perf_event.c 35.7 KB
Newer Older
1
/* Performance event support for sparc64.
2
 *
3
 * Copyright (C) 2009, 2010 David S. Miller <davem@davemloft.net>
4
 *
5
 * This code is based almost entirely upon the x86 perf event
6 7 8 9 10 11 12 13 14
 * code, which is:
 *
 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
 *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
 *  Copyright (C) 2009 Jaswinder Singh Rajput
 *  Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
 *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
 */

15
#include <linux/perf_event.h>
16
#include <linux/kprobes.h>
17
#include <linux/ftrace.h>
18 19 20 21
#include <linux/kernel.h>
#include <linux/kdebug.h>
#include <linux/mutex.h>

22
#include <asm/stacktrace.h>
23
#include <asm/cpudata.h>
24
#include <asm/uaccess.h>
A
Arun Sharma 已提交
25
#include <linux/atomic.h>
26 27
#include <asm/nmi.h>
#include <asm/pcr.h>
28 29
#include <asm/perfctr.h>
#include <asm/cacheflush.h>
30

31
#include "kernel.h"
32 33
#include "kstack.h"

34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
/* Sparc64 chips have two performance counters, 32-bits each, with
 * overflow interrupts generated on transition from 0xffffffff to 0.
 * The counters are accessed in one go using a 64-bit register.
 *
 * Both counters are controlled using a single control register.  The
 * only way to stop all sampling is to clear all of the context (user,
 * supervisor, hypervisor) sampling enable bits.  But these bits apply
 * to both counters, thus the two counters can't be enabled/disabled
 * individually.
 *
 * The control register has two event fields, one for each of the two
 * counters.  It's thus nearly impossible to have one counter going
 * while keeping the other one stopped.  Therefore it is possible to
 * get overflow interrupts for counters not currently "in use" and
 * that condition must be checked in the overflow interrupt handler.
 *
 * So we use a hack, in that we program inactive counters with the
 * "sw_count0" and "sw_count1" events.  These count how many times
 * the instruction "sethi %hi(0xfc000), %g0" is executed.  It's an
 * unusual way to encode a NOP and therefore will not trigger in
 * normal code.
 */

57
#define MAX_HWEVENTS			2
58 59 60 61
#define MAX_PERIOD			((1UL << 32) - 1)

#define PIC_UPPER_INDEX			0
#define PIC_LOWER_INDEX			1
62
#define PIC_NO_INDEX			-1
63

64
struct cpu_hw_events {
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
	/* Number of events currently scheduled onto this cpu.
	 * This tells how many entries in the arrays below
	 * are valid.
	 */
	int			n_events;

	/* Number of new events added since the last hw_perf_disable().
	 * This works because the perf event layer always adds new
	 * events inside of a perf_{disable,enable}() sequence.
	 */
	int			n_added;

	/* Array of events current scheduled on this cpu.  */
	struct perf_event	*event[MAX_HWEVENTS];

	/* Array of encoded longs, specifying the %pcr register
	 * encoding and the mask of PIC counters this even can
	 * be scheduled on.  See perf_event_encode() et al.
	 */
	unsigned long		events[MAX_HWEVENTS];

	/* The current counter index assigned to an event.  When the
	 * event hasn't been programmed into the cpu yet, this will
	 * hold PIC_NO_INDEX.  The event->hw.idx value tells us where
	 * we ought to schedule the event.
	 */
	int			current_idx[MAX_HWEVENTS];

	/* Software copy of %pcr register on this cpu.  */
94
	u64			pcr;
95 96

	/* Enabled/disable state.  */
97
	int			enabled;
98 99

	unsigned int		group_flag;
100
};
101
DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = { .enabled = 1, };
102

103 104 105 106
/* An event map describes the characteristics of a performance
 * counter event.  In particular it gives the encoding as well as
 * a mask telling which counters the event can be measured on.
 */
107 108 109 110 111 112 113 114
struct perf_event_map {
	u16	encoding;
	u8	pic_mask;
#define PIC_NONE	0x00
#define PIC_UPPER	0x01
#define PIC_LOWER	0x02
};

115
/* Encode a perf_event_map entry into a long.  */
116 117 118 119 120
static unsigned long perf_event_encode(const struct perf_event_map *pmap)
{
	return ((unsigned long) pmap->encoding << 16) | pmap->pic_mask;
}

121 122 123 124 125 126
static u8 perf_event_get_msk(unsigned long val)
{
	return val & 0xff;
}

static u64 perf_event_get_enc(unsigned long val)
127
{
128
	return val >> 16;
129 130
}

131 132 133 134 135 136 137 138 139 140
#define C(x) PERF_COUNT_HW_CACHE_##x

#define CACHE_OP_UNSUPPORTED	0xfffe
#define CACHE_OP_NONSENSE	0xffff

typedef struct perf_event_map cache_map_t
				[PERF_COUNT_HW_CACHE_MAX]
				[PERF_COUNT_HW_CACHE_OP_MAX]
				[PERF_COUNT_HW_CACHE_RESULT_MAX];

141 142
struct sparc_pmu {
	const struct perf_event_map	*(*event_map)(int);
143
	const cache_map_t		*cache_map;
144 145 146 147
	int				max_events;
	int				upper_shift;
	int				lower_shift;
	int				event_mask;
148
	int				hv_bit;
149
	int				irq_bit;
150 151
	int				upper_nop;
	int				lower_nop;
152 153
};

154
static const struct perf_event_map ultra3_perfmon_event_map[] = {
155 156 157 158 159 160
	[PERF_COUNT_HW_CPU_CYCLES] = { 0x0000, PIC_UPPER | PIC_LOWER },
	[PERF_COUNT_HW_INSTRUCTIONS] = { 0x0001, PIC_UPPER | PIC_LOWER },
	[PERF_COUNT_HW_CACHE_REFERENCES] = { 0x0009, PIC_LOWER },
	[PERF_COUNT_HW_CACHE_MISSES] = { 0x0009, PIC_UPPER },
};

161
static const struct perf_event_map *ultra3_event_map(int event_id)
162
{
163
	return &ultra3_perfmon_event_map[event_id];
164 165
}

166
static const cache_map_t ultra3_cache_map = {
167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
[C(L1D)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)] = { 0x09, PIC_LOWER, },
		[C(RESULT_MISS)] = { 0x09, PIC_UPPER, },
	},
	[C(OP_WRITE)] = {
		[C(RESULT_ACCESS)] = { 0x0a, PIC_LOWER },
		[C(RESULT_MISS)] = { 0x0a, PIC_UPPER },
	},
	[C(OP_PREFETCH)] = {
		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
	},
},
[C(L1I)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)] = { 0x09, PIC_LOWER, },
		[C(RESULT_MISS)] = { 0x09, PIC_UPPER, },
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
		[ C(RESULT_MISS)   ] = { CACHE_OP_NONSENSE },
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
},
[C(LL)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)] = { 0x0c, PIC_LOWER, },
		[C(RESULT_MISS)] = { 0x0c, PIC_UPPER, },
	},
	[C(OP_WRITE)] = {
		[C(RESULT_ACCESS)] = { 0x0c, PIC_LOWER },
		[C(RESULT_MISS)] = { 0x0c, PIC_UPPER },
	},
	[C(OP_PREFETCH)] = {
		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
	},
},
[C(DTLB)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
		[C(RESULT_MISS)] = { 0x12, PIC_UPPER, },
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
},
[C(ITLB)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
		[C(RESULT_MISS)] = { 0x11, PIC_UPPER, },
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
},
[C(BPU)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
},
251 252 253 254 255 256 257 258 259 260 261 262 263 264
[C(NODE)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
		[C(RESULT_MISS)  ] = { CACHE_OP_UNSUPPORTED },
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
},
265 266
};

267 268 269 270
static const struct sparc_pmu ultra3_pmu = {
	.event_map	= ultra3_event_map,
	.cache_map	= &ultra3_cache_map,
	.max_events	= ARRAY_SIZE(ultra3_perfmon_event_map),
271 272 273
	.upper_shift	= 11,
	.lower_shift	= 4,
	.event_mask	= 0x3f,
274 275
	.upper_nop	= 0x1c,
	.lower_nop	= 0x14,
276 277
};

278 279
/* Niagara1 is very limited.  The upper PIC is hard-locked to count
 * only instructions, so it is free running which creates all kinds of
280
 * problems.  Some hardware designs make one wonder if the creator
281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379
 * even looked at how this stuff gets used by software.
 */
static const struct perf_event_map niagara1_perfmon_event_map[] = {
	[PERF_COUNT_HW_CPU_CYCLES] = { 0x00, PIC_UPPER },
	[PERF_COUNT_HW_INSTRUCTIONS] = { 0x00, PIC_UPPER },
	[PERF_COUNT_HW_CACHE_REFERENCES] = { 0, PIC_NONE },
	[PERF_COUNT_HW_CACHE_MISSES] = { 0x03, PIC_LOWER },
};

static const struct perf_event_map *niagara1_event_map(int event_id)
{
	return &niagara1_perfmon_event_map[event_id];
}

static const cache_map_t niagara1_cache_map = {
[C(L1D)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
		[C(RESULT_MISS)] = { 0x03, PIC_LOWER, },
	},
	[C(OP_WRITE)] = {
		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
		[C(RESULT_MISS)] = { 0x03, PIC_LOWER, },
	},
	[C(OP_PREFETCH)] = {
		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
	},
},
[C(L1I)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)] = { 0x00, PIC_UPPER },
		[C(RESULT_MISS)] = { 0x02, PIC_LOWER, },
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
		[ C(RESULT_MISS)   ] = { CACHE_OP_NONSENSE },
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
},
[C(LL)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
		[C(RESULT_MISS)] = { 0x07, PIC_LOWER, },
	},
	[C(OP_WRITE)] = {
		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
		[C(RESULT_MISS)] = { 0x07, PIC_LOWER, },
	},
	[C(OP_PREFETCH)] = {
		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
	},
},
[C(DTLB)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
		[C(RESULT_MISS)] = { 0x05, PIC_LOWER, },
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
},
[C(ITLB)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
		[C(RESULT_MISS)] = { 0x04, PIC_LOWER, },
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
},
[C(BPU)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
},
380 381 382 383 384 385 386 387 388 389 390 391 392 393
[C(NODE)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
		[C(RESULT_MISS)  ] = { CACHE_OP_UNSUPPORTED },
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
},
394 395 396 397 398 399 400 401 402 403 404 405 406
};

static const struct sparc_pmu niagara1_pmu = {
	.event_map	= niagara1_event_map,
	.cache_map	= &niagara1_cache_map,
	.max_events	= ARRAY_SIZE(niagara1_perfmon_event_map),
	.upper_shift	= 0,
	.lower_shift	= 4,
	.event_mask	= 0x7,
	.upper_nop	= 0x0,
	.lower_nop	= 0x0,
};

407 408 409 410 411 412 413 414 415
static const struct perf_event_map niagara2_perfmon_event_map[] = {
	[PERF_COUNT_HW_CPU_CYCLES] = { 0x02ff, PIC_UPPER | PIC_LOWER },
	[PERF_COUNT_HW_INSTRUCTIONS] = { 0x02ff, PIC_UPPER | PIC_LOWER },
	[PERF_COUNT_HW_CACHE_REFERENCES] = { 0x0208, PIC_UPPER | PIC_LOWER },
	[PERF_COUNT_HW_CACHE_MISSES] = { 0x0302, PIC_UPPER | PIC_LOWER },
	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x0201, PIC_UPPER | PIC_LOWER },
	[PERF_COUNT_HW_BRANCH_MISSES] = { 0x0202, PIC_UPPER | PIC_LOWER },
};

416
static const struct perf_event_map *niagara2_event_map(int event_id)
417
{
418
	return &niagara2_perfmon_event_map[event_id];
419 420
}

421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498
static const cache_map_t niagara2_cache_map = {
[C(L1D)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)] = { 0x0208, PIC_UPPER | PIC_LOWER, },
		[C(RESULT_MISS)] = { 0x0302, PIC_UPPER | PIC_LOWER, },
	},
	[C(OP_WRITE)] = {
		[C(RESULT_ACCESS)] = { 0x0210, PIC_UPPER | PIC_LOWER, },
		[C(RESULT_MISS)] = { 0x0302, PIC_UPPER | PIC_LOWER, },
	},
	[C(OP_PREFETCH)] = {
		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
	},
},
[C(L1I)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)] = { 0x02ff, PIC_UPPER | PIC_LOWER, },
		[C(RESULT_MISS)] = { 0x0301, PIC_UPPER | PIC_LOWER, },
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
		[ C(RESULT_MISS)   ] = { CACHE_OP_NONSENSE },
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
},
[C(LL)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)] = { 0x0208, PIC_UPPER | PIC_LOWER, },
		[C(RESULT_MISS)] = { 0x0330, PIC_UPPER | PIC_LOWER, },
	},
	[C(OP_WRITE)] = {
		[C(RESULT_ACCESS)] = { 0x0210, PIC_UPPER | PIC_LOWER, },
		[C(RESULT_MISS)] = { 0x0320, PIC_UPPER | PIC_LOWER, },
	},
	[C(OP_PREFETCH)] = {
		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
	},
},
[C(DTLB)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
		[C(RESULT_MISS)] = { 0x0b08, PIC_UPPER | PIC_LOWER, },
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
},
[C(ITLB)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
		[C(RESULT_MISS)] = { 0xb04, PIC_UPPER | PIC_LOWER, },
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
},
[C(BPU)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
499 500 501 502 503 504 505 506 507 508 509 510 511 512
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
},
[C(NODE)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
		[C(RESULT_MISS)  ] = { CACHE_OP_UNSUPPORTED },
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
513 514 515 516 517 518 519 520 521
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
},
};

522 523
static const struct sparc_pmu niagara2_pmu = {
	.event_map	= niagara2_event_map,
524
	.cache_map	= &niagara2_cache_map,
525 526 527 528 529
	.max_events	= ARRAY_SIZE(niagara2_perfmon_event_map),
	.upper_shift	= 19,
	.lower_shift	= 6,
	.event_mask	= 0xfff,
	.hv_bit		= 0x8,
530
	.irq_bit	= 0x30,
531 532 533 534
	.upper_nop	= 0x220,
	.lower_nop	= 0x220,
};

535 536
static const struct sparc_pmu *sparc_pmu __read_mostly;

537
static u64 event_encoding(u64 event_id, int idx)
538 539
{
	if (idx == PIC_UPPER_INDEX)
540
		event_id <<= sparc_pmu->upper_shift;
541
	else
542 543
		event_id <<= sparc_pmu->lower_shift;
	return event_id;
544 545 546 547 548 549 550 551 552 553
}

static u64 mask_for_index(int idx)
{
	return event_encoding(sparc_pmu->event_mask, idx);
}

static u64 nop_for_index(int idx)
{
	return event_encoding(idx == PIC_UPPER_INDEX ?
554 555
			      sparc_pmu->upper_nop :
			      sparc_pmu->lower_nop, idx);
556 557
}

558
static inline void sparc_pmu_enable_event(struct cpu_hw_events *cpuc, struct hw_perf_event *hwc, int idx)
559 560 561
{
	u64 val, mask = mask_for_index(idx);

562 563 564 565 566 567
	val = cpuc->pcr;
	val &= ~mask;
	val |= hwc->config;
	cpuc->pcr = val;

	pcr_ops->write(cpuc->pcr);
568 569
}

570
static inline void sparc_pmu_disable_event(struct cpu_hw_events *cpuc, struct hw_perf_event *hwc, int idx)
571 572 573
{
	u64 mask = mask_for_index(idx);
	u64 nop = nop_for_index(idx);
574
	u64 val;
575

576 577 578 579 580 581
	val = cpuc->pcr;
	val &= ~mask;
	val |= nop;
	cpuc->pcr = val;

	pcr_ops->write(cpuc->pcr);
582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611
}

static u32 read_pmc(int idx)
{
	u64 val;

	read_pic(val);
	if (idx == PIC_UPPER_INDEX)
		val >>= 32;

	return val & 0xffffffff;
}

static void write_pmc(int idx, u64 val)
{
	u64 shift, mask, pic;

	shift = 0;
	if (idx == PIC_UPPER_INDEX)
		shift = 32;

	mask = ((u64) 0xffffffff) << shift;
	val <<= shift;

	read_pic(pic);
	pic &= ~mask;
	pic |= val;
	write_pic(pic);
}

612 613 614 615 616 617 618 619
static u64 sparc_perf_event_update(struct perf_event *event,
				   struct hw_perf_event *hwc, int idx)
{
	int shift = 64 - 32;
	u64 prev_raw_count, new_raw_count;
	s64 delta;

again:
620
	prev_raw_count = local64_read(&hwc->prev_count);
621 622
	new_raw_count = read_pmc(idx);

623
	if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
624 625 626 627 628 629
			     new_raw_count) != prev_raw_count)
		goto again;

	delta = (new_raw_count << shift) - (prev_raw_count << shift);
	delta >>= shift;

630 631
	local64_add(delta, &event->count);
	local64_sub(delta, &hwc->period_left);
632 633 634 635

	return new_raw_count;
}

636
static int sparc_perf_event_set_period(struct perf_event *event,
637
				       struct hw_perf_event *hwc, int idx)
638
{
639
	s64 left = local64_read(&hwc->period_left);
640 641 642 643 644
	s64 period = hwc->sample_period;
	int ret = 0;

	if (unlikely(left <= -period)) {
		left = period;
645
		local64_set(&hwc->period_left, left);
646 647 648 649 650 651
		hwc->last_period = period;
		ret = 1;
	}

	if (unlikely(left <= 0)) {
		left += period;
652
		local64_set(&hwc->period_left, left);
653 654 655 656 657 658
		hwc->last_period = period;
		ret = 1;
	}
	if (left > MAX_PERIOD)
		left = MAX_PERIOD;

659
	local64_set(&hwc->prev_count, (u64)-left);
660 661 662

	write_pmc(idx, (u64)(-left) & 0xffffffff);

663
	perf_event_update_userpage(event);
664 665 666 667

	return ret;
}

668 669 670 671 672
/* If performance event entries have been added, move existing
 * events around (if necessary) and then assign new entries to
 * counters.
 */
static u64 maybe_change_configuration(struct cpu_hw_events *cpuc, u64 pcr)
673
{
674
	int i;
675

676 677
	if (!cpuc->n_added)
		goto out;
678

679 680 681
	/* Read in the counters which are moving.  */
	for (i = 0; i < cpuc->n_events; i++) {
		struct perf_event *cp = cpuc->event[i];
682

683 684 685 686 687 688 689
		if (cpuc->current_idx[i] != PIC_NO_INDEX &&
		    cpuc->current_idx[i] != cp->hw.idx) {
			sparc_perf_event_update(cp, &cp->hw,
						cpuc->current_idx[i]);
			cpuc->current_idx[i] = PIC_NO_INDEX;
		}
	}
690

691 692 693 694 695 696 697 698 699 700 701 702 703 704
	/* Assign to counters all unassigned events.  */
	for (i = 0; i < cpuc->n_events; i++) {
		struct perf_event *cp = cpuc->event[i];
		struct hw_perf_event *hwc = &cp->hw;
		int idx = hwc->idx;
		u64 enc;

		if (cpuc->current_idx[i] != PIC_NO_INDEX)
			continue;

		sparc_perf_event_set_period(cp, hwc, idx);
		cpuc->current_idx[i] = idx;

		enc = perf_event_get_enc(cpuc->events[i]);
705
		pcr &= ~mask_for_index(idx);
P
Peter Zijlstra 已提交
706 707 708 709
		if (hwc->state & PERF_HES_STOPPED)
			pcr |= nop_for_index(idx);
		else
			pcr |= event_encoding(enc, idx);
710 711 712
	}
out:
	return pcr;
713 714
}

P
Peter Zijlstra 已提交
715
static void sparc_pmu_enable(struct pmu *pmu)
716
{
717 718
	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
	u64 pcr;
719

720 721
	if (cpuc->enabled)
		return;
722

723 724
	cpuc->enabled = 1;
	barrier();
725

726 727 728 729 730
	pcr = cpuc->pcr;
	if (!cpuc->n_events) {
		pcr = 0;
	} else {
		pcr = maybe_change_configuration(cpuc, pcr);
731

732 733 734 735 736 737
		/* We require that all of the events have the same
		 * configuration, so just fetch the settings from the
		 * first entry.
		 */
		cpuc->pcr = pcr | cpuc->event[0]->hw.config_base;
	}
738

739 740 741
	pcr_ops->write(cpuc->pcr);
}

P
Peter Zijlstra 已提交
742
static void sparc_pmu_disable(struct pmu *pmu)
743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758
{
	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
	u64 val;

	if (!cpuc->enabled)
		return;

	cpuc->enabled = 0;
	cpuc->n_added = 0;

	val = cpuc->pcr;
	val &= ~(PCR_UTRACE | PCR_STRACE |
		 sparc_pmu->hv_bit | sparc_pmu->irq_bit);
	cpuc->pcr = val;

	pcr_ops->write(cpuc->pcr);
759 760
}

P
Peter Zijlstra 已提交
761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805
static int active_event_index(struct cpu_hw_events *cpuc,
			      struct perf_event *event)
{
	int i;

	for (i = 0; i < cpuc->n_events; i++) {
		if (cpuc->event[i] == event)
			break;
	}
	BUG_ON(i == cpuc->n_events);
	return cpuc->current_idx[i];
}

static void sparc_pmu_start(struct perf_event *event, int flags)
{
	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
	int idx = active_event_index(cpuc, event);

	if (flags & PERF_EF_RELOAD) {
		WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
		sparc_perf_event_set_period(event, &event->hw, idx);
	}

	event->hw.state = 0;

	sparc_pmu_enable_event(cpuc, &event->hw, idx);
}

static void sparc_pmu_stop(struct perf_event *event, int flags)
{
	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
	int idx = active_event_index(cpuc, event);

	if (!(event->hw.state & PERF_HES_STOPPED)) {
		sparc_pmu_disable_event(cpuc, &event->hw, idx);
		event->hw.state |= PERF_HES_STOPPED;
	}

	if (!(event->hw.state & PERF_HES_UPTODATE) && (flags & PERF_EF_UPDATE)) {
		sparc_perf_event_update(event, &event->hw, idx);
		event->hw.state |= PERF_HES_UPTODATE;
	}
}

static void sparc_pmu_del(struct perf_event *event, int _flags)
806
{
807
	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
808 809
	unsigned long flags;
	int i;
810

811
	local_irq_save(flags);
P
Peter Zijlstra 已提交
812
	perf_pmu_disable(event->pmu);
813 814 815

	for (i = 0; i < cpuc->n_events; i++) {
		if (event == cpuc->event[i]) {
P
Peter Zijlstra 已提交
816 817 818 819
			/* Absorb the final count and turn off the
			 * event.
			 */
			sparc_pmu_stop(event, PERF_EF_UPDATE);
820 821 822 823 824 825 826 827 828 829 830 831

			/* Shift remaining entries down into
			 * the existing slot.
			 */
			while (++i < cpuc->n_events) {
				cpuc->event[i - 1] = cpuc->event[i];
				cpuc->events[i - 1] = cpuc->events[i];
				cpuc->current_idx[i - 1] =
					cpuc->current_idx[i];
			}

			perf_event_update_userpage(event);
832

833 834 835 836
			cpuc->n_events--;
			break;
		}
	}
837

P
Peter Zijlstra 已提交
838
	perf_pmu_enable(event->pmu);
839 840 841
	local_irq_restore(flags);
}

842
static void sparc_pmu_read(struct perf_event *event)
843
{
844 845
	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
	int idx = active_event_index(cpuc, event);
846
	struct hw_perf_event *hwc = &event->hw;
847

848
	sparc_perf_event_update(event, hwc, idx);
849 850
}

851
static atomic_t active_events = ATOMIC_INIT(0);
852 853
static DEFINE_MUTEX(pmc_grab_mutex);

854 855 856 857 858 859 860 861
static void perf_stop_nmi_watchdog(void *unused)
{
	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);

	stop_nmi_watchdog(NULL);
	cpuc->pcr = pcr_ops->read();
}

862
void perf_event_grab_pmc(void)
863
{
864
	if (atomic_inc_not_zero(&active_events))
865 866 867
		return;

	mutex_lock(&pmc_grab_mutex);
868
	if (atomic_read(&active_events) == 0) {
869
		if (atomic_read(&nmi_active) > 0) {
870
			on_each_cpu(perf_stop_nmi_watchdog, NULL, 1);
871 872
			BUG_ON(atomic_read(&nmi_active) != 0);
		}
873
		atomic_inc(&active_events);
874 875 876 877
	}
	mutex_unlock(&pmc_grab_mutex);
}

878
void perf_event_release_pmc(void)
879
{
880
	if (atomic_dec_and_mutex_lock(&active_events, &pmc_grab_mutex)) {
881 882 883 884 885 886
		if (atomic_read(&nmi_active) == 0)
			on_each_cpu(start_nmi_watchdog, NULL, 1);
		mutex_unlock(&pmc_grab_mutex);
	}
}

887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917
static const struct perf_event_map *sparc_map_cache_event(u64 config)
{
	unsigned int cache_type, cache_op, cache_result;
	const struct perf_event_map *pmap;

	if (!sparc_pmu->cache_map)
		return ERR_PTR(-ENOENT);

	cache_type = (config >>  0) & 0xff;
	if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
		return ERR_PTR(-EINVAL);

	cache_op = (config >>  8) & 0xff;
	if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
		return ERR_PTR(-EINVAL);

	cache_result = (config >> 16) & 0xff;
	if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
		return ERR_PTR(-EINVAL);

	pmap = &((*sparc_pmu->cache_map)[cache_type][cache_op][cache_result]);

	if (pmap->encoding == CACHE_OP_UNSUPPORTED)
		return ERR_PTR(-ENOENT);

	if (pmap->encoding == CACHE_OP_NONSENSE)
		return ERR_PTR(-EINVAL);

	return pmap;
}

918
static void hw_perf_event_destroy(struct perf_event *event)
919
{
920
	perf_event_release_pmc();
921 922
}

923 924 925
/* Make sure all events can be scheduled into the hardware at
 * the same time.  This is simplified by the fact that we only
 * need to support 2 simultaneous HW events.
926 927 928 929 930 931
 *
 * As a side effect, the evts[]->hw.idx values will be assigned
 * on success.  These are pending indexes.  When the events are
 * actually programmed into the chip, these values will propagate
 * to the per-cpu cpuc->current_idx[] slots, see the code in
 * maybe_change_configuration() for details.
932
 */
933 934
static int sparc_check_constraints(struct perf_event **evts,
				   unsigned long *events, int n_ev)
935
{
936 937 938 939 940 941 942 943 944
	u8 msk0 = 0, msk1 = 0;
	int idx0 = 0;

	/* This case is possible when we are invoked from
	 * hw_perf_group_sched_in().
	 */
	if (!n_ev)
		return 0;

P
Peter Zijlstra 已提交
945
	if (n_ev > MAX_HWEVENTS)
946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969
		return -1;

	msk0 = perf_event_get_msk(events[0]);
	if (n_ev == 1) {
		if (msk0 & PIC_LOWER)
			idx0 = 1;
		goto success;
	}
	BUG_ON(n_ev != 2);
	msk1 = perf_event_get_msk(events[1]);

	/* If both events can go on any counter, OK.  */
	if (msk0 == (PIC_UPPER | PIC_LOWER) &&
	    msk1 == (PIC_UPPER | PIC_LOWER))
		goto success;

	/* If one event is limited to a specific counter,
	 * and the other can go on both, OK.
	 */
	if ((msk0 == PIC_UPPER || msk0 == PIC_LOWER) &&
	    msk1 == (PIC_UPPER | PIC_LOWER)) {
		if (msk0 & PIC_LOWER)
			idx0 = 1;
		goto success;
970 971
	}

972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987
	if ((msk1 == PIC_UPPER || msk1 == PIC_LOWER) &&
	    msk0 == (PIC_UPPER | PIC_LOWER)) {
		if (msk1 & PIC_UPPER)
			idx0 = 1;
		goto success;
	}

	/* If the events are fixed to different counters, OK.  */
	if ((msk0 == PIC_UPPER && msk1 == PIC_LOWER) ||
	    (msk0 == PIC_LOWER && msk1 == PIC_UPPER)) {
		if (msk0 & PIC_LOWER)
			idx0 = 1;
		goto success;
	}

	/* Otherwise, there is a conflict.  */
988
	return -1;
989 990 991 992 993 994

success:
	evts[0]->hw.idx = idx0;
	if (n_ev == 2)
		evts[1]->hw.idx = idx0 ^ 1;
	return 0;
995 996
}

997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025
static int check_excludes(struct perf_event **evts, int n_prev, int n_new)
{
	int eu = 0, ek = 0, eh = 0;
	struct perf_event *event;
	int i, n, first;

	n = n_prev + n_new;
	if (n <= 1)
		return 0;

	first = 1;
	for (i = 0; i < n; i++) {
		event = evts[i];
		if (first) {
			eu = event->attr.exclude_user;
			ek = event->attr.exclude_kernel;
			eh = event->attr.exclude_hv;
			first = 0;
		} else if (event->attr.exclude_user != eu ||
			   event->attr.exclude_kernel != ek ||
			   event->attr.exclude_hv != eh) {
			return -EAGAIN;
		}
	}

	return 0;
}

static int collect_events(struct perf_event *group, int max_count,
1026 1027
			  struct perf_event *evts[], unsigned long *events,
			  int *current_idx)
1028 1029 1030 1031 1032 1033 1034 1035
{
	struct perf_event *event;
	int n = 0;

	if (!is_software_event(group)) {
		if (n >= max_count)
			return -1;
		evts[n] = group;
1036 1037
		events[n] = group->hw.event_base;
		current_idx[n++] = PIC_NO_INDEX;
1038 1039 1040 1041 1042 1043 1044
	}
	list_for_each_entry(event, &group->sibling_list, group_entry) {
		if (!is_software_event(event) &&
		    event->state != PERF_EVENT_STATE_OFF) {
			if (n >= max_count)
				return -1;
			evts[n] = event;
1045 1046
			events[n] = event->hw.event_base;
			current_idx[n++] = PIC_NO_INDEX;
1047 1048 1049 1050 1051
		}
	}
	return n;
}

P
Peter Zijlstra 已提交
1052
static int sparc_pmu_add(struct perf_event *event, int ef_flags)
1053 1054 1055 1056 1057 1058
{
	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
	int n0, ret = -EAGAIN;
	unsigned long flags;

	local_irq_save(flags);
P
Peter Zijlstra 已提交
1059
	perf_pmu_disable(event->pmu);
1060 1061

	n0 = cpuc->n_events;
P
Peter Zijlstra 已提交
1062
	if (n0 >= MAX_HWEVENTS)
1063 1064 1065 1066 1067 1068
		goto out;

	cpuc->event[n0] = event;
	cpuc->events[n0] = event->hw.event_base;
	cpuc->current_idx[n0] = PIC_NO_INDEX;

P
Peter Zijlstra 已提交
1069 1070 1071 1072
	event->hw.state = PERF_HES_UPTODATE;
	if (!(ef_flags & PERF_EF_START))
		event->hw.state |= PERF_HES_STOPPED;

1073 1074
	/*
	 * If group events scheduling transaction was started,
L
Lucas De Marchi 已提交
1075
	 * skip the schedulability test here, it will be performed
1076 1077
	 * at commit time(->commit_txn) as a whole
	 */
1078
	if (cpuc->group_flag & PERF_EVENT_TXN)
1079 1080
		goto nocheck;

1081 1082 1083 1084 1085
	if (check_excludes(cpuc->event, n0, 1))
		goto out;
	if (sparc_check_constraints(cpuc->event, cpuc->events, n0 + 1))
		goto out;

1086
nocheck:
1087 1088 1089 1090 1091
	cpuc->n_events++;
	cpuc->n_added++;

	ret = 0;
out:
P
Peter Zijlstra 已提交
1092
	perf_pmu_enable(event->pmu);
1093 1094 1095 1096
	local_irq_restore(flags);
	return ret;
}

1097
static int sparc_pmu_event_init(struct perf_event *event)
1098
{
1099
	struct perf_event_attr *attr = &event->attr;
1100
	struct perf_event *evts[MAX_HWEVENTS];
1101
	struct hw_perf_event *hwc = &event->hw;
1102
	unsigned long events[MAX_HWEVENTS];
1103
	int current_idx_dmy[MAX_HWEVENTS];
1104
	const struct perf_event_map *pmap;
1105
	int n;
1106 1107 1108 1109

	if (atomic_read(&nmi_active) < 0)
		return -ENODEV;

1110 1111 1112 1113
	/* does not support taken branch sampling */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

1114 1115
	switch (attr->type) {
	case PERF_TYPE_HARDWARE:
1116 1117 1118
		if (attr->config >= sparc_pmu->max_events)
			return -EINVAL;
		pmap = sparc_pmu->event_map(attr->config);
1119 1120 1121
		break;

	case PERF_TYPE_HW_CACHE:
1122 1123 1124
		pmap = sparc_map_cache_event(attr->config);
		if (IS_ERR(pmap))
			return PTR_ERR(pmap);
1125 1126 1127
		break;

	case PERF_TYPE_RAW:
1128 1129
		pmap = NULL;
		break;
1130

1131 1132 1133 1134 1135
	default:
		return -ENOENT;

	}

1136 1137 1138
	if (pmap) {
		hwc->event_base = perf_event_encode(pmap);
	} else {
1139 1140
		/*
		 * User gives us "(encoding << 16) | pic_mask" for
1141 1142 1143 1144 1145
		 * PERF_TYPE_RAW events.
		 */
		hwc->event_base = attr->config;
	}

1146
	/* We save the enable bits in the config_base.  */
1147
	hwc->config_base = sparc_pmu->irq_bit;
1148 1149 1150 1151
	if (!attr->exclude_user)
		hwc->config_base |= PCR_UTRACE;
	if (!attr->exclude_kernel)
		hwc->config_base |= PCR_STRACE;
1152 1153
	if (!attr->exclude_hv)
		hwc->config_base |= sparc_pmu->hv_bit;
1154

1155 1156 1157
	n = 0;
	if (event->group_leader != event) {
		n = collect_events(event->group_leader,
P
Peter Zijlstra 已提交
1158
				   MAX_HWEVENTS - 1,
1159
				   evts, events, current_idx_dmy);
1160 1161 1162
		if (n < 0)
			return -EINVAL;
	}
1163
	events[n] = hwc->event_base;
1164 1165 1166 1167 1168
	evts[n] = event;

	if (check_excludes(evts, n, 1))
		return -EINVAL;

1169
	if (sparc_check_constraints(evts, events, n + 1))
1170 1171
		return -EINVAL;

1172 1173
	hwc->idx = PIC_NO_INDEX;

1174 1175 1176 1177 1178 1179
	/* Try to do all error checking before this point, as unwinding
	 * state after grabbing the PMC is difficult.
	 */
	perf_event_grab_pmc();
	event->destroy = hw_perf_event_destroy;

1180 1181 1182
	if (!hwc->sample_period) {
		hwc->sample_period = MAX_PERIOD;
		hwc->last_period = hwc->sample_period;
1183
		local64_set(&hwc->period_left, hwc->sample_period);
1184 1185 1186 1187 1188
	}

	return 0;
}

1189 1190 1191 1192 1193
/*
 * Start group events scheduling transaction
 * Set the flag to make pmu::enable() not perform the
 * schedulability test, it will be performed at commit time
 */
P
Peter Zijlstra 已提交
1194
static void sparc_pmu_start_txn(struct pmu *pmu)
1195 1196 1197
{
	struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);

P
Peter Zijlstra 已提交
1198
	perf_pmu_disable(pmu);
1199
	cpuhw->group_flag |= PERF_EVENT_TXN;
1200 1201 1202 1203 1204 1205 1206
}

/*
 * Stop group events scheduling transaction
 * Clear the flag and pmu::enable() will perform the
 * schedulability test.
 */
P
Peter Zijlstra 已提交
1207
static void sparc_pmu_cancel_txn(struct pmu *pmu)
1208 1209 1210
{
	struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);

1211
	cpuhw->group_flag &= ~PERF_EVENT_TXN;
P
Peter Zijlstra 已提交
1212
	perf_pmu_enable(pmu);
1213 1214 1215 1216 1217 1218 1219
}

/*
 * Commit group events scheduling transaction
 * Perform the group schedulability test as a whole
 * Return 0 if success
 */
P
Peter Zijlstra 已提交
1220
static int sparc_pmu_commit_txn(struct pmu *pmu)
1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234
{
	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
	int n;

	if (!sparc_pmu)
		return -EINVAL;

	cpuc = &__get_cpu_var(cpu_hw_events);
	n = cpuc->n_events;
	if (check_excludes(cpuc->event, 0, n))
		return -EINVAL;
	if (sparc_check_constraints(cpuc->event, cpuc->events, n))
		return -EAGAIN;

1235
	cpuc->group_flag &= ~PERF_EVENT_TXN;
P
Peter Zijlstra 已提交
1236
	perf_pmu_enable(pmu);
1237 1238 1239
	return 0;
}

P
Peter Zijlstra 已提交
1240
static struct pmu pmu = {
P
Peter Zijlstra 已提交
1241 1242
	.pmu_enable	= sparc_pmu_enable,
	.pmu_disable	= sparc_pmu_disable,
1243
	.event_init	= sparc_pmu_event_init,
P
Peter Zijlstra 已提交
1244 1245 1246 1247
	.add		= sparc_pmu_add,
	.del		= sparc_pmu_del,
	.start		= sparc_pmu_start,
	.stop		= sparc_pmu_stop,
1248
	.read		= sparc_pmu_read,
1249 1250 1251
	.start_txn	= sparc_pmu_start_txn,
	.cancel_txn	= sparc_pmu_cancel_txn,
	.commit_txn	= sparc_pmu_commit_txn,
1252 1253
};

1254
void perf_event_print_debug(void)
1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276
{
	unsigned long flags;
	u64 pcr, pic;
	int cpu;

	if (!sparc_pmu)
		return;

	local_irq_save(flags);

	cpu = smp_processor_id();

	pcr = pcr_ops->read();
	read_pic(pic);

	pr_info("\n");
	pr_info("CPU#%d: PCR[%016llx] PIC[%016llx]\n",
		cpu, pcr, pic);

	local_irq_restore(flags);
}

1277
static int __kprobes perf_event_nmi_handler(struct notifier_block *self,
1278
					    unsigned long cmd, void *__args)
1279 1280 1281
{
	struct die_args *args = __args;
	struct perf_sample_data data;
1282
	struct cpu_hw_events *cpuc;
1283
	struct pt_regs *regs;
1284
	int i;
1285

1286
	if (!atomic_read(&active_events))
1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298
		return NOTIFY_DONE;

	switch (cmd) {
	case DIE_NMI:
		break;

	default:
		return NOTIFY_DONE;
	}

	regs = args->regs;

1299
	perf_sample_data_init(&data, 0);
1300

1301
	cpuc = &__get_cpu_var(cpu_hw_events);
1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312

	/* If the PMU has the TOE IRQ enable bits, we need to do a
	 * dummy write to the %pcr to clear the overflow bits and thus
	 * the interrupt.
	 *
	 * Do this before we peek at the counters to determine
	 * overflow so we don't lose any events.
	 */
	if (sparc_pmu->irq_bit)
		pcr_ops->write(cpuc->pcr);

1313 1314 1315
	for (i = 0; i < cpuc->n_events; i++) {
		struct perf_event *event = cpuc->event[i];
		int idx = cpuc->current_idx[i];
1316
		struct hw_perf_event *hwc;
1317 1318
		u64 val;

1319 1320
		hwc = &event->hw;
		val = sparc_perf_event_update(event, hwc, idx);
1321 1322 1323
		if (val & (1ULL << 31))
			continue;

1324 1325
		data.period = event->hw.last_period;
		if (!sparc_perf_event_set_period(event, hwc, idx))
1326 1327
			continue;

1328
		if (perf_event_overflow(event, &data, regs))
P
Peter Zijlstra 已提交
1329
			sparc_pmu_stop(event, 0);
1330 1331 1332 1333 1334
	}

	return NOTIFY_STOP;
}

1335 1336
static __read_mostly struct notifier_block perf_event_nmi_notifier = {
	.notifier_call		= perf_event_nmi_handler,
1337 1338 1339 1340
};

static bool __init supported_pmu(void)
{
1341 1342 1343 1344 1345
	if (!strcmp(sparc_pmu_type, "ultra3") ||
	    !strcmp(sparc_pmu_type, "ultra3+") ||
	    !strcmp(sparc_pmu_type, "ultra3i") ||
	    !strcmp(sparc_pmu_type, "ultra4+")) {
		sparc_pmu = &ultra3_pmu;
1346 1347
		return true;
	}
1348 1349 1350 1351
	if (!strcmp(sparc_pmu_type, "niagara")) {
		sparc_pmu = &niagara1_pmu;
		return true;
	}
1352 1353
	if (!strcmp(sparc_pmu_type, "niagara2") ||
	    !strcmp(sparc_pmu_type, "niagara3")) {
1354 1355 1356
		sparc_pmu = &niagara2_pmu;
		return true;
	}
1357 1358 1359
	return false;
}

1360
int __init init_hw_perf_events(void)
1361
{
1362
	pr_info("Performance events: ");
1363 1364 1365

	if (!supported_pmu()) {
		pr_cont("No support for PMU type '%s'\n", sparc_pmu_type);
1366
		return 0;
1367 1368 1369 1370
	}

	pr_cont("Supported PMU type is '%s'\n", sparc_pmu_type);

P
Peter Zijlstra 已提交
1371
	perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
1372
	register_die_notifier(&perf_event_nmi_notifier);
1373 1374

	return 0;
1375
}
1376
early_initcall(init_hw_perf_events);
1377

1378 1379
void perf_callchain_kernel(struct perf_callchain_entry *entry,
			   struct pt_regs *regs)
1380 1381
{
	unsigned long ksp, fp;
1382 1383 1384
#ifdef CONFIG_FUNCTION_GRAPH_TRACER
	int graph = 0;
#endif
1385

1386 1387
	stack_trace_flush();

1388
	perf_callchain_store(entry, regs->tpc);
1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411

	ksp = regs->u_regs[UREG_I6];
	fp = ksp + STACK_BIAS;
	do {
		struct sparc_stackf *sf;
		struct pt_regs *regs;
		unsigned long pc;

		if (!kstack_valid(current_thread_info(), fp))
			break;

		sf = (struct sparc_stackf *) fp;
		regs = (struct pt_regs *) (sf + 1);

		if (kstack_is_trap_frame(current_thread_info(), regs)) {
			if (user_mode(regs))
				break;
			pc = regs->tpc;
			fp = regs->u_regs[UREG_I6] + STACK_BIAS;
		} else {
			pc = sf->callers_pc;
			fp = (unsigned long)sf->fp + STACK_BIAS;
		}
1412
		perf_callchain_store(entry, pc);
1413 1414 1415 1416 1417
#ifdef CONFIG_FUNCTION_GRAPH_TRACER
		if ((pc + 8UL) == (unsigned long) &return_to_handler) {
			int index = current->curr_ret_stack;
			if (current->ret_stack && index >= graph) {
				pc = current->ret_stack[index - graph].ret;
1418
				perf_callchain_store(entry, pc);
1419 1420 1421 1422
				graph++;
			}
		}
#endif
1423 1424 1425
	} while (entry->nr < PERF_MAX_STACK_DEPTH);
}

1426 1427
static void perf_callchain_user_64(struct perf_callchain_entry *entry,
				   struct pt_regs *regs)
1428 1429 1430
{
	unsigned long ufp;

1431
	perf_callchain_store(entry, regs->tpc);
1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443

	ufp = regs->u_regs[UREG_I6] + STACK_BIAS;
	do {
		struct sparc_stackf *usf, sf;
		unsigned long pc;

		usf = (struct sparc_stackf *) ufp;
		if (__copy_from_user_inatomic(&sf, usf, sizeof(sf)))
			break;

		pc = sf.callers_pc;
		ufp = (unsigned long)sf.fp + STACK_BIAS;
1444
		perf_callchain_store(entry, pc);
1445 1446 1447
	} while (entry->nr < PERF_MAX_STACK_DEPTH);
}

1448 1449
static void perf_callchain_user_32(struct perf_callchain_entry *entry,
				   struct pt_regs *regs)
1450 1451 1452
{
	unsigned long ufp;

1453
	perf_callchain_store(entry, regs->tpc);
1454

1455
	ufp = regs->u_regs[UREG_I6] & 0xffffffffUL;
1456 1457 1458 1459 1460 1461 1462 1463 1464 1465
	do {
		struct sparc_stackf32 *usf, sf;
		unsigned long pc;

		usf = (struct sparc_stackf32 *) ufp;
		if (__copy_from_user_inatomic(&sf, usf, sizeof(sf)))
			break;

		pc = sf.callers_pc;
		ufp = (unsigned long)sf.fp;
1466
		perf_callchain_store(entry, pc);
1467 1468 1469
	} while (entry->nr < PERF_MAX_STACK_DEPTH);
}

1470 1471
void
perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs)
1472
{
1473 1474 1475 1476 1477
	flushw_user();
	if (test_thread_flag(TIF_32BIT))
		perf_callchain_user_32(entry, regs);
	else
		perf_callchain_user_64(entry, regs);
1478
}