perf_event.c 36.2 KB
Newer Older
1
/* Performance event support for sparc64.
2
 *
3
 * Copyright (C) 2009, 2010 David S. Miller <davem@davemloft.net>
4
 *
5
 * This code is based almost entirely upon the x86 perf event
6 7 8 9 10 11 12 13 14
 * code, which is:
 *
 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
 *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
 *  Copyright (C) 2009 Jaswinder Singh Rajput
 *  Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
 *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
 */

15
#include <linux/perf_event.h>
16
#include <linux/kprobes.h>
17
#include <linux/ftrace.h>
18 19 20 21
#include <linux/kernel.h>
#include <linux/kdebug.h>
#include <linux/mutex.h>

22
#include <asm/stacktrace.h>
23
#include <asm/cpudata.h>
24
#include <asm/uaccess.h>
A
Arun Sharma 已提交
25
#include <linux/atomic.h>
26 27
#include <asm/nmi.h>
#include <asm/pcr.h>
28
#include <asm/cacheflush.h>
29

30
#include "kernel.h"
31 32
#include "kstack.h"

33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
/* Sparc64 chips have two performance counters, 32-bits each, with
 * overflow interrupts generated on transition from 0xffffffff to 0.
 * The counters are accessed in one go using a 64-bit register.
 *
 * Both counters are controlled using a single control register.  The
 * only way to stop all sampling is to clear all of the context (user,
 * supervisor, hypervisor) sampling enable bits.  But these bits apply
 * to both counters, thus the two counters can't be enabled/disabled
 * individually.
 *
 * The control register has two event fields, one for each of the two
 * counters.  It's thus nearly impossible to have one counter going
 * while keeping the other one stopped.  Therefore it is possible to
 * get overflow interrupts for counters not currently "in use" and
 * that condition must be checked in the overflow interrupt handler.
 *
 * So we use a hack, in that we program inactive counters with the
 * "sw_count0" and "sw_count1" events.  These count how many times
 * the instruction "sethi %hi(0xfc000), %g0" is executed.  It's an
 * unusual way to encode a NOP and therefore will not trigger in
 * normal code.
 */

56
#define MAX_HWEVENTS			2
57 58 59 60
#define MAX_PERIOD			((1UL << 32) - 1)

#define PIC_UPPER_INDEX			0
#define PIC_LOWER_INDEX			1
61
#define PIC_NO_INDEX			-1
62

63
struct cpu_hw_events {
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
	/* Number of events currently scheduled onto this cpu.
	 * This tells how many entries in the arrays below
	 * are valid.
	 */
	int			n_events;

	/* Number of new events added since the last hw_perf_disable().
	 * This works because the perf event layer always adds new
	 * events inside of a perf_{disable,enable}() sequence.
	 */
	int			n_added;

	/* Array of events current scheduled on this cpu.  */
	struct perf_event	*event[MAX_HWEVENTS];

	/* Array of encoded longs, specifying the %pcr register
	 * encoding and the mask of PIC counters this even can
	 * be scheduled on.  See perf_event_encode() et al.
	 */
	unsigned long		events[MAX_HWEVENTS];

	/* The current counter index assigned to an event.  When the
	 * event hasn't been programmed into the cpu yet, this will
	 * hold PIC_NO_INDEX.  The event->hw.idx value tells us where
	 * we ought to schedule the event.
	 */
	int			current_idx[MAX_HWEVENTS];

	/* Software copy of %pcr register on this cpu.  */
93
	u64			pcr;
94 95

	/* Enabled/disable state.  */
96
	int			enabled;
97 98

	unsigned int		group_flag;
99
};
100
DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = { .enabled = 1, };
101

102 103 104 105
/* An event map describes the characteristics of a performance
 * counter event.  In particular it gives the encoding as well as
 * a mask telling which counters the event can be measured on.
 */
106 107 108 109 110 111 112 113
struct perf_event_map {
	u16	encoding;
	u8	pic_mask;
#define PIC_NONE	0x00
#define PIC_UPPER	0x01
#define PIC_LOWER	0x02
};

114
/* Encode a perf_event_map entry into a long.  */
115 116 117 118 119
static unsigned long perf_event_encode(const struct perf_event_map *pmap)
{
	return ((unsigned long) pmap->encoding << 16) | pmap->pic_mask;
}

120 121 122 123 124 125
static u8 perf_event_get_msk(unsigned long val)
{
	return val & 0xff;
}

static u64 perf_event_get_enc(unsigned long val)
126
{
127
	return val >> 16;
128 129
}

130 131 132 133 134 135 136 137 138 139
#define C(x) PERF_COUNT_HW_CACHE_##x

#define CACHE_OP_UNSUPPORTED	0xfffe
#define CACHE_OP_NONSENSE	0xffff

typedef struct perf_event_map cache_map_t
				[PERF_COUNT_HW_CACHE_MAX]
				[PERF_COUNT_HW_CACHE_OP_MAX]
				[PERF_COUNT_HW_CACHE_RESULT_MAX];

140 141
struct sparc_pmu {
	const struct perf_event_map	*(*event_map)(int);
142
	const cache_map_t		*cache_map;
143 144 145 146
	int				max_events;
	int				upper_shift;
	int				lower_shift;
	int				event_mask;
147
	int				hv_bit;
148
	int				irq_bit;
149 150
	int				upper_nop;
	int				lower_nop;
151 152 153
	unsigned int			flags;
#define SPARC_PMU_ALL_EXCLUDES_SAME	0x00000001
#define SPARC_PMU_HAS_CONFLICTS		0x00000002
154 155
};

156
static const struct perf_event_map ultra3_perfmon_event_map[] = {
157 158 159 160 161 162
	[PERF_COUNT_HW_CPU_CYCLES] = { 0x0000, PIC_UPPER | PIC_LOWER },
	[PERF_COUNT_HW_INSTRUCTIONS] = { 0x0001, PIC_UPPER | PIC_LOWER },
	[PERF_COUNT_HW_CACHE_REFERENCES] = { 0x0009, PIC_LOWER },
	[PERF_COUNT_HW_CACHE_MISSES] = { 0x0009, PIC_UPPER },
};

163
static const struct perf_event_map *ultra3_event_map(int event_id)
164
{
165
	return &ultra3_perfmon_event_map[event_id];
166 167
}

168
static const cache_map_t ultra3_cache_map = {
169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
[C(L1D)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)] = { 0x09, PIC_LOWER, },
		[C(RESULT_MISS)] = { 0x09, PIC_UPPER, },
	},
	[C(OP_WRITE)] = {
		[C(RESULT_ACCESS)] = { 0x0a, PIC_LOWER },
		[C(RESULT_MISS)] = { 0x0a, PIC_UPPER },
	},
	[C(OP_PREFETCH)] = {
		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
	},
},
[C(L1I)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)] = { 0x09, PIC_LOWER, },
		[C(RESULT_MISS)] = { 0x09, PIC_UPPER, },
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
		[ C(RESULT_MISS)   ] = { CACHE_OP_NONSENSE },
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
},
[C(LL)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)] = { 0x0c, PIC_LOWER, },
		[C(RESULT_MISS)] = { 0x0c, PIC_UPPER, },
	},
	[C(OP_WRITE)] = {
		[C(RESULT_ACCESS)] = { 0x0c, PIC_LOWER },
		[C(RESULT_MISS)] = { 0x0c, PIC_UPPER },
	},
	[C(OP_PREFETCH)] = {
		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
	},
},
[C(DTLB)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
		[C(RESULT_MISS)] = { 0x12, PIC_UPPER, },
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
},
[C(ITLB)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
		[C(RESULT_MISS)] = { 0x11, PIC_UPPER, },
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
},
[C(BPU)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
},
253 254 255 256 257 258 259 260 261 262 263 264 265 266
[C(NODE)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
		[C(RESULT_MISS)  ] = { CACHE_OP_UNSUPPORTED },
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
},
267 268
};

269 270 271 272
static const struct sparc_pmu ultra3_pmu = {
	.event_map	= ultra3_event_map,
	.cache_map	= &ultra3_cache_map,
	.max_events	= ARRAY_SIZE(ultra3_perfmon_event_map),
273 274 275
	.upper_shift	= 11,
	.lower_shift	= 4,
	.event_mask	= 0x3f,
276 277
	.upper_nop	= 0x1c,
	.lower_nop	= 0x14,
278 279
	.flags		= (SPARC_PMU_ALL_EXCLUDES_SAME |
			   SPARC_PMU_HAS_CONFLICTS),
280 281
};

282 283
/* Niagara1 is very limited.  The upper PIC is hard-locked to count
 * only instructions, so it is free running which creates all kinds of
284
 * problems.  Some hardware designs make one wonder if the creator
285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383
 * even looked at how this stuff gets used by software.
 */
static const struct perf_event_map niagara1_perfmon_event_map[] = {
	[PERF_COUNT_HW_CPU_CYCLES] = { 0x00, PIC_UPPER },
	[PERF_COUNT_HW_INSTRUCTIONS] = { 0x00, PIC_UPPER },
	[PERF_COUNT_HW_CACHE_REFERENCES] = { 0, PIC_NONE },
	[PERF_COUNT_HW_CACHE_MISSES] = { 0x03, PIC_LOWER },
};

static const struct perf_event_map *niagara1_event_map(int event_id)
{
	return &niagara1_perfmon_event_map[event_id];
}

static const cache_map_t niagara1_cache_map = {
[C(L1D)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
		[C(RESULT_MISS)] = { 0x03, PIC_LOWER, },
	},
	[C(OP_WRITE)] = {
		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
		[C(RESULT_MISS)] = { 0x03, PIC_LOWER, },
	},
	[C(OP_PREFETCH)] = {
		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
	},
},
[C(L1I)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)] = { 0x00, PIC_UPPER },
		[C(RESULT_MISS)] = { 0x02, PIC_LOWER, },
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
		[ C(RESULT_MISS)   ] = { CACHE_OP_NONSENSE },
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
},
[C(LL)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
		[C(RESULT_MISS)] = { 0x07, PIC_LOWER, },
	},
	[C(OP_WRITE)] = {
		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
		[C(RESULT_MISS)] = { 0x07, PIC_LOWER, },
	},
	[C(OP_PREFETCH)] = {
		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
	},
},
[C(DTLB)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
		[C(RESULT_MISS)] = { 0x05, PIC_LOWER, },
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
},
[C(ITLB)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
		[C(RESULT_MISS)] = { 0x04, PIC_LOWER, },
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
},
[C(BPU)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
},
384 385 386 387 388 389 390 391 392 393 394 395 396 397
[C(NODE)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
		[C(RESULT_MISS)  ] = { CACHE_OP_UNSUPPORTED },
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
},
398 399 400 401 402 403 404 405 406 407 408
};

static const struct sparc_pmu niagara1_pmu = {
	.event_map	= niagara1_event_map,
	.cache_map	= &niagara1_cache_map,
	.max_events	= ARRAY_SIZE(niagara1_perfmon_event_map),
	.upper_shift	= 0,
	.lower_shift	= 4,
	.event_mask	= 0x7,
	.upper_nop	= 0x0,
	.lower_nop	= 0x0,
409 410
	.flags		= (SPARC_PMU_ALL_EXCLUDES_SAME |
			   SPARC_PMU_HAS_CONFLICTS),
411 412
};

413 414 415 416 417 418 419 420 421
static const struct perf_event_map niagara2_perfmon_event_map[] = {
	[PERF_COUNT_HW_CPU_CYCLES] = { 0x02ff, PIC_UPPER | PIC_LOWER },
	[PERF_COUNT_HW_INSTRUCTIONS] = { 0x02ff, PIC_UPPER | PIC_LOWER },
	[PERF_COUNT_HW_CACHE_REFERENCES] = { 0x0208, PIC_UPPER | PIC_LOWER },
	[PERF_COUNT_HW_CACHE_MISSES] = { 0x0302, PIC_UPPER | PIC_LOWER },
	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x0201, PIC_UPPER | PIC_LOWER },
	[PERF_COUNT_HW_BRANCH_MISSES] = { 0x0202, PIC_UPPER | PIC_LOWER },
};

422
static const struct perf_event_map *niagara2_event_map(int event_id)
423
{
424
	return &niagara2_perfmon_event_map[event_id];
425 426
}

427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504
static const cache_map_t niagara2_cache_map = {
[C(L1D)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)] = { 0x0208, PIC_UPPER | PIC_LOWER, },
		[C(RESULT_MISS)] = { 0x0302, PIC_UPPER | PIC_LOWER, },
	},
	[C(OP_WRITE)] = {
		[C(RESULT_ACCESS)] = { 0x0210, PIC_UPPER | PIC_LOWER, },
		[C(RESULT_MISS)] = { 0x0302, PIC_UPPER | PIC_LOWER, },
	},
	[C(OP_PREFETCH)] = {
		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
	},
},
[C(L1I)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)] = { 0x02ff, PIC_UPPER | PIC_LOWER, },
		[C(RESULT_MISS)] = { 0x0301, PIC_UPPER | PIC_LOWER, },
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
		[ C(RESULT_MISS)   ] = { CACHE_OP_NONSENSE },
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
},
[C(LL)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)] = { 0x0208, PIC_UPPER | PIC_LOWER, },
		[C(RESULT_MISS)] = { 0x0330, PIC_UPPER | PIC_LOWER, },
	},
	[C(OP_WRITE)] = {
		[C(RESULT_ACCESS)] = { 0x0210, PIC_UPPER | PIC_LOWER, },
		[C(RESULT_MISS)] = { 0x0320, PIC_UPPER | PIC_LOWER, },
	},
	[C(OP_PREFETCH)] = {
		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
	},
},
[C(DTLB)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
		[C(RESULT_MISS)] = { 0x0b08, PIC_UPPER | PIC_LOWER, },
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
},
[C(ITLB)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
		[C(RESULT_MISS)] = { 0xb04, PIC_UPPER | PIC_LOWER, },
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
},
[C(BPU)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
505 506 507 508 509 510 511 512 513 514 515 516 517 518
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
},
[C(NODE)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
		[C(RESULT_MISS)  ] = { CACHE_OP_UNSUPPORTED },
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
519 520 521 522 523 524 525 526 527
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
},
};

528 529
static const struct sparc_pmu niagara2_pmu = {
	.event_map	= niagara2_event_map,
530
	.cache_map	= &niagara2_cache_map,
531 532 533 534 535
	.max_events	= ARRAY_SIZE(niagara2_perfmon_event_map),
	.upper_shift	= 19,
	.lower_shift	= 6,
	.event_mask	= 0xfff,
	.hv_bit		= 0x8,
536
	.irq_bit	= 0x30,
537 538
	.upper_nop	= 0x220,
	.lower_nop	= 0x220,
539 540
	.flags		= (SPARC_PMU_ALL_EXCLUDES_SAME |
			   SPARC_PMU_HAS_CONFLICTS),
541 542
};

543 544
static const struct sparc_pmu *sparc_pmu __read_mostly;

545
static u64 event_encoding(u64 event_id, int idx)
546 547
{
	if (idx == PIC_UPPER_INDEX)
548
		event_id <<= sparc_pmu->upper_shift;
549
	else
550 551
		event_id <<= sparc_pmu->lower_shift;
	return event_id;
552 553 554 555 556 557 558 559 560 561
}

static u64 mask_for_index(int idx)
{
	return event_encoding(sparc_pmu->event_mask, idx);
}

static u64 nop_for_index(int idx)
{
	return event_encoding(idx == PIC_UPPER_INDEX ?
562 563
			      sparc_pmu->upper_nop :
			      sparc_pmu->lower_nop, idx);
564 565
}

566
static inline void sparc_pmu_enable_event(struct cpu_hw_events *cpuc, struct hw_perf_event *hwc, int idx)
567 568 569
{
	u64 val, mask = mask_for_index(idx);

570 571 572 573 574
	val = cpuc->pcr;
	val &= ~mask;
	val |= hwc->config;
	cpuc->pcr = val;

575
	pcr_ops->write_pcr(0, cpuc->pcr);
576 577
}

578
static inline void sparc_pmu_disable_event(struct cpu_hw_events *cpuc, struct hw_perf_event *hwc, int idx)
579 580 581
{
	u64 mask = mask_for_index(idx);
	u64 nop = nop_for_index(idx);
582
	u64 val;
583

584 585 586 587 588
	val = cpuc->pcr;
	val &= ~mask;
	val |= nop;
	cpuc->pcr = val;

589
	pcr_ops->write_pcr(0, cpuc->pcr);
590 591 592 593 594 595
}

static u32 read_pmc(int idx)
{
	u64 val;

596
	val = pcr_ops->read_pic(0);
597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613
	if (idx == PIC_UPPER_INDEX)
		val >>= 32;

	return val & 0xffffffff;
}

static void write_pmc(int idx, u64 val)
{
	u64 shift, mask, pic;

	shift = 0;
	if (idx == PIC_UPPER_INDEX)
		shift = 32;

	mask = ((u64) 0xffffffff) << shift;
	val <<= shift;

614
	pic = pcr_ops->read_pic(0);
615 616
	pic &= ~mask;
	pic |= val;
617
	pcr_ops->write_pic(0, pic);
618 619
}

620 621 622 623 624 625 626 627
static u64 sparc_perf_event_update(struct perf_event *event,
				   struct hw_perf_event *hwc, int idx)
{
	int shift = 64 - 32;
	u64 prev_raw_count, new_raw_count;
	s64 delta;

again:
628
	prev_raw_count = local64_read(&hwc->prev_count);
629 630
	new_raw_count = read_pmc(idx);

631
	if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
632 633 634 635 636 637
			     new_raw_count) != prev_raw_count)
		goto again;

	delta = (new_raw_count << shift) - (prev_raw_count << shift);
	delta >>= shift;

638 639
	local64_add(delta, &event->count);
	local64_sub(delta, &hwc->period_left);
640 641 642 643

	return new_raw_count;
}

644
static int sparc_perf_event_set_period(struct perf_event *event,
645
				       struct hw_perf_event *hwc, int idx)
646
{
647
	s64 left = local64_read(&hwc->period_left);
648 649 650 651 652
	s64 period = hwc->sample_period;
	int ret = 0;

	if (unlikely(left <= -period)) {
		left = period;
653
		local64_set(&hwc->period_left, left);
654 655 656 657 658 659
		hwc->last_period = period;
		ret = 1;
	}

	if (unlikely(left <= 0)) {
		left += period;
660
		local64_set(&hwc->period_left, left);
661 662 663 664 665 666
		hwc->last_period = period;
		ret = 1;
	}
	if (left > MAX_PERIOD)
		left = MAX_PERIOD;

667
	local64_set(&hwc->prev_count, (u64)-left);
668 669 670

	write_pmc(idx, (u64)(-left) & 0xffffffff);

671
	perf_event_update_userpage(event);
672 673 674 675

	return ret;
}

676 677 678 679 680
/* If performance event entries have been added, move existing
 * events around (if necessary) and then assign new entries to
 * counters.
 */
static u64 maybe_change_configuration(struct cpu_hw_events *cpuc, u64 pcr)
681
{
682
	int i;
683

684 685
	if (!cpuc->n_added)
		goto out;
686

687 688 689
	/* Read in the counters which are moving.  */
	for (i = 0; i < cpuc->n_events; i++) {
		struct perf_event *cp = cpuc->event[i];
690

691 692 693 694 695 696 697
		if (cpuc->current_idx[i] != PIC_NO_INDEX &&
		    cpuc->current_idx[i] != cp->hw.idx) {
			sparc_perf_event_update(cp, &cp->hw,
						cpuc->current_idx[i]);
			cpuc->current_idx[i] = PIC_NO_INDEX;
		}
	}
698

699 700 701 702 703 704 705 706 707 708 709 710 711 712
	/* Assign to counters all unassigned events.  */
	for (i = 0; i < cpuc->n_events; i++) {
		struct perf_event *cp = cpuc->event[i];
		struct hw_perf_event *hwc = &cp->hw;
		int idx = hwc->idx;
		u64 enc;

		if (cpuc->current_idx[i] != PIC_NO_INDEX)
			continue;

		sparc_perf_event_set_period(cp, hwc, idx);
		cpuc->current_idx[i] = idx;

		enc = perf_event_get_enc(cpuc->events[i]);
713
		pcr &= ~mask_for_index(idx);
P
Peter Zijlstra 已提交
714 715 716 717
		if (hwc->state & PERF_HES_STOPPED)
			pcr |= nop_for_index(idx);
		else
			pcr |= event_encoding(enc, idx);
718 719 720
	}
out:
	return pcr;
721 722
}

P
Peter Zijlstra 已提交
723
static void sparc_pmu_enable(struct pmu *pmu)
724
{
725 726
	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
	u64 pcr;
727

728 729
	if (cpuc->enabled)
		return;
730

731 732
	cpuc->enabled = 1;
	barrier();
733

734 735 736 737 738
	pcr = cpuc->pcr;
	if (!cpuc->n_events) {
		pcr = 0;
	} else {
		pcr = maybe_change_configuration(cpuc, pcr);
739

740 741 742 743 744 745
		/* We require that all of the events have the same
		 * configuration, so just fetch the settings from the
		 * first entry.
		 */
		cpuc->pcr = pcr | cpuc->event[0]->hw.config_base;
	}
746

747
	pcr_ops->write_pcr(0, cpuc->pcr);
748 749
}

P
Peter Zijlstra 已提交
750
static void sparc_pmu_disable(struct pmu *pmu)
751 752 753 754 755 756 757 758 759 760 761 762 763 764 765
{
	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
	u64 val;

	if (!cpuc->enabled)
		return;

	cpuc->enabled = 0;
	cpuc->n_added = 0;

	val = cpuc->pcr;
	val &= ~(PCR_UTRACE | PCR_STRACE |
		 sparc_pmu->hv_bit | sparc_pmu->irq_bit);
	cpuc->pcr = val;

766
	pcr_ops->write_pcr(0, cpuc->pcr);
767 768
}

P
Peter Zijlstra 已提交
769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813
static int active_event_index(struct cpu_hw_events *cpuc,
			      struct perf_event *event)
{
	int i;

	for (i = 0; i < cpuc->n_events; i++) {
		if (cpuc->event[i] == event)
			break;
	}
	BUG_ON(i == cpuc->n_events);
	return cpuc->current_idx[i];
}

static void sparc_pmu_start(struct perf_event *event, int flags)
{
	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
	int idx = active_event_index(cpuc, event);

	if (flags & PERF_EF_RELOAD) {
		WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
		sparc_perf_event_set_period(event, &event->hw, idx);
	}

	event->hw.state = 0;

	sparc_pmu_enable_event(cpuc, &event->hw, idx);
}

static void sparc_pmu_stop(struct perf_event *event, int flags)
{
	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
	int idx = active_event_index(cpuc, event);

	if (!(event->hw.state & PERF_HES_STOPPED)) {
		sparc_pmu_disable_event(cpuc, &event->hw, idx);
		event->hw.state |= PERF_HES_STOPPED;
	}

	if (!(event->hw.state & PERF_HES_UPTODATE) && (flags & PERF_EF_UPDATE)) {
		sparc_perf_event_update(event, &event->hw, idx);
		event->hw.state |= PERF_HES_UPTODATE;
	}
}

static void sparc_pmu_del(struct perf_event *event, int _flags)
814
{
815
	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
816 817
	unsigned long flags;
	int i;
818

819
	local_irq_save(flags);
P
Peter Zijlstra 已提交
820
	perf_pmu_disable(event->pmu);
821 822 823

	for (i = 0; i < cpuc->n_events; i++) {
		if (event == cpuc->event[i]) {
P
Peter Zijlstra 已提交
824 825 826 827
			/* Absorb the final count and turn off the
			 * event.
			 */
			sparc_pmu_stop(event, PERF_EF_UPDATE);
828 829 830 831 832 833 834 835 836 837 838 839

			/* Shift remaining entries down into
			 * the existing slot.
			 */
			while (++i < cpuc->n_events) {
				cpuc->event[i - 1] = cpuc->event[i];
				cpuc->events[i - 1] = cpuc->events[i];
				cpuc->current_idx[i - 1] =
					cpuc->current_idx[i];
			}

			perf_event_update_userpage(event);
840

841 842 843 844
			cpuc->n_events--;
			break;
		}
	}
845

P
Peter Zijlstra 已提交
846
	perf_pmu_enable(event->pmu);
847 848 849
	local_irq_restore(flags);
}

850
static void sparc_pmu_read(struct perf_event *event)
851
{
852 853
	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
	int idx = active_event_index(cpuc, event);
854
	struct hw_perf_event *hwc = &event->hw;
855

856
	sparc_perf_event_update(event, hwc, idx);
857 858
}

859
static atomic_t active_events = ATOMIC_INIT(0);
860 861
static DEFINE_MUTEX(pmc_grab_mutex);

862 863 864 865 866
static void perf_stop_nmi_watchdog(void *unused)
{
	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);

	stop_nmi_watchdog(NULL);
867
	cpuc->pcr = pcr_ops->read_pcr(0);
868 869
}

870
void perf_event_grab_pmc(void)
871
{
872
	if (atomic_inc_not_zero(&active_events))
873 874 875
		return;

	mutex_lock(&pmc_grab_mutex);
876
	if (atomic_read(&active_events) == 0) {
877
		if (atomic_read(&nmi_active) > 0) {
878
			on_each_cpu(perf_stop_nmi_watchdog, NULL, 1);
879 880
			BUG_ON(atomic_read(&nmi_active) != 0);
		}
881
		atomic_inc(&active_events);
882 883 884 885
	}
	mutex_unlock(&pmc_grab_mutex);
}

886
void perf_event_release_pmc(void)
887
{
888
	if (atomic_dec_and_mutex_lock(&active_events, &pmc_grab_mutex)) {
889 890 891 892 893 894
		if (atomic_read(&nmi_active) == 0)
			on_each_cpu(start_nmi_watchdog, NULL, 1);
		mutex_unlock(&pmc_grab_mutex);
	}
}

895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925
static const struct perf_event_map *sparc_map_cache_event(u64 config)
{
	unsigned int cache_type, cache_op, cache_result;
	const struct perf_event_map *pmap;

	if (!sparc_pmu->cache_map)
		return ERR_PTR(-ENOENT);

	cache_type = (config >>  0) & 0xff;
	if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
		return ERR_PTR(-EINVAL);

	cache_op = (config >>  8) & 0xff;
	if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
		return ERR_PTR(-EINVAL);

	cache_result = (config >> 16) & 0xff;
	if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
		return ERR_PTR(-EINVAL);

	pmap = &((*sparc_pmu->cache_map)[cache_type][cache_op][cache_result]);

	if (pmap->encoding == CACHE_OP_UNSUPPORTED)
		return ERR_PTR(-ENOENT);

	if (pmap->encoding == CACHE_OP_NONSENSE)
		return ERR_PTR(-EINVAL);

	return pmap;
}

926
static void hw_perf_event_destroy(struct perf_event *event)
927
{
928
	perf_event_release_pmc();
929 930
}

931 932 933
/* Make sure all events can be scheduled into the hardware at
 * the same time.  This is simplified by the fact that we only
 * need to support 2 simultaneous HW events.
934 935 936 937 938 939
 *
 * As a side effect, the evts[]->hw.idx values will be assigned
 * on success.  These are pending indexes.  When the events are
 * actually programmed into the chip, these values will propagate
 * to the per-cpu cpuc->current_idx[] slots, see the code in
 * maybe_change_configuration() for details.
940
 */
941 942
static int sparc_check_constraints(struct perf_event **evts,
				   unsigned long *events, int n_ev)
943
{
944 945 946 947 948 949 950 951 952
	u8 msk0 = 0, msk1 = 0;
	int idx0 = 0;

	/* This case is possible when we are invoked from
	 * hw_perf_group_sched_in().
	 */
	if (!n_ev)
		return 0;

P
Peter Zijlstra 已提交
953
	if (n_ev > MAX_HWEVENTS)
954 955
		return -1;

956 957 958 959 960 961 962 963
	if (!(sparc_pmu->flags & SPARC_PMU_HAS_CONFLICTS)) {
		int i;

		for (i = 0; i < n_ev; i++)
			evts[i]->hw.idx = i;
		return 0;
	}

964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985
	msk0 = perf_event_get_msk(events[0]);
	if (n_ev == 1) {
		if (msk0 & PIC_LOWER)
			idx0 = 1;
		goto success;
	}
	BUG_ON(n_ev != 2);
	msk1 = perf_event_get_msk(events[1]);

	/* If both events can go on any counter, OK.  */
	if (msk0 == (PIC_UPPER | PIC_LOWER) &&
	    msk1 == (PIC_UPPER | PIC_LOWER))
		goto success;

	/* If one event is limited to a specific counter,
	 * and the other can go on both, OK.
	 */
	if ((msk0 == PIC_UPPER || msk0 == PIC_LOWER) &&
	    msk1 == (PIC_UPPER | PIC_LOWER)) {
		if (msk0 & PIC_LOWER)
			idx0 = 1;
		goto success;
986 987
	}

988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003
	if ((msk1 == PIC_UPPER || msk1 == PIC_LOWER) &&
	    msk0 == (PIC_UPPER | PIC_LOWER)) {
		if (msk1 & PIC_UPPER)
			idx0 = 1;
		goto success;
	}

	/* If the events are fixed to different counters, OK.  */
	if ((msk0 == PIC_UPPER && msk1 == PIC_LOWER) ||
	    (msk0 == PIC_LOWER && msk1 == PIC_UPPER)) {
		if (msk0 & PIC_LOWER)
			idx0 = 1;
		goto success;
	}

	/* Otherwise, there is a conflict.  */
1004
	return -1;
1005 1006 1007 1008 1009 1010

success:
	evts[0]->hw.idx = idx0;
	if (n_ev == 2)
		evts[1]->hw.idx = idx0 ^ 1;
	return 0;
1011 1012
}

1013 1014 1015 1016 1017 1018
static int check_excludes(struct perf_event **evts, int n_prev, int n_new)
{
	int eu = 0, ek = 0, eh = 0;
	struct perf_event *event;
	int i, n, first;

1019 1020 1021
	if (!(sparc_pmu->flags & SPARC_PMU_ALL_EXCLUDES_SAME))
		return 0;

1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044
	n = n_prev + n_new;
	if (n <= 1)
		return 0;

	first = 1;
	for (i = 0; i < n; i++) {
		event = evts[i];
		if (first) {
			eu = event->attr.exclude_user;
			ek = event->attr.exclude_kernel;
			eh = event->attr.exclude_hv;
			first = 0;
		} else if (event->attr.exclude_user != eu ||
			   event->attr.exclude_kernel != ek ||
			   event->attr.exclude_hv != eh) {
			return -EAGAIN;
		}
	}

	return 0;
}

static int collect_events(struct perf_event *group, int max_count,
1045 1046
			  struct perf_event *evts[], unsigned long *events,
			  int *current_idx)
1047 1048 1049 1050 1051 1052 1053 1054
{
	struct perf_event *event;
	int n = 0;

	if (!is_software_event(group)) {
		if (n >= max_count)
			return -1;
		evts[n] = group;
1055 1056
		events[n] = group->hw.event_base;
		current_idx[n++] = PIC_NO_INDEX;
1057 1058 1059 1060 1061 1062 1063
	}
	list_for_each_entry(event, &group->sibling_list, group_entry) {
		if (!is_software_event(event) &&
		    event->state != PERF_EVENT_STATE_OFF) {
			if (n >= max_count)
				return -1;
			evts[n] = event;
1064 1065
			events[n] = event->hw.event_base;
			current_idx[n++] = PIC_NO_INDEX;
1066 1067 1068 1069 1070
		}
	}
	return n;
}

P
Peter Zijlstra 已提交
1071
static int sparc_pmu_add(struct perf_event *event, int ef_flags)
1072 1073 1074 1075 1076 1077
{
	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
	int n0, ret = -EAGAIN;
	unsigned long flags;

	local_irq_save(flags);
P
Peter Zijlstra 已提交
1078
	perf_pmu_disable(event->pmu);
1079 1080

	n0 = cpuc->n_events;
P
Peter Zijlstra 已提交
1081
	if (n0 >= MAX_HWEVENTS)
1082 1083 1084 1085 1086 1087
		goto out;

	cpuc->event[n0] = event;
	cpuc->events[n0] = event->hw.event_base;
	cpuc->current_idx[n0] = PIC_NO_INDEX;

P
Peter Zijlstra 已提交
1088 1089 1090 1091
	event->hw.state = PERF_HES_UPTODATE;
	if (!(ef_flags & PERF_EF_START))
		event->hw.state |= PERF_HES_STOPPED;

1092 1093
	/*
	 * If group events scheduling transaction was started,
L
Lucas De Marchi 已提交
1094
	 * skip the schedulability test here, it will be performed
1095 1096
	 * at commit time(->commit_txn) as a whole
	 */
1097
	if (cpuc->group_flag & PERF_EVENT_TXN)
1098 1099
		goto nocheck;

1100 1101 1102 1103 1104
	if (check_excludes(cpuc->event, n0, 1))
		goto out;
	if (sparc_check_constraints(cpuc->event, cpuc->events, n0 + 1))
		goto out;

1105
nocheck:
1106 1107 1108 1109 1110
	cpuc->n_events++;
	cpuc->n_added++;

	ret = 0;
out:
P
Peter Zijlstra 已提交
1111
	perf_pmu_enable(event->pmu);
1112 1113 1114 1115
	local_irq_restore(flags);
	return ret;
}

1116
static int sparc_pmu_event_init(struct perf_event *event)
1117
{
1118
	struct perf_event_attr *attr = &event->attr;
1119
	struct perf_event *evts[MAX_HWEVENTS];
1120
	struct hw_perf_event *hwc = &event->hw;
1121
	unsigned long events[MAX_HWEVENTS];
1122
	int current_idx_dmy[MAX_HWEVENTS];
1123
	const struct perf_event_map *pmap;
1124
	int n;
1125 1126 1127 1128

	if (atomic_read(&nmi_active) < 0)
		return -ENODEV;

1129 1130 1131 1132
	/* does not support taken branch sampling */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

1133 1134
	switch (attr->type) {
	case PERF_TYPE_HARDWARE:
1135 1136 1137
		if (attr->config >= sparc_pmu->max_events)
			return -EINVAL;
		pmap = sparc_pmu->event_map(attr->config);
1138 1139 1140
		break;

	case PERF_TYPE_HW_CACHE:
1141 1142 1143
		pmap = sparc_map_cache_event(attr->config);
		if (IS_ERR(pmap))
			return PTR_ERR(pmap);
1144 1145 1146
		break;

	case PERF_TYPE_RAW:
1147 1148
		pmap = NULL;
		break;
1149

1150 1151 1152 1153 1154
	default:
		return -ENOENT;

	}

1155 1156 1157
	if (pmap) {
		hwc->event_base = perf_event_encode(pmap);
	} else {
1158 1159
		/*
		 * User gives us "(encoding << 16) | pic_mask" for
1160 1161 1162 1163 1164
		 * PERF_TYPE_RAW events.
		 */
		hwc->event_base = attr->config;
	}

1165
	/* We save the enable bits in the config_base.  */
1166
	hwc->config_base = sparc_pmu->irq_bit;
1167 1168 1169 1170
	if (!attr->exclude_user)
		hwc->config_base |= PCR_UTRACE;
	if (!attr->exclude_kernel)
		hwc->config_base |= PCR_STRACE;
1171 1172
	if (!attr->exclude_hv)
		hwc->config_base |= sparc_pmu->hv_bit;
1173

1174 1175 1176
	n = 0;
	if (event->group_leader != event) {
		n = collect_events(event->group_leader,
P
Peter Zijlstra 已提交
1177
				   MAX_HWEVENTS - 1,
1178
				   evts, events, current_idx_dmy);
1179 1180 1181
		if (n < 0)
			return -EINVAL;
	}
1182
	events[n] = hwc->event_base;
1183 1184 1185 1186 1187
	evts[n] = event;

	if (check_excludes(evts, n, 1))
		return -EINVAL;

1188
	if (sparc_check_constraints(evts, events, n + 1))
1189 1190
		return -EINVAL;

1191 1192
	hwc->idx = PIC_NO_INDEX;

1193 1194 1195 1196 1197 1198
	/* Try to do all error checking before this point, as unwinding
	 * state after grabbing the PMC is difficult.
	 */
	perf_event_grab_pmc();
	event->destroy = hw_perf_event_destroy;

1199 1200 1201
	if (!hwc->sample_period) {
		hwc->sample_period = MAX_PERIOD;
		hwc->last_period = hwc->sample_period;
1202
		local64_set(&hwc->period_left, hwc->sample_period);
1203 1204 1205 1206 1207
	}

	return 0;
}

1208 1209 1210 1211 1212
/*
 * Start group events scheduling transaction
 * Set the flag to make pmu::enable() not perform the
 * schedulability test, it will be performed at commit time
 */
P
Peter Zijlstra 已提交
1213
static void sparc_pmu_start_txn(struct pmu *pmu)
1214 1215 1216
{
	struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);

P
Peter Zijlstra 已提交
1217
	perf_pmu_disable(pmu);
1218
	cpuhw->group_flag |= PERF_EVENT_TXN;
1219 1220 1221 1222 1223 1224 1225
}

/*
 * Stop group events scheduling transaction
 * Clear the flag and pmu::enable() will perform the
 * schedulability test.
 */
P
Peter Zijlstra 已提交
1226
static void sparc_pmu_cancel_txn(struct pmu *pmu)
1227 1228 1229
{
	struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);

1230
	cpuhw->group_flag &= ~PERF_EVENT_TXN;
P
Peter Zijlstra 已提交
1231
	perf_pmu_enable(pmu);
1232 1233 1234 1235 1236 1237 1238
}

/*
 * Commit group events scheduling transaction
 * Perform the group schedulability test as a whole
 * Return 0 if success
 */
P
Peter Zijlstra 已提交
1239
static int sparc_pmu_commit_txn(struct pmu *pmu)
1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253
{
	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
	int n;

	if (!sparc_pmu)
		return -EINVAL;

	cpuc = &__get_cpu_var(cpu_hw_events);
	n = cpuc->n_events;
	if (check_excludes(cpuc->event, 0, n))
		return -EINVAL;
	if (sparc_check_constraints(cpuc->event, cpuc->events, n))
		return -EAGAIN;

1254
	cpuc->group_flag &= ~PERF_EVENT_TXN;
P
Peter Zijlstra 已提交
1255
	perf_pmu_enable(pmu);
1256 1257 1258
	return 0;
}

P
Peter Zijlstra 已提交
1259
static struct pmu pmu = {
P
Peter Zijlstra 已提交
1260 1261
	.pmu_enable	= sparc_pmu_enable,
	.pmu_disable	= sparc_pmu_disable,
1262
	.event_init	= sparc_pmu_event_init,
P
Peter Zijlstra 已提交
1263 1264 1265 1266
	.add		= sparc_pmu_add,
	.del		= sparc_pmu_del,
	.start		= sparc_pmu_start,
	.stop		= sparc_pmu_stop,
1267
	.read		= sparc_pmu_read,
1268 1269 1270
	.start_txn	= sparc_pmu_start_txn,
	.cancel_txn	= sparc_pmu_cancel_txn,
	.commit_txn	= sparc_pmu_commit_txn,
1271 1272
};

1273
void perf_event_print_debug(void)
1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285
{
	unsigned long flags;
	u64 pcr, pic;
	int cpu;

	if (!sparc_pmu)
		return;

	local_irq_save(flags);

	cpu = smp_processor_id();

1286 1287
	pcr = pcr_ops->read_pcr(0);
	pic = pcr_ops->read_pic(0);
1288 1289 1290 1291 1292 1293 1294 1295

	pr_info("\n");
	pr_info("CPU#%d: PCR[%016llx] PIC[%016llx]\n",
		cpu, pcr, pic);

	local_irq_restore(flags);
}

1296
static int __kprobes perf_event_nmi_handler(struct notifier_block *self,
1297
					    unsigned long cmd, void *__args)
1298 1299 1300
{
	struct die_args *args = __args;
	struct perf_sample_data data;
1301
	struct cpu_hw_events *cpuc;
1302
	struct pt_regs *regs;
1303
	int i;
1304

1305
	if (!atomic_read(&active_events))
1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317
		return NOTIFY_DONE;

	switch (cmd) {
	case DIE_NMI:
		break;

	default:
		return NOTIFY_DONE;
	}

	regs = args->regs;

1318
	cpuc = &__get_cpu_var(cpu_hw_events);
1319 1320 1321 1322 1323 1324 1325 1326 1327

	/* If the PMU has the TOE IRQ enable bits, we need to do a
	 * dummy write to the %pcr to clear the overflow bits and thus
	 * the interrupt.
	 *
	 * Do this before we peek at the counters to determine
	 * overflow so we don't lose any events.
	 */
	if (sparc_pmu->irq_bit)
1328
		pcr_ops->write_pcr(0, cpuc->pcr);
1329

1330 1331 1332
	for (i = 0; i < cpuc->n_events; i++) {
		struct perf_event *event = cpuc->event[i];
		int idx = cpuc->current_idx[i];
1333
		struct hw_perf_event *hwc;
1334 1335
		u64 val;

1336 1337
		hwc = &event->hw;
		val = sparc_perf_event_update(event, hwc, idx);
1338 1339 1340
		if (val & (1ULL << 31))
			continue;

1341
		perf_sample_data_init(&data, 0, hwc->last_period);
1342
		if (!sparc_perf_event_set_period(event, hwc, idx))
1343 1344
			continue;

1345
		if (perf_event_overflow(event, &data, regs))
P
Peter Zijlstra 已提交
1346
			sparc_pmu_stop(event, 0);
1347 1348 1349 1350 1351
	}

	return NOTIFY_STOP;
}

1352 1353
static __read_mostly struct notifier_block perf_event_nmi_notifier = {
	.notifier_call		= perf_event_nmi_handler,
1354 1355 1356 1357
};

static bool __init supported_pmu(void)
{
1358 1359 1360 1361 1362
	if (!strcmp(sparc_pmu_type, "ultra3") ||
	    !strcmp(sparc_pmu_type, "ultra3+") ||
	    !strcmp(sparc_pmu_type, "ultra3i") ||
	    !strcmp(sparc_pmu_type, "ultra4+")) {
		sparc_pmu = &ultra3_pmu;
1363 1364
		return true;
	}
1365 1366 1367 1368
	if (!strcmp(sparc_pmu_type, "niagara")) {
		sparc_pmu = &niagara1_pmu;
		return true;
	}
1369 1370
	if (!strcmp(sparc_pmu_type, "niagara2") ||
	    !strcmp(sparc_pmu_type, "niagara3")) {
1371 1372 1373
		sparc_pmu = &niagara2_pmu;
		return true;
	}
1374 1375 1376
	return false;
}

1377
int __init init_hw_perf_events(void)
1378
{
1379
	pr_info("Performance events: ");
1380 1381 1382

	if (!supported_pmu()) {
		pr_cont("No support for PMU type '%s'\n", sparc_pmu_type);
1383
		return 0;
1384 1385 1386 1387
	}

	pr_cont("Supported PMU type is '%s'\n", sparc_pmu_type);

P
Peter Zijlstra 已提交
1388
	perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
1389
	register_die_notifier(&perf_event_nmi_notifier);
1390 1391

	return 0;
1392
}
1393
early_initcall(init_hw_perf_events);
1394

1395 1396
void perf_callchain_kernel(struct perf_callchain_entry *entry,
			   struct pt_regs *regs)
1397 1398
{
	unsigned long ksp, fp;
1399 1400 1401
#ifdef CONFIG_FUNCTION_GRAPH_TRACER
	int graph = 0;
#endif
1402

1403 1404
	stack_trace_flush();

1405
	perf_callchain_store(entry, regs->tpc);
1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428

	ksp = regs->u_regs[UREG_I6];
	fp = ksp + STACK_BIAS;
	do {
		struct sparc_stackf *sf;
		struct pt_regs *regs;
		unsigned long pc;

		if (!kstack_valid(current_thread_info(), fp))
			break;

		sf = (struct sparc_stackf *) fp;
		regs = (struct pt_regs *) (sf + 1);

		if (kstack_is_trap_frame(current_thread_info(), regs)) {
			if (user_mode(regs))
				break;
			pc = regs->tpc;
			fp = regs->u_regs[UREG_I6] + STACK_BIAS;
		} else {
			pc = sf->callers_pc;
			fp = (unsigned long)sf->fp + STACK_BIAS;
		}
1429
		perf_callchain_store(entry, pc);
1430 1431 1432 1433 1434
#ifdef CONFIG_FUNCTION_GRAPH_TRACER
		if ((pc + 8UL) == (unsigned long) &return_to_handler) {
			int index = current->curr_ret_stack;
			if (current->ret_stack && index >= graph) {
				pc = current->ret_stack[index - graph].ret;
1435
				perf_callchain_store(entry, pc);
1436 1437 1438 1439
				graph++;
			}
		}
#endif
1440 1441 1442
	} while (entry->nr < PERF_MAX_STACK_DEPTH);
}

1443 1444
static void perf_callchain_user_64(struct perf_callchain_entry *entry,
				   struct pt_regs *regs)
1445 1446 1447
{
	unsigned long ufp;

1448
	perf_callchain_store(entry, regs->tpc);
1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460

	ufp = regs->u_regs[UREG_I6] + STACK_BIAS;
	do {
		struct sparc_stackf *usf, sf;
		unsigned long pc;

		usf = (struct sparc_stackf *) ufp;
		if (__copy_from_user_inatomic(&sf, usf, sizeof(sf)))
			break;

		pc = sf.callers_pc;
		ufp = (unsigned long)sf.fp + STACK_BIAS;
1461
		perf_callchain_store(entry, pc);
1462 1463 1464
	} while (entry->nr < PERF_MAX_STACK_DEPTH);
}

1465 1466
static void perf_callchain_user_32(struct perf_callchain_entry *entry,
				   struct pt_regs *regs)
1467 1468 1469
{
	unsigned long ufp;

1470
	perf_callchain_store(entry, regs->tpc);
1471

1472
	ufp = regs->u_regs[UREG_I6] & 0xffffffffUL;
1473 1474 1475 1476 1477 1478 1479 1480 1481 1482
	do {
		struct sparc_stackf32 *usf, sf;
		unsigned long pc;

		usf = (struct sparc_stackf32 *) ufp;
		if (__copy_from_user_inatomic(&sf, usf, sizeof(sf)))
			break;

		pc = sf.callers_pc;
		ufp = (unsigned long)sf.fp;
1483
		perf_callchain_store(entry, pc);
1484 1485 1486
	} while (entry->nr < PERF_MAX_STACK_DEPTH);
}

1487 1488
void
perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs)
1489
{
1490 1491 1492 1493 1494
	flushw_user();
	if (test_thread_flag(TIF_32BIT))
		perf_callchain_user_32(entry, regs);
	else
		perf_callchain_user_64(entry, regs);
1495
}