)
291
{
292
	struct regmap *map = __map;
293 294 295
	mutex_unlock(&map->mutex);
}

296
static void regmap_lock_spinlock(void *__map)
297
__acquires(&map->spinlock)
298
{
299
	struct regmap *map = __map;
300 301 302 303
	unsigned long flags;

	spin_lock_irqsave(&map->spinlock, flags);
	map->spinlock_flags = flags;
304 305
}

306
static void regmap_unlock_spinlock(void *__map)
307
__releases(&map->spinlock)
308
{
309
	struct regmap *map = __map;
310
	spin_unlock_irqrestore(&map->spinlock, map->spinlock_flags);
311 312
}

M
Mark Brown 已提交
313 314 315 316 317 318 319 320 321
static void dev_get_regmap_release(struct device *dev, void *res)
{
	/*
	 * We don't actually have anything to do here; the goal here
	 * is not to manage the regmap but to provide a simple way to
	 * get the regmap back given a struct device.
	 */
}

322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382
static bool _regmap_range_add(struct regmap *map,
			      struct regmap_range_node *data)
{
	struct rb_root *root = &map->range_tree;
	struct rb_node **new = &(root->rb_node), *parent = NULL;

	while (*new) {
		struct regmap_range_node *this =
			container_of(*new, struct regmap_range_node, node);

		parent = *new;
		if (data->range_max < this->range_min)
			new = &((*new)->rb_left);
		else if (data->range_min > this->range_max)
			new = &((*new)->rb_right);
		else
			return false;
	}

	rb_link_node(&data->node, parent, new);
	rb_insert_color(&data->node, root);

	return true;
}

static struct regmap_range_node *_regmap_range_lookup(struct regmap *map,
						      unsigned int reg)
{
	struct rb_node *node = map->range_tree.rb_node;

	while (node) {
		struct regmap_range_node *this =
			container_of(node, struct regmap_range_node, node);

		if (reg < this->range_min)
			node = node->rb_left;
		else if (reg > this->range_max)
			node = node->rb_right;
		else
			return this;
	}

	return NULL;
}

static void regmap_range_exit(struct regmap *map)
{
	struct rb_node *next;
	struct regmap_range_node *range_node;

	next = rb_first(&map->range_tree);
	while (next) {
		range_node = rb_entry(next, struct regmap_range_node, node);
		next = rb_next(&range_node->node);
		rb_erase(&range_node->node, &map->range_tree);
		kfree(range_node);
	}

	kfree(map->selector_work_buf);
}

383 384 385 386 387
/**
 * regmap_init(): Initialise register map
 *
 * @dev: Device that will be interacted with
 * @bus: Bus-specific callbacks to use with device
388
 * @bus_context: Data passed to bus-specific callbacks
389 390 391 392 393 394 395 396
 * @config: Configuration for register map
 *
 * The return value will be an ERR_PTR() on error or a valid pointer to
 * a struct regmap.  This function should generally not be called
 * directly, it should be called by bus-specific init functions.
 */
struct regmap *regmap_init(struct device *dev,
			   const struct regmap_bus *bus,
397
			   void *bus_context,
398 399
			   const struct regmap_config *config)
{
M
Mark Brown 已提交
400
	struct regmap *map, **m;
401
	int ret = -EINVAL;
402
	enum regmap_endian reg_endian, val_endian;
403
	int i, j;
404

405
	if (!config)
406
		goto err;
407 408 409 410 411 412 413

	map = kzalloc(sizeof(*map), GFP_KERNEL);
	if (map == NULL) {
		ret = -ENOMEM;
		goto err;
	}

414 415 416 417
	if (config->lock && config->unlock) {
		map->lock = config->lock;
		map->unlock = config->unlock;
		map->lock_arg = config->lock_arg;
418
	} else {
419 420
		if ((bus && bus->fast_io) ||
		    config->fast_io) {
421 422 423 424 425 426 427 428 429
			spin_lock_init(&map->spinlock);
			map->lock = regmap_lock_spinlock;
			map->unlock = regmap_unlock_spinlock;
		} else {
			mutex_init(&map->mutex);
			map->lock = regmap_lock_mutex;
			map->unlock = regmap_unlock_mutex;
		}
		map->lock_arg = map;
430
	}
431
	map->format.reg_bytes = DIV_ROUND_UP(config->reg_bits, 8);
432
	map->format.pad_bytes = config->pad_bits / 8;
433
	map->format.val_bytes = DIV_ROUND_UP(config->val_bits, 8);
434 435
	map->format.buf_size = DIV_ROUND_UP(config->reg_bits +
			config->val_bits + config->pad_bits, 8);
436
	map->reg_shift = config->pad_bits % 8;
437 438 439 440
	if (config->reg_stride)
		map->reg_stride = config->reg_stride;
	else
		map->reg_stride = 1;
441
	map->use_single_rw = config->use_single_rw;
442 443
	map->dev = dev;
	map->bus = bus;
444
	map->bus_context = bus_context;
445
	map->max_register = config->max_register;
446 447 448 449
	map->wr_table = config->wr_table;
	map->rd_table = config->rd_table;
	map->volatile_table = config->volatile_table;
	map->precious_table = config->precious_table;
450 451 452
	map->writeable_reg = config->writeable_reg;
	map->readable_reg = config->readable_reg;
	map->volatile_reg = config->volatile_reg;
453
	map->precious_reg = config->precious_reg;
454
	map->cache_type = config->cache_type;
M
Mark Brown 已提交
455
	map->name = config->name;
456

457 458
	spin_lock_init(&map->async_lock);
	INIT_LIST_HEAD(&map->async_list);
M
Mark Brown 已提交
459
	INIT_LIST_HEAD(&map->async_free);
460 461
	init_waitqueue_head(&map->async_waitq);

462 463 464
	if (config->read_flag_mask || config->write_flag_mask) {
		map->read_flag_mask = config->read_flag_mask;
		map->write_flag_mask = config->write_flag_mask;
465
	} else if (bus) {
466 467 468
		map->read_flag_mask = bus->read_flag_mask;
	}

469 470 471 472 473 474 475 476 477
	if (!bus) {
		map->reg_read  = config->reg_read;
		map->reg_write = config->reg_write;

		map->defer_caching = false;
		goto skip_format_initialization;
	} else {
		map->reg_read  = _regmap_bus_read;
	}
478

479 480 481 482 483 484 485 486 487 488 489 490
	reg_endian = config->reg_format_endian;
	if (reg_endian == REGMAP_ENDIAN_DEFAULT)
		reg_endian = bus->reg_format_endian_default;
	if (reg_endian == REGMAP_ENDIAN_DEFAULT)
		reg_endian = REGMAP_ENDIAN_BIG;

	val_endian = config->val_format_endian;
	if (val_endian == REGMAP_ENDIAN_DEFAULT)
		val_endian = bus->val_format_endian_default;
	if (val_endian == REGMAP_ENDIAN_DEFAULT)
		val_endian = REGMAP_ENDIAN_BIG;

491
	switch (config->reg_bits + map->reg_shift) {
492 493 494 495 496 497 498 499 500 501
	case 2:
		switch (config->val_bits) {
		case 6:
			map->format.format_write = regmap_format_2_6_write;
			break;
		default:
			goto err_map;
		}
		break;

502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521
	case 4:
		switch (config->val_bits) {
		case 12:
			map->format.format_write = regmap_format_4_12_write;
			break;
		default:
			goto err_map;
		}
		break;

	case 7:
		switch (config->val_bits) {
		case 9:
			map->format.format_write = regmap_format_7_9_write;
			break;
		default:
			goto err_map;
		}
		break;

522 523 524 525 526 527 528 529 530 531
	case 10:
		switch (config->val_bits) {
		case 14:
			map->format.format_write = regmap_format_10_14_write;
			break;
		default:
			goto err_map;
		}
		break;

532 533 534 535 536
	case 8:
		map->format.format_reg = regmap_format_8;
		break;

	case 16:
537 538 539 540 541 542 543 544 545 546
		switch (reg_endian) {
		case REGMAP_ENDIAN_BIG:
			map->format.format_reg = regmap_format_16_be;
			break;
		case REGMAP_ENDIAN_NATIVE:
			map->format.format_reg = regmap_format_16_native;
			break;
		default:
			goto err_map;
		}
547 548
		break;

549 550 551 552 553 554
	case 24:
		if (reg_endian != REGMAP_ENDIAN_BIG)
			goto err_map;
		map->format.format_reg = regmap_format_24;
		break;

555
	case 32:
556 557 558 559 560 561 562 563 564 565
		switch (reg_endian) {
		case REGMAP_ENDIAN_BIG:
			map->format.format_reg = regmap_format_32_be;
			break;
		case REGMAP_ENDIAN_NATIVE:
			map->format.format_reg = regmap_format_32_native;
			break;
		default:
			goto err_map;
		}
566 567
		break;

568 569 570 571
	default:
		goto err_map;
	}

572 573 574
	if (val_endian == REGMAP_ENDIAN_NATIVE)
		map->format.parse_inplace = regmap_parse_inplace_noop;

575 576 577 578
	switch (config->val_bits) {
	case 8:
		map->format.format_val = regmap_format_8;
		map->format.parse_val = regmap_parse_8;
579
		map->format.parse_inplace = regmap_parse_inplace_noop;
580 581
		break;
	case 16:
582 583 584 585
		switch (val_endian) {
		case REGMAP_ENDIAN_BIG:
			map->format.format_val = regmap_format_16_be;
			map->format.parse_val = regmap_parse_16_be;
586
			map->format.parse_inplace = regmap_parse_16_be_inplace;
587 588 589 590 591 592 593 594
			break;
		case REGMAP_ENDIAN_NATIVE:
			map->format.format_val = regmap_format_16_native;
			map->format.parse_val = regmap_parse_16_native;
			break;
		default:
			goto err_map;
		}
595
		break;
596
	case 24:
597 598
		if (val_endian != REGMAP_ENDIAN_BIG)
			goto err_map;
599 600 601
		map->format.format_val = regmap_format_24;
		map->format.parse_val = regmap_parse_24;
		break;
602
	case 32:
603 604 605 606
		switch (val_endian) {
		case REGMAP_ENDIAN_BIG:
			map->format.format_val = regmap_format_32_be;
			map->format.parse_val = regmap_parse_32_be;
607
			map->format.parse_inplace = regmap_parse_32_be_inplace;
608 609 610 611 612 613 614 615
			break;
		case REGMAP_ENDIAN_NATIVE:
			map->format.format_val = regmap_format_32_native;
			map->format.parse_val = regmap_parse_32_native;
			break;
		default:
			goto err_map;
		}
616
		break;
617 618
	}

619 620 621 622
	if (map->format.format_write) {
		if ((reg_endian != REGMAP_ENDIAN_BIG) ||
		    (val_endian != REGMAP_ENDIAN_BIG))
			goto err_map;
623
		map->use_single_rw = true;
624
	}
625

626 627 628 629
	if (!map->format.format_write &&
	    !(map->format.format_reg && map->format.format_val))
		goto err_map;

630
	map->work_buf = kzalloc(map->format.buf_size, GFP_KERNEL);
631 632
	if (map->work_buf == NULL) {
		ret = -ENOMEM;
633
		goto err_map;
634 635
	}

636 637
	if (map->format.format_write) {
		map->defer_caching = false;
638
		map->reg_write = _regmap_bus_formatted_write;
639 640
	} else if (map->format.format_val) {
		map->defer_caching = true;
641
		map->reg_write = _regmap_bus_raw_write;
642 643 644
	}

skip_format_initialization:
645

646
	map->range_tree = RB_ROOT;
M
Mark Brown 已提交
647
	for (i = 0; i < config->num_ranges; i++) {
648 649 650 651
		const struct regmap_range_cfg *range_cfg = &config->ranges[i];
		struct regmap_range_node *new;

		/* Sanity check */
652 653 654
		if (range_cfg->range_max < range_cfg->range_min) {
			dev_err(map->dev, "Invalid range %d: %d < %d\n", i,
				range_cfg->range_max, range_cfg->range_min);
655
			goto err_range;
656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674
		}

		if (range_cfg->range_max > map->max_register) {
			dev_err(map->dev, "Invalid range %d: %d > %d\n", i,
				range_cfg->range_max, map->max_register);
			goto err_range;
		}

		if (range_cfg->selector_reg > map->max_register) {
			dev_err(map->dev,
				"Invalid range %d: selector out of map\n", i);
			goto err_range;
		}

		if (range_cfg->window_len == 0) {
			dev_err(map->dev, "Invalid range %d: window_len 0\n",
				i);
			goto err_range;
		}
675 676 677

		/* Make sure, that this register range has no selector
		   or data window within its boundary */
M
Mark Brown 已提交
678
		for (j = 0; j < config->num_ranges; j++) {
679 680 681 682 683
			unsigned sel_reg = config->ranges[j].selector_reg;
			unsigned win_min = config->ranges[j].window_start;
			unsigned win_max = win_min +
					   config->ranges[j].window_len - 1;

684 685 686 687
			/* Allow data window inside its own virtual range */
			if (j == i)
				continue;

688 689
			if (range_cfg->range_min <= sel_reg &&
			    sel_reg <= range_cfg->range_max) {
690 691 692
				dev_err(map->dev,
					"Range %d: selector for %d in window\n",
					i, j);
693 694 695 696 697
				goto err_range;
			}

			if (!(win_max < range_cfg->range_min ||
			      win_min > range_cfg->range_max)) {
698 699 700
				dev_err(map->dev,
					"Range %d: window for %d in window\n",
					i, j);
701 702 703 704 705 706 707 708 709 710
				goto err_range;
			}
		}

		new = kzalloc(sizeof(*new), GFP_KERNEL);
		if (new == NULL) {
			ret = -ENOMEM;
			goto err_range;
		}

711
		new->map = map;
M
Mark Brown 已提交
712
		new->name = range_cfg->name;
713 714 715 716 717 718 719 720 721
		new->range_min = range_cfg->range_min;
		new->range_max = range_cfg->range_max;
		new->selector_reg = range_cfg->selector_reg;
		new->selector_mask = range_cfg->selector_mask;
		new->selector_shift = range_cfg->selector_shift;
		new->window_start = range_cfg->window_start;
		new->window_len = range_cfg->window_len;

		if (_regmap_range_add(map, new) == false) {
722
			dev_err(map->dev, "Failed to add range %d\n", i);
723 724 725 726 727 728 729 730 731 732 733 734 735
			kfree(new);
			goto err_range;
		}

		if (map->selector_work_buf == NULL) {
			map->selector_work_buf =
				kzalloc(map->format.buf_size, GFP_KERNEL);
			if (map->selector_work_buf == NULL) {
				ret = -ENOMEM;
				goto err_range;
			}
		}
	}
736

737 738
	regmap_debugfs_init(map, config->name);

739
	ret = regcache_init(map, config);
740
	if (ret != 0)
741 742
		goto err_range;

M
Mark Brown 已提交
743 744 745 746
	/* Add a devres resource for dev_get_regmap() */
	m = devres_alloc(dev_get_regmap_release, sizeof(*m), GFP_KERNEL);
	if (!m) {
		ret = -ENOMEM;
747
		goto err_debugfs;
M
Mark Brown 已提交
748 749 750 751
	}
	*m = map;
	devres_add(dev, m);

752 753
	return map;

754 755
err_debugfs:
	regmap_debugfs_exit(map);
M
Mark Brown 已提交
756
	regcache_exit(map);
757 758
err_range:
	regmap_range_exit(map);
759
	kfree(map->work_buf);
760 761 762 763 764 765 766
err_map:
	kfree(map);
err:
	return ERR_PTR(ret);
}
EXPORT_SYMBOL_GPL(regmap_init);

767 768 769 770 771 772 773 774 775 776
static void devm_regmap_release(struct device *dev, void *res)
{
	regmap_exit(*(struct regmap **)res);
}

/**
 * devm_regmap_init(): Initialise managed register map
 *
 * @dev: Device that will be interacted with
 * @bus: Bus-specific callbacks to use with device
777
 * @bus_context: Data passed to bus-specific callbacks
778 779 780 781 782 783 784 785 786
 * @config: Configuration for register map
 *
 * The return value will be an ERR_PTR() on error or a valid pointer
 * to a struct regmap.  This function should generally not be called
 * directly, it should be called by bus-specific init functions.  The
 * map will be automatically freed by the device management code.
 */
struct regmap *devm_regmap_init(struct device *dev,
				const struct regmap_bus *bus,
787
				void *bus_context,
788 789 790 791 792 793 794 795
				const struct regmap_config *config)
{
	struct regmap **ptr, *regmap;

	ptr = devres_alloc(devm_regmap_release, sizeof(*ptr), GFP_KERNEL);
	if (!ptr)
		return ERR_PTR(-ENOMEM);

796
	regmap = regmap_init(dev, bus, bus_context, config);
797 798 799 800 801 802 803 804 805 806 807
	if (!IS_ERR(regmap)) {
		*ptr = regmap;
		devres_add(dev, ptr);
	} else {
		devres_free(ptr);
	}

	return regmap;
}
EXPORT_SYMBOL_GPL(devm_regmap_init);

808 809 810 811 812 813 814 815
static void regmap_field_init(struct regmap_field *rm_field,
	struct regmap *regmap, struct reg_field reg_field)
{
	int field_bits = reg_field.msb - reg_field.lsb + 1;
	rm_field->regmap = regmap;
	rm_field->reg = reg_field.reg;
	rm_field->shift = reg_field.lsb;
	rm_field->mask = ((BIT(field_bits) - 1) << reg_field.lsb);
816 817
	rm_field->id_size = reg_field.id_size;
	rm_field->id_offset = reg_field.id_offset;
818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898
}

/**
 * devm_regmap_field_alloc(): Allocate and initialise a register field
 * in a register map.
 *
 * @dev: Device that will be interacted with
 * @regmap: regmap bank in which this register field is located.
 * @reg_field: Register field with in the bank.
 *
 * The return value will be an ERR_PTR() on error or a valid pointer
 * to a struct regmap_field. The regmap_field will be automatically freed
 * by the device management code.
 */
struct regmap_field *devm_regmap_field_alloc(struct device *dev,
		struct regmap *regmap, struct reg_field reg_field)
{
	struct regmap_field *rm_field = devm_kzalloc(dev,
					sizeof(*rm_field), GFP_KERNEL);
	if (!rm_field)
		return ERR_PTR(-ENOMEM);

	regmap_field_init(rm_field, regmap, reg_field);

	return rm_field;

}
EXPORT_SYMBOL_GPL(devm_regmap_field_alloc);

/**
 * devm_regmap_field_free(): Free register field allocated using
 * devm_regmap_field_alloc. Usally drivers need not call this function,
 * as the memory allocated via devm will be freed as per device-driver
 * life-cyle.
 *
 * @dev: Device that will be interacted with
 * @field: regmap field which should be freed.
 */
void devm_regmap_field_free(struct device *dev,
	struct regmap_field *field)
{
	devm_kfree(dev, field);
}
EXPORT_SYMBOL_GPL(devm_regmap_field_free);

/**
 * regmap_field_alloc(): Allocate and initialise a register field
 * in a register map.
 *
 * @regmap: regmap bank in which this register field is located.
 * @reg_field: Register field with in the bank.
 *
 * The return value will be an ERR_PTR() on error or a valid pointer
 * to a struct regmap_field. The regmap_field should be freed by the
 * user once its finished working with it using regmap_field_free().
 */
struct regmap_field *regmap_field_alloc(struct regmap *regmap,
		struct reg_field reg_field)
{
	struct regmap_field *rm_field = kzalloc(sizeof(*rm_field), GFP_KERNEL);

	if (!rm_field)
		return ERR_PTR(-ENOMEM);

	regmap_field_init(rm_field, regmap, reg_field);

	return rm_field;
}
EXPORT_SYMBOL_GPL(regmap_field_alloc);

/**
 * regmap_field_free(): Free register field allocated using regmap_field_alloc
 *
 * @field: regmap field which should be freed.
 */
void regmap_field_free(struct regmap_field *field)
{
	kfree(field);
}
EXPORT_SYMBOL_GPL(regmap_field_free);

899 900 901 902 903 904 905 906 907 908
/**
 * regmap_reinit_cache(): Reinitialise the current register cache
 *
 * @map: Register map to operate on.
 * @config: New configuration.  Only the cache data will be used.
 *
 * Discard any existing register cache for the map and initialize a
 * new cache.  This can be used to restore the cache to defaults or to
 * update the cache configuration to reflect runtime discovery of the
 * hardware.
909 910 911
 *
 * No explicit locking is done here, the user needs to ensure that
 * this function will not race with other calls to regmap.
912 913 914 915
 */
int regmap_reinit_cache(struct regmap *map, const struct regmap_config *config)
{
	regcache_exit(map);
916
	regmap_debugfs_exit(map);
917 918 919 920 921 922 923 924

	map->max_register = config->max_register;
	map->writeable_reg = config->writeable_reg;
	map->readable_reg = config->readable_reg;
	map->volatile_reg = config->volatile_reg;
	map->precious_reg = config->precious_reg;
	map->cache_type = config->cache_type;

925
	regmap_debugfs_init(map, config->name);
926

927 928 929
	map->cache_bypass = false;
	map->cache_only = false;

930
	return regcache_init(map, config);
931
}
932
EXPORT_SYMBOL_GPL(regmap_reinit_cache);
933

934 935 936 937 938
/**
 * regmap_exit(): Free a previously allocated register map
 */
void regmap_exit(struct regmap *map)
{
M
Mark Brown 已提交
939 940
	struct regmap_async *async;

941
	regcache_exit(map);
942
	regmap_debugfs_exit(map);
943
	regmap_range_exit(map);
944
	if (map->bus && map->bus->free_context)
945
		map->bus->free_context(map->bus_context);
946
	kfree(map->work_buf);
M
Mark Brown 已提交
947 948 949 950 951 952 953 954
	while (!list_empty(&map->async_free)) {
		async = list_first_entry_or_null(&map->async_free,
						 struct regmap_async,
						 list);
		list_del(&async->list);
		kfree(async->work_buf);
		kfree(async);
	}
955 956 957 958
	kfree(map);
}
EXPORT_SYMBOL_GPL(regmap_exit);

M
Mark Brown 已提交
959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996
static int dev_get_regmap_match(struct device *dev, void *res, void *data)
{
	struct regmap **r = res;
	if (!r || !*r) {
		WARN_ON(!r || !*r);
		return 0;
	}

	/* If the user didn't specify a name match any */
	if (data)
		return (*r)->name == data;
	else
		return 1;
}

/**
 * dev_get_regmap(): Obtain the regmap (if any) for a device
 *
 * @dev: Device to retrieve the map for
 * @name: Optional name for the register map, usually NULL.
 *
 * Returns the regmap for the device if one is present, or NULL.  If
 * name is specified then it must match the name specified when
 * registering the device, if it is NULL then the first regmap found
 * will be used.  Devices with multiple register maps are very rare,
 * generic code should normally not need to specify a name.
 */
struct regmap *dev_get_regmap(struct device *dev, const char *name)
{
	struct regmap **r = devres_find(dev, dev_get_regmap_release,
					dev_get_regmap_match, (void *)name);

	if (!r)
		return NULL;
	return *r;
}
EXPORT_SYMBOL_GPL(dev_get_regmap);

997
static int _regmap_select_page(struct regmap *map, unsigned int *reg,
998
			       struct regmap_range_node *range,
999 1000 1001 1002 1003 1004 1005 1006
			       unsigned int val_num)
{
	void *orig_work_buf;
	unsigned int win_offset;
	unsigned int win_page;
	bool page_chg;
	int ret;

1007 1008
	win_offset = (*reg - range->range_min) % range->window_len;
	win_page = (*reg - range->range_min) / range->window_len;
1009

1010 1011 1012 1013
	if (val_num > 1) {
		/* Bulk write shouldn't cross range boundary */
		if (*reg + val_num - 1 > range->range_max)
			return -EINVAL;
1014

1015 1016 1017 1018
		/* ... or single page boundary */
		if (val_num > range->window_len - win_offset)
			return -EINVAL;
	}
1019

1020 1021 1022 1023 1024 1025 1026 1027
	/* It is possible to have selector register inside data window.
	   In that case, selector register is located on every page and
	   it needs no page switching, when accessed alone. */
	if (val_num > 1 ||
	    range->window_start + win_offset != range->selector_reg) {
		/* Use separate work_buf during page switching */
		orig_work_buf = map->work_buf;
		map->work_buf = map->selector_work_buf;
1028

1029 1030 1031 1032
		ret = _regmap_update_bits(map, range->selector_reg,
					  range->selector_mask,
					  win_page << range->selector_shift,
					  &page_chg);
1033

1034
		map->work_buf = orig_work_buf;
1035

1036
		if (ret != 0)
1037
			return ret;
1038 1039
	}

1040 1041
	*reg = range->window_start + win_offset;

1042 1043 1044
	return 0;
}

1045
int _regmap_raw_write(struct regmap *map, unsigned int reg,
1046
		      const void *val, size_t val_len)
1047
{
1048
	struct regmap_range_node *range;
1049
	unsigned long flags;
1050
	u8 *u8 = map->work_buf;
1051 1052
	void *work_val = map->work_buf + map->format.reg_bytes +
		map->format.pad_bytes;
1053 1054 1055
	void *buf;
	int ret = -ENOTSUPP;
	size_t len;
1056 1057
	int i;

1058
	WARN_ON(!map->bus);
1059

1060 1061 1062
	/* Check for unwritable registers before we start */
	if (map->writeable_reg)
		for (i = 0; i < val_len / map->format.val_bytes; i++)
1063 1064
			if (!map->writeable_reg(map->dev,
						reg + (i * map->reg_stride)))
1065
				return -EINVAL;
1066

1067 1068 1069 1070
	if (!map->cache_bypass && map->format.parse_val) {
		unsigned int ival;
		int val_bytes = map->format.val_bytes;
		for (i = 0; i < val_len / val_bytes; i++) {
1071
			ival = map->format.parse_val(val + (i * val_bytes));
1072 1073
			ret = regcache_write(map, reg + (i * map->reg_stride),
					     ival);
1074 1075
			if (ret) {
				dev_err(map->dev,
1076
					"Error in caching of register: %x ret: %d\n",
1077 1078 1079 1080 1081 1082 1083 1084 1085 1086
					reg + i, ret);
				return ret;
			}
		}
		if (map->cache_only) {
			map->cache_dirty = true;
			return 0;
		}
	}

1087 1088
	range = _regmap_range_lookup(map, reg);
	if (range) {
1089 1090 1091 1092 1093 1094
		int val_num = val_len / map->format.val_bytes;
		int win_offset = (reg - range->range_min) % range->window_len;
		int win_residue = range->window_len - win_offset;

		/* If the write goes beyond the end of the window split it */
		while (val_num > win_residue) {
1095
			dev_dbg(map->dev, "Writing window %d/%zu\n",
1096 1097
				win_residue, val_len / map->format.val_bytes);
			ret = _regmap_raw_write(map, reg, val, win_residue *
1098
						map->format.val_bytes);
1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112
			if (ret != 0)
				return ret;

			reg += win_residue;
			val_num -= win_residue;
			val += win_residue * map->format.val_bytes;
			val_len -= win_residue * map->format.val_bytes;

			win_offset = (reg - range->range_min) %
				range->window_len;
			win_residue = range->window_len - win_offset;
		}

		ret = _regmap_select_page(map, &reg, range, val_num);
1113
		if (ret != 0)
1114 1115
			return ret;
	}
1116

1117
	map->format.format_reg(map->work_buf, reg, map->reg_shift);
1118

1119 1120
	u8[0] |= map->write_flag_mask;

1121 1122 1123 1124 1125 1126 1127 1128 1129 1130
	/*
	 * Essentially all I/O mechanisms will be faster with a single
	 * buffer to write.  Since register syncs often generate raw
	 * writes of single registers optimise that case.
	 */
	if (val != work_val && val_len == map->format.val_bytes) {
		memcpy(work_val, val, map->format.val_bytes);
		val = work_val;
	}

1131
	if (map->async && map->bus->async_write) {
M
Mark Brown 已提交
1132
		struct regmap_async *async;
1133

1134 1135
		trace_regmap_async_write_start(map->dev, reg, val_len);

M
Mark Brown 已提交
1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154
		spin_lock_irqsave(&map->async_lock, flags);
		async = list_first_entry_or_null(&map->async_free,
						 struct regmap_async,
						 list);
		if (async)
			list_del(&async->list);
		spin_unlock_irqrestore(&map->async_lock, flags);

		if (!async) {
			async = map->bus->async_alloc();
			if (!async)
				return -ENOMEM;

			async->work_buf = kzalloc(map->format.buf_size,
						  GFP_KERNEL | GFP_DMA);
			if (!async->work_buf) {
				kfree(async);
				return -ENOMEM;
			}
1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166
		}

		async->map = map;

		/* If the caller supplied the value we can use it safely. */
		memcpy(async->work_buf, map->work_buf, map->format.pad_bytes +
		       map->format.reg_bytes + map->format.val_bytes);

		spin_lock_irqsave(&map->async_lock, flags);
		list_add_tail(&async->list, &map->async_list);
		spin_unlock_irqrestore(&map->async_lock, flags);

1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178
		if (val != work_val)
			ret = map->bus->async_write(map->bus_context,
						    async->work_buf,
						    map->format.reg_bytes +
						    map->format.pad_bytes,
						    val, val_len, async);
		else
			ret = map->bus->async_write(map->bus_context,
						    async->work_buf,
						    map->format.reg_bytes +
						    map->format.pad_bytes +
						    val_len, NULL, 0, async);
1179 1180 1181 1182 1183 1184

		if (ret != 0) {
			dev_err(map->dev, "Failed to schedule write: %d\n",
				ret);

			spin_lock_irqsave(&map->async_lock, flags);
M
Mark Brown 已提交
1185
			list_move(&async->list, &map->async_free);
1186 1187
			spin_unlock_irqrestore(&map->async_lock, flags);
		}
M
Mark Brown 已提交
1188 1189

		return ret;
1190 1191
	}

M
Mark Brown 已提交
1192 1193 1194
	trace_regmap_hw_write_start(map->dev, reg,
				    val_len / map->format.val_bytes);

1195 1196 1197 1198
	/* If we're doing a single register write we can probably just
	 * send the work_buf directly, otherwise try to do a gather
	 * write.
	 */
1199
	if (val == work_val)
1200
		ret = map->bus->write(map->bus_context, map->work_buf,
1201 1202 1203
				      map->format.reg_bytes +
				      map->format.pad_bytes +
				      val_len);
1204
	else if (map->bus->gather_write)
1205
		ret = map->bus->gather_write(map->bus_context, map->work_buf,
1206 1207
					     map->format.reg_bytes +
					     map->format.pad_bytes,
1208 1209
					     val, val_len);

1210
	/* If that didn't work fall back on linearising by hand. */
1211
	if (ret == -ENOTSUPP) {
1212 1213
		len = map->format.reg_bytes + map->format.pad_bytes + val_len;
		buf = kzalloc(len, GFP_KERNEL);
1214 1215 1216 1217
		if (!buf)
			return -ENOMEM;

		memcpy(buf, map->work_buf, map->format.reg_bytes);
1218 1219
		memcpy(buf + map->format.reg_bytes + map->format.pad_bytes,
		       val, val_len);
1220
		ret = map->bus->write(map->bus_context, buf, len);
1221 1222 1223 1224

		kfree(buf);
	}

M
Mark Brown 已提交
1225 1226 1227
	trace_regmap_hw_write_done(map->dev, reg,
				   val_len / map->format.val_bytes);

1228 1229 1230
	return ret;
}

1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241
/**
 * regmap_can_raw_write - Test if regmap_raw_write() is supported
 *
 * @map: Map to check.
 */
bool regmap_can_raw_write(struct regmap *map)
{
	return map->bus && map->format.format_val && map->format.format_reg;
}
EXPORT_SYMBOL_GPL(regmap_can_raw_write);

1242 1243 1244 1245 1246 1247 1248
static int _regmap_bus_formatted_write(void *context, unsigned int reg,
				       unsigned int val)
{
	int ret;
	struct regmap_range_node *range;
	struct regmap *map = context;

1249
	WARN_ON(!map->bus || !map->format.format_write);
1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274

	range = _regmap_range_lookup(map, reg);
	if (range) {
		ret = _regmap_select_page(map, &reg, range, 1);
		if (ret != 0)
			return ret;
	}

	map->format.format_write(map, reg, val);

	trace_regmap_hw_write_start(map->dev, reg, 1);

	ret = map->bus->write(map->bus_context, map->work_buf,
			      map->format.buf_size);

	trace_regmap_hw_write_done(map->dev, reg, 1);

	return ret;
}

static int _regmap_bus_raw_write(void *context, unsigned int reg,
				 unsigned int val)
{
	struct regmap *map = context;

1275
	WARN_ON(!map->bus || !map->format.format_val);
1276 1277 1278 1279 1280 1281 1282

	map->format.format_val(map->work_buf + map->format.reg_bytes
			       + map->format.pad_bytes, val, 0);
	return _regmap_raw_write(map, reg,
				 map->work_buf +
				 map->format.reg_bytes +
				 map->format.pad_bytes,
1283
				 map->format.val_bytes);
1284 1285
}

1286 1287 1288 1289 1290
static inline void *_regmap_map_get_context(struct regmap *map)
{
	return (map->bus) ? map : map->bus_context;
}

1291 1292
int _regmap_write(struct regmap *map, unsigned int reg,
		  unsigned int val)
1293
{
M
Mark Brown 已提交
1294
	int ret;
1295
	void *context = _regmap_map_get_context(map);
1296

1297 1298 1299
	if (!regmap_writeable(map, reg))
		return -EIO;

1300
	if (!map->cache_bypass && !map->defer_caching) {
1301 1302 1303
		ret = regcache_write(map, reg, val);
		if (ret != 0)
			return ret;
1304 1305
		if (map->cache_only) {
			map->cache_dirty = true;
1306
			return 0;
1307
		}
1308 1309
	}

1310 1311 1312 1313 1314
#ifdef LOG_DEVICE
	if (strcmp(dev_name(map->dev), LOG_DEVICE) == 0)
		dev_info(map->dev, "%x <= %x\n", reg, val);
#endif

M
Mark Brown 已提交
1315 1316
	trace_regmap_reg_write(map->dev, reg, val);

1317
	return map->reg_write(context, reg, val);
1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333
}

/**
 * regmap_write(): Write a value to a single register
 *
 * @map: Register map to write to
 * @reg: Register to write to
 * @val: Value to be written
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_write(struct regmap *map, unsigned int reg, unsigned int val)
{
	int ret;

1334 1335 1336
	if (reg % map->reg_stride)
		return -EINVAL;

1337
	map->lock(map->lock_arg);
1338 1339 1340

	ret = _regmap_write(map, reg, val);

1341
	map->unlock(map->lock_arg);
1342 1343 1344 1345 1346

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_write);

1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377
/**
 * regmap_write_async(): Write a value to a single register asynchronously
 *
 * @map: Register map to write to
 * @reg: Register to write to
 * @val: Value to be written
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_write_async(struct regmap *map, unsigned int reg, unsigned int val)
{
	int ret;

	if (reg % map->reg_stride)
		return -EINVAL;

	map->lock(map->lock_arg);

	map->async = true;

	ret = _regmap_write(map, reg, val);

	map->async = false;

	map->unlock(map->lock_arg);

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_write_async);

1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398
/**
 * regmap_raw_write(): Write raw values to one or more registers
 *
 * @map: Register map to write to
 * @reg: Initial register to write to
 * @val: Block of data to be written, laid out for direct transmission to the
 *       device
 * @val_len: Length of data pointed to by val.
 *
 * This function is intended to be used for things like firmware
 * download where a large block of data needs to be transferred to the
 * device.  No formatting will be done on the data provided.
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_raw_write(struct regmap *map, unsigned int reg,
		     const void *val, size_t val_len)
{
	int ret;

1399
	if (!regmap_can_raw_write(map))
1400
		return -EINVAL;
1401 1402 1403
	if (val_len % map->format.val_bytes)
		return -EINVAL;

1404
	map->lock(map->lock_arg);
1405

1406
	ret = _regmap_raw_write(map, reg, val, val_len);
1407

1408
	map->unlock(map->lock_arg);
1409 1410 1411 1412 1413

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_raw_write);

1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429
/**
 * regmap_field_write(): Write a value to a single register field
 *
 * @field: Register field to write to
 * @val: Value to be written
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_field_write(struct regmap_field *field, unsigned int val)
{
	return regmap_update_bits(field->regmap, field->reg,
				field->mask, val << field->shift);
}
EXPORT_SYMBOL_GPL(regmap_field_write);

1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449
/**
 * regmap_field_update_bits():	Perform a read/modify/write cycle
 *                              on the register field
 *
 * @field: Register field to write to
 * @mask: Bitmask to change
 * @val: Value to be written
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_field_update_bits(struct regmap_field *field, unsigned int mask, unsigned int val)
{
	mask = (mask << field->shift) & field->mask;

	return regmap_update_bits(field->regmap, field->reg,
				  mask, val << field->shift);
}
EXPORT_SYMBOL_GPL(regmap_field_update_bits);

1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497
/**
 * regmap_fields_write(): Write a value to a single register field with port ID
 *
 * @field: Register field to write to
 * @id: port ID
 * @val: Value to be written
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_fields_write(struct regmap_field *field, unsigned int id,
			unsigned int val)
{
	if (id >= field->id_size)
		return -EINVAL;

	return regmap_update_bits(field->regmap,
				  field->reg + (field->id_offset * id),
				  field->mask, val << field->shift);
}
EXPORT_SYMBOL_GPL(regmap_fields_write);

/**
 * regmap_fields_update_bits():	Perform a read/modify/write cycle
 *                              on the register field
 *
 * @field: Register field to write to
 * @id: port ID
 * @mask: Bitmask to change
 * @val: Value to be written
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_fields_update_bits(struct regmap_field *field,  unsigned int id,
			      unsigned int mask, unsigned int val)
{
	if (id >= field->id_size)
		return -EINVAL;

	mask = (mask << field->shift) & field->mask;

	return regmap_update_bits(field->regmap,
				  field->reg + (field->id_offset * id),
				  mask, val << field->shift);
}
EXPORT_SYMBOL_GPL(regmap_fields_update_bits);

1498 1499 1500 1501 1502 1503 1504 1505 1506
/*
 * regmap_bulk_write(): Write multiple registers to the device
 *
 * @map: Register map to write to
 * @reg: First register to be write from
 * @val: Block of data to be written, in native register size for device
 * @val_count: Number of registers to write
 *
 * This function is intended to be used for writing a large block of
1507
 * data to the device either in single transfer or multiple transfer.
1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_bulk_write(struct regmap *map, unsigned int reg, const void *val,
		     size_t val_count)
{
	int ret = 0, i;
	size_t val_bytes = map->format.val_bytes;
	void *wval;

1519 1520
	if (!map->bus)
		return -EINVAL;
1521
	if (!map->format.parse_inplace)
1522
		return -EINVAL;
1523 1524
	if (reg % map->reg_stride)
		return -EINVAL;
1525

1526
	map->lock(map->lock_arg);
1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538

	/* No formatting is require if val_byte is 1 */
	if (val_bytes == 1) {
		wval = (void *)val;
	} else {
		wval = kmemdup(val, val_count * val_bytes, GFP_KERNEL);
		if (!wval) {
			ret = -ENOMEM;
			dev_err(map->dev, "Error in memory allocation\n");
			goto out;
		}
		for (i = 0; i < val_count * val_bytes; i += val_bytes)
1539
			map->format.parse_inplace(wval + i);
1540
	}
1541 1542 1543 1544 1545 1546
	/*
	 * Some devices does not support bulk write, for
	 * them we have a series of single write operations.
	 */
	if (map->use_single_rw) {
		for (i = 0; i < val_count; i++) {
1547 1548 1549
			ret = _regmap_raw_write(map,
						reg + (i * map->reg_stride),
						val + (i * val_bytes),
1550
						val_bytes);
1551 1552 1553 1554
			if (ret != 0)
				return ret;
		}
	} else {
1555
		ret = _regmap_raw_write(map, reg, wval, val_bytes * val_count);
1556
	}
1557 1558 1559 1560 1561

	if (val_bytes != 1)
		kfree(wval);

out:
1562
	map->unlock(map->lock_arg);
1563 1564 1565 1566
	return ret;
}
EXPORT_SYMBOL_GPL(regmap_bulk_write);

1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607
/*
 * regmap_multi_reg_write(): Write multiple registers to the device
 *
 * where the set of register are supplied in any order
 *
 * @map: Register map to write to
 * @regs: Array of structures containing register,value to be written
 * @num_regs: Number of registers to write
 *
 * This function is intended to be used for writing a large block of data
 * atomically to the device in single transfer for those I2C client devices
 * that implement this alternative block write mode.
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_multi_reg_write(struct regmap *map, struct reg_default *regs,
				int num_regs)
{
	int ret = 0, i;

	for (i = 0; i < num_regs; i++) {
		int reg = regs[i].reg;
		if (reg % map->reg_stride)
			return -EINVAL;
	}

	map->lock(map->lock_arg);

	for (i = 0; i < num_regs; i++) {
		ret = _regmap_write(map, regs[i].reg, regs[i].def);
		if (ret != 0)
			goto out;
	}
out:
	map->unlock(map->lock_arg);

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_multi_reg_write);

1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641
/**
 * regmap_raw_write_async(): Write raw values to one or more registers
 *                           asynchronously
 *
 * @map: Register map to write to
 * @reg: Initial register to write to
 * @val: Block of data to be written, laid out for direct transmission to the
 *       device.  Must be valid until regmap_async_complete() is called.
 * @val_len: Length of data pointed to by val.
 *
 * This function is intended to be used for things like firmware
 * download where a large block of data needs to be transferred to the
 * device.  No formatting will be done on the data provided.
 *
 * If supported by the underlying bus the write will be scheduled
 * asynchronously, helping maximise I/O speed on higher speed buses
 * like SPI.  regmap_async_complete() can be called to ensure that all
 * asynchrnous writes have been completed.
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_raw_write_async(struct regmap *map, unsigned int reg,
			   const void *val, size_t val_len)
{
	int ret;

	if (val_len % map->format.val_bytes)
		return -EINVAL;
	if (reg % map->reg_stride)
		return -EINVAL;

	map->lock(map->lock_arg);

1642 1643 1644 1645 1646
	map->async = true;

	ret = _regmap_raw_write(map, reg, val, val_len);

	map->async = false;
1647 1648 1649 1650 1651 1652 1653

	map->unlock(map->lock_arg);

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_raw_write_async);

1654 1655 1656
static int _regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
			    unsigned int val_len)
{
1657
	struct regmap_range_node *range;
1658 1659 1660
	u8 *u8 = map->work_buf;
	int ret;

1661
	WARN_ON(!map->bus);
1662

1663 1664 1665 1666
	range = _regmap_range_lookup(map, reg);
	if (range) {
		ret = _regmap_select_page(map, &reg, range,
					  val_len / map->format.val_bytes);
1667
		if (ret != 0)
1668 1669
			return ret;
	}
1670

1671
	map->format.format_reg(map->work_buf, reg, map->reg_shift);
1672 1673

	/*
1674
	 * Some buses or devices flag reads by setting the high bits in the
1675 1676 1677 1678
	 * register addresss; since it's always the high bits for all
	 * current formats we can do this here rather than in
	 * formatting.  This may break if we get interesting formats.
	 */
1679
	u8[0] |= map->read_flag_mask;
1680

M
Mark Brown 已提交
1681 1682 1683
	trace_regmap_hw_read_start(map->dev, reg,
				   val_len / map->format.val_bytes);

1684
	ret = map->bus->read(map->bus_context, map->work_buf,
1685
			     map->format.reg_bytes + map->format.pad_bytes,
M
Mark Brown 已提交
1686
			     val, val_len);
1687

M
Mark Brown 已提交
1688 1689 1690 1691
	trace_regmap_hw_read_done(map->dev, reg,
				  val_len / map->format.val_bytes);

	return ret;
1692 1693
}

1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709
static int _regmap_bus_read(void *context, unsigned int reg,
			    unsigned int *val)
{
	int ret;
	struct regmap *map = context;

	if (!map->format.parse_val)
		return -EINVAL;

	ret = _regmap_raw_read(map, reg, map->work_buf, map->format.val_bytes);
	if (ret == 0)
		*val = map->format.parse_val(map->work_buf);

	return ret;
}

1710 1711 1712 1713
static int _regmap_read(struct regmap *map, unsigned int reg,
			unsigned int *val)
{
	int ret;
1714 1715
	void *context = _regmap_map_get_context(map);

1716
	WARN_ON(!map->reg_read);
1717

1718 1719 1720 1721 1722 1723 1724 1725 1726
	if (!map->cache_bypass) {
		ret = regcache_read(map, reg, val);
		if (ret == 0)
			return 0;
	}

	if (map->cache_only)
		return -EBUSY;

1727
	ret = map->reg_read(context, reg, val);
M
Mark Brown 已提交
1728
	if (ret == 0) {
1729 1730 1731 1732 1733
#ifdef LOG_DEVICE
		if (strcmp(dev_name(map->dev), LOG_DEVICE) == 0)
			dev_info(map->dev, "%x => %x\n", reg, *val);
#endif

M
Mark Brown 已提交
1734
		trace_regmap_reg_read(map->dev, reg, *val);
1735

1736 1737 1738
		if (!map->cache_bypass)
			regcache_write(map, reg, *val);
	}
1739

1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756
	return ret;
}

/**
 * regmap_read(): Read a value from a single register
 *
 * @map: Register map to write to
 * @reg: Register to be read from
 * @val: Pointer to store read value
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val)
{
	int ret;

1757 1758 1759
	if (reg % map->reg_stride)
		return -EINVAL;

1760
	map->lock(map->lock_arg);
1761 1762 1763

	ret = _regmap_read(map, reg, val);

1764
	map->unlock(map->lock_arg);
1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_read);

/**
 * regmap_raw_read(): Read raw data from the device
 *
 * @map: Register map to write to
 * @reg: First register to be read from
 * @val: Pointer to store read value
 * @val_len: Size of data to read
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
		    size_t val_len)
{
1784 1785 1786 1787
	size_t val_bytes = map->format.val_bytes;
	size_t val_count = val_len / val_bytes;
	unsigned int v;
	int ret, i;
1788

1789 1790
	if (!map->bus)
		return -EINVAL;
1791 1792
	if (val_len % map->format.val_bytes)
		return -EINVAL;
1793 1794
	if (reg % map->reg_stride)
		return -EINVAL;
1795

1796
	map->lock(map->lock_arg);
1797

1798 1799 1800 1801 1802 1803 1804 1805 1806 1807
	if (regmap_volatile_range(map, reg, val_count) || map->cache_bypass ||
	    map->cache_type == REGCACHE_NONE) {
		/* Physical block read if there's no cache involved */
		ret = _regmap_raw_read(map, reg, val, val_len);

	} else {
		/* Otherwise go word by word for the cache; should be low
		 * cost as we expect to hit the cache.
		 */
		for (i = 0; i < val_count; i++) {
1808 1809
			ret = _regmap_read(map, reg + (i * map->reg_stride),
					   &v);
1810 1811 1812
			if (ret != 0)
				goto out;

1813
			map->format.format_val(val + (i * val_bytes), v, 0);
1814 1815
		}
	}
1816

1817
 out:
1818
	map->unlock(map->lock_arg);
1819 1820 1821 1822 1823

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_raw_read);

1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848
/**
 * regmap_field_read(): Read a value to a single register field
 *
 * @field: Register field to read from
 * @val: Pointer to store read value
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_field_read(struct regmap_field *field, unsigned int *val)
{
	int ret;
	unsigned int reg_val;
	ret = regmap_read(field->regmap, field->reg, &reg_val);
	if (ret != 0)
		return ret;

	reg_val &= field->mask;
	reg_val >>= field->shift;
	*val = reg_val;

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_field_read);

1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881
/**
 * regmap_fields_read(): Read a value to a single register field with port ID
 *
 * @field: Register field to read from
 * @id: port ID
 * @val: Pointer to store read value
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_fields_read(struct regmap_field *field, unsigned int id,
		       unsigned int *val)
{
	int ret;
	unsigned int reg_val;

	if (id >= field->id_size)
		return -EINVAL;

	ret = regmap_read(field->regmap,
			  field->reg + (field->id_offset * id),
			  &reg_val);
	if (ret != 0)
		return ret;

	reg_val &= field->mask;
	reg_val >>= field->shift;
	*val = reg_val;

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_fields_read);

1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897
/**
 * regmap_bulk_read(): Read multiple registers from the device
 *
 * @map: Register map to write to
 * @reg: First register to be read from
 * @val: Pointer to store read value, in native register size for device
 * @val_count: Number of registers to read
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_bulk_read(struct regmap *map, unsigned int reg, void *val,
		     size_t val_count)
{
	int ret, i;
	size_t val_bytes = map->format.val_bytes;
1898
	bool vol = regmap_volatile_range(map, reg, val_count);
1899

1900 1901
	if (!map->bus)
		return -EINVAL;
1902
	if (!map->format.parse_inplace)
1903
		return -EINVAL;
1904 1905
	if (reg % map->reg_stride)
		return -EINVAL;
1906

1907
	if (vol || map->cache_type == REGCACHE_NONE) {
1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926
		/*
		 * Some devices does not support bulk read, for
		 * them we have a series of single read operations.
		 */
		if (map->use_single_rw) {
			for (i = 0; i < val_count; i++) {
				ret = regmap_raw_read(map,
						reg + (i * map->reg_stride),
						val + (i * val_bytes),
						val_bytes);
				if (ret != 0)
					return ret;
			}
		} else {
			ret = regmap_raw_read(map, reg, val,
					      val_bytes * val_count);
			if (ret != 0)
				return ret;
		}
1927 1928

		for (i = 0; i < val_count * val_bytes; i += val_bytes)
1929
			map->format.parse_inplace(val + i);
1930 1931
	} else {
		for (i = 0; i < val_count; i++) {
1932
			unsigned int ival;
1933
			ret = regmap_read(map, reg + (i * map->reg_stride),
1934
					  &ival);
1935 1936
			if (ret != 0)
				return ret;
1937
			memcpy(val + (i * val_bytes), &ival, val_bytes);
1938 1939
		}
	}
1940 1941 1942 1943 1944

	return 0;
}
EXPORT_SYMBOL_GPL(regmap_bulk_read);

1945 1946 1947
static int _regmap_update_bits(struct regmap *map, unsigned int reg,
			       unsigned int mask, unsigned int val,
			       bool *change)
1948 1949
{
	int ret;
1950
	unsigned int tmp, orig;
1951

1952
	ret = _regmap_read(map, reg, &orig);
1953
	if (ret != 0)
1954
		return ret;
1955

1956
	tmp = orig & ~mask;
1957 1958
	tmp |= val & mask;

1959
	if (tmp != orig) {
1960
		ret = _regmap_write(map, reg, tmp);
1961 1962 1963 1964
		*change = true;
	} else {
		*change = false;
	}
1965 1966 1967

	return ret;
}
1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982

/**
 * regmap_update_bits: Perform a read/modify/write cycle on the register map
 *
 * @map: Register map to update
 * @reg: Register to update
 * @mask: Bitmask to change
 * @val: New value for bitmask
 *
 * Returns zero for success, a negative number on error.
 */
int regmap_update_bits(struct regmap *map, unsigned int reg,
		       unsigned int mask, unsigned int val)
{
	bool change;
1983 1984
	int ret;

1985
	map->lock(map->lock_arg);
1986
	ret = _regmap_update_bits(map, reg, mask, val, &change);
1987
	map->unlock(map->lock_arg);
1988 1989

	return ret;
1990
}
1991
EXPORT_SYMBOL_GPL(regmap_update_bits);
1992

1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027
/**
 * regmap_update_bits_async: Perform a read/modify/write cycle on the register
 *                           map asynchronously
 *
 * @map: Register map to update
 * @reg: Register to update
 * @mask: Bitmask to change
 * @val: New value for bitmask
 *
 * With most buses the read must be done synchronously so this is most
 * useful for devices with a cache which do not need to interact with
 * the hardware to determine the current register value.
 *
 * Returns zero for success, a negative number on error.
 */
int regmap_update_bits_async(struct regmap *map, unsigned int reg,
			     unsigned int mask, unsigned int val)
{
	bool change;
	int ret;

	map->lock(map->lock_arg);

	map->async = true;

	ret = _regmap_update_bits(map, reg, mask, val, &change);

	map->async = false;

	map->unlock(map->lock_arg);

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_update_bits_async);

2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043
/**
 * regmap_update_bits_check: Perform a read/modify/write cycle on the
 *                           register map and report if updated
 *
 * @map: Register map to update
 * @reg: Register to update
 * @mask: Bitmask to change
 * @val: New value for bitmask
 * @change: Boolean indicating if a write was done
 *
 * Returns zero for success, a negative number on error.
 */
int regmap_update_bits_check(struct regmap *map, unsigned int reg,
			     unsigned int mask, unsigned int val,
			     bool *change)
{
2044 2045
	int ret;

2046
	map->lock(map->lock_arg);
2047
	ret = _regmap_update_bits(map, reg, mask, val, change);
2048
	map->unlock(map->lock_arg);
2049
	return ret;
2050 2051 2052
}
EXPORT_SYMBOL_GPL(regmap_update_bits_check);

2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089
/**
 * regmap_update_bits_check_async: Perform a read/modify/write cycle on the
 *                                 register map asynchronously and report if
 *                                 updated
 *
 * @map: Register map to update
 * @reg: Register to update
 * @mask: Bitmask to change
 * @val: New value for bitmask
 * @change: Boolean indicating if a write was done
 *
 * With most buses the read must be done synchronously so this is most
 * useful for devices with a cache which do not need to interact with
 * the hardware to determine the current register value.
 *
 * Returns zero for success, a negative number on error.
 */
int regmap_update_bits_check_async(struct regmap *map, unsigned int reg,
				   unsigned int mask, unsigned int val,
				   bool *change)
{
	int ret;

	map->lock(map->lock_arg);

	map->async = true;

	ret = _regmap_update_bits(map, reg, mask, val, change);

	map->async = false;

	map->unlock(map->lock_arg);

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_update_bits_check_async);

2090 2091 2092 2093 2094
void regmap_async_complete_cb(struct regmap_async *async, int ret)
{
	struct regmap *map = async->map;
	bool wake;

2095 2096
	trace_regmap_async_io_complete(map->dev);

2097
	spin_lock(&map->async_lock);
M
Mark Brown 已提交
2098
	list_move(&async->list, &map->async_free);
2099 2100 2101 2102 2103 2104 2105 2106 2107 2108
	wake = list_empty(&map->async_list);

	if (ret != 0)
		map->async_ret = ret;

	spin_unlock(&map->async_lock);

	if (wake)
		wake_up(&map->async_waitq);
}
2109
EXPORT_SYMBOL_GPL(regmap_async_complete_cb);
2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136

static int regmap_async_is_done(struct regmap *map)
{
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&map->async_lock, flags);
	ret = list_empty(&map->async_list);
	spin_unlock_irqrestore(&map->async_lock, flags);

	return ret;
}

/**
 * regmap_async_complete: Ensure all asynchronous I/O has completed.
 *
 * @map: Map to operate on.
 *
 * Blocks until any pending asynchronous I/O has completed.  Returns
 * an error code for any failed I/O operations.
 */
int regmap_async_complete(struct regmap *map)
{
	unsigned long flags;
	int ret;

	/* Nothing to do with no async support */
2137
	if (!map->bus || !map->bus->async_write)
2138 2139
		return 0;

2140 2141
	trace_regmap_async_complete_start(map->dev);

2142 2143 2144 2145 2146 2147 2148
	wait_event(map->async_waitq, regmap_async_is_done(map));

	spin_lock_irqsave(&map->async_lock, flags);
	ret = map->async_ret;
	map->async_ret = 0;
	spin_unlock_irqrestore(&map->async_lock, flags);

2149 2150
	trace_regmap_async_complete_done(map->dev);

2151 2152
	return ret;
}
2153
EXPORT_SYMBOL_GPL(regmap_async_complete);
2154

M
Mark Brown 已提交
2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171
/**
 * regmap_register_patch: Register and apply register updates to be applied
 *                        on device initialistion
 *
 * @map: Register map to apply updates to.
 * @regs: Values to update.
 * @num_regs: Number of entries in regs.
 *
 * Register a set of register updates to be applied to the device
 * whenever the device registers are synchronised with the cache and
 * apply them immediately.  Typically this is used to apply
 * corrections to be applied to the device defaults on startup, such
 * as the updates some vendors provide to undocumented registers.
 */
int regmap_register_patch(struct regmap *map, const struct reg_default *regs,
			  int num_regs)
{
2172
	struct reg_default *p;
M
Mark Brown 已提交
2173 2174 2175
	int i, ret;
	bool bypass;

2176 2177 2178 2179
	if (WARN_ONCE(num_regs <= 0, "invalid registers number (%d)\n",
	    num_regs))
		return 0;

2180
	map->lock(map->lock_arg);
M
Mark Brown 已提交
2181 2182 2183 2184

	bypass = map->cache_bypass;

	map->cache_bypass = true;
2185
	map->async = true;
M
Mark Brown 已提交
2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196

	/* Write out first; it's useful to apply even if we fail later. */
	for (i = 0; i < num_regs; i++) {
		ret = _regmap_write(map, regs[i].reg, regs[i].def);
		if (ret != 0) {
			dev_err(map->dev, "Failed to write %x = %x: %d\n",
				regs[i].reg, regs[i].def, ret);
			goto out;
		}
	}

2197 2198 2199 2200 2201 2202 2203
	p = krealloc(map->patch,
		     sizeof(struct reg_default) * (map->patch_regs + num_regs),
		     GFP_KERNEL);
	if (p) {
		memcpy(p + map->patch_regs, regs, num_regs * sizeof(*regs));
		map->patch = p;
		map->patch_regs += num_regs;
M
Mark Brown 已提交
2204 2205 2206 2207 2208
	} else {
		ret = -ENOMEM;
	}

out:
2209
	map->async = false;
M
Mark Brown 已提交
2210 2211
	map->cache_bypass = bypass;

2212
	map->unlock(map->lock_arg);
M
Mark Brown 已提交
2213

2214 2215
	regmap_async_complete(map);

M
Mark Brown 已提交
2216 2217 2218 2219
	return ret;
}
EXPORT_SYMBOL_GPL(regmap_register_patch);

2220
/*
2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234
 * regmap_get_val_bytes(): Report the size of a register value
 *
 * Report the size of a register value, mainly intended to for use by
 * generic infrastructure built on top of regmap.
 */
int regmap_get_val_bytes(struct regmap *map)
{
	if (map->format.format_write)
		return -EINVAL;

	return map->format.val_bytes;
}
EXPORT_SYMBOL_GPL(regmap_get_val_bytes);

2235 2236 2237 2238 2239 2240 2241
static int __init regmap_initcall(void)
{
	regmap_debugfs_initcall();

	return 0;
}
postcore_initcall(regmap_initcall);