regmap.c 64.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12
/*
 * Register map access API
 *
 * Copyright 2011 Wolfson Microelectronics plc
 *
 * Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

13
#include <linux/device.h>
14
#include <linux/slab.h>
15
#include <linux/export.h>
16 17
#include <linux/mutex.h>
#include <linux/err.h>
18
#include <linux/of.h>
19
#include <linux/rbtree.h>
20
#include <linux/sched.h>
21

M
Mark Brown 已提交
22
#define CREATE_TRACE_POINTS
23
#include "trace.h"
M
Mark Brown 已提交
24

25
#include "internal.h"
26

27 28 29 30 31 32 33 34 35 36 37 38
/*
 * Sometimes for failures during very early init the trace
 * infrastructure isn't available early enough to be used.  For this
 * sort of problem defining LOG_DEVICE will add printks for basic
 * register I/O on a specific device.
 */
#undef LOG_DEVICE

static int _regmap_update_bits(struct regmap *map, unsigned int reg,
			       unsigned int mask, unsigned int val,
			       bool *change);

39 40
static int _regmap_bus_reg_read(void *context, unsigned int reg,
				unsigned int *val);
41 42
static int _regmap_bus_read(void *context, unsigned int reg,
			    unsigned int *val);
43 44
static int _regmap_bus_formatted_write(void *context, unsigned int reg,
				       unsigned int val);
45 46
static int _regmap_bus_reg_write(void *context, unsigned int reg,
				 unsigned int val);
47 48
static int _regmap_bus_raw_write(void *context, unsigned int reg,
				 unsigned int val);
49

50 51 52 53 54 55 56 57 58 59 60 61 62 63
bool regmap_reg_in_ranges(unsigned int reg,
			  const struct regmap_range *ranges,
			  unsigned int nranges)
{
	const struct regmap_range *r;
	int i;

	for (i = 0, r = ranges; i < nranges; i++, r++)
		if (regmap_reg_in_range(reg, r))
			return true;
	return false;
}
EXPORT_SYMBOL_GPL(regmap_reg_in_ranges);

64 65
bool regmap_check_range_table(struct regmap *map, unsigned int reg,
			      const struct regmap_access_table *table)
66 67 68 69 70 71 72 73 74 75 76 77
{
	/* Check "no ranges" first */
	if (regmap_reg_in_ranges(reg, table->no_ranges, table->n_no_ranges))
		return false;

	/* In case zero "yes ranges" are supplied, any reg is OK */
	if (!table->n_yes_ranges)
		return true;

	return regmap_reg_in_ranges(reg, table->yes_ranges,
				    table->n_yes_ranges);
}
78
EXPORT_SYMBOL_GPL(regmap_check_range_table);
79

80 81 82 83 84 85 86 87
bool regmap_writeable(struct regmap *map, unsigned int reg)
{
	if (map->max_register && reg > map->max_register)
		return false;

	if (map->writeable_reg)
		return map->writeable_reg(map->dev, reg);

88
	if (map->wr_table)
89
		return regmap_check_range_table(map, reg, map->wr_table);
90

91 92 93 94 95
	return true;
}

bool regmap_readable(struct regmap *map, unsigned int reg)
{
96 97 98
	if (!map->reg_read)
		return false;

99 100 101
	if (map->max_register && reg > map->max_register)
		return false;

102 103 104
	if (map->format.format_write)
		return false;

105 106 107
	if (map->readable_reg)
		return map->readable_reg(map->dev, reg);

108
	if (map->rd_table)
109
		return regmap_check_range_table(map, reg, map->rd_table);
110

111 112 113 114 115
	return true;
}

bool regmap_volatile(struct regmap *map, unsigned int reg)
{
116
	if (!map->format.format_write && !regmap_readable(map, reg))
117 118 119 120 121
		return false;

	if (map->volatile_reg)
		return map->volatile_reg(map->dev, reg);

122
	if (map->volatile_table)
123
		return regmap_check_range_table(map, reg, map->volatile_table);
124

125 126 127 128
	if (map->cache_ops)
		return false;
	else
		return true;
129 130 131 132
}

bool regmap_precious(struct regmap *map, unsigned int reg)
{
133
	if (!regmap_readable(map, reg))
134 135 136 137 138
		return false;

	if (map->precious_reg)
		return map->precious_reg(map->dev, reg);

139
	if (map->precious_table)
140
		return regmap_check_range_table(map, reg, map->precious_table);
141

142 143 144
	return false;
}

145
static bool regmap_volatile_range(struct regmap *map, unsigned int reg,
P
Paul Bolle 已提交
146
	size_t num)
147 148 149 150 151 152 153 154 155 156
{
	unsigned int i;

	for (i = 0; i < num; i++)
		if (!regmap_volatile(map, reg + i))
			return false;

	return true;
}

157 158 159 160 161 162 163 164
static void regmap_format_2_6_write(struct regmap *map,
				     unsigned int reg, unsigned int val)
{
	u8 *out = map->work_buf;

	*out = (reg << 6) | val;
}

165 166 167 168 169 170 171 172 173 174 175 176 177 178
static void regmap_format_4_12_write(struct regmap *map,
				     unsigned int reg, unsigned int val)
{
	__be16 *out = map->work_buf;
	*out = cpu_to_be16((reg << 12) | val);
}

static void regmap_format_7_9_write(struct regmap *map,
				    unsigned int reg, unsigned int val)
{
	__be16 *out = map->work_buf;
	*out = cpu_to_be16((reg << 9) | val);
}

179 180 181 182 183 184 185 186 187 188
static void regmap_format_10_14_write(struct regmap *map,
				    unsigned int reg, unsigned int val)
{
	u8 *out = map->work_buf;

	out[2] = val;
	out[1] = (val >> 8) | (reg << 6);
	out[0] = reg >> 2;
}

189
static void regmap_format_8(void *buf, unsigned int val, unsigned int shift)
190 191 192
{
	u8 *b = buf;

193
	b[0] = val << shift;
194 195
}

196
static void regmap_format_16_be(void *buf, unsigned int val, unsigned int shift)
197 198 199
{
	__be16 *b = buf;

200
	b[0] = cpu_to_be16(val << shift);
201 202
}

203 204 205 206 207 208 209
static void regmap_format_16_le(void *buf, unsigned int val, unsigned int shift)
{
	__le16 *b = buf;

	b[0] = cpu_to_le16(val << shift);
}

210 211 212 213 214 215
static void regmap_format_16_native(void *buf, unsigned int val,
				    unsigned int shift)
{
	*(u16 *)buf = val << shift;
}

216
static void regmap_format_24(void *buf, unsigned int val, unsigned int shift)
217 218 219
{
	u8 *b = buf;

220 221
	val <<= shift;

222 223 224 225 226
	b[0] = val >> 16;
	b[1] = val >> 8;
	b[2] = val;
}

227
static void regmap_format_32_be(void *buf, unsigned int val, unsigned int shift)
228 229 230
{
	__be32 *b = buf;

231
	b[0] = cpu_to_be32(val << shift);
232 233
}

234 235 236 237 238 239 240
static void regmap_format_32_le(void *buf, unsigned int val, unsigned int shift)
{
	__le32 *b = buf;

	b[0] = cpu_to_le32(val << shift);
}

241 242 243 244 245 246
static void regmap_format_32_native(void *buf, unsigned int val,
				    unsigned int shift)
{
	*(u32 *)buf = val << shift;
}

247
static void regmap_parse_inplace_noop(void *buf)
248
{
249 250 251 252 253
}

static unsigned int regmap_parse_8(const void *buf)
{
	const u8 *b = buf;
254 255 256 257

	return b[0];
}

258 259 260 261 262 263 264
static unsigned int regmap_parse_16_be(const void *buf)
{
	const __be16 *b = buf;

	return be16_to_cpu(b[0]);
}

265 266 267 268 269 270 271
static unsigned int regmap_parse_16_le(const void *buf)
{
	const __le16 *b = buf;

	return le16_to_cpu(b[0]);
}

272
static void regmap_parse_16_be_inplace(void *buf)
273 274 275 276 277 278
{
	__be16 *b = buf;

	b[0] = be16_to_cpu(b[0]);
}

279 280 281 282 283 284 285
static void regmap_parse_16_le_inplace(void *buf)
{
	__le16 *b = buf;

	b[0] = le16_to_cpu(b[0]);
}

286
static unsigned int regmap_parse_16_native(const void *buf)
287 288 289 290
{
	return *(u16 *)buf;
}

291
static unsigned int regmap_parse_24(const void *buf)
292
{
293
	const u8 *b = buf;
294 295 296 297 298 299 300
	unsigned int ret = b[2];
	ret |= ((unsigned int)b[1]) << 8;
	ret |= ((unsigned int)b[0]) << 16;

	return ret;
}

301 302 303 304 305 306 307
static unsigned int regmap_parse_32_be(const void *buf)
{
	const __be32 *b = buf;

	return be32_to_cpu(b[0]);
}

308 309 310 311 312 313 314
static unsigned int regmap_parse_32_le(const void *buf)
{
	const __le32 *b = buf;

	return le32_to_cpu(b[0]);
}

315
static void regmap_parse_32_be_inplace(void *buf)
316 317 318 319 320 321
{
	__be32 *b = buf;

	b[0] = be32_to_cpu(b[0]);
}

322 323 324 325 326 327 328
static void regmap_parse_32_le_inplace(void *buf)
{
	__le32 *b = buf;

	b[0] = le32_to_cpu(b[0]);
}

329
static unsigned int regmap_parse_32_native(const void *buf)
330 331 332 333
{
	return *(u32 *)buf;
}

334
static void regmap_lock_mutex(void *__map)
335
{
336
	struct regmap *map = __map;
337 338 339
	mutex_lock(&map->mutex);
}

340
static void regmap_unlock_mutex(void *__map)
341
{
342
	struct regmap *map = __map;
343 344 345
	mutex_unlock(&map->mutex);
}

346
static void regmap_lock_spinlock(void *__map)
347
__acquires(&map->spinlock)
348
{
349
	struct regmap *map = __map;
350 351 352 353
	unsigned long flags;

	spin_lock_irqsave(&map->spinlock, flags);
	map->spinlock_flags = flags;
354 355
}

356
static void regmap_unlock_spinlock(void *__map)
357
__releases(&map->spinlock)
358
{
359
	struct regmap *map = __map;
360
	spin_unlock_irqrestore(&map->spinlock, map->spinlock_flags);
361 362
}

M
Mark Brown 已提交
363 364 365 366 367 368 369 370 371
static void dev_get_regmap_release(struct device *dev, void *res)
{
	/*
	 * We don't actually have anything to do here; the goal here
	 * is not to manage the regmap but to provide a simple way to
	 * get the regmap back given a struct device.
	 */
}

372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432
static bool _regmap_range_add(struct regmap *map,
			      struct regmap_range_node *data)
{
	struct rb_root *root = &map->range_tree;
	struct rb_node **new = &(root->rb_node), *parent = NULL;

	while (*new) {
		struct regmap_range_node *this =
			container_of(*new, struct regmap_range_node, node);

		parent = *new;
		if (data->range_max < this->range_min)
			new = &((*new)->rb_left);
		else if (data->range_min > this->range_max)
			new = &((*new)->rb_right);
		else
			return false;
	}

	rb_link_node(&data->node, parent, new);
	rb_insert_color(&data->node, root);

	return true;
}

static struct regmap_range_node *_regmap_range_lookup(struct regmap *map,
						      unsigned int reg)
{
	struct rb_node *node = map->range_tree.rb_node;

	while (node) {
		struct regmap_range_node *this =
			container_of(node, struct regmap_range_node, node);

		if (reg < this->range_min)
			node = node->rb_left;
		else if (reg > this->range_max)
			node = node->rb_right;
		else
			return this;
	}

	return NULL;
}

static void regmap_range_exit(struct regmap *map)
{
	struct rb_node *next;
	struct regmap_range_node *range_node;

	next = rb_first(&map->range_tree);
	while (next) {
		range_node = rb_entry(next, struct regmap_range_node, node);
		next = rb_next(&range_node->node);
		rb_erase(&range_node->node, &map->range_tree);
		kfree(range_node);
	}

	kfree(map->selector_work_buf);
}

433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454
int regmap_attach_dev(struct device *dev, struct regmap *map,
		      const struct regmap_config *config)
{
	struct regmap **m;

	map->dev = dev;

	regmap_debugfs_init(map, config->name);

	/* Add a devres resource for dev_get_regmap() */
	m = devres_alloc(dev_get_regmap_release, sizeof(*m), GFP_KERNEL);
	if (!m) {
		regmap_debugfs_exit(map);
		return -ENOMEM;
	}
	*m = map;
	devres_add(dev, m);

	return 0;
}
EXPORT_SYMBOL_GPL(regmap_attach_dev);

455 456 457 458 459 460 461 462 463 464 465 466 467 468 469
static enum regmap_endian regmap_get_reg_endian(const struct regmap_bus *bus,
					const struct regmap_config *config)
{
	enum regmap_endian endian;

	/* Retrieve the endianness specification from the regmap config */
	endian = config->reg_format_endian;

	/* If the regmap config specified a non-default value, use that */
	if (endian != REGMAP_ENDIAN_DEFAULT)
		return endian;

	/* Retrieve the endianness specification from the bus config */
	if (bus && bus->reg_format_endian_default)
		endian = bus->reg_format_endian_default;
470

471 472 473 474 475 476 477 478
	/* If the bus specified a non-default value, use that */
	if (endian != REGMAP_ENDIAN_DEFAULT)
		return endian;

	/* Use this if no other value was found */
	return REGMAP_ENDIAN_BIG;
}

479 480 481
enum regmap_endian regmap_get_val_endian(struct device *dev,
					 const struct regmap_bus *bus,
					 const struct regmap_config *config)
482
{
483
	struct device_node *np;
484
	enum regmap_endian endian;
485

486
	/* Retrieve the endianness specification from the regmap config */
487
	endian = config->val_format_endian;
488

489
	/* If the regmap config specified a non-default value, use that */
490 491
	if (endian != REGMAP_ENDIAN_DEFAULT)
		return endian;
492

493 494 495
	/* If the dev and dev->of_node exist try to get endianness from DT */
	if (dev && dev->of_node) {
		np = dev->of_node;
496

497 498 499 500 501 502 503 504 505 506
		/* Parse the device's DT node for an endianness specification */
		if (of_property_read_bool(np, "big-endian"))
			endian = REGMAP_ENDIAN_BIG;
		else if (of_property_read_bool(np, "little-endian"))
			endian = REGMAP_ENDIAN_LITTLE;

		/* If the endianness was specified in DT, use that */
		if (endian != REGMAP_ENDIAN_DEFAULT)
			return endian;
	}
507 508

	/* Retrieve the endianness specification from the bus config */
509 510
	if (bus && bus->val_format_endian_default)
		endian = bus->val_format_endian_default;
511

512
	/* If the bus specified a non-default value, use that */
513 514
	if (endian != REGMAP_ENDIAN_DEFAULT)
		return endian;
515 516

	/* Use this if no other value was found */
517
	return REGMAP_ENDIAN_BIG;
518
}
519
EXPORT_SYMBOL_GPL(regmap_get_val_endian);
520

521 522 523 524 525
/**
 * regmap_init(): Initialise register map
 *
 * @dev: Device that will be interacted with
 * @bus: Bus-specific callbacks to use with device
526
 * @bus_context: Data passed to bus-specific callbacks
527 528 529 530 531 532 533 534
 * @config: Configuration for register map
 *
 * The return value will be an ERR_PTR() on error or a valid pointer to
 * a struct regmap.  This function should generally not be called
 * directly, it should be called by bus-specific init functions.
 */
struct regmap *regmap_init(struct device *dev,
			   const struct regmap_bus *bus,
535
			   void *bus_context,
536 537
			   const struct regmap_config *config)
{
538
	struct regmap *map;
539
	int ret = -EINVAL;
540
	enum regmap_endian reg_endian, val_endian;
541
	int i, j;
542

543
	if (!config)
544
		goto err;
545 546 547 548 549 550 551

	map = kzalloc(sizeof(*map), GFP_KERNEL);
	if (map == NULL) {
		ret = -ENOMEM;
		goto err;
	}

552 553 554 555
	if (config->lock && config->unlock) {
		map->lock = config->lock;
		map->unlock = config->unlock;
		map->lock_arg = config->lock_arg;
556
	} else {
557 558
		if ((bus && bus->fast_io) ||
		    config->fast_io) {
559 560 561 562 563 564 565 566 567
			spin_lock_init(&map->spinlock);
			map->lock = regmap_lock_spinlock;
			map->unlock = regmap_unlock_spinlock;
		} else {
			mutex_init(&map->mutex);
			map->lock = regmap_lock_mutex;
			map->unlock = regmap_unlock_mutex;
		}
		map->lock_arg = map;
568
	}
569
	map->format.reg_bytes = DIV_ROUND_UP(config->reg_bits, 8);
570
	map->format.pad_bytes = config->pad_bits / 8;
571
	map->format.val_bytes = DIV_ROUND_UP(config->val_bits, 8);
572 573
	map->format.buf_size = DIV_ROUND_UP(config->reg_bits +
			config->val_bits + config->pad_bits, 8);
574
	map->reg_shift = config->pad_bits % 8;
575 576 577 578
	if (config->reg_stride)
		map->reg_stride = config->reg_stride;
	else
		map->reg_stride = 1;
579
	map->use_single_rw = config->use_single_rw;
580
	map->can_multi_write = config->can_multi_write;
581 582
	map->dev = dev;
	map->bus = bus;
583
	map->bus_context = bus_context;
584
	map->max_register = config->max_register;
585 586 587 588
	map->wr_table = config->wr_table;
	map->rd_table = config->rd_table;
	map->volatile_table = config->volatile_table;
	map->precious_table = config->precious_table;
589 590 591
	map->writeable_reg = config->writeable_reg;
	map->readable_reg = config->readable_reg;
	map->volatile_reg = config->volatile_reg;
592
	map->precious_reg = config->precious_reg;
593
	map->cache_type = config->cache_type;
M
Mark Brown 已提交
594
	map->name = config->name;
595

596 597
	spin_lock_init(&map->async_lock);
	INIT_LIST_HEAD(&map->async_list);
M
Mark Brown 已提交
598
	INIT_LIST_HEAD(&map->async_free);
599 600
	init_waitqueue_head(&map->async_waitq);

601 602 603
	if (config->read_flag_mask || config->write_flag_mask) {
		map->read_flag_mask = config->read_flag_mask;
		map->write_flag_mask = config->write_flag_mask;
604
	} else if (bus) {
605 606 607
		map->read_flag_mask = bus->read_flag_mask;
	}

608 609 610 611
	if (!bus) {
		map->reg_read  = config->reg_read;
		map->reg_write = config->reg_write;

612 613 614 615 616 617
		map->defer_caching = false;
		goto skip_format_initialization;
	} else if (!bus->read || !bus->write) {
		map->reg_read = _regmap_bus_reg_read;
		map->reg_write = _regmap_bus_reg_write;

618 619 620 621 622
		map->defer_caching = false;
		goto skip_format_initialization;
	} else {
		map->reg_read  = _regmap_bus_read;
	}
623

624 625
	reg_endian = regmap_get_reg_endian(bus, config);
	val_endian = regmap_get_val_endian(dev, bus, config);
626

627
	switch (config->reg_bits + map->reg_shift) {
628 629 630 631 632 633 634 635 636 637
	case 2:
		switch (config->val_bits) {
		case 6:
			map->format.format_write = regmap_format_2_6_write;
			break;
		default:
			goto err_map;
		}
		break;

638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657
	case 4:
		switch (config->val_bits) {
		case 12:
			map->format.format_write = regmap_format_4_12_write;
			break;
		default:
			goto err_map;
		}
		break;

	case 7:
		switch (config->val_bits) {
		case 9:
			map->format.format_write = regmap_format_7_9_write;
			break;
		default:
			goto err_map;
		}
		break;

658 659 660 661 662 663 664 665 666 667
	case 10:
		switch (config->val_bits) {
		case 14:
			map->format.format_write = regmap_format_10_14_write;
			break;
		default:
			goto err_map;
		}
		break;

668 669 670 671 672
	case 8:
		map->format.format_reg = regmap_format_8;
		break;

	case 16:
673 674 675 676 677 678 679 680 681 682
		switch (reg_endian) {
		case REGMAP_ENDIAN_BIG:
			map->format.format_reg = regmap_format_16_be;
			break;
		case REGMAP_ENDIAN_NATIVE:
			map->format.format_reg = regmap_format_16_native;
			break;
		default:
			goto err_map;
		}
683 684
		break;

685 686 687 688 689 690
	case 24:
		if (reg_endian != REGMAP_ENDIAN_BIG)
			goto err_map;
		map->format.format_reg = regmap_format_24;
		break;

691
	case 32:
692 693 694 695 696 697 698 699 700 701
		switch (reg_endian) {
		case REGMAP_ENDIAN_BIG:
			map->format.format_reg = regmap_format_32_be;
			break;
		case REGMAP_ENDIAN_NATIVE:
			map->format.format_reg = regmap_format_32_native;
			break;
		default:
			goto err_map;
		}
702 703
		break;

704 705 706 707
	default:
		goto err_map;
	}

708 709 710
	if (val_endian == REGMAP_ENDIAN_NATIVE)
		map->format.parse_inplace = regmap_parse_inplace_noop;

711 712 713 714
	switch (config->val_bits) {
	case 8:
		map->format.format_val = regmap_format_8;
		map->format.parse_val = regmap_parse_8;
715
		map->format.parse_inplace = regmap_parse_inplace_noop;
716 717
		break;
	case 16:
718 719 720 721
		switch (val_endian) {
		case REGMAP_ENDIAN_BIG:
			map->format.format_val = regmap_format_16_be;
			map->format.parse_val = regmap_parse_16_be;
722
			map->format.parse_inplace = regmap_parse_16_be_inplace;
723
			break;
724 725 726 727 728
		case REGMAP_ENDIAN_LITTLE:
			map->format.format_val = regmap_format_16_le;
			map->format.parse_val = regmap_parse_16_le;
			map->format.parse_inplace = regmap_parse_16_le_inplace;
			break;
729 730 731 732 733 734 735
		case REGMAP_ENDIAN_NATIVE:
			map->format.format_val = regmap_format_16_native;
			map->format.parse_val = regmap_parse_16_native;
			break;
		default:
			goto err_map;
		}
736
		break;
737
	case 24:
738 739
		if (val_endian != REGMAP_ENDIAN_BIG)
			goto err_map;
740 741 742
		map->format.format_val = regmap_format_24;
		map->format.parse_val = regmap_parse_24;
		break;
743
	case 32:
744 745 746 747
		switch (val_endian) {
		case REGMAP_ENDIAN_BIG:
			map->format.format_val = regmap_format_32_be;
			map->format.parse_val = regmap_parse_32_be;
748
			map->format.parse_inplace = regmap_parse_32_be_inplace;
749
			break;
750 751 752 753 754
		case REGMAP_ENDIAN_LITTLE:
			map->format.format_val = regmap_format_32_le;
			map->format.parse_val = regmap_parse_32_le;
			map->format.parse_inplace = regmap_parse_32_le_inplace;
			break;
755 756 757 758 759 760 761
		case REGMAP_ENDIAN_NATIVE:
			map->format.format_val = regmap_format_32_native;
			map->format.parse_val = regmap_parse_32_native;
			break;
		default:
			goto err_map;
		}
762
		break;
763 764
	}

765 766 767 768
	if (map->format.format_write) {
		if ((reg_endian != REGMAP_ENDIAN_BIG) ||
		    (val_endian != REGMAP_ENDIAN_BIG))
			goto err_map;
769
		map->use_single_rw = true;
770
	}
771

772 773 774 775
	if (!map->format.format_write &&
	    !(map->format.format_reg && map->format.format_val))
		goto err_map;

776
	map->work_buf = kzalloc(map->format.buf_size, GFP_KERNEL);
777 778
	if (map->work_buf == NULL) {
		ret = -ENOMEM;
779
		goto err_map;
780 781
	}

782 783
	if (map->format.format_write) {
		map->defer_caching = false;
784
		map->reg_write = _regmap_bus_formatted_write;
785 786
	} else if (map->format.format_val) {
		map->defer_caching = true;
787
		map->reg_write = _regmap_bus_raw_write;
788 789 790
	}

skip_format_initialization:
791

792
	map->range_tree = RB_ROOT;
M
Mark Brown 已提交
793
	for (i = 0; i < config->num_ranges; i++) {
794 795 796 797
		const struct regmap_range_cfg *range_cfg = &config->ranges[i];
		struct regmap_range_node *new;

		/* Sanity check */
798 799 800
		if (range_cfg->range_max < range_cfg->range_min) {
			dev_err(map->dev, "Invalid range %d: %d < %d\n", i,
				range_cfg->range_max, range_cfg->range_min);
801
			goto err_range;
802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820
		}

		if (range_cfg->range_max > map->max_register) {
			dev_err(map->dev, "Invalid range %d: %d > %d\n", i,
				range_cfg->range_max, map->max_register);
			goto err_range;
		}

		if (range_cfg->selector_reg > map->max_register) {
			dev_err(map->dev,
				"Invalid range %d: selector out of map\n", i);
			goto err_range;
		}

		if (range_cfg->window_len == 0) {
			dev_err(map->dev, "Invalid range %d: window_len 0\n",
				i);
			goto err_range;
		}
821 822 823

		/* Make sure, that this register range has no selector
		   or data window within its boundary */
M
Mark Brown 已提交
824
		for (j = 0; j < config->num_ranges; j++) {
825 826 827 828 829
			unsigned sel_reg = config->ranges[j].selector_reg;
			unsigned win_min = config->ranges[j].window_start;
			unsigned win_max = win_min +
					   config->ranges[j].window_len - 1;

830 831 832 833
			/* Allow data window inside its own virtual range */
			if (j == i)
				continue;

834 835
			if (range_cfg->range_min <= sel_reg &&
			    sel_reg <= range_cfg->range_max) {
836 837 838
				dev_err(map->dev,
					"Range %d: selector for %d in window\n",
					i, j);
839 840 841 842 843
				goto err_range;
			}

			if (!(win_max < range_cfg->range_min ||
			      win_min > range_cfg->range_max)) {
844 845 846
				dev_err(map->dev,
					"Range %d: window for %d in window\n",
					i, j);
847 848 849 850 851 852 853 854 855 856
				goto err_range;
			}
		}

		new = kzalloc(sizeof(*new), GFP_KERNEL);
		if (new == NULL) {
			ret = -ENOMEM;
			goto err_range;
		}

857
		new->map = map;
M
Mark Brown 已提交
858
		new->name = range_cfg->name;
859 860 861 862 863 864 865 866
		new->range_min = range_cfg->range_min;
		new->range_max = range_cfg->range_max;
		new->selector_reg = range_cfg->selector_reg;
		new->selector_mask = range_cfg->selector_mask;
		new->selector_shift = range_cfg->selector_shift;
		new->window_start = range_cfg->window_start;
		new->window_len = range_cfg->window_len;

N
Nenghua Cao 已提交
867
		if (!_regmap_range_add(map, new)) {
868
			dev_err(map->dev, "Failed to add range %d\n", i);
869 870 871 872 873 874 875 876 877 878 879 880 881
			kfree(new);
			goto err_range;
		}

		if (map->selector_work_buf == NULL) {
			map->selector_work_buf =
				kzalloc(map->format.buf_size, GFP_KERNEL);
			if (map->selector_work_buf == NULL) {
				ret = -ENOMEM;
				goto err_range;
			}
		}
	}
882

883
	ret = regcache_init(map, config);
884
	if (ret != 0)
885 886
		goto err_range;

887
	if (dev) {
888 889 890
		ret = regmap_attach_dev(dev, map, config);
		if (ret != 0)
			goto err_regcache;
891
	}
M
Mark Brown 已提交
892

893 894
	return map;

895
err_regcache:
M
Mark Brown 已提交
896
	regcache_exit(map);
897 898
err_range:
	regmap_range_exit(map);
899
	kfree(map->work_buf);
900 901 902 903 904 905 906
err_map:
	kfree(map);
err:
	return ERR_PTR(ret);
}
EXPORT_SYMBOL_GPL(regmap_init);

907 908 909 910 911 912 913 914 915 916
static void devm_regmap_release(struct device *dev, void *res)
{
	regmap_exit(*(struct regmap **)res);
}

/**
 * devm_regmap_init(): Initialise managed register map
 *
 * @dev: Device that will be interacted with
 * @bus: Bus-specific callbacks to use with device
917
 * @bus_context: Data passed to bus-specific callbacks
918 919 920 921 922 923 924 925 926
 * @config: Configuration for register map
 *
 * The return value will be an ERR_PTR() on error or a valid pointer
 * to a struct regmap.  This function should generally not be called
 * directly, it should be called by bus-specific init functions.  The
 * map will be automatically freed by the device management code.
 */
struct regmap *devm_regmap_init(struct device *dev,
				const struct regmap_bus *bus,
927
				void *bus_context,
928 929 930 931 932 933 934 935
				const struct regmap_config *config)
{
	struct regmap **ptr, *regmap;

	ptr = devres_alloc(devm_regmap_release, sizeof(*ptr), GFP_KERNEL);
	if (!ptr)
		return ERR_PTR(-ENOMEM);

936
	regmap = regmap_init(dev, bus, bus_context, config);
937 938 939 940 941 942 943 944 945 946 947
	if (!IS_ERR(regmap)) {
		*ptr = regmap;
		devres_add(dev, ptr);
	} else {
		devres_free(ptr);
	}

	return regmap;
}
EXPORT_SYMBOL_GPL(devm_regmap_init);

948 949 950 951 952 953
static void regmap_field_init(struct regmap_field *rm_field,
	struct regmap *regmap, struct reg_field reg_field)
{
	rm_field->regmap = regmap;
	rm_field->reg = reg_field.reg;
	rm_field->shift = reg_field.lsb;
954
	rm_field->mask = GENMASK(reg_field.msb, reg_field.lsb);
955 956
	rm_field->id_size = reg_field.id_size;
	rm_field->id_offset = reg_field.id_offset;
957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037
}

/**
 * devm_regmap_field_alloc(): Allocate and initialise a register field
 * in a register map.
 *
 * @dev: Device that will be interacted with
 * @regmap: regmap bank in which this register field is located.
 * @reg_field: Register field with in the bank.
 *
 * The return value will be an ERR_PTR() on error or a valid pointer
 * to a struct regmap_field. The regmap_field will be automatically freed
 * by the device management code.
 */
struct regmap_field *devm_regmap_field_alloc(struct device *dev,
		struct regmap *regmap, struct reg_field reg_field)
{
	struct regmap_field *rm_field = devm_kzalloc(dev,
					sizeof(*rm_field), GFP_KERNEL);
	if (!rm_field)
		return ERR_PTR(-ENOMEM);

	regmap_field_init(rm_field, regmap, reg_field);

	return rm_field;

}
EXPORT_SYMBOL_GPL(devm_regmap_field_alloc);

/**
 * devm_regmap_field_free(): Free register field allocated using
 * devm_regmap_field_alloc. Usally drivers need not call this function,
 * as the memory allocated via devm will be freed as per device-driver
 * life-cyle.
 *
 * @dev: Device that will be interacted with
 * @field: regmap field which should be freed.
 */
void devm_regmap_field_free(struct device *dev,
	struct regmap_field *field)
{
	devm_kfree(dev, field);
}
EXPORT_SYMBOL_GPL(devm_regmap_field_free);

/**
 * regmap_field_alloc(): Allocate and initialise a register field
 * in a register map.
 *
 * @regmap: regmap bank in which this register field is located.
 * @reg_field: Register field with in the bank.
 *
 * The return value will be an ERR_PTR() on error or a valid pointer
 * to a struct regmap_field. The regmap_field should be freed by the
 * user once its finished working with it using regmap_field_free().
 */
struct regmap_field *regmap_field_alloc(struct regmap *regmap,
		struct reg_field reg_field)
{
	struct regmap_field *rm_field = kzalloc(sizeof(*rm_field), GFP_KERNEL);

	if (!rm_field)
		return ERR_PTR(-ENOMEM);

	regmap_field_init(rm_field, regmap, reg_field);

	return rm_field;
}
EXPORT_SYMBOL_GPL(regmap_field_alloc);

/**
 * regmap_field_free(): Free register field allocated using regmap_field_alloc
 *
 * @field: regmap field which should be freed.
 */
void regmap_field_free(struct regmap_field *field)
{
	kfree(field);
}
EXPORT_SYMBOL_GPL(regmap_field_free);

1038 1039 1040 1041 1042 1043 1044 1045 1046 1047
/**
 * regmap_reinit_cache(): Reinitialise the current register cache
 *
 * @map: Register map to operate on.
 * @config: New configuration.  Only the cache data will be used.
 *
 * Discard any existing register cache for the map and initialize a
 * new cache.  This can be used to restore the cache to defaults or to
 * update the cache configuration to reflect runtime discovery of the
 * hardware.
1048 1049 1050
 *
 * No explicit locking is done here, the user needs to ensure that
 * this function will not race with other calls to regmap.
1051 1052 1053 1054
 */
int regmap_reinit_cache(struct regmap *map, const struct regmap_config *config)
{
	regcache_exit(map);
1055
	regmap_debugfs_exit(map);
1056 1057 1058 1059 1060 1061 1062 1063

	map->max_register = config->max_register;
	map->writeable_reg = config->writeable_reg;
	map->readable_reg = config->readable_reg;
	map->volatile_reg = config->volatile_reg;
	map->precious_reg = config->precious_reg;
	map->cache_type = config->cache_type;

1064
	regmap_debugfs_init(map, config->name);
1065

1066 1067 1068
	map->cache_bypass = false;
	map->cache_only = false;

1069
	return regcache_init(map, config);
1070
}
1071
EXPORT_SYMBOL_GPL(regmap_reinit_cache);
1072

1073 1074 1075 1076 1077
/**
 * regmap_exit(): Free a previously allocated register map
 */
void regmap_exit(struct regmap *map)
{
M
Mark Brown 已提交
1078 1079
	struct regmap_async *async;

1080
	regcache_exit(map);
1081
	regmap_debugfs_exit(map);
1082
	regmap_range_exit(map);
1083
	if (map->bus && map->bus->free_context)
1084
		map->bus->free_context(map->bus_context);
1085
	kfree(map->work_buf);
M
Mark Brown 已提交
1086 1087 1088 1089 1090 1091 1092 1093
	while (!list_empty(&map->async_free)) {
		async = list_first_entry_or_null(&map->async_free,
						 struct regmap_async,
						 list);
		list_del(&async->list);
		kfree(async->work_buf);
		kfree(async);
	}
1094 1095 1096 1097
	kfree(map);
}
EXPORT_SYMBOL_GPL(regmap_exit);

M
Mark Brown 已提交
1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135
static int dev_get_regmap_match(struct device *dev, void *res, void *data)
{
	struct regmap **r = res;
	if (!r || !*r) {
		WARN_ON(!r || !*r);
		return 0;
	}

	/* If the user didn't specify a name match any */
	if (data)
		return (*r)->name == data;
	else
		return 1;
}

/**
 * dev_get_regmap(): Obtain the regmap (if any) for a device
 *
 * @dev: Device to retrieve the map for
 * @name: Optional name for the register map, usually NULL.
 *
 * Returns the regmap for the device if one is present, or NULL.  If
 * name is specified then it must match the name specified when
 * registering the device, if it is NULL then the first regmap found
 * will be used.  Devices with multiple register maps are very rare,
 * generic code should normally not need to specify a name.
 */
struct regmap *dev_get_regmap(struct device *dev, const char *name)
{
	struct regmap **r = devres_find(dev, dev_get_regmap_release,
					dev_get_regmap_match, (void *)name);

	if (!r)
		return NULL;
	return *r;
}
EXPORT_SYMBOL_GPL(dev_get_regmap);

T
Tuomas Tynkkynen 已提交
1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146
/**
 * regmap_get_device(): Obtain the device from a regmap
 *
 * @map: Register map to operate on.
 *
 * Returns the underlying device that the regmap has been created for.
 */
struct device *regmap_get_device(struct regmap *map)
{
	return map->dev;
}
1147
EXPORT_SYMBOL_GPL(regmap_get_device);
T
Tuomas Tynkkynen 已提交
1148

1149
static int _regmap_select_page(struct regmap *map, unsigned int *reg,
1150
			       struct regmap_range_node *range,
1151 1152 1153 1154 1155 1156 1157 1158
			       unsigned int val_num)
{
	void *orig_work_buf;
	unsigned int win_offset;
	unsigned int win_page;
	bool page_chg;
	int ret;

1159 1160
	win_offset = (*reg - range->range_min) % range->window_len;
	win_page = (*reg - range->range_min) / range->window_len;
1161

1162 1163 1164 1165
	if (val_num > 1) {
		/* Bulk write shouldn't cross range boundary */
		if (*reg + val_num - 1 > range->range_max)
			return -EINVAL;
1166

1167 1168 1169 1170
		/* ... or single page boundary */
		if (val_num > range->window_len - win_offset)
			return -EINVAL;
	}
1171

1172 1173 1174 1175 1176 1177 1178 1179
	/* It is possible to have selector register inside data window.
	   In that case, selector register is located on every page and
	   it needs no page switching, when accessed alone. */
	if (val_num > 1 ||
	    range->window_start + win_offset != range->selector_reg) {
		/* Use separate work_buf during page switching */
		orig_work_buf = map->work_buf;
		map->work_buf = map->selector_work_buf;
1180

1181 1182 1183 1184
		ret = _regmap_update_bits(map, range->selector_reg,
					  range->selector_mask,
					  win_page << range->selector_shift,
					  &page_chg);
1185

1186
		map->work_buf = orig_work_buf;
1187

1188
		if (ret != 0)
1189
			return ret;
1190 1191
	}

1192 1193
	*reg = range->window_start + win_offset;

1194 1195 1196
	return 0;
}

1197
int _regmap_raw_write(struct regmap *map, unsigned int reg,
1198
		      const void *val, size_t val_len)
1199
{
1200
	struct regmap_range_node *range;
1201
	unsigned long flags;
1202
	u8 *u8 = map->work_buf;
1203 1204
	void *work_val = map->work_buf + map->format.reg_bytes +
		map->format.pad_bytes;
1205 1206 1207
	void *buf;
	int ret = -ENOTSUPP;
	size_t len;
1208 1209
	int i;

1210
	WARN_ON(!map->bus);
1211

1212 1213 1214
	/* Check for unwritable registers before we start */
	if (map->writeable_reg)
		for (i = 0; i < val_len / map->format.val_bytes; i++)
1215 1216
			if (!map->writeable_reg(map->dev,
						reg + (i * map->reg_stride)))
1217
				return -EINVAL;
1218

1219 1220 1221 1222
	if (!map->cache_bypass && map->format.parse_val) {
		unsigned int ival;
		int val_bytes = map->format.val_bytes;
		for (i = 0; i < val_len / val_bytes; i++) {
1223
			ival = map->format.parse_val(val + (i * val_bytes));
1224 1225
			ret = regcache_write(map, reg + (i * map->reg_stride),
					     ival);
1226 1227
			if (ret) {
				dev_err(map->dev,
1228
					"Error in caching of register: %x ret: %d\n",
1229 1230 1231 1232 1233 1234 1235 1236 1237 1238
					reg + i, ret);
				return ret;
			}
		}
		if (map->cache_only) {
			map->cache_dirty = true;
			return 0;
		}
	}

1239 1240
	range = _regmap_range_lookup(map, reg);
	if (range) {
1241 1242 1243 1244 1245 1246
		int val_num = val_len / map->format.val_bytes;
		int win_offset = (reg - range->range_min) % range->window_len;
		int win_residue = range->window_len - win_offset;

		/* If the write goes beyond the end of the window split it */
		while (val_num > win_residue) {
1247
			dev_dbg(map->dev, "Writing window %d/%zu\n",
1248 1249
				win_residue, val_len / map->format.val_bytes);
			ret = _regmap_raw_write(map, reg, val, win_residue *
1250
						map->format.val_bytes);
1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264
			if (ret != 0)
				return ret;

			reg += win_residue;
			val_num -= win_residue;
			val += win_residue * map->format.val_bytes;
			val_len -= win_residue * map->format.val_bytes;

			win_offset = (reg - range->range_min) %
				range->window_len;
			win_residue = range->window_len - win_offset;
		}

		ret = _regmap_select_page(map, &reg, range, val_num);
1265
		if (ret != 0)
1266 1267
			return ret;
	}
1268

1269
	map->format.format_reg(map->work_buf, reg, map->reg_shift);
1270

1271 1272
	u8[0] |= map->write_flag_mask;

1273 1274 1275 1276 1277 1278 1279 1280 1281 1282
	/*
	 * Essentially all I/O mechanisms will be faster with a single
	 * buffer to write.  Since register syncs often generate raw
	 * writes of single registers optimise that case.
	 */
	if (val != work_val && val_len == map->format.val_bytes) {
		memcpy(work_val, val, map->format.val_bytes);
		val = work_val;
	}

1283
	if (map->async && map->bus->async_write) {
M
Mark Brown 已提交
1284
		struct regmap_async *async;
1285

1286
		trace_regmap_async_write_start(map, reg, val_len);
1287

M
Mark Brown 已提交
1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306
		spin_lock_irqsave(&map->async_lock, flags);
		async = list_first_entry_or_null(&map->async_free,
						 struct regmap_async,
						 list);
		if (async)
			list_del(&async->list);
		spin_unlock_irqrestore(&map->async_lock, flags);

		if (!async) {
			async = map->bus->async_alloc();
			if (!async)
				return -ENOMEM;

			async->work_buf = kzalloc(map->format.buf_size,
						  GFP_KERNEL | GFP_DMA);
			if (!async->work_buf) {
				kfree(async);
				return -ENOMEM;
			}
1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318
		}

		async->map = map;

		/* If the caller supplied the value we can use it safely. */
		memcpy(async->work_buf, map->work_buf, map->format.pad_bytes +
		       map->format.reg_bytes + map->format.val_bytes);

		spin_lock_irqsave(&map->async_lock, flags);
		list_add_tail(&async->list, &map->async_list);
		spin_unlock_irqrestore(&map->async_lock, flags);

1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330
		if (val != work_val)
			ret = map->bus->async_write(map->bus_context,
						    async->work_buf,
						    map->format.reg_bytes +
						    map->format.pad_bytes,
						    val, val_len, async);
		else
			ret = map->bus->async_write(map->bus_context,
						    async->work_buf,
						    map->format.reg_bytes +
						    map->format.pad_bytes +
						    val_len, NULL, 0, async);
1331 1332 1333 1334 1335 1336

		if (ret != 0) {
			dev_err(map->dev, "Failed to schedule write: %d\n",
				ret);

			spin_lock_irqsave(&map->async_lock, flags);
M
Mark Brown 已提交
1337
			list_move(&async->list, &map->async_free);
1338 1339
			spin_unlock_irqrestore(&map->async_lock, flags);
		}
M
Mark Brown 已提交
1340 1341

		return ret;
1342 1343
	}

1344
	trace_regmap_hw_write_start(map, reg, val_len / map->format.val_bytes);
M
Mark Brown 已提交
1345

1346 1347 1348 1349
	/* If we're doing a single register write we can probably just
	 * send the work_buf directly, otherwise try to do a gather
	 * write.
	 */
1350
	if (val == work_val)
1351
		ret = map->bus->write(map->bus_context, map->work_buf,
1352 1353 1354
				      map->format.reg_bytes +
				      map->format.pad_bytes +
				      val_len);
1355
	else if (map->bus->gather_write)
1356
		ret = map->bus->gather_write(map->bus_context, map->work_buf,
1357 1358
					     map->format.reg_bytes +
					     map->format.pad_bytes,
1359 1360
					     val, val_len);

1361
	/* If that didn't work fall back on linearising by hand. */
1362
	if (ret == -ENOTSUPP) {
1363 1364
		len = map->format.reg_bytes + map->format.pad_bytes + val_len;
		buf = kzalloc(len, GFP_KERNEL);
1365 1366 1367 1368
		if (!buf)
			return -ENOMEM;

		memcpy(buf, map->work_buf, map->format.reg_bytes);
1369 1370
		memcpy(buf + map->format.reg_bytes + map->format.pad_bytes,
		       val, val_len);
1371
		ret = map->bus->write(map->bus_context, buf, len);
1372 1373 1374 1375

		kfree(buf);
	}

1376
	trace_regmap_hw_write_done(map, reg, val_len / map->format.val_bytes);
M
Mark Brown 已提交
1377

1378 1379 1380
	return ret;
}

1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391
/**
 * regmap_can_raw_write - Test if regmap_raw_write() is supported
 *
 * @map: Map to check.
 */
bool regmap_can_raw_write(struct regmap *map)
{
	return map->bus && map->format.format_val && map->format.format_reg;
}
EXPORT_SYMBOL_GPL(regmap_can_raw_write);

1392 1393 1394 1395 1396 1397 1398
static int _regmap_bus_formatted_write(void *context, unsigned int reg,
				       unsigned int val)
{
	int ret;
	struct regmap_range_node *range;
	struct regmap *map = context;

1399
	WARN_ON(!map->bus || !map->format.format_write);
1400 1401 1402 1403 1404 1405 1406 1407 1408 1409

	range = _regmap_range_lookup(map, reg);
	if (range) {
		ret = _regmap_select_page(map, &reg, range, 1);
		if (ret != 0)
			return ret;
	}

	map->format.format_write(map, reg, val);

1410
	trace_regmap_hw_write_start(map, reg, 1);
1411 1412 1413 1414

	ret = map->bus->write(map->bus_context, map->work_buf,
			      map->format.buf_size);

1415
	trace_regmap_hw_write_done(map, reg, 1);
1416 1417 1418 1419

	return ret;
}

1420 1421 1422 1423 1424 1425 1426 1427
static int _regmap_bus_reg_write(void *context, unsigned int reg,
				 unsigned int val)
{
	struct regmap *map = context;

	return map->bus->reg_write(map->bus_context, reg, val);
}

1428 1429 1430 1431 1432
static int _regmap_bus_raw_write(void *context, unsigned int reg,
				 unsigned int val)
{
	struct regmap *map = context;

1433
	WARN_ON(!map->bus || !map->format.format_val);
1434 1435 1436 1437 1438 1439 1440

	map->format.format_val(map->work_buf + map->format.reg_bytes
			       + map->format.pad_bytes, val, 0);
	return _regmap_raw_write(map, reg,
				 map->work_buf +
				 map->format.reg_bytes +
				 map->format.pad_bytes,
1441
				 map->format.val_bytes);
1442 1443
}

1444 1445 1446 1447 1448
static inline void *_regmap_map_get_context(struct regmap *map)
{
	return (map->bus) ? map : map->bus_context;
}

1449 1450
int _regmap_write(struct regmap *map, unsigned int reg,
		  unsigned int val)
1451
{
M
Mark Brown 已提交
1452
	int ret;
1453
	void *context = _regmap_map_get_context(map);
1454

1455 1456 1457
	if (!regmap_writeable(map, reg))
		return -EIO;

1458
	if (!map->cache_bypass && !map->defer_caching) {
1459 1460 1461
		ret = regcache_write(map, reg, val);
		if (ret != 0)
			return ret;
1462 1463
		if (map->cache_only) {
			map->cache_dirty = true;
1464
			return 0;
1465
		}
1466 1467
	}

1468
#ifdef LOG_DEVICE
1469
	if (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0)
1470 1471 1472
		dev_info(map->dev, "%x <= %x\n", reg, val);
#endif

1473
	trace_regmap_reg_write(map, reg, val);
M
Mark Brown 已提交
1474

1475
	return map->reg_write(context, reg, val);
1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491
}

/**
 * regmap_write(): Write a value to a single register
 *
 * @map: Register map to write to
 * @reg: Register to write to
 * @val: Value to be written
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_write(struct regmap *map, unsigned int reg, unsigned int val)
{
	int ret;

1492 1493 1494
	if (reg % map->reg_stride)
		return -EINVAL;

1495
	map->lock(map->lock_arg);
1496 1497 1498

	ret = _regmap_write(map, reg, val);

1499
	map->unlock(map->lock_arg);
1500 1501 1502 1503 1504

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_write);

1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535
/**
 * regmap_write_async(): Write a value to a single register asynchronously
 *
 * @map: Register map to write to
 * @reg: Register to write to
 * @val: Value to be written
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_write_async(struct regmap *map, unsigned int reg, unsigned int val)
{
	int ret;

	if (reg % map->reg_stride)
		return -EINVAL;

	map->lock(map->lock_arg);

	map->async = true;

	ret = _regmap_write(map, reg, val);

	map->async = false;

	map->unlock(map->lock_arg);

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_write_async);

1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556
/**
 * regmap_raw_write(): Write raw values to one or more registers
 *
 * @map: Register map to write to
 * @reg: Initial register to write to
 * @val: Block of data to be written, laid out for direct transmission to the
 *       device
 * @val_len: Length of data pointed to by val.
 *
 * This function is intended to be used for things like firmware
 * download where a large block of data needs to be transferred to the
 * device.  No formatting will be done on the data provided.
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_raw_write(struct regmap *map, unsigned int reg,
		     const void *val, size_t val_len)
{
	int ret;

1557
	if (!regmap_can_raw_write(map))
1558
		return -EINVAL;
1559 1560 1561
	if (val_len % map->format.val_bytes)
		return -EINVAL;

1562
	map->lock(map->lock_arg);
1563

1564
	ret = _regmap_raw_write(map, reg, val, val_len);
1565

1566
	map->unlock(map->lock_arg);
1567 1568 1569 1570 1571

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_raw_write);

1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587
/**
 * regmap_field_write(): Write a value to a single register field
 *
 * @field: Register field to write to
 * @val: Value to be written
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_field_write(struct regmap_field *field, unsigned int val)
{
	return regmap_update_bits(field->regmap, field->reg,
				field->mask, val << field->shift);
}
EXPORT_SYMBOL_GPL(regmap_field_write);

1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607
/**
 * regmap_field_update_bits():	Perform a read/modify/write cycle
 *                              on the register field
 *
 * @field: Register field to write to
 * @mask: Bitmask to change
 * @val: Value to be written
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_field_update_bits(struct regmap_field *field, unsigned int mask, unsigned int val)
{
	mask = (mask << field->shift) & field->mask;

	return regmap_update_bits(field->regmap, field->reg,
				  mask, val << field->shift);
}
EXPORT_SYMBOL_GPL(regmap_field_update_bits);

1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655
/**
 * regmap_fields_write(): Write a value to a single register field with port ID
 *
 * @field: Register field to write to
 * @id: port ID
 * @val: Value to be written
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_fields_write(struct regmap_field *field, unsigned int id,
			unsigned int val)
{
	if (id >= field->id_size)
		return -EINVAL;

	return regmap_update_bits(field->regmap,
				  field->reg + (field->id_offset * id),
				  field->mask, val << field->shift);
}
EXPORT_SYMBOL_GPL(regmap_fields_write);

/**
 * regmap_fields_update_bits():	Perform a read/modify/write cycle
 *                              on the register field
 *
 * @field: Register field to write to
 * @id: port ID
 * @mask: Bitmask to change
 * @val: Value to be written
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_fields_update_bits(struct regmap_field *field,  unsigned int id,
			      unsigned int mask, unsigned int val)
{
	if (id >= field->id_size)
		return -EINVAL;

	mask = (mask << field->shift) & field->mask;

	return regmap_update_bits(field->regmap,
				  field->reg + (field->id_offset * id),
				  mask, val << field->shift);
}
EXPORT_SYMBOL_GPL(regmap_fields_update_bits);

1656 1657 1658 1659 1660 1661 1662 1663 1664
/*
 * regmap_bulk_write(): Write multiple registers to the device
 *
 * @map: Register map to write to
 * @reg: First register to be write from
 * @val: Block of data to be written, in native register size for device
 * @val_count: Number of registers to write
 *
 * This function is intended to be used for writing a large block of
1665
 * data to the device either in single transfer or multiple transfer.
1666 1667 1668 1669 1670 1671 1672 1673 1674 1675
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_bulk_write(struct regmap *map, unsigned int reg, const void *val,
		     size_t val_count)
{
	int ret = 0, i;
	size_t val_bytes = map->format.val_bytes;

1676
	if (map->bus && !map->format.parse_inplace)
1677
		return -EINVAL;
1678 1679
	if (reg % map->reg_stride)
		return -EINVAL;
1680

1681 1682
	/*
	 * Some devices don't support bulk write, for
1683 1684 1685 1686 1687 1688 1689
	 * them we have a series of single write operations in the first two if
	 * blocks.
	 *
	 * The first if block is used for memory mapped io. It does not allow
	 * val_bytes of 3 for example.
	 * The second one is used for busses which do not have this limitation
	 * and can write arbitrary value lengths.
1690
	 */
1691
	if (!map->bus) {
1692
		map->lock(map->lock_arg);
1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714
		for (i = 0; i < val_count; i++) {
			unsigned int ival;

			switch (val_bytes) {
			case 1:
				ival = *(u8 *)(val + (i * val_bytes));
				break;
			case 2:
				ival = *(u16 *)(val + (i * val_bytes));
				break;
			case 4:
				ival = *(u32 *)(val + (i * val_bytes));
				break;
#ifdef CONFIG_64BIT
			case 8:
				ival = *(u64 *)(val + (i * val_bytes));
				break;
#endif
			default:
				ret = -EINVAL;
				goto out;
			}
1715

1716 1717 1718 1719 1720
			ret = _regmap_write(map, reg + (i * map->reg_stride),
					ival);
			if (ret != 0)
				goto out;
		}
1721 1722
out:
		map->unlock(map->lock_arg);
1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733
	} else if (map->use_single_rw) {
		map->lock(map->lock_arg);
		for (i = 0; i < val_count; i++) {
			ret = _regmap_raw_write(map,
						reg + (i * map->reg_stride),
						val + (i * val_bytes),
						val_bytes);
			if (ret)
				break;
		}
		map->unlock(map->lock_arg);
1734
	} else {
1735 1736
		void *wval;

1737 1738 1739
		if (!val_count)
			return -EINVAL;

1740 1741 1742
		wval = kmemdup(val, val_count * val_bytes, GFP_KERNEL);
		if (!wval) {
			dev_err(map->dev, "Error in memory allocation\n");
1743
			return -ENOMEM;
1744 1745
		}
		for (i = 0; i < val_count * val_bytes; i += val_bytes)
1746
			map->format.parse_inplace(wval + i);
1747

1748
		map->lock(map->lock_arg);
1749
		ret = _regmap_raw_write(map, reg, wval, val_bytes * val_count);
1750
		map->unlock(map->lock_arg);
1751 1752

		kfree(wval);
1753
	}
1754 1755 1756 1757
	return ret;
}
EXPORT_SYMBOL_GPL(regmap_bulk_write);

1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778
/*
 * _regmap_raw_multi_reg_write()
 *
 * the (register,newvalue) pairs in regs have not been formatted, but
 * they are all in the same page and have been changed to being page
 * relative. The page register has been written if that was neccessary.
 */
static int _regmap_raw_multi_reg_write(struct regmap *map,
				       const struct reg_default *regs,
				       size_t num_regs)
{
	int ret;
	void *buf;
	int i;
	u8 *u8;
	size_t val_bytes = map->format.val_bytes;
	size_t reg_bytes = map->format.reg_bytes;
	size_t pad_bytes = map->format.pad_bytes;
	size_t pair_size = reg_bytes + pad_bytes + val_bytes;
	size_t len = pair_size * num_regs;

1779 1780 1781
	if (!len)
		return -EINVAL;

1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792
	buf = kzalloc(len, GFP_KERNEL);
	if (!buf)
		return -ENOMEM;

	/* We have to linearise by hand. */

	u8 = buf;

	for (i = 0; i < num_regs; i++) {
		int reg = regs[i].reg;
		int val = regs[i].def;
1793
		trace_regmap_hw_write_start(map, reg, 1);
1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807
		map->format.format_reg(u8, reg, map->reg_shift);
		u8 += reg_bytes + pad_bytes;
		map->format.format_val(u8, val, 0);
		u8 += val_bytes;
	}
	u8 = buf;
	*u8 |= map->write_flag_mask;

	ret = map->bus->write(map->bus_context, buf, len);

	kfree(buf);

	for (i = 0; i < num_regs; i++) {
		int reg = regs[i].reg;
1808
		trace_regmap_hw_write_done(map, reg, 1);
1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828
	}
	return ret;
}

static unsigned int _regmap_register_page(struct regmap *map,
					  unsigned int reg,
					  struct regmap_range_node *range)
{
	unsigned int win_page = (reg - range->range_min) / range->window_len;

	return win_page;
}

static int _regmap_range_multi_paged_reg_write(struct regmap *map,
					       struct reg_default *regs,
					       size_t num_regs)
{
	int ret;
	int i, n;
	struct reg_default *base;
1829
	unsigned int this_page = 0;
1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864
	/*
	 * the set of registers are not neccessarily in order, but
	 * since the order of write must be preserved this algorithm
	 * chops the set each time the page changes
	 */
	base = regs;
	for (i = 0, n = 0; i < num_regs; i++, n++) {
		unsigned int reg = regs[i].reg;
		struct regmap_range_node *range;

		range = _regmap_range_lookup(map, reg);
		if (range) {
			unsigned int win_page = _regmap_register_page(map, reg,
								      range);

			if (i == 0)
				this_page = win_page;
			if (win_page != this_page) {
				this_page = win_page;
				ret = _regmap_raw_multi_reg_write(map, base, n);
				if (ret != 0)
					return ret;
				base += n;
				n = 0;
			}
			ret = _regmap_select_page(map, &base[n].reg, range, 1);
			if (ret != 0)
				return ret;
		}
	}
	if (n > 0)
		return _regmap_raw_multi_reg_write(map, base, n);
	return 0;
}

1865 1866
static int _regmap_multi_reg_write(struct regmap *map,
				   const struct reg_default *regs,
1867
				   size_t num_regs)
1868
{
1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911
	int i;
	int ret;

	if (!map->can_multi_write) {
		for (i = 0; i < num_regs; i++) {
			ret = _regmap_write(map, regs[i].reg, regs[i].def);
			if (ret != 0)
				return ret;
		}
		return 0;
	}

	if (!map->format.parse_inplace)
		return -EINVAL;

	if (map->writeable_reg)
		for (i = 0; i < num_regs; i++) {
			int reg = regs[i].reg;
			if (!map->writeable_reg(map->dev, reg))
				return -EINVAL;
			if (reg % map->reg_stride)
				return -EINVAL;
		}

	if (!map->cache_bypass) {
		for (i = 0; i < num_regs; i++) {
			unsigned int val = regs[i].def;
			unsigned int reg = regs[i].reg;
			ret = regcache_write(map, reg, val);
			if (ret) {
				dev_err(map->dev,
				"Error in caching of register: %x ret: %d\n",
								reg, ret);
				return ret;
			}
		}
		if (map->cache_only) {
			map->cache_dirty = true;
			return 0;
		}
	}

	WARN_ON(!map->bus);
1912 1913

	for (i = 0; i < num_regs; i++) {
1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926
		unsigned int reg = regs[i].reg;
		struct regmap_range_node *range;
		range = _regmap_range_lookup(map, reg);
		if (range) {
			size_t len = sizeof(struct reg_default)*num_regs;
			struct reg_default *base = kmemdup(regs, len,
							   GFP_KERNEL);
			if (!base)
				return -ENOMEM;
			ret = _regmap_range_multi_paged_reg_write(map, base,
								  num_regs);
			kfree(base);

1927 1928 1929
			return ret;
		}
	}
1930
	return _regmap_raw_multi_reg_write(map, regs, num_regs);
1931 1932
}

1933 1934 1935
/*
 * regmap_multi_reg_write(): Write multiple registers to the device
 *
1936 1937
 * where the set of register,value pairs are supplied in any order,
 * possibly not all in a single range.
1938 1939 1940 1941 1942
 *
 * @map: Register map to write to
 * @regs: Array of structures containing register,value to be written
 * @num_regs: Number of registers to write
 *
1943 1944 1945 1946 1947
 * The 'normal' block write mode will send ultimately send data on the
 * target bus as R,V1,V2,V3,..,Vn where successively higer registers are
 * addressed. However, this alternative block multi write mode will send
 * the data as R1,V1,R2,V2,..,Rn,Vn on the target bus. The target device
 * must of course support the mode.
1948
 *
1949 1950
 * A value of zero will be returned on success, a negative errno will be
 * returned in error cases.
1951
 */
1952 1953
int regmap_multi_reg_write(struct regmap *map, const struct reg_default *regs,
			   int num_regs)
1954
{
1955
	int ret;
1956 1957 1958

	map->lock(map->lock_arg);

1959 1960
	ret = _regmap_multi_reg_write(map, regs, num_regs);

1961 1962 1963 1964 1965 1966
	map->unlock(map->lock_arg);

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_multi_reg_write);

1967 1968 1969 1970
/*
 * regmap_multi_reg_write_bypassed(): Write multiple registers to the
 *                                    device but not the cache
 *
1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983
 * where the set of register are supplied in any order
 *
 * @map: Register map to write to
 * @regs: Array of structures containing register,value to be written
 * @num_regs: Number of registers to write
 *
 * This function is intended to be used for writing a large block of data
 * atomically to the device in single transfer for those I2C client devices
 * that implement this alternative block write mode.
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
1984 1985 1986
int regmap_multi_reg_write_bypassed(struct regmap *map,
				    const struct reg_default *regs,
				    int num_regs)
1987
{
1988 1989
	int ret;
	bool bypass;
1990 1991 1992

	map->lock(map->lock_arg);

1993 1994 1995 1996 1997 1998 1999
	bypass = map->cache_bypass;
	map->cache_bypass = true;

	ret = _regmap_multi_reg_write(map, regs, num_regs);

	map->cache_bypass = bypass;

2000 2001 2002 2003
	map->unlock(map->lock_arg);

	return ret;
}
2004
EXPORT_SYMBOL_GPL(regmap_multi_reg_write_bypassed);
2005

2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039
/**
 * regmap_raw_write_async(): Write raw values to one or more registers
 *                           asynchronously
 *
 * @map: Register map to write to
 * @reg: Initial register to write to
 * @val: Block of data to be written, laid out for direct transmission to the
 *       device.  Must be valid until regmap_async_complete() is called.
 * @val_len: Length of data pointed to by val.
 *
 * This function is intended to be used for things like firmware
 * download where a large block of data needs to be transferred to the
 * device.  No formatting will be done on the data provided.
 *
 * If supported by the underlying bus the write will be scheduled
 * asynchronously, helping maximise I/O speed on higher speed buses
 * like SPI.  regmap_async_complete() can be called to ensure that all
 * asynchrnous writes have been completed.
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_raw_write_async(struct regmap *map, unsigned int reg,
			   const void *val, size_t val_len)
{
	int ret;

	if (val_len % map->format.val_bytes)
		return -EINVAL;
	if (reg % map->reg_stride)
		return -EINVAL;

	map->lock(map->lock_arg);

2040 2041 2042 2043 2044
	map->async = true;

	ret = _regmap_raw_write(map, reg, val, val_len);

	map->async = false;
2045 2046 2047 2048 2049 2050 2051

	map->unlock(map->lock_arg);

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_raw_write_async);

2052 2053 2054
static int _regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
			    unsigned int val_len)
{
2055
	struct regmap_range_node *range;
2056 2057 2058
	u8 *u8 = map->work_buf;
	int ret;

2059
	WARN_ON(!map->bus);
2060

2061 2062 2063 2064
	range = _regmap_range_lookup(map, reg);
	if (range) {
		ret = _regmap_select_page(map, &reg, range,
					  val_len / map->format.val_bytes);
2065
		if (ret != 0)
2066 2067
			return ret;
	}
2068

2069
	map->format.format_reg(map->work_buf, reg, map->reg_shift);
2070 2071

	/*
2072
	 * Some buses or devices flag reads by setting the high bits in the
2073 2074 2075 2076
	 * register addresss; since it's always the high bits for all
	 * current formats we can do this here rather than in
	 * formatting.  This may break if we get interesting formats.
	 */
2077
	u8[0] |= map->read_flag_mask;
2078

2079
	trace_regmap_hw_read_start(map, reg, val_len / map->format.val_bytes);
M
Mark Brown 已提交
2080

2081
	ret = map->bus->read(map->bus_context, map->work_buf,
2082
			     map->format.reg_bytes + map->format.pad_bytes,
M
Mark Brown 已提交
2083
			     val, val_len);
2084

2085
	trace_regmap_hw_read_done(map, reg, val_len / map->format.val_bytes);
M
Mark Brown 已提交
2086 2087

	return ret;
2088 2089
}

2090 2091 2092 2093 2094 2095 2096 2097
static int _regmap_bus_reg_read(void *context, unsigned int reg,
				unsigned int *val)
{
	struct regmap *map = context;

	return map->bus->reg_read(map->bus_context, reg, val);
}

2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113
static int _regmap_bus_read(void *context, unsigned int reg,
			    unsigned int *val)
{
	int ret;
	struct regmap *map = context;

	if (!map->format.parse_val)
		return -EINVAL;

	ret = _regmap_raw_read(map, reg, map->work_buf, map->format.val_bytes);
	if (ret == 0)
		*val = map->format.parse_val(map->work_buf);

	return ret;
}

2114 2115 2116 2117
static int _regmap_read(struct regmap *map, unsigned int reg,
			unsigned int *val)
{
	int ret;
2118 2119
	void *context = _regmap_map_get_context(map);

2120 2121 2122 2123 2124 2125 2126 2127 2128
	if (!map->cache_bypass) {
		ret = regcache_read(map, reg, val);
		if (ret == 0)
			return 0;
	}

	if (map->cache_only)
		return -EBUSY;

2129 2130 2131
	if (!regmap_readable(map, reg))
		return -EIO;

2132
	ret = map->reg_read(context, reg, val);
M
Mark Brown 已提交
2133
	if (ret == 0) {
2134
#ifdef LOG_DEVICE
2135
		if (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0)
2136 2137 2138
			dev_info(map->dev, "%x => %x\n", reg, *val);
#endif

2139
		trace_regmap_reg_read(map, reg, *val);
2140

2141 2142 2143
		if (!map->cache_bypass)
			regcache_write(map, reg, *val);
	}
2144

2145 2146 2147 2148 2149 2150
	return ret;
}

/**
 * regmap_read(): Read a value from a single register
 *
2151
 * @map: Register map to read from
2152 2153 2154 2155 2156 2157 2158 2159 2160 2161
 * @reg: Register to be read from
 * @val: Pointer to store read value
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val)
{
	int ret;

2162 2163 2164
	if (reg % map->reg_stride)
		return -EINVAL;

2165
	map->lock(map->lock_arg);
2166 2167 2168

	ret = _regmap_read(map, reg, val);

2169
	map->unlock(map->lock_arg);
2170 2171 2172 2173 2174 2175 2176 2177

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_read);

/**
 * regmap_raw_read(): Read raw data from the device
 *
2178
 * @map: Register map to read from
2179 2180 2181 2182 2183 2184 2185 2186 2187 2188
 * @reg: First register to be read from
 * @val: Pointer to store read value
 * @val_len: Size of data to read
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
		    size_t val_len)
{
2189 2190 2191 2192
	size_t val_bytes = map->format.val_bytes;
	size_t val_count = val_len / val_bytes;
	unsigned int v;
	int ret, i;
2193

2194 2195
	if (!map->bus)
		return -EINVAL;
2196 2197
	if (val_len % map->format.val_bytes)
		return -EINVAL;
2198 2199
	if (reg % map->reg_stride)
		return -EINVAL;
2200 2201
	if (val_count == 0)
		return -EINVAL;
2202

2203
	map->lock(map->lock_arg);
2204

2205 2206 2207 2208 2209 2210 2211 2212 2213 2214
	if (regmap_volatile_range(map, reg, val_count) || map->cache_bypass ||
	    map->cache_type == REGCACHE_NONE) {
		/* Physical block read if there's no cache involved */
		ret = _regmap_raw_read(map, reg, val, val_len);

	} else {
		/* Otherwise go word by word for the cache; should be low
		 * cost as we expect to hit the cache.
		 */
		for (i = 0; i < val_count; i++) {
2215 2216
			ret = _regmap_read(map, reg + (i * map->reg_stride),
					   &v);
2217 2218 2219
			if (ret != 0)
				goto out;

2220
			map->format.format_val(val + (i * val_bytes), v, 0);
2221 2222
		}
	}
2223

2224
 out:
2225
	map->unlock(map->lock_arg);
2226 2227 2228 2229 2230

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_raw_read);

2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255
/**
 * regmap_field_read(): Read a value to a single register field
 *
 * @field: Register field to read from
 * @val: Pointer to store read value
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_field_read(struct regmap_field *field, unsigned int *val)
{
	int ret;
	unsigned int reg_val;
	ret = regmap_read(field->regmap, field->reg, &reg_val);
	if (ret != 0)
		return ret;

	reg_val &= field->mask;
	reg_val >>= field->shift;
	*val = reg_val;

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_field_read);

2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288
/**
 * regmap_fields_read(): Read a value to a single register field with port ID
 *
 * @field: Register field to read from
 * @id: port ID
 * @val: Pointer to store read value
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_fields_read(struct regmap_field *field, unsigned int id,
		       unsigned int *val)
{
	int ret;
	unsigned int reg_val;

	if (id >= field->id_size)
		return -EINVAL;

	ret = regmap_read(field->regmap,
			  field->reg + (field->id_offset * id),
			  &reg_val);
	if (ret != 0)
		return ret;

	reg_val &= field->mask;
	reg_val >>= field->shift;
	*val = reg_val;

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_fields_read);

2289 2290 2291
/**
 * regmap_bulk_read(): Read multiple registers from the device
 *
2292
 * @map: Register map to read from
2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304
 * @reg: First register to be read from
 * @val: Pointer to store read value, in native register size for device
 * @val_count: Number of registers to read
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_bulk_read(struct regmap *map, unsigned int reg, void *val,
		     size_t val_count)
{
	int ret, i;
	size_t val_bytes = map->format.val_bytes;
2305
	bool vol = regmap_volatile_range(map, reg, val_count);
2306

2307 2308
	if (reg % map->reg_stride)
		return -EINVAL;
2309

2310
	if (map->bus && map->format.parse_inplace && (vol || map->cache_type == REGCACHE_NONE)) {
2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329
		/*
		 * Some devices does not support bulk read, for
		 * them we have a series of single read operations.
		 */
		if (map->use_single_rw) {
			for (i = 0; i < val_count; i++) {
				ret = regmap_raw_read(map,
						reg + (i * map->reg_stride),
						val + (i * val_bytes),
						val_bytes);
				if (ret != 0)
					return ret;
			}
		} else {
			ret = regmap_raw_read(map, reg, val,
					      val_bytes * val_count);
			if (ret != 0)
				return ret;
		}
2330 2331

		for (i = 0; i < val_count * val_bytes; i += val_bytes)
2332
			map->format.parse_inplace(val + i);
2333 2334
	} else {
		for (i = 0; i < val_count; i++) {
2335
			unsigned int ival;
2336
			ret = regmap_read(map, reg + (i * map->reg_stride),
2337
					  &ival);
2338 2339
			if (ret != 0)
				return ret;
2340
			map->format.format_val(val + (i * val_bytes), ival, 0);
2341 2342
		}
	}
2343 2344 2345 2346 2347

	return 0;
}
EXPORT_SYMBOL_GPL(regmap_bulk_read);

2348 2349 2350
static int _regmap_update_bits(struct regmap *map, unsigned int reg,
			       unsigned int mask, unsigned int val,
			       bool *change)
2351 2352
{
	int ret;
2353
	unsigned int tmp, orig;
2354

2355
	ret = _regmap_read(map, reg, &orig);
2356
	if (ret != 0)
2357
		return ret;
2358

2359
	tmp = orig & ~mask;
2360 2361
	tmp |= val & mask;

2362
	if (tmp != orig) {
2363
		ret = _regmap_write(map, reg, tmp);
2364 2365
		if (change)
			*change = true;
2366
	} else {
2367 2368
		if (change)
			*change = false;
2369
	}
2370 2371 2372

	return ret;
}
2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386

/**
 * regmap_update_bits: Perform a read/modify/write cycle on the register map
 *
 * @map: Register map to update
 * @reg: Register to update
 * @mask: Bitmask to change
 * @val: New value for bitmask
 *
 * Returns zero for success, a negative number on error.
 */
int regmap_update_bits(struct regmap *map, unsigned int reg,
		       unsigned int mask, unsigned int val)
{
2387 2388
	int ret;

2389
	map->lock(map->lock_arg);
2390
	ret = _regmap_update_bits(map, reg, mask, val, NULL);
2391
	map->unlock(map->lock_arg);
2392 2393

	return ret;
2394
}
2395
EXPORT_SYMBOL_GPL(regmap_update_bits);
2396

2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420
/**
 * regmap_update_bits_async: Perform a read/modify/write cycle on the register
 *                           map asynchronously
 *
 * @map: Register map to update
 * @reg: Register to update
 * @mask: Bitmask to change
 * @val: New value for bitmask
 *
 * With most buses the read must be done synchronously so this is most
 * useful for devices with a cache which do not need to interact with
 * the hardware to determine the current register value.
 *
 * Returns zero for success, a negative number on error.
 */
int regmap_update_bits_async(struct regmap *map, unsigned int reg,
			     unsigned int mask, unsigned int val)
{
	int ret;

	map->lock(map->lock_arg);

	map->async = true;

2421
	ret = _regmap_update_bits(map, reg, mask, val, NULL);
2422 2423 2424 2425 2426 2427 2428 2429 2430

	map->async = false;

	map->unlock(map->lock_arg);

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_update_bits_async);

2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446
/**
 * regmap_update_bits_check: Perform a read/modify/write cycle on the
 *                           register map and report if updated
 *
 * @map: Register map to update
 * @reg: Register to update
 * @mask: Bitmask to change
 * @val: New value for bitmask
 * @change: Boolean indicating if a write was done
 *
 * Returns zero for success, a negative number on error.
 */
int regmap_update_bits_check(struct regmap *map, unsigned int reg,
			     unsigned int mask, unsigned int val,
			     bool *change)
{
2447 2448
	int ret;

2449
	map->lock(map->lock_arg);
2450
	ret = _regmap_update_bits(map, reg, mask, val, change);
2451
	map->unlock(map->lock_arg);
2452
	return ret;
2453 2454 2455
}
EXPORT_SYMBOL_GPL(regmap_update_bits_check);

2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492
/**
 * regmap_update_bits_check_async: Perform a read/modify/write cycle on the
 *                                 register map asynchronously and report if
 *                                 updated
 *
 * @map: Register map to update
 * @reg: Register to update
 * @mask: Bitmask to change
 * @val: New value for bitmask
 * @change: Boolean indicating if a write was done
 *
 * With most buses the read must be done synchronously so this is most
 * useful for devices with a cache which do not need to interact with
 * the hardware to determine the current register value.
 *
 * Returns zero for success, a negative number on error.
 */
int regmap_update_bits_check_async(struct regmap *map, unsigned int reg,
				   unsigned int mask, unsigned int val,
				   bool *change)
{
	int ret;

	map->lock(map->lock_arg);

	map->async = true;

	ret = _regmap_update_bits(map, reg, mask, val, change);

	map->async = false;

	map->unlock(map->lock_arg);

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_update_bits_check_async);

2493 2494 2495 2496 2497
void regmap_async_complete_cb(struct regmap_async *async, int ret)
{
	struct regmap *map = async->map;
	bool wake;

2498
	trace_regmap_async_io_complete(map);
2499

2500
	spin_lock(&map->async_lock);
M
Mark Brown 已提交
2501
	list_move(&async->list, &map->async_free);
2502 2503 2504 2505 2506 2507 2508 2509 2510 2511
	wake = list_empty(&map->async_list);

	if (ret != 0)
		map->async_ret = ret;

	spin_unlock(&map->async_lock);

	if (wake)
		wake_up(&map->async_waitq);
}
2512
EXPORT_SYMBOL_GPL(regmap_async_complete_cb);
2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539

static int regmap_async_is_done(struct regmap *map)
{
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&map->async_lock, flags);
	ret = list_empty(&map->async_list);
	spin_unlock_irqrestore(&map->async_lock, flags);

	return ret;
}

/**
 * regmap_async_complete: Ensure all asynchronous I/O has completed.
 *
 * @map: Map to operate on.
 *
 * Blocks until any pending asynchronous I/O has completed.  Returns
 * an error code for any failed I/O operations.
 */
int regmap_async_complete(struct regmap *map)
{
	unsigned long flags;
	int ret;

	/* Nothing to do with no async support */
2540
	if (!map->bus || !map->bus->async_write)
2541 2542
		return 0;

2543
	trace_regmap_async_complete_start(map);
2544

2545 2546 2547 2548 2549 2550 2551
	wait_event(map->async_waitq, regmap_async_is_done(map));

	spin_lock_irqsave(&map->async_lock, flags);
	ret = map->async_ret;
	map->async_ret = 0;
	spin_unlock_irqrestore(&map->async_lock, flags);

2552
	trace_regmap_async_complete_done(map);
2553

2554 2555
	return ret;
}
2556
EXPORT_SYMBOL_GPL(regmap_async_complete);
2557

M
Mark Brown 已提交
2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570
/**
 * regmap_register_patch: Register and apply register updates to be applied
 *                        on device initialistion
 *
 * @map: Register map to apply updates to.
 * @regs: Values to update.
 * @num_regs: Number of entries in regs.
 *
 * Register a set of register updates to be applied to the device
 * whenever the device registers are synchronised with the cache and
 * apply them immediately.  Typically this is used to apply
 * corrections to be applied to the device defaults on startup, such
 * as the updates some vendors provide to undocumented registers.
2571 2572 2573
 *
 * The caller must ensure that this function cannot be called
 * concurrently with either itself or regcache_sync().
M
Mark Brown 已提交
2574 2575 2576 2577
 */
int regmap_register_patch(struct regmap *map, const struct reg_default *regs,
			  int num_regs)
{
2578
	struct reg_default *p;
2579
	int ret;
M
Mark Brown 已提交
2580 2581
	bool bypass;

2582 2583 2584 2585
	if (WARN_ONCE(num_regs <= 0, "invalid registers number (%d)\n",
	    num_regs))
		return 0;

2586 2587 2588 2589 2590 2591 2592
	p = krealloc(map->patch,
		     sizeof(struct reg_default) * (map->patch_regs + num_regs),
		     GFP_KERNEL);
	if (p) {
		memcpy(p + map->patch_regs, regs, num_regs * sizeof(*regs));
		map->patch = p;
		map->patch_regs += num_regs;
M
Mark Brown 已提交
2593
	} else {
2594
		return -ENOMEM;
M
Mark Brown 已提交
2595 2596
	}

2597
	map->lock(map->lock_arg);
M
Mark Brown 已提交
2598 2599 2600 2601

	bypass = map->cache_bypass;

	map->cache_bypass = true;
2602
	map->async = true;
M
Mark Brown 已提交
2603

2604
	ret = _regmap_multi_reg_write(map, regs, num_regs);
M
Mark Brown 已提交
2605

2606
	map->async = false;
M
Mark Brown 已提交
2607 2608
	map->cache_bypass = bypass;

2609
	map->unlock(map->lock_arg);
M
Mark Brown 已提交
2610

2611 2612
	regmap_async_complete(map);

M
Mark Brown 已提交
2613 2614 2615 2616
	return ret;
}
EXPORT_SYMBOL_GPL(regmap_register_patch);

2617
/*
2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631
 * regmap_get_val_bytes(): Report the size of a register value
 *
 * Report the size of a register value, mainly intended to for use by
 * generic infrastructure built on top of regmap.
 */
int regmap_get_val_bytes(struct regmap *map)
{
	if (map->format.format_write)
		return -EINVAL;

	return map->format.val_bytes;
}
EXPORT_SYMBOL_GPL(regmap_get_val_bytes);

2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643
/**
 * regmap_get_max_register(): Report the max register value
 *
 * Report the max register value, mainly intended to for use by
 * generic infrastructure built on top of regmap.
 */
int regmap_get_max_register(struct regmap *map)
{
	return map->max_register ? map->max_register : -EINVAL;
}
EXPORT_SYMBOL_GPL(regmap_get_max_register);

2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655
/**
 * regmap_get_reg_stride(): Report the register address stride
 *
 * Report the register address stride, mainly intended to for use by
 * generic infrastructure built on top of regmap.
 */
int regmap_get_reg_stride(struct regmap *map)
{
	return map->reg_stride;
}
EXPORT_SYMBOL_GPL(regmap_get_reg_stride);

N
Nenghua Cao 已提交
2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667
int regmap_parse_val(struct regmap *map, const void *buf,
			unsigned int *val)
{
	if (!map->format.parse_val)
		return -EINVAL;

	*val = map->format.parse_val(buf);

	return 0;
}
EXPORT_SYMBOL_GPL(regmap_parse_val);

2668 2669 2670 2671 2672 2673 2674
static int __init regmap_initcall(void)
{
	regmap_debugfs_initcall();

	return 0;
}
postcore_initcall(regmap_initcall);