regmap.c 71.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12
/*
 * Register map access API
 *
 * Copyright 2011 Wolfson Microelectronics plc
 *
 * Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

13
#include <linux/device.h>
14
#include <linux/slab.h>
15
#include <linux/export.h>
16 17
#include <linux/mutex.h>
#include <linux/err.h>
18
#include <linux/of.h>
19
#include <linux/rbtree.h>
20
#include <linux/sched.h>
21
#include <linux/delay.h>
22
#include <linux/log2.h>
23
#include <linux/hwspinlock.h>
24

M
Mark Brown 已提交
25
#define CREATE_TRACE_POINTS
26
#include "trace.h"
M
Mark Brown 已提交
27

28
#include "internal.h"
29

30 31 32 33 34 35 36 37 38 39
/*
 * Sometimes for failures during very early init the trace
 * infrastructure isn't available early enough to be used.  For this
 * sort of problem defining LOG_DEVICE will add printks for basic
 * register I/O on a specific device.
 */
#undef LOG_DEVICE

static int _regmap_update_bits(struct regmap *map, unsigned int reg,
			       unsigned int mask, unsigned int val,
40
			       bool *change, bool force_write);
41

42 43
static int _regmap_bus_reg_read(void *context, unsigned int reg,
				unsigned int *val);
44 45
static int _regmap_bus_read(void *context, unsigned int reg,
			    unsigned int *val);
46 47
static int _regmap_bus_formatted_write(void *context, unsigned int reg,
				       unsigned int val);
48 49
static int _regmap_bus_reg_write(void *context, unsigned int reg,
				 unsigned int val);
50 51
static int _regmap_bus_raw_write(void *context, unsigned int reg,
				 unsigned int val);
52

53 54 55 56 57 58 59 60 61 62 63 64 65 66
bool regmap_reg_in_ranges(unsigned int reg,
			  const struct regmap_range *ranges,
			  unsigned int nranges)
{
	const struct regmap_range *r;
	int i;

	for (i = 0, r = ranges; i < nranges; i++, r++)
		if (regmap_reg_in_range(reg, r))
			return true;
	return false;
}
EXPORT_SYMBOL_GPL(regmap_reg_in_ranges);

67 68
bool regmap_check_range_table(struct regmap *map, unsigned int reg,
			      const struct regmap_access_table *table)
69 70 71 72 73 74 75 76 77 78 79 80
{
	/* Check "no ranges" first */
	if (regmap_reg_in_ranges(reg, table->no_ranges, table->n_no_ranges))
		return false;

	/* In case zero "yes ranges" are supplied, any reg is OK */
	if (!table->n_yes_ranges)
		return true;

	return regmap_reg_in_ranges(reg, table->yes_ranges,
				    table->n_yes_ranges);
}
81
EXPORT_SYMBOL_GPL(regmap_check_range_table);
82

83 84 85 86 87 88 89 90
bool regmap_writeable(struct regmap *map, unsigned int reg)
{
	if (map->max_register && reg > map->max_register)
		return false;

	if (map->writeable_reg)
		return map->writeable_reg(map->dev, reg);

91
	if (map->wr_table)
92
		return regmap_check_range_table(map, reg, map->wr_table);
93

94 95 96
	return true;
}

97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
bool regmap_cached(struct regmap *map, unsigned int reg)
{
	int ret;
	unsigned int val;

	if (map->cache == REGCACHE_NONE)
		return false;

	if (!map->cache_ops)
		return false;

	if (map->max_register && reg > map->max_register)
		return false;

	map->lock(map->lock_arg);
	ret = regcache_read(map, reg, &val);
	map->unlock(map->lock_arg);
	if (ret)
		return false;

	return true;
}

120 121
bool regmap_readable(struct regmap *map, unsigned int reg)
{
122 123 124
	if (!map->reg_read)
		return false;

125 126 127
	if (map->max_register && reg > map->max_register)
		return false;

128 129 130
	if (map->format.format_write)
		return false;

131 132 133
	if (map->readable_reg)
		return map->readable_reg(map->dev, reg);

134
	if (map->rd_table)
135
		return regmap_check_range_table(map, reg, map->rd_table);
136

137 138 139 140 141
	return true;
}

bool regmap_volatile(struct regmap *map, unsigned int reg)
{
142
	if (!map->format.format_write && !regmap_readable(map, reg))
143 144 145 146 147
		return false;

	if (map->volatile_reg)
		return map->volatile_reg(map->dev, reg);

148
	if (map->volatile_table)
149
		return regmap_check_range_table(map, reg, map->volatile_table);
150

151 152 153 154
	if (map->cache_ops)
		return false;
	else
		return true;
155 156 157 158
}

bool regmap_precious(struct regmap *map, unsigned int reg)
{
159
	if (!regmap_readable(map, reg))
160 161 162 163 164
		return false;

	if (map->precious_reg)
		return map->precious_reg(map->dev, reg);

165
	if (map->precious_table)
166
		return regmap_check_range_table(map, reg, map->precious_table);
167

168 169 170
	return false;
}

171
static bool regmap_volatile_range(struct regmap *map, unsigned int reg,
P
Paul Bolle 已提交
172
	size_t num)
173 174 175 176 177 178 179 180 181 182
{
	unsigned int i;

	for (i = 0; i < num; i++)
		if (!regmap_volatile(map, reg + i))
			return false;

	return true;
}

183 184 185 186 187 188 189 190
static void regmap_format_2_6_write(struct regmap *map,
				     unsigned int reg, unsigned int val)
{
	u8 *out = map->work_buf;

	*out = (reg << 6) | val;
}

191 192 193 194 195 196 197 198 199 200 201 202 203 204
static void regmap_format_4_12_write(struct regmap *map,
				     unsigned int reg, unsigned int val)
{
	__be16 *out = map->work_buf;
	*out = cpu_to_be16((reg << 12) | val);
}

static void regmap_format_7_9_write(struct regmap *map,
				    unsigned int reg, unsigned int val)
{
	__be16 *out = map->work_buf;
	*out = cpu_to_be16((reg << 9) | val);
}

205 206 207 208 209 210 211 212 213 214
static void regmap_format_10_14_write(struct regmap *map,
				    unsigned int reg, unsigned int val)
{
	u8 *out = map->work_buf;

	out[2] = val;
	out[1] = (val >> 8) | (reg << 6);
	out[0] = reg >> 2;
}

215
static void regmap_format_8(void *buf, unsigned int val, unsigned int shift)
216 217 218
{
	u8 *b = buf;

219
	b[0] = val << shift;
220 221
}

222
static void regmap_format_16_be(void *buf, unsigned int val, unsigned int shift)
223 224 225
{
	__be16 *b = buf;

226
	b[0] = cpu_to_be16(val << shift);
227 228
}

229 230 231 232 233 234 235
static void regmap_format_16_le(void *buf, unsigned int val, unsigned int shift)
{
	__le16 *b = buf;

	b[0] = cpu_to_le16(val << shift);
}

236 237 238 239 240 241
static void regmap_format_16_native(void *buf, unsigned int val,
				    unsigned int shift)
{
	*(u16 *)buf = val << shift;
}

242
static void regmap_format_24(void *buf, unsigned int val, unsigned int shift)
243 244 245
{
	u8 *b = buf;

246 247
	val <<= shift;

248 249 250 251 252
	b[0] = val >> 16;
	b[1] = val >> 8;
	b[2] = val;
}

253
static void regmap_format_32_be(void *buf, unsigned int val, unsigned int shift)
254 255 256
{
	__be32 *b = buf;

257
	b[0] = cpu_to_be32(val << shift);
258 259
}

260 261 262 263 264 265 266
static void regmap_format_32_le(void *buf, unsigned int val, unsigned int shift)
{
	__le32 *b = buf;

	b[0] = cpu_to_le32(val << shift);
}

267 268 269 270 271 272
static void regmap_format_32_native(void *buf, unsigned int val,
				    unsigned int shift)
{
	*(u32 *)buf = val << shift;
}

X
Xiubo Li 已提交
273 274 275 276 277
#ifdef CONFIG_64BIT
static void regmap_format_64_be(void *buf, unsigned int val, unsigned int shift)
{
	__be64 *b = buf;

278
	b[0] = cpu_to_be64((u64)val << shift);
X
Xiubo Li 已提交
279 280 281 282 283 284
}

static void regmap_format_64_le(void *buf, unsigned int val, unsigned int shift)
{
	__le64 *b = buf;

285
	b[0] = cpu_to_le64((u64)val << shift);
X
Xiubo Li 已提交
286 287 288 289 290
}

static void regmap_format_64_native(void *buf, unsigned int val,
				    unsigned int shift)
{
291
	*(u64 *)buf = (u64)val << shift;
X
Xiubo Li 已提交
292 293 294
}
#endif

295
static void regmap_parse_inplace_noop(void *buf)
296
{
297 298 299 300 301
}

static unsigned int regmap_parse_8(const void *buf)
{
	const u8 *b = buf;
302 303 304 305

	return b[0];
}

306 307 308 309 310 311 312
static unsigned int regmap_parse_16_be(const void *buf)
{
	const __be16 *b = buf;

	return be16_to_cpu(b[0]);
}

313 314 315 316 317 318 319
static unsigned int regmap_parse_16_le(const void *buf)
{
	const __le16 *b = buf;

	return le16_to_cpu(b[0]);
}

320
static void regmap_parse_16_be_inplace(void *buf)
321 322 323 324 325 326
{
	__be16 *b = buf;

	b[0] = be16_to_cpu(b[0]);
}

327 328 329 330 331 332 333
static void regmap_parse_16_le_inplace(void *buf)
{
	__le16 *b = buf;

	b[0] = le16_to_cpu(b[0]);
}

334
static unsigned int regmap_parse_16_native(const void *buf)
335 336 337 338
{
	return *(u16 *)buf;
}

339
static unsigned int regmap_parse_24(const void *buf)
340
{
341
	const u8 *b = buf;
342 343 344 345 346 347 348
	unsigned int ret = b[2];
	ret |= ((unsigned int)b[1]) << 8;
	ret |= ((unsigned int)b[0]) << 16;

	return ret;
}

349 350 351 352 353 354 355
static unsigned int regmap_parse_32_be(const void *buf)
{
	const __be32 *b = buf;

	return be32_to_cpu(b[0]);
}

356 357 358 359 360 361 362
static unsigned int regmap_parse_32_le(const void *buf)
{
	const __le32 *b = buf;

	return le32_to_cpu(b[0]);
}

363
static void regmap_parse_32_be_inplace(void *buf)
364 365 366 367 368 369
{
	__be32 *b = buf;

	b[0] = be32_to_cpu(b[0]);
}

370 371 372 373 374 375 376
static void regmap_parse_32_le_inplace(void *buf)
{
	__le32 *b = buf;

	b[0] = le32_to_cpu(b[0]);
}

377
static unsigned int regmap_parse_32_native(const void *buf)
378 379 380 381
{
	return *(u32 *)buf;
}

X
Xiubo Li 已提交
382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416
#ifdef CONFIG_64BIT
static unsigned int regmap_parse_64_be(const void *buf)
{
	const __be64 *b = buf;

	return be64_to_cpu(b[0]);
}

static unsigned int regmap_parse_64_le(const void *buf)
{
	const __le64 *b = buf;

	return le64_to_cpu(b[0]);
}

static void regmap_parse_64_be_inplace(void *buf)
{
	__be64 *b = buf;

	b[0] = be64_to_cpu(b[0]);
}

static void regmap_parse_64_le_inplace(void *buf)
{
	__le64 *b = buf;

	b[0] = le64_to_cpu(b[0]);
}

static unsigned int regmap_parse_64_native(const void *buf)
{
	return *(u64 *)buf;
}
#endif

417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459
static void regmap_lock_hwlock(void *__map)
{
	struct regmap *map = __map;

	hwspin_lock_timeout(map->hwlock, UINT_MAX);
}

static void regmap_lock_hwlock_irq(void *__map)
{
	struct regmap *map = __map;

	hwspin_lock_timeout_irq(map->hwlock, UINT_MAX);
}

static void regmap_lock_hwlock_irqsave(void *__map)
{
	struct regmap *map = __map;

	hwspin_lock_timeout_irqsave(map->hwlock, UINT_MAX,
				    &map->spinlock_flags);
}

static void regmap_unlock_hwlock(void *__map)
{
	struct regmap *map = __map;

	hwspin_unlock(map->hwlock);
}

static void regmap_unlock_hwlock_irq(void *__map)
{
	struct regmap *map = __map;

	hwspin_unlock_irq(map->hwlock);
}

static void regmap_unlock_hwlock_irqrestore(void *__map)
{
	struct regmap *map = __map;

	hwspin_unlock_irqrestore(map->hwlock, &map->spinlock_flags);
}

460
static void regmap_lock_mutex(void *__map)
461
{
462
	struct regmap *map = __map;
463 464 465
	mutex_lock(&map->mutex);
}

466
static void regmap_unlock_mutex(void *__map)
467
{
468
	struct regmap *map = __map;
469 470 471
	mutex_unlock(&map->mutex);
}

472
static void regmap_lock_spinlock(void *__map)
473
__acquires(&map->spinlock)
474
{
475
	struct regmap *map = __map;
476 477 478 479
	unsigned long flags;

	spin_lock_irqsave(&map->spinlock, flags);
	map->spinlock_flags = flags;
480 481
}

482
static void regmap_unlock_spinlock(void *__map)
483
__releases(&map->spinlock)
484
{
485
	struct regmap *map = __map;
486
	spin_unlock_irqrestore(&map->spinlock, map->spinlock_flags);
487 488
}

M
Mark Brown 已提交
489 490 491 492 493 494 495 496 497
static void dev_get_regmap_release(struct device *dev, void *res)
{
	/*
	 * We don't actually have anything to do here; the goal here
	 * is not to manage the regmap but to provide a simple way to
	 * get the regmap back given a struct device.
	 */
}

498 499 500 501 502 503 504 505
static bool _regmap_range_add(struct regmap *map,
			      struct regmap_range_node *data)
{
	struct rb_root *root = &map->range_tree;
	struct rb_node **new = &(root->rb_node), *parent = NULL;

	while (*new) {
		struct regmap_range_node *this =
G
Geliang Tang 已提交
506
			rb_entry(*new, struct regmap_range_node, node);
507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529

		parent = *new;
		if (data->range_max < this->range_min)
			new = &((*new)->rb_left);
		else if (data->range_min > this->range_max)
			new = &((*new)->rb_right);
		else
			return false;
	}

	rb_link_node(&data->node, parent, new);
	rb_insert_color(&data->node, root);

	return true;
}

static struct regmap_range_node *_regmap_range_lookup(struct regmap *map,
						      unsigned int reg)
{
	struct rb_node *node = map->range_tree.rb_node;

	while (node) {
		struct regmap_range_node *this =
G
Geliang Tang 已提交
530
			rb_entry(node, struct regmap_range_node, node);
531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558

		if (reg < this->range_min)
			node = node->rb_left;
		else if (reg > this->range_max)
			node = node->rb_right;
		else
			return this;
	}

	return NULL;
}

static void regmap_range_exit(struct regmap *map)
{
	struct rb_node *next;
	struct regmap_range_node *range_node;

	next = rb_first(&map->range_tree);
	while (next) {
		range_node = rb_entry(next, struct regmap_range_node, node);
		next = rb_next(&range_node->node);
		rb_erase(&range_node->node, &map->range_tree);
		kfree(range_node);
	}

	kfree(map->selector_work_buf);
}

559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580
int regmap_attach_dev(struct device *dev, struct regmap *map,
		      const struct regmap_config *config)
{
	struct regmap **m;

	map->dev = dev;

	regmap_debugfs_init(map, config->name);

	/* Add a devres resource for dev_get_regmap() */
	m = devres_alloc(dev_get_regmap_release, sizeof(*m), GFP_KERNEL);
	if (!m) {
		regmap_debugfs_exit(map);
		return -ENOMEM;
	}
	*m = map;
	devres_add(dev, m);

	return 0;
}
EXPORT_SYMBOL_GPL(regmap_attach_dev);

581 582 583 584 585 586 587 588 589 590 591 592 593 594 595
static enum regmap_endian regmap_get_reg_endian(const struct regmap_bus *bus,
					const struct regmap_config *config)
{
	enum regmap_endian endian;

	/* Retrieve the endianness specification from the regmap config */
	endian = config->reg_format_endian;

	/* If the regmap config specified a non-default value, use that */
	if (endian != REGMAP_ENDIAN_DEFAULT)
		return endian;

	/* Retrieve the endianness specification from the bus config */
	if (bus && bus->reg_format_endian_default)
		endian = bus->reg_format_endian_default;
596

597 598 599 600 601 602 603 604
	/* If the bus specified a non-default value, use that */
	if (endian != REGMAP_ENDIAN_DEFAULT)
		return endian;

	/* Use this if no other value was found */
	return REGMAP_ENDIAN_BIG;
}

605 606 607
enum regmap_endian regmap_get_val_endian(struct device *dev,
					 const struct regmap_bus *bus,
					 const struct regmap_config *config)
608
{
609
	struct device_node *np;
610
	enum regmap_endian endian;
611

612
	/* Retrieve the endianness specification from the regmap config */
613
	endian = config->val_format_endian;
614

615
	/* If the regmap config specified a non-default value, use that */
616 617
	if (endian != REGMAP_ENDIAN_DEFAULT)
		return endian;
618

619 620 621
	/* If the dev and dev->of_node exist try to get endianness from DT */
	if (dev && dev->of_node) {
		np = dev->of_node;
622

623 624 625 626 627
		/* Parse the device's DT node for an endianness specification */
		if (of_property_read_bool(np, "big-endian"))
			endian = REGMAP_ENDIAN_BIG;
		else if (of_property_read_bool(np, "little-endian"))
			endian = REGMAP_ENDIAN_LITTLE;
628 629
		else if (of_property_read_bool(np, "native-endian"))
			endian = REGMAP_ENDIAN_NATIVE;
630 631 632 633 634

		/* If the endianness was specified in DT, use that */
		if (endian != REGMAP_ENDIAN_DEFAULT)
			return endian;
	}
635 636

	/* Retrieve the endianness specification from the bus config */
637 638
	if (bus && bus->val_format_endian_default)
		endian = bus->val_format_endian_default;
639

640
	/* If the bus specified a non-default value, use that */
641 642
	if (endian != REGMAP_ENDIAN_DEFAULT)
		return endian;
643 644

	/* Use this if no other value was found */
645
	return REGMAP_ENDIAN_BIG;
646
}
647
EXPORT_SYMBOL_GPL(regmap_get_val_endian);
648

649 650 651 652 653 654
struct regmap *__regmap_init(struct device *dev,
			     const struct regmap_bus *bus,
			     void *bus_context,
			     const struct regmap_config *config,
			     struct lock_class_key *lock_key,
			     const char *lock_name)
655
{
656
	struct regmap *map;
657
	int ret = -EINVAL;
658
	enum regmap_endian reg_endian, val_endian;
659
	int i, j;
660

661
	if (!config)
662
		goto err;
663 664 665 666 667 668 669

	map = kzalloc(sizeof(*map), GFP_KERNEL);
	if (map == NULL) {
		ret = -ENOMEM;
		goto err;
	}

670 671 672 673
	if (config->lock && config->unlock) {
		map->lock = config->lock;
		map->unlock = config->unlock;
		map->lock_arg = config->lock_arg;
674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696
	} else if (config->hwlock_id) {
		map->hwlock = hwspin_lock_request_specific(config->hwlock_id);
		if (!map->hwlock) {
			ret = -ENXIO;
			goto err_map;
		}

		switch (config->hwlock_mode) {
		case HWLOCK_IRQSTATE:
			map->lock = regmap_lock_hwlock_irqsave;
			map->unlock = regmap_unlock_hwlock_irqrestore;
			break;
		case HWLOCK_IRQ:
			map->lock = regmap_lock_hwlock_irq;
			map->unlock = regmap_unlock_hwlock_irq;
			break;
		default:
			map->lock = regmap_lock_hwlock;
			map->unlock = regmap_unlock_hwlock;
			break;
		}

		map->lock_arg = map;
697
	} else {
698 699
		if ((bus && bus->fast_io) ||
		    config->fast_io) {
700 701 702
			spin_lock_init(&map->spinlock);
			map->lock = regmap_lock_spinlock;
			map->unlock = regmap_unlock_spinlock;
703 704
			lockdep_set_class_and_name(&map->spinlock,
						   lock_key, lock_name);
705 706 707 708
		} else {
			mutex_init(&map->mutex);
			map->lock = regmap_lock_mutex;
			map->unlock = regmap_unlock_mutex;
709 710
			lockdep_set_class_and_name(&map->mutex,
						   lock_key, lock_name);
711 712
		}
		map->lock_arg = map;
713
	}
714 715 716 717 718 719 720 721 722 723

	/*
	 * When we write in fast-paths with regmap_bulk_write() don't allocate
	 * scratch buffers with sleeping allocations.
	 */
	if ((bus && bus->fast_io) || config->fast_io)
		map->alloc_flags = GFP_ATOMIC;
	else
		map->alloc_flags = GFP_KERNEL;

724
	map->format.reg_bytes = DIV_ROUND_UP(config->reg_bits, 8);
725
	map->format.pad_bytes = config->pad_bits / 8;
726
	map->format.val_bytes = DIV_ROUND_UP(config->val_bits, 8);
727 728
	map->format.buf_size = DIV_ROUND_UP(config->reg_bits +
			config->val_bits + config->pad_bits, 8);
729
	map->reg_shift = config->pad_bits % 8;
730 731 732 733
	if (config->reg_stride)
		map->reg_stride = config->reg_stride;
	else
		map->reg_stride = 1;
734 735 736 737
	if (is_power_of_2(map->reg_stride))
		map->reg_stride_order = ilog2(map->reg_stride);
	else
		map->reg_stride_order = -1;
738 739
	map->use_single_read = config->use_single_rw || !bus || !bus->read;
	map->use_single_write = config->use_single_rw || !bus || !bus->write;
740
	map->can_multi_write = config->can_multi_write && bus && bus->write;
741 742 743 744
	if (bus) {
		map->max_raw_read = bus->max_raw_read;
		map->max_raw_write = bus->max_raw_write;
	}
745 746
	map->dev = dev;
	map->bus = bus;
747
	map->bus_context = bus_context;
748
	map->max_register = config->max_register;
749 750 751 752
	map->wr_table = config->wr_table;
	map->rd_table = config->rd_table;
	map->volatile_table = config->volatile_table;
	map->precious_table = config->precious_table;
753 754 755
	map->writeable_reg = config->writeable_reg;
	map->readable_reg = config->readable_reg;
	map->volatile_reg = config->volatile_reg;
756
	map->precious_reg = config->precious_reg;
757
	map->cache_type = config->cache_type;
M
Mark Brown 已提交
758
	map->name = config->name;
759

760 761
	spin_lock_init(&map->async_lock);
	INIT_LIST_HEAD(&map->async_list);
M
Mark Brown 已提交
762
	INIT_LIST_HEAD(&map->async_free);
763 764
	init_waitqueue_head(&map->async_waitq);

765 766 767
	if (config->read_flag_mask || config->write_flag_mask) {
		map->read_flag_mask = config->read_flag_mask;
		map->write_flag_mask = config->write_flag_mask;
768
	} else if (bus) {
769 770 771
		map->read_flag_mask = bus->read_flag_mask;
	}

772 773 774 775
	if (!bus) {
		map->reg_read  = config->reg_read;
		map->reg_write = config->reg_write;

776 777 778 779 780 781
		map->defer_caching = false;
		goto skip_format_initialization;
	} else if (!bus->read || !bus->write) {
		map->reg_read = _regmap_bus_reg_read;
		map->reg_write = _regmap_bus_reg_write;

782 783 784 785
		map->defer_caching = false;
		goto skip_format_initialization;
	} else {
		map->reg_read  = _regmap_bus_read;
786
		map->reg_update_bits = bus->reg_update_bits;
787
	}
788

789 790
	reg_endian = regmap_get_reg_endian(bus, config);
	val_endian = regmap_get_val_endian(dev, bus, config);
791

792
	switch (config->reg_bits + map->reg_shift) {
793 794 795 796 797 798
	case 2:
		switch (config->val_bits) {
		case 6:
			map->format.format_write = regmap_format_2_6_write;
			break;
		default:
799
			goto err_hwlock;
800 801 802
		}
		break;

803 804 805 806 807 808
	case 4:
		switch (config->val_bits) {
		case 12:
			map->format.format_write = regmap_format_4_12_write;
			break;
		default:
809
			goto err_hwlock;
810 811 812 813 814 815 816 817 818
		}
		break;

	case 7:
		switch (config->val_bits) {
		case 9:
			map->format.format_write = regmap_format_7_9_write;
			break;
		default:
819
			goto err_hwlock;
820 821 822
		}
		break;

823 824 825 826 827 828
	case 10:
		switch (config->val_bits) {
		case 14:
			map->format.format_write = regmap_format_10_14_write;
			break;
		default:
829
			goto err_hwlock;
830 831 832
		}
		break;

833 834 835 836 837
	case 8:
		map->format.format_reg = regmap_format_8;
		break;

	case 16:
838 839 840 841
		switch (reg_endian) {
		case REGMAP_ENDIAN_BIG:
			map->format.format_reg = regmap_format_16_be;
			break;
842 843 844
		case REGMAP_ENDIAN_LITTLE:
			map->format.format_reg = regmap_format_16_le;
			break;
845 846 847 848
		case REGMAP_ENDIAN_NATIVE:
			map->format.format_reg = regmap_format_16_native;
			break;
		default:
849
			goto err_hwlock;
850
		}
851 852
		break;

853 854
	case 24:
		if (reg_endian != REGMAP_ENDIAN_BIG)
855
			goto err_hwlock;
856 857 858
		map->format.format_reg = regmap_format_24;
		break;

859
	case 32:
860 861 862 863
		switch (reg_endian) {
		case REGMAP_ENDIAN_BIG:
			map->format.format_reg = regmap_format_32_be;
			break;
864 865 866
		case REGMAP_ENDIAN_LITTLE:
			map->format.format_reg = regmap_format_32_le;
			break;
867 868 869 870
		case REGMAP_ENDIAN_NATIVE:
			map->format.format_reg = regmap_format_32_native;
			break;
		default:
871
			goto err_hwlock;
872
		}
873 874
		break;

X
Xiubo Li 已提交
875 876 877 878 879 880
#ifdef CONFIG_64BIT
	case 64:
		switch (reg_endian) {
		case REGMAP_ENDIAN_BIG:
			map->format.format_reg = regmap_format_64_be;
			break;
881 882 883
		case REGMAP_ENDIAN_LITTLE:
			map->format.format_reg = regmap_format_64_le;
			break;
X
Xiubo Li 已提交
884 885 886 887
		case REGMAP_ENDIAN_NATIVE:
			map->format.format_reg = regmap_format_64_native;
			break;
		default:
888
			goto err_hwlock;
X
Xiubo Li 已提交
889 890 891 892
		}
		break;
#endif

893
	default:
894
		goto err_hwlock;
895 896
	}

897 898 899
	if (val_endian == REGMAP_ENDIAN_NATIVE)
		map->format.parse_inplace = regmap_parse_inplace_noop;

900 901 902 903
	switch (config->val_bits) {
	case 8:
		map->format.format_val = regmap_format_8;
		map->format.parse_val = regmap_parse_8;
904
		map->format.parse_inplace = regmap_parse_inplace_noop;
905 906
		break;
	case 16:
907 908 909 910
		switch (val_endian) {
		case REGMAP_ENDIAN_BIG:
			map->format.format_val = regmap_format_16_be;
			map->format.parse_val = regmap_parse_16_be;
911
			map->format.parse_inplace = regmap_parse_16_be_inplace;
912
			break;
913 914 915 916 917
		case REGMAP_ENDIAN_LITTLE:
			map->format.format_val = regmap_format_16_le;
			map->format.parse_val = regmap_parse_16_le;
			map->format.parse_inplace = regmap_parse_16_le_inplace;
			break;
918 919 920 921 922
		case REGMAP_ENDIAN_NATIVE:
			map->format.format_val = regmap_format_16_native;
			map->format.parse_val = regmap_parse_16_native;
			break;
		default:
923
			goto err_hwlock;
924
		}
925
		break;
926
	case 24:
927
		if (val_endian != REGMAP_ENDIAN_BIG)
928
			goto err_hwlock;
929 930 931
		map->format.format_val = regmap_format_24;
		map->format.parse_val = regmap_parse_24;
		break;
932
	case 32:
933 934 935 936
		switch (val_endian) {
		case REGMAP_ENDIAN_BIG:
			map->format.format_val = regmap_format_32_be;
			map->format.parse_val = regmap_parse_32_be;
937
			map->format.parse_inplace = regmap_parse_32_be_inplace;
938
			break;
939 940 941 942 943
		case REGMAP_ENDIAN_LITTLE:
			map->format.format_val = regmap_format_32_le;
			map->format.parse_val = regmap_parse_32_le;
			map->format.parse_inplace = regmap_parse_32_le_inplace;
			break;
944 945 946 947 948
		case REGMAP_ENDIAN_NATIVE:
			map->format.format_val = regmap_format_32_native;
			map->format.parse_val = regmap_parse_32_native;
			break;
		default:
949
			goto err_hwlock;
950
		}
951
		break;
X
Xiubo Li 已提交
952
#ifdef CONFIG_64BIT
D
Dan Carpenter 已提交
953
	case 64:
X
Xiubo Li 已提交
954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969
		switch (val_endian) {
		case REGMAP_ENDIAN_BIG:
			map->format.format_val = regmap_format_64_be;
			map->format.parse_val = regmap_parse_64_be;
			map->format.parse_inplace = regmap_parse_64_be_inplace;
			break;
		case REGMAP_ENDIAN_LITTLE:
			map->format.format_val = regmap_format_64_le;
			map->format.parse_val = regmap_parse_64_le;
			map->format.parse_inplace = regmap_parse_64_le_inplace;
			break;
		case REGMAP_ENDIAN_NATIVE:
			map->format.format_val = regmap_format_64_native;
			map->format.parse_val = regmap_parse_64_native;
			break;
		default:
970
			goto err_hwlock;
X
Xiubo Li 已提交
971 972 973
		}
		break;
#endif
974 975
	}

976 977 978
	if (map->format.format_write) {
		if ((reg_endian != REGMAP_ENDIAN_BIG) ||
		    (val_endian != REGMAP_ENDIAN_BIG))
979
			goto err_hwlock;
980
		map->use_single_write = true;
981
	}
982

983 984
	if (!map->format.format_write &&
	    !(map->format.format_reg && map->format.format_val))
985
		goto err_hwlock;
986

987
	map->work_buf = kzalloc(map->format.buf_size, GFP_KERNEL);
988 989
	if (map->work_buf == NULL) {
		ret = -ENOMEM;
990
		goto err_hwlock;
991 992
	}

993 994
	if (map->format.format_write) {
		map->defer_caching = false;
995
		map->reg_write = _regmap_bus_formatted_write;
996 997
	} else if (map->format.format_val) {
		map->defer_caching = true;
998
		map->reg_write = _regmap_bus_raw_write;
999 1000 1001
	}

skip_format_initialization:
1002

1003
	map->range_tree = RB_ROOT;
M
Mark Brown 已提交
1004
	for (i = 0; i < config->num_ranges; i++) {
1005 1006 1007 1008
		const struct regmap_range_cfg *range_cfg = &config->ranges[i];
		struct regmap_range_node *new;

		/* Sanity check */
1009 1010 1011
		if (range_cfg->range_max < range_cfg->range_min) {
			dev_err(map->dev, "Invalid range %d: %d < %d\n", i,
				range_cfg->range_max, range_cfg->range_min);
1012
			goto err_range;
1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031
		}

		if (range_cfg->range_max > map->max_register) {
			dev_err(map->dev, "Invalid range %d: %d > %d\n", i,
				range_cfg->range_max, map->max_register);
			goto err_range;
		}

		if (range_cfg->selector_reg > map->max_register) {
			dev_err(map->dev,
				"Invalid range %d: selector out of map\n", i);
			goto err_range;
		}

		if (range_cfg->window_len == 0) {
			dev_err(map->dev, "Invalid range %d: window_len 0\n",
				i);
			goto err_range;
		}
1032 1033 1034

		/* Make sure, that this register range has no selector
		   or data window within its boundary */
M
Mark Brown 已提交
1035
		for (j = 0; j < config->num_ranges; j++) {
1036 1037 1038 1039 1040
			unsigned sel_reg = config->ranges[j].selector_reg;
			unsigned win_min = config->ranges[j].window_start;
			unsigned win_max = win_min +
					   config->ranges[j].window_len - 1;

1041 1042 1043 1044
			/* Allow data window inside its own virtual range */
			if (j == i)
				continue;

1045 1046
			if (range_cfg->range_min <= sel_reg &&
			    sel_reg <= range_cfg->range_max) {
1047 1048 1049
				dev_err(map->dev,
					"Range %d: selector for %d in window\n",
					i, j);
1050 1051 1052 1053 1054
				goto err_range;
			}

			if (!(win_max < range_cfg->range_min ||
			      win_min > range_cfg->range_max)) {
1055 1056 1057
				dev_err(map->dev,
					"Range %d: window for %d in window\n",
					i, j);
1058 1059 1060 1061 1062 1063 1064 1065 1066 1067
				goto err_range;
			}
		}

		new = kzalloc(sizeof(*new), GFP_KERNEL);
		if (new == NULL) {
			ret = -ENOMEM;
			goto err_range;
		}

1068
		new->map = map;
M
Mark Brown 已提交
1069
		new->name = range_cfg->name;
1070 1071 1072 1073 1074 1075 1076 1077
		new->range_min = range_cfg->range_min;
		new->range_max = range_cfg->range_max;
		new->selector_reg = range_cfg->selector_reg;
		new->selector_mask = range_cfg->selector_mask;
		new->selector_shift = range_cfg->selector_shift;
		new->window_start = range_cfg->window_start;
		new->window_len = range_cfg->window_len;

N
Nenghua Cao 已提交
1078
		if (!_regmap_range_add(map, new)) {
1079
			dev_err(map->dev, "Failed to add range %d\n", i);
1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092
			kfree(new);
			goto err_range;
		}

		if (map->selector_work_buf == NULL) {
			map->selector_work_buf =
				kzalloc(map->format.buf_size, GFP_KERNEL);
			if (map->selector_work_buf == NULL) {
				ret = -ENOMEM;
				goto err_range;
			}
		}
	}
1093

1094
	ret = regcache_init(map, config);
1095
	if (ret != 0)
1096 1097
		goto err_range;

1098
	if (dev) {
1099 1100 1101
		ret = regmap_attach_dev(dev, map, config);
		if (ret != 0)
			goto err_regcache;
1102
	}
M
Mark Brown 已提交
1103

1104 1105
	return map;

1106
err_regcache:
M
Mark Brown 已提交
1107
	regcache_exit(map);
1108 1109
err_range:
	regmap_range_exit(map);
1110
	kfree(map->work_buf);
1111 1112
err_hwlock:
	hwspin_lock_free(map->hwlock);
1113 1114 1115 1116 1117
err_map:
	kfree(map);
err:
	return ERR_PTR(ret);
}
1118
EXPORT_SYMBOL_GPL(__regmap_init);
1119

1120 1121 1122 1123 1124
static void devm_regmap_release(struct device *dev, void *res)
{
	regmap_exit(*(struct regmap **)res);
}

1125 1126 1127 1128 1129 1130
struct regmap *__devm_regmap_init(struct device *dev,
				  const struct regmap_bus *bus,
				  void *bus_context,
				  const struct regmap_config *config,
				  struct lock_class_key *lock_key,
				  const char *lock_name)
1131 1132 1133 1134 1135 1136 1137
{
	struct regmap **ptr, *regmap;

	ptr = devres_alloc(devm_regmap_release, sizeof(*ptr), GFP_KERNEL);
	if (!ptr)
		return ERR_PTR(-ENOMEM);

1138 1139
	regmap = __regmap_init(dev, bus, bus_context, config,
			       lock_key, lock_name);
1140 1141 1142 1143 1144 1145 1146 1147 1148
	if (!IS_ERR(regmap)) {
		*ptr = regmap;
		devres_add(dev, ptr);
	} else {
		devres_free(ptr);
	}

	return regmap;
}
1149
EXPORT_SYMBOL_GPL(__devm_regmap_init);
1150

1151 1152 1153 1154 1155 1156
static void regmap_field_init(struct regmap_field *rm_field,
	struct regmap *regmap, struct reg_field reg_field)
{
	rm_field->regmap = regmap;
	rm_field->reg = reg_field.reg;
	rm_field->shift = reg_field.lsb;
1157
	rm_field->mask = GENMASK(reg_field.msb, reg_field.lsb);
1158 1159
	rm_field->id_size = reg_field.id_size;
	rm_field->id_offset = reg_field.id_offset;
1160 1161 1162
}

/**
1163
 * devm_regmap_field_alloc() - Allocate and initialise a register field.
1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188
 *
 * @dev: Device that will be interacted with
 * @regmap: regmap bank in which this register field is located.
 * @reg_field: Register field with in the bank.
 *
 * The return value will be an ERR_PTR() on error or a valid pointer
 * to a struct regmap_field. The regmap_field will be automatically freed
 * by the device management code.
 */
struct regmap_field *devm_regmap_field_alloc(struct device *dev,
		struct regmap *regmap, struct reg_field reg_field)
{
	struct regmap_field *rm_field = devm_kzalloc(dev,
					sizeof(*rm_field), GFP_KERNEL);
	if (!rm_field)
		return ERR_PTR(-ENOMEM);

	regmap_field_init(rm_field, regmap, reg_field);

	return rm_field;

}
EXPORT_SYMBOL_GPL(devm_regmap_field_alloc);

/**
1189 1190
 * devm_regmap_field_free() - Free a register field allocated using
 *                            devm_regmap_field_alloc.
1191 1192 1193
 *
 * @dev: Device that will be interacted with
 * @field: regmap field which should be freed.
1194 1195 1196 1197
 *
 * Free register field allocated using devm_regmap_field_alloc(). Usually
 * drivers need not call this function, as the memory allocated via devm
 * will be freed as per device-driver life-cyle.
1198 1199 1200 1201 1202 1203 1204 1205 1206
 */
void devm_regmap_field_free(struct device *dev,
	struct regmap_field *field)
{
	devm_kfree(dev, field);
}
EXPORT_SYMBOL_GPL(devm_regmap_field_free);

/**
1207
 * regmap_field_alloc() - Allocate and initialise a register field.
1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230
 *
 * @regmap: regmap bank in which this register field is located.
 * @reg_field: Register field with in the bank.
 *
 * The return value will be an ERR_PTR() on error or a valid pointer
 * to a struct regmap_field. The regmap_field should be freed by the
 * user once its finished working with it using regmap_field_free().
 */
struct regmap_field *regmap_field_alloc(struct regmap *regmap,
		struct reg_field reg_field)
{
	struct regmap_field *rm_field = kzalloc(sizeof(*rm_field), GFP_KERNEL);

	if (!rm_field)
		return ERR_PTR(-ENOMEM);

	regmap_field_init(rm_field, regmap, reg_field);

	return rm_field;
}
EXPORT_SYMBOL_GPL(regmap_field_alloc);

/**
1231 1232
 * regmap_field_free() - Free register field allocated using
 *                       regmap_field_alloc.
1233 1234 1235 1236 1237 1238 1239 1240 1241
 *
 * @field: regmap field which should be freed.
 */
void regmap_field_free(struct regmap_field *field)
{
	kfree(field);
}
EXPORT_SYMBOL_GPL(regmap_field_free);

1242
/**
1243
 * regmap_reinit_cache() - Reinitialise the current register cache
1244 1245 1246 1247 1248 1249 1250 1251
 *
 * @map: Register map to operate on.
 * @config: New configuration.  Only the cache data will be used.
 *
 * Discard any existing register cache for the map and initialize a
 * new cache.  This can be used to restore the cache to defaults or to
 * update the cache configuration to reflect runtime discovery of the
 * hardware.
1252 1253 1254
 *
 * No explicit locking is done here, the user needs to ensure that
 * this function will not race with other calls to regmap.
1255 1256 1257 1258
 */
int regmap_reinit_cache(struct regmap *map, const struct regmap_config *config)
{
	regcache_exit(map);
1259
	regmap_debugfs_exit(map);
1260 1261 1262 1263 1264 1265 1266 1267

	map->max_register = config->max_register;
	map->writeable_reg = config->writeable_reg;
	map->readable_reg = config->readable_reg;
	map->volatile_reg = config->volatile_reg;
	map->precious_reg = config->precious_reg;
	map->cache_type = config->cache_type;

1268
	regmap_debugfs_init(map, config->name);
1269

1270 1271 1272
	map->cache_bypass = false;
	map->cache_only = false;

1273
	return regcache_init(map, config);
1274
}
1275
EXPORT_SYMBOL_GPL(regmap_reinit_cache);
1276

1277
/**
1278 1279 1280
 * regmap_exit() - Free a previously allocated register map
 *
 * @map: Register map to operate on.
1281 1282 1283
 */
void regmap_exit(struct regmap *map)
{
M
Mark Brown 已提交
1284 1285
	struct regmap_async *async;

1286
	regcache_exit(map);
1287
	regmap_debugfs_exit(map);
1288
	regmap_range_exit(map);
1289
	if (map->bus && map->bus->free_context)
1290
		map->bus->free_context(map->bus_context);
1291
	kfree(map->work_buf);
M
Mark Brown 已提交
1292 1293 1294 1295 1296 1297 1298 1299
	while (!list_empty(&map->async_free)) {
		async = list_first_entry_or_null(&map->async_free,
						 struct regmap_async,
						 list);
		list_del(&async->list);
		kfree(async->work_buf);
		kfree(async);
	}
1300 1301 1302 1303
	kfree(map);
}
EXPORT_SYMBOL_GPL(regmap_exit);

M
Mark Brown 已提交
1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319
static int dev_get_regmap_match(struct device *dev, void *res, void *data)
{
	struct regmap **r = res;
	if (!r || !*r) {
		WARN_ON(!r || !*r);
		return 0;
	}

	/* If the user didn't specify a name match any */
	if (data)
		return (*r)->name == data;
	else
		return 1;
}

/**
1320
 * dev_get_regmap() - Obtain the regmap (if any) for a device
M
Mark Brown 已提交
1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341
 *
 * @dev: Device to retrieve the map for
 * @name: Optional name for the register map, usually NULL.
 *
 * Returns the regmap for the device if one is present, or NULL.  If
 * name is specified then it must match the name specified when
 * registering the device, if it is NULL then the first regmap found
 * will be used.  Devices with multiple register maps are very rare,
 * generic code should normally not need to specify a name.
 */
struct regmap *dev_get_regmap(struct device *dev, const char *name)
{
	struct regmap **r = devres_find(dev, dev_get_regmap_release,
					dev_get_regmap_match, (void *)name);

	if (!r)
		return NULL;
	return *r;
}
EXPORT_SYMBOL_GPL(dev_get_regmap);

T
Tuomas Tynkkynen 已提交
1342
/**
1343
 * regmap_get_device() - Obtain the device from a regmap
T
Tuomas Tynkkynen 已提交
1344 1345 1346 1347 1348 1349 1350 1351 1352
 *
 * @map: Register map to operate on.
 *
 * Returns the underlying device that the regmap has been created for.
 */
struct device *regmap_get_device(struct regmap *map)
{
	return map->dev;
}
1353
EXPORT_SYMBOL_GPL(regmap_get_device);
T
Tuomas Tynkkynen 已提交
1354

1355
static int _regmap_select_page(struct regmap *map, unsigned int *reg,
1356
			       struct regmap_range_node *range,
1357 1358 1359 1360 1361 1362 1363 1364
			       unsigned int val_num)
{
	void *orig_work_buf;
	unsigned int win_offset;
	unsigned int win_page;
	bool page_chg;
	int ret;

1365 1366
	win_offset = (*reg - range->range_min) % range->window_len;
	win_page = (*reg - range->range_min) / range->window_len;
1367

1368 1369 1370 1371
	if (val_num > 1) {
		/* Bulk write shouldn't cross range boundary */
		if (*reg + val_num - 1 > range->range_max)
			return -EINVAL;
1372

1373 1374 1375 1376
		/* ... or single page boundary */
		if (val_num > range->window_len - win_offset)
			return -EINVAL;
	}
1377

1378 1379 1380 1381 1382 1383 1384 1385
	/* It is possible to have selector register inside data window.
	   In that case, selector register is located on every page and
	   it needs no page switching, when accessed alone. */
	if (val_num > 1 ||
	    range->window_start + win_offset != range->selector_reg) {
		/* Use separate work_buf during page switching */
		orig_work_buf = map->work_buf;
		map->work_buf = map->selector_work_buf;
1386

1387 1388 1389
		ret = _regmap_update_bits(map, range->selector_reg,
					  range->selector_mask,
					  win_page << range->selector_shift,
1390
					  &page_chg, false);
1391

1392
		map->work_buf = orig_work_buf;
1393

1394
		if (ret != 0)
1395
			return ret;
1396 1397
	}

1398 1399
	*reg = range->window_start + win_offset;

1400 1401 1402
	return 0;
}

1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417
static void regmap_set_work_buf_flag_mask(struct regmap *map, int max_bytes,
					  unsigned long mask)
{
	u8 *buf;
	int i;

	if (!mask || !map->work_buf)
		return;

	buf = map->work_buf;

	for (i = 0; i < max_bytes; i++)
		buf[i] |= (mask >> (8 * i)) & 0xff;
}

1418
int _regmap_raw_write(struct regmap *map, unsigned int reg,
1419
		      const void *val, size_t val_len)
1420
{
1421
	struct regmap_range_node *range;
1422 1423 1424
	unsigned long flags;
	void *work_val = map->work_buf + map->format.reg_bytes +
		map->format.pad_bytes;
1425 1426 1427
	void *buf;
	int ret = -ENOTSUPP;
	size_t len;
1428 1429
	int i;

1430
	WARN_ON(!map->bus);
1431

1432 1433 1434
	/* Check for unwritable registers before we start */
	if (map->writeable_reg)
		for (i = 0; i < val_len / map->format.val_bytes; i++)
1435
			if (!map->writeable_reg(map->dev,
1436
					       reg + regmap_get_offset(map, i)))
1437
				return -EINVAL;
1438

1439 1440 1441 1442
	if (!map->cache_bypass && map->format.parse_val) {
		unsigned int ival;
		int val_bytes = map->format.val_bytes;
		for (i = 0; i < val_len / val_bytes; i++) {
1443
			ival = map->format.parse_val(val + (i * val_bytes));
1444 1445
			ret = regcache_write(map,
					     reg + regmap_get_offset(map, i),
1446
					     ival);
1447 1448
			if (ret) {
				dev_err(map->dev,
1449
					"Error in caching of register: %x ret: %d\n",
1450 1451 1452 1453 1454 1455 1456 1457 1458 1459
					reg + i, ret);
				return ret;
			}
		}
		if (map->cache_only) {
			map->cache_dirty = true;
			return 0;
		}
	}

1460 1461
	range = _regmap_range_lookup(map, reg);
	if (range) {
1462 1463 1464 1465 1466 1467
		int val_num = val_len / map->format.val_bytes;
		int win_offset = (reg - range->range_min) % range->window_len;
		int win_residue = range->window_len - win_offset;

		/* If the write goes beyond the end of the window split it */
		while (val_num > win_residue) {
1468
			dev_dbg(map->dev, "Writing window %d/%zu\n",
1469 1470
				win_residue, val_len / map->format.val_bytes);
			ret = _regmap_raw_write(map, reg, val, win_residue *
1471
						map->format.val_bytes);
1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485
			if (ret != 0)
				return ret;

			reg += win_residue;
			val_num -= win_residue;
			val += win_residue * map->format.val_bytes;
			val_len -= win_residue * map->format.val_bytes;

			win_offset = (reg - range->range_min) %
				range->window_len;
			win_residue = range->window_len - win_offset;
		}

		ret = _regmap_select_page(map, &reg, range, val_num);
1486
		if (ret != 0)
1487 1488
			return ret;
	}
1489

1490
	map->format.format_reg(map->work_buf, reg, map->reg_shift);
1491 1492
	regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
				      map->write_flag_mask);
1493

1494 1495 1496 1497 1498 1499 1500 1501 1502 1503
	/*
	 * Essentially all I/O mechanisms will be faster with a single
	 * buffer to write.  Since register syncs often generate raw
	 * writes of single registers optimise that case.
	 */
	if (val != work_val && val_len == map->format.val_bytes) {
		memcpy(work_val, val, map->format.val_bytes);
		val = work_val;
	}

1504
	if (map->async && map->bus->async_write) {
M
Mark Brown 已提交
1505
		struct regmap_async *async;
1506

1507
		trace_regmap_async_write_start(map, reg, val_len);
1508

M
Mark Brown 已提交
1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527
		spin_lock_irqsave(&map->async_lock, flags);
		async = list_first_entry_or_null(&map->async_free,
						 struct regmap_async,
						 list);
		if (async)
			list_del(&async->list);
		spin_unlock_irqrestore(&map->async_lock, flags);

		if (!async) {
			async = map->bus->async_alloc();
			if (!async)
				return -ENOMEM;

			async->work_buf = kzalloc(map->format.buf_size,
						  GFP_KERNEL | GFP_DMA);
			if (!async->work_buf) {
				kfree(async);
				return -ENOMEM;
			}
1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539
		}

		async->map = map;

		/* If the caller supplied the value we can use it safely. */
		memcpy(async->work_buf, map->work_buf, map->format.pad_bytes +
		       map->format.reg_bytes + map->format.val_bytes);

		spin_lock_irqsave(&map->async_lock, flags);
		list_add_tail(&async->list, &map->async_list);
		spin_unlock_irqrestore(&map->async_lock, flags);

1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551
		if (val != work_val)
			ret = map->bus->async_write(map->bus_context,
						    async->work_buf,
						    map->format.reg_bytes +
						    map->format.pad_bytes,
						    val, val_len, async);
		else
			ret = map->bus->async_write(map->bus_context,
						    async->work_buf,
						    map->format.reg_bytes +
						    map->format.pad_bytes +
						    val_len, NULL, 0, async);
1552 1553 1554 1555 1556 1557

		if (ret != 0) {
			dev_err(map->dev, "Failed to schedule write: %d\n",
				ret);

			spin_lock_irqsave(&map->async_lock, flags);
M
Mark Brown 已提交
1558
			list_move(&async->list, &map->async_free);
1559 1560
			spin_unlock_irqrestore(&map->async_lock, flags);
		}
M
Mark Brown 已提交
1561 1562

		return ret;
1563 1564
	}

1565
	trace_regmap_hw_write_start(map, reg, val_len / map->format.val_bytes);
M
Mark Brown 已提交
1566

1567 1568 1569 1570
	/* If we're doing a single register write we can probably just
	 * send the work_buf directly, otherwise try to do a gather
	 * write.
	 */
1571
	if (val == work_val)
1572
		ret = map->bus->write(map->bus_context, map->work_buf,
1573 1574 1575
				      map->format.reg_bytes +
				      map->format.pad_bytes +
				      val_len);
1576
	else if (map->bus->gather_write)
1577
		ret = map->bus->gather_write(map->bus_context, map->work_buf,
1578 1579
					     map->format.reg_bytes +
					     map->format.pad_bytes,
1580 1581
					     val, val_len);

1582
	/* If that didn't work fall back on linearising by hand. */
1583
	if (ret == -ENOTSUPP) {
1584 1585
		len = map->format.reg_bytes + map->format.pad_bytes + val_len;
		buf = kzalloc(len, GFP_KERNEL);
1586 1587 1588 1589
		if (!buf)
			return -ENOMEM;

		memcpy(buf, map->work_buf, map->format.reg_bytes);
1590 1591
		memcpy(buf + map->format.reg_bytes + map->format.pad_bytes,
		       val, val_len);
1592
		ret = map->bus->write(map->bus_context, buf, len);
1593 1594

		kfree(buf);
1595
	} else if (ret != 0 && !map->cache_bypass && map->format.parse_val) {
1596 1597 1598 1599 1600
		/* regcache_drop_region() takes lock that we already have,
		 * thus call map->cache_ops->drop() directly
		 */
		if (map->cache_ops && map->cache_ops->drop)
			map->cache_ops->drop(map, reg, reg + 1);
1601 1602
	}

1603
	trace_regmap_hw_write_done(map, reg, val_len / map->format.val_bytes);
M
Mark Brown 已提交
1604

1605 1606 1607
	return ret;
}

1608 1609 1610 1611 1612 1613 1614
/**
 * regmap_can_raw_write - Test if regmap_raw_write() is supported
 *
 * @map: Map to check.
 */
bool regmap_can_raw_write(struct regmap *map)
{
1615 1616
	return map->bus && map->bus->write && map->format.format_val &&
		map->format.format_reg;
1617 1618 1619
}
EXPORT_SYMBOL_GPL(regmap_can_raw_write);

1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641
/**
 * regmap_get_raw_read_max - Get the maximum size we can read
 *
 * @map: Map to check.
 */
size_t regmap_get_raw_read_max(struct regmap *map)
{
	return map->max_raw_read;
}
EXPORT_SYMBOL_GPL(regmap_get_raw_read_max);

/**
 * regmap_get_raw_write_max - Get the maximum size we can read
 *
 * @map: Map to check.
 */
size_t regmap_get_raw_write_max(struct regmap *map)
{
	return map->max_raw_write;
}
EXPORT_SYMBOL_GPL(regmap_get_raw_write_max);

1642 1643 1644 1645 1646 1647 1648
static int _regmap_bus_formatted_write(void *context, unsigned int reg,
				       unsigned int val)
{
	int ret;
	struct regmap_range_node *range;
	struct regmap *map = context;

1649
	WARN_ON(!map->bus || !map->format.format_write);
1650 1651 1652 1653 1654 1655 1656 1657 1658 1659

	range = _regmap_range_lookup(map, reg);
	if (range) {
		ret = _regmap_select_page(map, &reg, range, 1);
		if (ret != 0)
			return ret;
	}

	map->format.format_write(map, reg, val);

1660
	trace_regmap_hw_write_start(map, reg, 1);
1661 1662 1663 1664

	ret = map->bus->write(map->bus_context, map->work_buf,
			      map->format.buf_size);

1665
	trace_regmap_hw_write_done(map, reg, 1);
1666 1667 1668 1669

	return ret;
}

1670 1671 1672 1673 1674 1675 1676 1677
static int _regmap_bus_reg_write(void *context, unsigned int reg,
				 unsigned int val)
{
	struct regmap *map = context;

	return map->bus->reg_write(map->bus_context, reg, val);
}

1678 1679 1680 1681 1682
static int _regmap_bus_raw_write(void *context, unsigned int reg,
				 unsigned int val)
{
	struct regmap *map = context;

1683
	WARN_ON(!map->bus || !map->format.format_val);
1684 1685 1686 1687 1688 1689 1690

	map->format.format_val(map->work_buf + map->format.reg_bytes
			       + map->format.pad_bytes, val, 0);
	return _regmap_raw_write(map, reg,
				 map->work_buf +
				 map->format.reg_bytes +
				 map->format.pad_bytes,
1691
				 map->format.val_bytes);
1692 1693
}

1694 1695 1696 1697 1698
static inline void *_regmap_map_get_context(struct regmap *map)
{
	return (map->bus) ? map : map->bus_context;
}

1699 1700
int _regmap_write(struct regmap *map, unsigned int reg,
		  unsigned int val)
1701
{
M
Mark Brown 已提交
1702
	int ret;
1703
	void *context = _regmap_map_get_context(map);
1704

1705 1706 1707
	if (!regmap_writeable(map, reg))
		return -EIO;

1708
	if (!map->cache_bypass && !map->defer_caching) {
1709 1710 1711
		ret = regcache_write(map, reg, val);
		if (ret != 0)
			return ret;
1712 1713
		if (map->cache_only) {
			map->cache_dirty = true;
1714
			return 0;
1715
		}
1716 1717
	}

1718
#ifdef LOG_DEVICE
1719
	if (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0)
1720 1721 1722
		dev_info(map->dev, "%x <= %x\n", reg, val);
#endif

1723
	trace_regmap_reg_write(map, reg, val);
M
Mark Brown 已提交
1724

1725
	return map->reg_write(context, reg, val);
1726 1727 1728
}

/**
1729
 * regmap_write() - Write a value to a single register
1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741
 *
 * @map: Register map to write to
 * @reg: Register to write to
 * @val: Value to be written
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_write(struct regmap *map, unsigned int reg, unsigned int val)
{
	int ret;

1742
	if (!IS_ALIGNED(reg, map->reg_stride))
1743 1744
		return -EINVAL;

1745
	map->lock(map->lock_arg);
1746 1747 1748

	ret = _regmap_write(map, reg, val);

1749
	map->unlock(map->lock_arg);
1750 1751 1752 1753 1754

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_write);

1755
/**
1756
 * regmap_write_async() - Write a value to a single register asynchronously
1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768
 *
 * @map: Register map to write to
 * @reg: Register to write to
 * @val: Value to be written
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_write_async(struct regmap *map, unsigned int reg, unsigned int val)
{
	int ret;

1769
	if (!IS_ALIGNED(reg, map->reg_stride))
1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785
		return -EINVAL;

	map->lock(map->lock_arg);

	map->async = true;

	ret = _regmap_write(map, reg, val);

	map->async = false;

	map->unlock(map->lock_arg);

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_write_async);

1786
/**
1787
 * regmap_raw_write() - Write raw values to one or more registers
1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806
 *
 * @map: Register map to write to
 * @reg: Initial register to write to
 * @val: Block of data to be written, laid out for direct transmission to the
 *       device
 * @val_len: Length of data pointed to by val.
 *
 * This function is intended to be used for things like firmware
 * download where a large block of data needs to be transferred to the
 * device.  No formatting will be done on the data provided.
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_raw_write(struct regmap *map, unsigned int reg,
		     const void *val, size_t val_len)
{
	int ret;

1807
	if (!regmap_can_raw_write(map))
1808
		return -EINVAL;
1809 1810
	if (val_len % map->format.val_bytes)
		return -EINVAL;
1811 1812
	if (map->max_raw_write && map->max_raw_write > val_len)
		return -E2BIG;
1813

1814
	map->lock(map->lock_arg);
1815

1816
	ret = _regmap_raw_write(map, reg, val, val_len);
1817

1818
	map->unlock(map->lock_arg);
1819 1820 1821 1822 1823

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_raw_write);

1824
/**
1825 1826
 * regmap_field_update_bits_base() - Perform a read/modify/write cycle a
 *                                   register field.
1827 1828 1829 1830
 *
 * @field: Register field to write to
 * @mask: Bitmask to change
 * @val: Value to be written
1831 1832 1833
 * @change: Boolean indicating if a write was done
 * @async: Boolean indicating asynchronously
 * @force: Boolean indicating use force update
1834
 *
1835 1836 1837
 * Perform a read/modify/write cycle on the register field with change,
 * async, force option.
 *
1838 1839 1840
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
1841 1842 1843
int regmap_field_update_bits_base(struct regmap_field *field,
				  unsigned int mask, unsigned int val,
				  bool *change, bool async, bool force)
1844 1845 1846
{
	mask = (mask << field->shift) & field->mask;

1847 1848 1849
	return regmap_update_bits_base(field->regmap, field->reg,
				       mask, val << field->shift,
				       change, async, force);
1850
}
1851
EXPORT_SYMBOL_GPL(regmap_field_update_bits_base);
1852

1853
/**
1854 1855
 * regmap_fields_update_bits_base() - Perform a read/modify/write cycle a
 *                                    register field with port ID
1856 1857 1858 1859 1860
 *
 * @field: Register field to write to
 * @id: port ID
 * @mask: Bitmask to change
 * @val: Value to be written
1861 1862 1863
 * @change: Boolean indicating if a write was done
 * @async: Boolean indicating asynchronously
 * @force: Boolean indicating use force update
1864 1865 1866 1867
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
1868 1869 1870
int regmap_fields_update_bits_base(struct regmap_field *field,  unsigned int id,
				   unsigned int mask, unsigned int val,
				   bool *change, bool async, bool force)
1871 1872 1873 1874 1875 1876
{
	if (id >= field->id_size)
		return -EINVAL;

	mask = (mask << field->shift) & field->mask;

1877 1878 1879 1880
	return regmap_update_bits_base(field->regmap,
				       field->reg + (field->id_offset * id),
				       mask, val << field->shift,
				       change, async, force);
1881
}
1882
EXPORT_SYMBOL_GPL(regmap_fields_update_bits_base);
1883

1884 1885
/**
 * regmap_bulk_write() - Write multiple registers to the device
1886 1887 1888 1889 1890 1891 1892
 *
 * @map: Register map to write to
 * @reg: First register to be write from
 * @val: Block of data to be written, in native register size for device
 * @val_count: Number of registers to write
 *
 * This function is intended to be used for writing a large block of
1893
 * data to the device either in single transfer or multiple transfer.
1894 1895 1896 1897 1898 1899 1900 1901 1902
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_bulk_write(struct regmap *map, unsigned int reg, const void *val,
		     size_t val_count)
{
	int ret = 0, i;
	size_t val_bytes = map->format.val_bytes;
1903
	size_t total_size = val_bytes * val_count;
1904

1905
	if (!IS_ALIGNED(reg, map->reg_stride))
1906
		return -EINVAL;
1907

1908 1909
	/*
	 * Some devices don't support bulk write, for
1910 1911 1912 1913 1914
	 * them we have a series of single write operations in the first two if
	 * blocks.
	 *
	 * The first if block is used for memory mapped io. It does not allow
	 * val_bytes of 3 for example.
1915 1916
	 * The second one is for busses that do not provide raw I/O.
	 * The third one is used for busses which do not have these limitations
1917
	 * and can write arbitrary value lengths.
1918
	 */
1919
	if (!map->bus) {
1920
		map->lock(map->lock_arg);
1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942
		for (i = 0; i < val_count; i++) {
			unsigned int ival;

			switch (val_bytes) {
			case 1:
				ival = *(u8 *)(val + (i * val_bytes));
				break;
			case 2:
				ival = *(u16 *)(val + (i * val_bytes));
				break;
			case 4:
				ival = *(u32 *)(val + (i * val_bytes));
				break;
#ifdef CONFIG_64BIT
			case 8:
				ival = *(u64 *)(val + (i * val_bytes));
				break;
#endif
			default:
				ret = -EINVAL;
				goto out;
			}
1943

1944 1945 1946
			ret = _regmap_write(map,
					    reg + regmap_get_offset(map, i),
					    ival);
1947 1948 1949
			if (ret != 0)
				goto out;
		}
1950 1951
out:
		map->unlock(map->lock_arg);
1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977
	} else if (map->bus && !map->format.parse_inplace) {
		const u8 *u8 = val;
		const u16 *u16 = val;
		const u32 *u32 = val;
		unsigned int ival;

		for (i = 0; i < val_count; i++) {
			switch (map->format.val_bytes) {
			case 4:
				ival = u32[i];
				break;
			case 2:
				ival = u16[i];
				break;
			case 1:
				ival = u8[i];
				break;
			default:
				return -EINVAL;
			}

			ret = regmap_write(map, reg + (i * map->reg_stride),
					   ival);
			if (ret)
				return ret;
		}
1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991
	} else if (map->use_single_write ||
		   (map->max_raw_write && map->max_raw_write < total_size)) {
		int chunk_stride = map->reg_stride;
		size_t chunk_size = val_bytes;
		size_t chunk_count = val_count;

		if (!map->use_single_write) {
			chunk_size = map->max_raw_write;
			if (chunk_size % val_bytes)
				chunk_size -= chunk_size % val_bytes;
			chunk_count = total_size / chunk_size;
			chunk_stride *= chunk_size / val_bytes;
		}

1992
		map->lock(map->lock_arg);
1993 1994
		/* Write as many bytes as possible with chunk_size */
		for (i = 0; i < chunk_count; i++) {
1995
			ret = _regmap_raw_write(map,
1996 1997 1998
						reg + (i * chunk_stride),
						val + (i * chunk_size),
						chunk_size);
1999 2000 2001
			if (ret)
				break;
		}
2002 2003 2004 2005 2006 2007 2008

		/* Write remaining bytes */
		if (!ret && chunk_size * i < total_size) {
			ret = _regmap_raw_write(map, reg + (i * chunk_stride),
						val + (i * chunk_size),
						total_size - i * chunk_size);
		}
2009
		map->unlock(map->lock_arg);
2010
	} else {
2011 2012
		void *wval;

2013 2014 2015
		if (!val_count)
			return -EINVAL;

2016
		wval = kmemdup(val, val_count * val_bytes, map->alloc_flags);
2017 2018
		if (!wval) {
			dev_err(map->dev, "Error in memory allocation\n");
2019
			return -ENOMEM;
2020 2021
		}
		for (i = 0; i < val_count * val_bytes; i += val_bytes)
2022
			map->format.parse_inplace(wval + i);
2023

2024
		map->lock(map->lock_arg);
2025
		ret = _regmap_raw_write(map, reg, wval, val_bytes * val_count);
2026
		map->unlock(map->lock_arg);
2027 2028

		kfree(wval);
2029
	}
2030 2031 2032 2033
	return ret;
}
EXPORT_SYMBOL_GPL(regmap_bulk_write);

2034 2035 2036 2037 2038
/*
 * _regmap_raw_multi_reg_write()
 *
 * the (register,newvalue) pairs in regs have not been formatted, but
 * they are all in the same page and have been changed to being page
X
Xiubo Li 已提交
2039
 * relative. The page register has been written if that was necessary.
2040 2041
 */
static int _regmap_raw_multi_reg_write(struct regmap *map,
2042
				       const struct reg_sequence *regs,
2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054
				       size_t num_regs)
{
	int ret;
	void *buf;
	int i;
	u8 *u8;
	size_t val_bytes = map->format.val_bytes;
	size_t reg_bytes = map->format.reg_bytes;
	size_t pad_bytes = map->format.pad_bytes;
	size_t pair_size = reg_bytes + pad_bytes + val_bytes;
	size_t len = pair_size * num_regs;

2055 2056 2057
	if (!len)
		return -EINVAL;

2058 2059 2060 2061 2062 2063 2064 2065 2066
	buf = kzalloc(len, GFP_KERNEL);
	if (!buf)
		return -ENOMEM;

	/* We have to linearise by hand. */

	u8 = buf;

	for (i = 0; i < num_regs; i++) {
2067 2068
		unsigned int reg = regs[i].reg;
		unsigned int val = regs[i].def;
2069
		trace_regmap_hw_write_start(map, reg, 1);
2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083
		map->format.format_reg(u8, reg, map->reg_shift);
		u8 += reg_bytes + pad_bytes;
		map->format.format_val(u8, val, 0);
		u8 += val_bytes;
	}
	u8 = buf;
	*u8 |= map->write_flag_mask;

	ret = map->bus->write(map->bus_context, buf, len);

	kfree(buf);

	for (i = 0; i < num_regs; i++) {
		int reg = regs[i].reg;
2084
		trace_regmap_hw_write_done(map, reg, 1);
2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098
	}
	return ret;
}

static unsigned int _regmap_register_page(struct regmap *map,
					  unsigned int reg,
					  struct regmap_range_node *range)
{
	unsigned int win_page = (reg - range->range_min) / range->window_len;

	return win_page;
}

static int _regmap_range_multi_paged_reg_write(struct regmap *map,
2099
					       struct reg_sequence *regs,
2100 2101 2102 2103
					       size_t num_regs)
{
	int ret;
	int i, n;
2104
	struct reg_sequence *base;
2105
	unsigned int this_page = 0;
2106
	unsigned int page_change = 0;
2107 2108 2109
	/*
	 * the set of registers are not neccessarily in order, but
	 * since the order of write must be preserved this algorithm
2110 2111
	 * chops the set each time the page changes. This also applies
	 * if there is a delay required at any point in the sequence.
2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126
	 */
	base = regs;
	for (i = 0, n = 0; i < num_regs; i++, n++) {
		unsigned int reg = regs[i].reg;
		struct regmap_range_node *range;

		range = _regmap_range_lookup(map, reg);
		if (range) {
			unsigned int win_page = _regmap_register_page(map, reg,
								      range);

			if (i == 0)
				this_page = win_page;
			if (win_page != this_page) {
				this_page = win_page;
2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146
				page_change = 1;
			}
		}

		/* If we have both a page change and a delay make sure to
		 * write the regs and apply the delay before we change the
		 * page.
		 */

		if (page_change || regs[i].delay_us) {

				/* For situations where the first write requires
				 * a delay we need to make sure we don't call
				 * raw_multi_reg_write with n=0
				 * This can't occur with page breaks as we
				 * never write on the first iteration
				 */
				if (regs[i].delay_us && i == 0)
					n = 1;

2147 2148 2149
				ret = _regmap_raw_multi_reg_write(map, base, n);
				if (ret != 0)
					return ret;
2150 2151 2152 2153

				if (regs[i].delay_us)
					udelay(regs[i].delay_us);

2154 2155
				base += n;
				n = 0;
2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166

				if (page_change) {
					ret = _regmap_select_page(map,
								  &base[n].reg,
								  range, 1);
					if (ret != 0)
						return ret;

					page_change = 0;
				}

2167
		}
2168

2169 2170 2171 2172 2173 2174
	}
	if (n > 0)
		return _regmap_raw_multi_reg_write(map, base, n);
	return 0;
}

2175
static int _regmap_multi_reg_write(struct regmap *map,
2176
				   const struct reg_sequence *regs,
2177
				   size_t num_regs)
2178
{
2179 2180 2181 2182 2183 2184 2185 2186
	int i;
	int ret;

	if (!map->can_multi_write) {
		for (i = 0; i < num_regs; i++) {
			ret = _regmap_write(map, regs[i].reg, regs[i].def);
			if (ret != 0)
				return ret;
2187 2188 2189

			if (regs[i].delay_us)
				udelay(regs[i].delay_us);
2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201
		}
		return 0;
	}

	if (!map->format.parse_inplace)
		return -EINVAL;

	if (map->writeable_reg)
		for (i = 0; i < num_regs; i++) {
			int reg = regs[i].reg;
			if (!map->writeable_reg(map->dev, reg))
				return -EINVAL;
2202
			if (!IS_ALIGNED(reg, map->reg_stride))
2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224
				return -EINVAL;
		}

	if (!map->cache_bypass) {
		for (i = 0; i < num_regs; i++) {
			unsigned int val = regs[i].def;
			unsigned int reg = regs[i].reg;
			ret = regcache_write(map, reg, val);
			if (ret) {
				dev_err(map->dev,
				"Error in caching of register: %x ret: %d\n",
								reg, ret);
				return ret;
			}
		}
		if (map->cache_only) {
			map->cache_dirty = true;
			return 0;
		}
	}

	WARN_ON(!map->bus);
2225 2226

	for (i = 0; i < num_regs; i++) {
2227 2228
		unsigned int reg = regs[i].reg;
		struct regmap_range_node *range;
2229 2230 2231 2232

		/* Coalesce all the writes between a page break or a delay
		 * in a sequence
		 */
2233
		range = _regmap_range_lookup(map, reg);
2234
		if (range || regs[i].delay_us) {
2235 2236
			size_t len = sizeof(struct reg_sequence)*num_regs;
			struct reg_sequence *base = kmemdup(regs, len,
2237 2238 2239 2240 2241 2242 2243
							   GFP_KERNEL);
			if (!base)
				return -ENOMEM;
			ret = _regmap_range_multi_paged_reg_write(map, base,
								  num_regs);
			kfree(base);

2244 2245 2246
			return ret;
		}
	}
2247
	return _regmap_raw_multi_reg_write(map, regs, num_regs);
2248 2249
}

2250 2251
/**
 * regmap_multi_reg_write() - Write multiple registers to the device
2252 2253 2254 2255 2256
 *
 * @map: Register map to write to
 * @regs: Array of structures containing register,value to be written
 * @num_regs: Number of registers to write
 *
2257 2258 2259
 * Write multiple registers to the device where the set of register, value
 * pairs are supplied in any order, possibly not all in a single range.
 *
2260
 * The 'normal' block write mode will send ultimately send data on the
2261
 * target bus as R,V1,V2,V3,..,Vn where successively higher registers are
2262 2263 2264
 * addressed. However, this alternative block multi write mode will send
 * the data as R1,V1,R2,V2,..,Rn,Vn on the target bus. The target device
 * must of course support the mode.
2265
 *
2266 2267
 * A value of zero will be returned on success, a negative errno will be
 * returned in error cases.
2268
 */
2269
int regmap_multi_reg_write(struct regmap *map, const struct reg_sequence *regs,
2270
			   int num_regs)
2271
{
2272
	int ret;
2273 2274 2275

	map->lock(map->lock_arg);

2276 2277
	ret = _regmap_multi_reg_write(map, regs, num_regs);

2278 2279 2280 2281 2282 2283
	map->unlock(map->lock_arg);

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_multi_reg_write);

2284 2285 2286
/**
 * regmap_multi_reg_write_bypassed() - Write multiple registers to the
 *                                     device but not the cache
2287 2288 2289 2290 2291
 *
 * @map: Register map to write to
 * @regs: Array of structures containing register,value to be written
 * @num_regs: Number of registers to write
 *
2292 2293 2294
 * Write multiple registers to the device but not the cache where the set
 * of register are supplied in any order.
 *
2295 2296 2297 2298 2299 2300 2301
 * This function is intended to be used for writing a large block of data
 * atomically to the device in single transfer for those I2C client devices
 * that implement this alternative block write mode.
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
2302
int regmap_multi_reg_write_bypassed(struct regmap *map,
2303
				    const struct reg_sequence *regs,
2304
				    int num_regs)
2305
{
2306 2307
	int ret;
	bool bypass;
2308 2309 2310

	map->lock(map->lock_arg);

2311 2312 2313 2314 2315 2316 2317
	bypass = map->cache_bypass;
	map->cache_bypass = true;

	ret = _regmap_multi_reg_write(map, regs, num_regs);

	map->cache_bypass = bypass;

2318 2319 2320 2321
	map->unlock(map->lock_arg);

	return ret;
}
2322
EXPORT_SYMBOL_GPL(regmap_multi_reg_write_bypassed);
2323

2324
/**
2325 2326
 * regmap_raw_write_async() - Write raw values to one or more registers
 *                            asynchronously
2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352
 *
 * @map: Register map to write to
 * @reg: Initial register to write to
 * @val: Block of data to be written, laid out for direct transmission to the
 *       device.  Must be valid until regmap_async_complete() is called.
 * @val_len: Length of data pointed to by val.
 *
 * This function is intended to be used for things like firmware
 * download where a large block of data needs to be transferred to the
 * device.  No formatting will be done on the data provided.
 *
 * If supported by the underlying bus the write will be scheduled
 * asynchronously, helping maximise I/O speed on higher speed buses
 * like SPI.  regmap_async_complete() can be called to ensure that all
 * asynchrnous writes have been completed.
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_raw_write_async(struct regmap *map, unsigned int reg,
			   const void *val, size_t val_len)
{
	int ret;

	if (val_len % map->format.val_bytes)
		return -EINVAL;
2353
	if (!IS_ALIGNED(reg, map->reg_stride))
2354 2355 2356 2357
		return -EINVAL;

	map->lock(map->lock_arg);

2358 2359 2360 2361 2362
	map->async = true;

	ret = _regmap_raw_write(map, reg, val, val_len);

	map->async = false;
2363 2364 2365 2366 2367 2368 2369

	map->unlock(map->lock_arg);

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_raw_write_async);

2370 2371 2372
static int _regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
			    unsigned int val_len)
{
2373
	struct regmap_range_node *range;
2374 2375
	int ret;

2376
	WARN_ON(!map->bus);
2377

2378 2379 2380
	if (!map->bus || !map->bus->read)
		return -EINVAL;

2381 2382 2383 2384
	range = _regmap_range_lookup(map, reg);
	if (range) {
		ret = _regmap_select_page(map, &reg, range,
					  val_len / map->format.val_bytes);
2385
		if (ret != 0)
2386 2387
			return ret;
	}
2388

2389
	map->format.format_reg(map->work_buf, reg, map->reg_shift);
2390 2391
	regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
				      map->read_flag_mask);
2392
	trace_regmap_hw_read_start(map, reg, val_len / map->format.val_bytes);
M
Mark Brown 已提交
2393

2394
	ret = map->bus->read(map->bus_context, map->work_buf,
2395
			     map->format.reg_bytes + map->format.pad_bytes,
M
Mark Brown 已提交
2396
			     val, val_len);
2397

2398
	trace_regmap_hw_read_done(map, reg, val_len / map->format.val_bytes);
M
Mark Brown 已提交
2399 2400

	return ret;
2401 2402
}

2403 2404 2405 2406 2407 2408 2409 2410
static int _regmap_bus_reg_read(void *context, unsigned int reg,
				unsigned int *val)
{
	struct regmap *map = context;

	return map->bus->reg_read(map->bus_context, reg, val);
}

2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426
static int _regmap_bus_read(void *context, unsigned int reg,
			    unsigned int *val)
{
	int ret;
	struct regmap *map = context;

	if (!map->format.parse_val)
		return -EINVAL;

	ret = _regmap_raw_read(map, reg, map->work_buf, map->format.val_bytes);
	if (ret == 0)
		*val = map->format.parse_val(map->work_buf);

	return ret;
}

2427 2428 2429 2430
static int _regmap_read(struct regmap *map, unsigned int reg,
			unsigned int *val)
{
	int ret;
2431 2432
	void *context = _regmap_map_get_context(map);

2433 2434 2435 2436 2437 2438 2439 2440 2441
	if (!map->cache_bypass) {
		ret = regcache_read(map, reg, val);
		if (ret == 0)
			return 0;
	}

	if (map->cache_only)
		return -EBUSY;

2442 2443 2444
	if (!regmap_readable(map, reg))
		return -EIO;

2445
	ret = map->reg_read(context, reg, val);
M
Mark Brown 已提交
2446
	if (ret == 0) {
2447
#ifdef LOG_DEVICE
2448
		if (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0)
2449 2450 2451
			dev_info(map->dev, "%x => %x\n", reg, *val);
#endif

2452
		trace_regmap_reg_read(map, reg, *val);
2453

2454 2455 2456
		if (!map->cache_bypass)
			regcache_write(map, reg, *val);
	}
2457

2458 2459 2460 2461
	return ret;
}

/**
2462
 * regmap_read() - Read a value from a single register
2463
 *
2464
 * @map: Register map to read from
2465 2466 2467 2468 2469 2470 2471 2472 2473 2474
 * @reg: Register to be read from
 * @val: Pointer to store read value
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val)
{
	int ret;

2475
	if (!IS_ALIGNED(reg, map->reg_stride))
2476 2477
		return -EINVAL;

2478
	map->lock(map->lock_arg);
2479 2480 2481

	ret = _regmap_read(map, reg, val);

2482
	map->unlock(map->lock_arg);
2483 2484 2485 2486 2487 2488

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_read);

/**
2489
 * regmap_raw_read() - Read raw data from the device
2490
 *
2491
 * @map: Register map to read from
2492 2493 2494 2495 2496 2497 2498 2499 2500 2501
 * @reg: First register to be read from
 * @val: Pointer to store read value
 * @val_len: Size of data to read
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
		    size_t val_len)
{
2502 2503 2504 2505
	size_t val_bytes = map->format.val_bytes;
	size_t val_count = val_len / val_bytes;
	unsigned int v;
	int ret, i;
2506

2507 2508
	if (!map->bus)
		return -EINVAL;
2509 2510
	if (val_len % map->format.val_bytes)
		return -EINVAL;
2511
	if (!IS_ALIGNED(reg, map->reg_stride))
2512
		return -EINVAL;
2513 2514
	if (val_count == 0)
		return -EINVAL;
2515

2516
	map->lock(map->lock_arg);
2517

2518 2519
	if (regmap_volatile_range(map, reg, val_count) || map->cache_bypass ||
	    map->cache_type == REGCACHE_NONE) {
2520 2521 2522 2523
		if (!map->bus->read) {
			ret = -ENOTSUPP;
			goto out;
		}
2524 2525 2526 2527
		if (map->max_raw_read && map->max_raw_read < val_len) {
			ret = -E2BIG;
			goto out;
		}
2528

2529 2530 2531 2532 2533 2534 2535 2536
		/* Physical block read if there's no cache involved */
		ret = _regmap_raw_read(map, reg, val, val_len);

	} else {
		/* Otherwise go word by word for the cache; should be low
		 * cost as we expect to hit the cache.
		 */
		for (i = 0; i < val_count; i++) {
2537
			ret = _regmap_read(map, reg + regmap_get_offset(map, i),
2538
					   &v);
2539 2540 2541
			if (ret != 0)
				goto out;

2542
			map->format.format_val(val + (i * val_bytes), v, 0);
2543 2544
		}
	}
2545

2546
 out:
2547
	map->unlock(map->lock_arg);
2548 2549 2550 2551 2552

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_raw_read);

2553
/**
2554
 * regmap_field_read() - Read a value to a single register field
2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577
 *
 * @field: Register field to read from
 * @val: Pointer to store read value
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_field_read(struct regmap_field *field, unsigned int *val)
{
	int ret;
	unsigned int reg_val;
	ret = regmap_read(field->regmap, field->reg, &reg_val);
	if (ret != 0)
		return ret;

	reg_val &= field->mask;
	reg_val >>= field->shift;
	*val = reg_val;

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_field_read);

2578
/**
2579
 * regmap_fields_read() - Read a value to a single register field with port ID
2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610
 *
 * @field: Register field to read from
 * @id: port ID
 * @val: Pointer to store read value
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_fields_read(struct regmap_field *field, unsigned int id,
		       unsigned int *val)
{
	int ret;
	unsigned int reg_val;

	if (id >= field->id_size)
		return -EINVAL;

	ret = regmap_read(field->regmap,
			  field->reg + (field->id_offset * id),
			  &reg_val);
	if (ret != 0)
		return ret;

	reg_val &= field->mask;
	reg_val >>= field->shift;
	*val = reg_val;

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_fields_read);

2611
/**
2612
 * regmap_bulk_read() - Read multiple registers from the device
2613
 *
2614
 * @map: Register map to read from
2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626
 * @reg: First register to be read from
 * @val: Pointer to store read value, in native register size for device
 * @val_count: Number of registers to read
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_bulk_read(struct regmap *map, unsigned int reg, void *val,
		     size_t val_count)
{
	int ret, i;
	size_t val_bytes = map->format.val_bytes;
2627
	bool vol = regmap_volatile_range(map, reg, val_count);
2628

2629
	if (!IS_ALIGNED(reg, map->reg_stride))
2630
		return -EINVAL;
2631

2632
	if (map->bus && map->format.parse_inplace && (vol || map->cache_type == REGCACHE_NONE)) {
2633 2634 2635 2636
		/*
		 * Some devices does not support bulk read, for
		 * them we have a series of single read operations.
		 */
2637 2638 2639 2640
		size_t total_size = val_bytes * val_count;

		if (!map->use_single_read &&
		    (!map->max_raw_read || map->max_raw_read > total_size)) {
2641 2642 2643 2644
			ret = regmap_raw_read(map, reg, val,
					      val_bytes * val_count);
			if (ret != 0)
				return ret;
2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681
		} else {
			/*
			 * Some devices do not support bulk read or do not
			 * support large bulk reads, for them we have a series
			 * of read operations.
			 */
			int chunk_stride = map->reg_stride;
			size_t chunk_size = val_bytes;
			size_t chunk_count = val_count;

			if (!map->use_single_read) {
				chunk_size = map->max_raw_read;
				if (chunk_size % val_bytes)
					chunk_size -= chunk_size % val_bytes;
				chunk_count = total_size / chunk_size;
				chunk_stride *= chunk_size / val_bytes;
			}

			/* Read bytes that fit into a multiple of chunk_size */
			for (i = 0; i < chunk_count; i++) {
				ret = regmap_raw_read(map,
						      reg + (i * chunk_stride),
						      val + (i * chunk_size),
						      chunk_size);
				if (ret != 0)
					return ret;
			}

			/* Read remaining bytes */
			if (chunk_size * i < total_size) {
				ret = regmap_raw_read(map,
						      reg + (i * chunk_stride),
						      val + (i * chunk_size),
						      total_size - i * chunk_size);
				if (ret != 0)
					return ret;
			}
2682
		}
2683 2684

		for (i = 0; i < val_count * val_bytes; i += val_bytes)
2685
			map->format.parse_inplace(val + i);
2686 2687
	} else {
		for (i = 0; i < val_count; i++) {
2688
			unsigned int ival;
2689
			ret = regmap_read(map, reg + regmap_get_offset(map, i),
2690
					  &ival);
2691 2692
			if (ret != 0)
				return ret;
2693 2694 2695 2696 2697 2698 2699 2700 2701 2702

			if (map->format.format_val) {
				map->format.format_val(val + (i * val_bytes), ival, 0);
			} else {
				/* Devices providing read and write
				 * operations can use the bulk I/O
				 * functions if they define a val_bytes,
				 * we assume that the values are native
				 * endian.
				 */
2703
#ifdef CONFIG_64BIT
X
Xiubo Li 已提交
2704
				u64 *u64 = val;
2705
#endif
2706 2707 2708 2709 2710
				u32 *u32 = val;
				u16 *u16 = val;
				u8 *u8 = val;

				switch (map->format.val_bytes) {
X
Xiubo Li 已提交
2711 2712 2713 2714 2715
#ifdef CONFIG_64BIT
				case 8:
					u64[i] = ival;
					break;
#endif
2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728
				case 4:
					u32[i] = ival;
					break;
				case 2:
					u16[i] = ival;
					break;
				case 1:
					u8[i] = ival;
					break;
				default:
					return -EINVAL;
				}
			}
2729 2730
		}
	}
2731 2732 2733 2734 2735

	return 0;
}
EXPORT_SYMBOL_GPL(regmap_bulk_read);

2736 2737
static int _regmap_update_bits(struct regmap *map, unsigned int reg,
			       unsigned int mask, unsigned int val,
2738
			       bool *change, bool force_write)
2739 2740
{
	int ret;
2741
	unsigned int tmp, orig;
2742

2743 2744
	if (change)
		*change = false;
2745

2746 2747 2748
	if (regmap_volatile(map, reg) && map->reg_update_bits) {
		ret = map->reg_update_bits(map->bus_context, reg, mask, val);
		if (ret == 0 && change)
2749
			*change = true;
2750
	} else {
2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762
		ret = _regmap_read(map, reg, &orig);
		if (ret != 0)
			return ret;

		tmp = orig & ~mask;
		tmp |= val & mask;

		if (force_write || (tmp != orig)) {
			ret = _regmap_write(map, reg, tmp);
			if (ret == 0 && change)
				*change = true;
		}
2763
	}
2764 2765 2766

	return ret;
}
2767 2768

/**
2769
 * regmap_update_bits_base() - Perform a read/modify/write cycle on a register
2770 2771 2772 2773 2774 2775
 *
 * @map: Register map to update
 * @reg: Register to update
 * @mask: Bitmask to change
 * @val: New value for bitmask
 * @change: Boolean indicating if a write was done
2776 2777
 * @async: Boolean indicating asynchronously
 * @force: Boolean indicating use force update
2778
 *
2779 2780 2781 2782 2783 2784 2785 2786
 * Perform a read/modify/write cycle on a register map with change, async, force
 * options.
 *
 * If async is true:
 *
 * With most buses the read must be done synchronously so this is most useful
 * for devices with a cache which do not need to interact with the hardware to
 * determine the current register value.
2787 2788 2789
 *
 * Returns zero for success, a negative number on error.
 */
2790 2791 2792
int regmap_update_bits_base(struct regmap *map, unsigned int reg,
			    unsigned int mask, unsigned int val,
			    bool *change, bool async, bool force)
2793 2794 2795 2796 2797
{
	int ret;

	map->lock(map->lock_arg);

2798
	map->async = async;
2799

2800
	ret = _regmap_update_bits(map, reg, mask, val, change, force);
2801 2802 2803 2804 2805 2806 2807

	map->async = false;

	map->unlock(map->lock_arg);

	return ret;
}
2808
EXPORT_SYMBOL_GPL(regmap_update_bits_base);
2809

2810 2811 2812 2813 2814
void regmap_async_complete_cb(struct regmap_async *async, int ret)
{
	struct regmap *map = async->map;
	bool wake;

2815
	trace_regmap_async_io_complete(map);
2816

2817
	spin_lock(&map->async_lock);
M
Mark Brown 已提交
2818
	list_move(&async->list, &map->async_free);
2819 2820 2821 2822 2823 2824 2825 2826 2827 2828
	wake = list_empty(&map->async_list);

	if (ret != 0)
		map->async_ret = ret;

	spin_unlock(&map->async_lock);

	if (wake)
		wake_up(&map->async_waitq);
}
2829
EXPORT_SYMBOL_GPL(regmap_async_complete_cb);
2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843

static int regmap_async_is_done(struct regmap *map)
{
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&map->async_lock, flags);
	ret = list_empty(&map->async_list);
	spin_unlock_irqrestore(&map->async_lock, flags);

	return ret;
}

/**
2844
 * regmap_async_complete - Ensure all asynchronous I/O has completed.
2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856
 *
 * @map: Map to operate on.
 *
 * Blocks until any pending asynchronous I/O has completed.  Returns
 * an error code for any failed I/O operations.
 */
int regmap_async_complete(struct regmap *map)
{
	unsigned long flags;
	int ret;

	/* Nothing to do with no async support */
2857
	if (!map->bus || !map->bus->async_write)
2858 2859
		return 0;

2860
	trace_regmap_async_complete_start(map);
2861

2862 2863 2864 2865 2866 2867 2868
	wait_event(map->async_waitq, regmap_async_is_done(map));

	spin_lock_irqsave(&map->async_lock, flags);
	ret = map->async_ret;
	map->async_ret = 0;
	spin_unlock_irqrestore(&map->async_lock, flags);

2869
	trace_regmap_async_complete_done(map);
2870

2871 2872
	return ret;
}
2873
EXPORT_SYMBOL_GPL(regmap_async_complete);
2874

M
Mark Brown 已提交
2875
/**
2876 2877
 * regmap_register_patch - Register and apply register updates to be applied
 *                         on device initialistion
M
Mark Brown 已提交
2878 2879 2880 2881 2882 2883 2884 2885 2886 2887
 *
 * @map: Register map to apply updates to.
 * @regs: Values to update.
 * @num_regs: Number of entries in regs.
 *
 * Register a set of register updates to be applied to the device
 * whenever the device registers are synchronised with the cache and
 * apply them immediately.  Typically this is used to apply
 * corrections to be applied to the device defaults on startup, such
 * as the updates some vendors provide to undocumented registers.
2888 2889 2890
 *
 * The caller must ensure that this function cannot be called
 * concurrently with either itself or regcache_sync().
M
Mark Brown 已提交
2891
 */
2892
int regmap_register_patch(struct regmap *map, const struct reg_sequence *regs,
M
Mark Brown 已提交
2893 2894
			  int num_regs)
{
2895
	struct reg_sequence *p;
2896
	int ret;
M
Mark Brown 已提交
2897 2898
	bool bypass;

2899 2900 2901 2902
	if (WARN_ONCE(num_regs <= 0, "invalid registers number (%d)\n",
	    num_regs))
		return 0;

2903
	p = krealloc(map->patch,
2904
		     sizeof(struct reg_sequence) * (map->patch_regs + num_regs),
2905 2906 2907 2908 2909
		     GFP_KERNEL);
	if (p) {
		memcpy(p + map->patch_regs, regs, num_regs * sizeof(*regs));
		map->patch = p;
		map->patch_regs += num_regs;
M
Mark Brown 已提交
2910
	} else {
2911
		return -ENOMEM;
M
Mark Brown 已提交
2912 2913
	}

2914
	map->lock(map->lock_arg);
M
Mark Brown 已提交
2915 2916 2917 2918

	bypass = map->cache_bypass;

	map->cache_bypass = true;
2919
	map->async = true;
M
Mark Brown 已提交
2920

2921
	ret = _regmap_multi_reg_write(map, regs, num_regs);
M
Mark Brown 已提交
2922

2923
	map->async = false;
M
Mark Brown 已提交
2924 2925
	map->cache_bypass = bypass;

2926
	map->unlock(map->lock_arg);
M
Mark Brown 已提交
2927

2928 2929
	regmap_async_complete(map);

M
Mark Brown 已提交
2930 2931 2932 2933
	return ret;
}
EXPORT_SYMBOL_GPL(regmap_register_patch);

2934 2935 2936 2937
/**
 * regmap_get_val_bytes() - Report the size of a register value
 *
 * @map: Register map to operate on.
2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950
 *
 * Report the size of a register value, mainly intended to for use by
 * generic infrastructure built on top of regmap.
 */
int regmap_get_val_bytes(struct regmap *map)
{
	if (map->format.format_write)
		return -EINVAL;

	return map->format.val_bytes;
}
EXPORT_SYMBOL_GPL(regmap_get_val_bytes);

2951
/**
2952 2953 2954
 * regmap_get_max_register() - Report the max register value
 *
 * @map: Register map to operate on.
2955 2956 2957 2958 2959 2960 2961 2962 2963 2964
 *
 * Report the max register value, mainly intended to for use by
 * generic infrastructure built on top of regmap.
 */
int regmap_get_max_register(struct regmap *map)
{
	return map->max_register ? map->max_register : -EINVAL;
}
EXPORT_SYMBOL_GPL(regmap_get_max_register);

2965
/**
2966 2967 2968
 * regmap_get_reg_stride() - Report the register address stride
 *
 * @map: Register map to operate on.
2969 2970 2971 2972 2973 2974 2975 2976 2977 2978
 *
 * Report the register address stride, mainly intended to for use by
 * generic infrastructure built on top of regmap.
 */
int regmap_get_reg_stride(struct regmap *map)
{
	return map->reg_stride;
}
EXPORT_SYMBOL_GPL(regmap_get_reg_stride);

N
Nenghua Cao 已提交
2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990
int regmap_parse_val(struct regmap *map, const void *buf,
			unsigned int *val)
{
	if (!map->format.parse_val)
		return -EINVAL;

	*val = map->format.parse_val(buf);

	return 0;
}
EXPORT_SYMBOL_GPL(regmap_parse_val);

2991 2992 2993 2994 2995 2996 2997
static int __init regmap_initcall(void)
{
	regmap_debugfs_initcall();

	return 0;
}
postcore_initcall(regmap_initcall);