perf_event.c 22.0 KB
Newer Older
1
/* Performance event support for sparc64.
2 3 4
 *
 * Copyright (C) 2009 David S. Miller <davem@davemloft.net>
 *
5
 * This code is based almost entirely upon the x86 perf event
6 7 8 9 10 11 12 13 14
 * code, which is:
 *
 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
 *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
 *  Copyright (C) 2009 Jaswinder Singh Rajput
 *  Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
 *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
 */

15
#include <linux/perf_event.h>
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
#include <linux/kprobes.h>
#include <linux/kernel.h>
#include <linux/kdebug.h>
#include <linux/mutex.h>

#include <asm/cpudata.h>
#include <asm/atomic.h>
#include <asm/nmi.h>
#include <asm/pcr.h>

/* Sparc64 chips have two performance counters, 32-bits each, with
 * overflow interrupts generated on transition from 0xffffffff to 0.
 * The counters are accessed in one go using a 64-bit register.
 *
 * Both counters are controlled using a single control register.  The
 * only way to stop all sampling is to clear all of the context (user,
 * supervisor, hypervisor) sampling enable bits.  But these bits apply
 * to both counters, thus the two counters can't be enabled/disabled
 * individually.
 *
 * The control register has two event fields, one for each of the two
 * counters.  It's thus nearly impossible to have one counter going
 * while keeping the other one stopped.  Therefore it is possible to
 * get overflow interrupts for counters not currently "in use" and
 * that condition must be checked in the overflow interrupt handler.
 *
 * So we use a hack, in that we program inactive counters with the
 * "sw_count0" and "sw_count1" events.  These count how many times
 * the instruction "sethi %hi(0xfc000), %g0" is executed.  It's an
 * unusual way to encode a NOP and therefore will not trigger in
 * normal code.
 */

49
#define MAX_HWEVENTS			2
50 51 52 53 54
#define MAX_PERIOD			((1UL << 32) - 1)

#define PIC_UPPER_INDEX			0
#define PIC_LOWER_INDEX			1

55 56 57 58
struct cpu_hw_events {
	struct perf_event	*events[MAX_HWEVENTS];
	unsigned long		used_mask[BITS_TO_LONGS(MAX_HWEVENTS)];
	unsigned long		active_mask[BITS_TO_LONGS(MAX_HWEVENTS)];
59 60
	int enabled;
};
61
DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = { .enabled = 1, };
62 63 64 65 66 67 68 69 70

struct perf_event_map {
	u16	encoding;
	u8	pic_mask;
#define PIC_NONE	0x00
#define PIC_UPPER	0x01
#define PIC_LOWER	0x02
};

71 72 73 74 75 76 77 78 79 80
#define C(x) PERF_COUNT_HW_CACHE_##x

#define CACHE_OP_UNSUPPORTED	0xfffe
#define CACHE_OP_NONSENSE	0xffff

typedef struct perf_event_map cache_map_t
				[PERF_COUNT_HW_CACHE_MAX]
				[PERF_COUNT_HW_CACHE_OP_MAX]
				[PERF_COUNT_HW_CACHE_RESULT_MAX];

81 82
struct sparc_pmu {
	const struct perf_event_map	*(*event_map)(int);
83
	const cache_map_t		*cache_map;
84 85 86 87
	int				max_events;
	int				upper_shift;
	int				lower_shift;
	int				event_mask;
88
	int				hv_bit;
89
	int				irq_bit;
90 91
	int				upper_nop;
	int				lower_nop;
92 93
};

94
static const struct perf_event_map ultra3_perfmon_event_map[] = {
95 96 97 98 99 100
	[PERF_COUNT_HW_CPU_CYCLES] = { 0x0000, PIC_UPPER | PIC_LOWER },
	[PERF_COUNT_HW_INSTRUCTIONS] = { 0x0001, PIC_UPPER | PIC_LOWER },
	[PERF_COUNT_HW_CACHE_REFERENCES] = { 0x0009, PIC_LOWER },
	[PERF_COUNT_HW_CACHE_MISSES] = { 0x0009, PIC_UPPER },
};

101
static const struct perf_event_map *ultra3_event_map(int event_id)
102
{
103
	return &ultra3_perfmon_event_map[event_id];
104 105
}

106
static const cache_map_t ultra3_cache_map = {
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
[C(L1D)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)] = { 0x09, PIC_LOWER, },
		[C(RESULT_MISS)] = { 0x09, PIC_UPPER, },
	},
	[C(OP_WRITE)] = {
		[C(RESULT_ACCESS)] = { 0x0a, PIC_LOWER },
		[C(RESULT_MISS)] = { 0x0a, PIC_UPPER },
	},
	[C(OP_PREFETCH)] = {
		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
	},
},
[C(L1I)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)] = { 0x09, PIC_LOWER, },
		[C(RESULT_MISS)] = { 0x09, PIC_UPPER, },
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
		[ C(RESULT_MISS)   ] = { CACHE_OP_NONSENSE },
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
},
[C(LL)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)] = { 0x0c, PIC_LOWER, },
		[C(RESULT_MISS)] = { 0x0c, PIC_UPPER, },
	},
	[C(OP_WRITE)] = {
		[C(RESULT_ACCESS)] = { 0x0c, PIC_LOWER },
		[C(RESULT_MISS)] = { 0x0c, PIC_UPPER },
	},
	[C(OP_PREFETCH)] = {
		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
	},
},
[C(DTLB)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
		[C(RESULT_MISS)] = { 0x12, PIC_UPPER, },
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
},
[C(ITLB)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
		[C(RESULT_MISS)] = { 0x11, PIC_UPPER, },
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
},
[C(BPU)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
},
};

193 194 195 196
static const struct sparc_pmu ultra3_pmu = {
	.event_map	= ultra3_event_map,
	.cache_map	= &ultra3_cache_map,
	.max_events	= ARRAY_SIZE(ultra3_perfmon_event_map),
197 198 199
	.upper_shift	= 11,
	.lower_shift	= 4,
	.event_mask	= 0x3f,
200 201
	.upper_nop	= 0x1c,
	.lower_nop	= 0x14,
202 203
};

204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318
/* Niagara1 is very limited.  The upper PIC is hard-locked to count
 * only instructions, so it is free running which creates all kinds of
 * problems.  Some hardware designs make one wonder if the creastor
 * even looked at how this stuff gets used by software.
 */
static const struct perf_event_map niagara1_perfmon_event_map[] = {
	[PERF_COUNT_HW_CPU_CYCLES] = { 0x00, PIC_UPPER },
	[PERF_COUNT_HW_INSTRUCTIONS] = { 0x00, PIC_UPPER },
	[PERF_COUNT_HW_CACHE_REFERENCES] = { 0, PIC_NONE },
	[PERF_COUNT_HW_CACHE_MISSES] = { 0x03, PIC_LOWER },
};

static const struct perf_event_map *niagara1_event_map(int event_id)
{
	return &niagara1_perfmon_event_map[event_id];
}

static const cache_map_t niagara1_cache_map = {
[C(L1D)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
		[C(RESULT_MISS)] = { 0x03, PIC_LOWER, },
	},
	[C(OP_WRITE)] = {
		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
		[C(RESULT_MISS)] = { 0x03, PIC_LOWER, },
	},
	[C(OP_PREFETCH)] = {
		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
	},
},
[C(L1I)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)] = { 0x00, PIC_UPPER },
		[C(RESULT_MISS)] = { 0x02, PIC_LOWER, },
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
		[ C(RESULT_MISS)   ] = { CACHE_OP_NONSENSE },
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
},
[C(LL)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
		[C(RESULT_MISS)] = { 0x07, PIC_LOWER, },
	},
	[C(OP_WRITE)] = {
		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
		[C(RESULT_MISS)] = { 0x07, PIC_LOWER, },
	},
	[C(OP_PREFETCH)] = {
		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
	},
},
[C(DTLB)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
		[C(RESULT_MISS)] = { 0x05, PIC_LOWER, },
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
},
[C(ITLB)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
		[C(RESULT_MISS)] = { 0x04, PIC_LOWER, },
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
},
[C(BPU)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
},
};

static const struct sparc_pmu niagara1_pmu = {
	.event_map	= niagara1_event_map,
	.cache_map	= &niagara1_cache_map,
	.max_events	= ARRAY_SIZE(niagara1_perfmon_event_map),
	.upper_shift	= 0,
	.lower_shift	= 4,
	.event_mask	= 0x7,
	.upper_nop	= 0x0,
	.lower_nop	= 0x0,
};

319 320 321 322 323 324 325 326 327
static const struct perf_event_map niagara2_perfmon_event_map[] = {
	[PERF_COUNT_HW_CPU_CYCLES] = { 0x02ff, PIC_UPPER | PIC_LOWER },
	[PERF_COUNT_HW_INSTRUCTIONS] = { 0x02ff, PIC_UPPER | PIC_LOWER },
	[PERF_COUNT_HW_CACHE_REFERENCES] = { 0x0208, PIC_UPPER | PIC_LOWER },
	[PERF_COUNT_HW_CACHE_MISSES] = { 0x0302, PIC_UPPER | PIC_LOWER },
	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x0201, PIC_UPPER | PIC_LOWER },
	[PERF_COUNT_HW_BRANCH_MISSES] = { 0x0202, PIC_UPPER | PIC_LOWER },
};

328
static const struct perf_event_map *niagara2_event_map(int event_id)
329
{
330
	return &niagara2_perfmon_event_map[event_id];
331 332
}

333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419
static const cache_map_t niagara2_cache_map = {
[C(L1D)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)] = { 0x0208, PIC_UPPER | PIC_LOWER, },
		[C(RESULT_MISS)] = { 0x0302, PIC_UPPER | PIC_LOWER, },
	},
	[C(OP_WRITE)] = {
		[C(RESULT_ACCESS)] = { 0x0210, PIC_UPPER | PIC_LOWER, },
		[C(RESULT_MISS)] = { 0x0302, PIC_UPPER | PIC_LOWER, },
	},
	[C(OP_PREFETCH)] = {
		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
	},
},
[C(L1I)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)] = { 0x02ff, PIC_UPPER | PIC_LOWER, },
		[C(RESULT_MISS)] = { 0x0301, PIC_UPPER | PIC_LOWER, },
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
		[ C(RESULT_MISS)   ] = { CACHE_OP_NONSENSE },
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
},
[C(LL)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)] = { 0x0208, PIC_UPPER | PIC_LOWER, },
		[C(RESULT_MISS)] = { 0x0330, PIC_UPPER | PIC_LOWER, },
	},
	[C(OP_WRITE)] = {
		[C(RESULT_ACCESS)] = { 0x0210, PIC_UPPER | PIC_LOWER, },
		[C(RESULT_MISS)] = { 0x0320, PIC_UPPER | PIC_LOWER, },
	},
	[C(OP_PREFETCH)] = {
		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
	},
},
[C(DTLB)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
		[C(RESULT_MISS)] = { 0x0b08, PIC_UPPER | PIC_LOWER, },
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
},
[C(ITLB)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
		[C(RESULT_MISS)] = { 0xb04, PIC_UPPER | PIC_LOWER, },
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
},
[C(BPU)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
	},
},
};

420 421
static const struct sparc_pmu niagara2_pmu = {
	.event_map	= niagara2_event_map,
422
	.cache_map	= &niagara2_cache_map,
423 424 425 426 427 428 429 430 431 432
	.max_events	= ARRAY_SIZE(niagara2_perfmon_event_map),
	.upper_shift	= 19,
	.lower_shift	= 6,
	.event_mask	= 0xfff,
	.hv_bit		= 0x8,
	.irq_bit	= 0x03,
	.upper_nop	= 0x220,
	.lower_nop	= 0x220,
};

433 434
static const struct sparc_pmu *sparc_pmu __read_mostly;

435
static u64 event_encoding(u64 event_id, int idx)
436 437
{
	if (idx == PIC_UPPER_INDEX)
438
		event_id <<= sparc_pmu->upper_shift;
439
	else
440 441
		event_id <<= sparc_pmu->lower_shift;
	return event_id;
442 443 444 445 446 447 448 449 450 451
}

static u64 mask_for_index(int idx)
{
	return event_encoding(sparc_pmu->event_mask, idx);
}

static u64 nop_for_index(int idx)
{
	return event_encoding(idx == PIC_UPPER_INDEX ?
452 453
			      sparc_pmu->upper_nop :
			      sparc_pmu->lower_nop, idx);
454 455
}

456
static inline void sparc_pmu_enable_event(struct hw_perf_event *hwc,
457 458 459 460 461 462 463 464
					    int idx)
{
	u64 val, mask = mask_for_index(idx);

	val = pcr_ops->read();
	pcr_ops->write((val & ~mask) | hwc->config);
}

465
static inline void sparc_pmu_disable_event(struct hw_perf_event *hwc,
466 467 468 469 470 471 472 473 474 475 476
					     int idx)
{
	u64 mask = mask_for_index(idx);
	u64 nop = nop_for_index(idx);
	u64 val = pcr_ops->read();

	pcr_ops->write((val & ~mask) | nop);
}

void hw_perf_enable(void)
{
477
	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
478 479 480 481 482 483 484 485 486 487 488
	u64 val;
	int i;

	if (cpuc->enabled)
		return;

	cpuc->enabled = 1;
	barrier();

	val = pcr_ops->read();

489 490 491
	for (i = 0; i < MAX_HWEVENTS; i++) {
		struct perf_event *cp = cpuc->events[i];
		struct hw_perf_event *hwc;
492 493 494 495 496 497 498 499 500 501 502 503

		if (!cp)
			continue;
		hwc = &cp->hw;
		val |= hwc->config_base;
	}

	pcr_ops->write(val);
}

void hw_perf_disable(void)
{
504
	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
505 506 507 508 509 510 511 512
	u64 val;

	if (!cpuc->enabled)
		return;

	cpuc->enabled = 0;

	val = pcr_ops->read();
513 514
	val &= ~(PCR_UTRACE | PCR_STRACE |
		 sparc_pmu->hv_bit | sparc_pmu->irq_bit);
515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545
	pcr_ops->write(val);
}

static u32 read_pmc(int idx)
{
	u64 val;

	read_pic(val);
	if (idx == PIC_UPPER_INDEX)
		val >>= 32;

	return val & 0xffffffff;
}

static void write_pmc(int idx, u64 val)
{
	u64 shift, mask, pic;

	shift = 0;
	if (idx == PIC_UPPER_INDEX)
		shift = 32;

	mask = ((u64) 0xffffffff) << shift;
	val <<= shift;

	read_pic(pic);
	pic &= ~mask;
	pic |= val;
	write_pic(pic);
}

546 547
static int sparc_perf_event_set_period(struct perf_event *event,
					 struct hw_perf_event *hwc, int idx)
548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572
{
	s64 left = atomic64_read(&hwc->period_left);
	s64 period = hwc->sample_period;
	int ret = 0;

	if (unlikely(left <= -period)) {
		left = period;
		atomic64_set(&hwc->period_left, left);
		hwc->last_period = period;
		ret = 1;
	}

	if (unlikely(left <= 0)) {
		left += period;
		atomic64_set(&hwc->period_left, left);
		hwc->last_period = period;
		ret = 1;
	}
	if (left > MAX_PERIOD)
		left = MAX_PERIOD;

	atomic64_set(&hwc->prev_count, (u64)-left);

	write_pmc(idx, (u64)(-left) & 0xffffffff);

573
	perf_event_update_userpage(event);
574 575 576 577

	return ret;
}

578
static int sparc_pmu_enable(struct perf_event *event)
579
{
580 581
	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
	struct hw_perf_event *hwc = &event->hw;
582 583 584 585 586
	int idx = hwc->idx;

	if (test_and_set_bit(idx, cpuc->used_mask))
		return -EAGAIN;

587
	sparc_pmu_disable_event(hwc, idx);
588

589
	cpuc->events[idx] = event;
590 591
	set_bit(idx, cpuc->active_mask);

592 593 594
	sparc_perf_event_set_period(event, hwc, idx);
	sparc_pmu_enable_event(hwc, idx);
	perf_event_update_userpage(event);
595 596 597
	return 0;
}

598 599
static u64 sparc_perf_event_update(struct perf_event *event,
				     struct hw_perf_event *hwc, int idx)
600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615
{
	int shift = 64 - 32;
	u64 prev_raw_count, new_raw_count;
	s64 delta;

again:
	prev_raw_count = atomic64_read(&hwc->prev_count);
	new_raw_count = read_pmc(idx);

	if (atomic64_cmpxchg(&hwc->prev_count, prev_raw_count,
			     new_raw_count) != prev_raw_count)
		goto again;

	delta = (new_raw_count << shift) - (prev_raw_count << shift);
	delta >>= shift;

616
	atomic64_add(delta, &event->count);
617 618 619 620 621
	atomic64_sub(delta, &hwc->period_left);

	return new_raw_count;
}

622
static void sparc_pmu_disable(struct perf_event *event)
623
{
624 625
	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
	struct hw_perf_event *hwc = &event->hw;
626 627 628
	int idx = hwc->idx;

	clear_bit(idx, cpuc->active_mask);
629
	sparc_pmu_disable_event(hwc, idx);
630 631 632

	barrier();

633 634
	sparc_perf_event_update(event, hwc, idx);
	cpuc->events[idx] = NULL;
635 636
	clear_bit(idx, cpuc->used_mask);

637
	perf_event_update_userpage(event);
638 639
}

640
static void sparc_pmu_read(struct perf_event *event)
641
{
642 643
	struct hw_perf_event *hwc = &event->hw;
	sparc_perf_event_update(event, hwc, hwc->idx);
644 645
}

646
static void sparc_pmu_unthrottle(struct perf_event *event)
647
{
648 649
	struct hw_perf_event *hwc = &event->hw;
	sparc_pmu_enable_event(hwc, hwc->idx);
650 651
}

652
static atomic_t active_events = ATOMIC_INIT(0);
653 654
static DEFINE_MUTEX(pmc_grab_mutex);

655
void perf_event_grab_pmc(void)
656
{
657
	if (atomic_inc_not_zero(&active_events))
658 659 660
		return;

	mutex_lock(&pmc_grab_mutex);
661
	if (atomic_read(&active_events) == 0) {
662 663 664 665
		if (atomic_read(&nmi_active) > 0) {
			on_each_cpu(stop_nmi_watchdog, NULL, 1);
			BUG_ON(atomic_read(&nmi_active) != 0);
		}
666
		atomic_inc(&active_events);
667 668 669 670
	}
	mutex_unlock(&pmc_grab_mutex);
}

671
void perf_event_release_pmc(void)
672
{
673
	if (atomic_dec_and_mutex_lock(&active_events, &pmc_grab_mutex)) {
674 675 676 677 678 679
		if (atomic_read(&nmi_active) == 0)
			on_each_cpu(start_nmi_watchdog, NULL, 1);
		mutex_unlock(&pmc_grab_mutex);
	}
}

680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710
static const struct perf_event_map *sparc_map_cache_event(u64 config)
{
	unsigned int cache_type, cache_op, cache_result;
	const struct perf_event_map *pmap;

	if (!sparc_pmu->cache_map)
		return ERR_PTR(-ENOENT);

	cache_type = (config >>  0) & 0xff;
	if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
		return ERR_PTR(-EINVAL);

	cache_op = (config >>  8) & 0xff;
	if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
		return ERR_PTR(-EINVAL);

	cache_result = (config >> 16) & 0xff;
	if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
		return ERR_PTR(-EINVAL);

	pmap = &((*sparc_pmu->cache_map)[cache_type][cache_op][cache_result]);

	if (pmap->encoding == CACHE_OP_UNSUPPORTED)
		return ERR_PTR(-ENOENT);

	if (pmap->encoding == CACHE_OP_NONSENSE)
		return ERR_PTR(-EINVAL);

	return pmap;
}

711
static void hw_perf_event_destroy(struct perf_event *event)
712
{
713
	perf_event_release_pmc();
714 715
}

716
static int __hw_perf_event_init(struct perf_event *event)
717
{
718 719
	struct perf_event_attr *attr = &event->attr;
	struct hw_perf_event *hwc = &event->hw;
720 721 722 723 724 725
	const struct perf_event_map *pmap;
	u64 enc;

	if (atomic_read(&nmi_active) < 0)
		return -ENODEV;

726 727 728 729 730 731 732 733 734
	if (attr->type == PERF_TYPE_HARDWARE) {
		if (attr->config >= sparc_pmu->max_events)
			return -EINVAL;
		pmap = sparc_pmu->event_map(attr->config);
	} else if (attr->type == PERF_TYPE_HW_CACHE) {
		pmap = sparc_map_cache_event(attr->config);
		if (IS_ERR(pmap))
			return PTR_ERR(pmap);
	} else
735 736
		return -EOPNOTSUPP;

737 738
	perf_event_grab_pmc();
	event->destroy = hw_perf_event_destroy;
739 740 741 742 743

	/* We save the enable bits in the config_base.  So to
	 * turn off sampling just write 'config', and to enable
	 * things write 'config | config_base'.
	 */
744
	hwc->config_base = sparc_pmu->irq_bit;
745 746 747 748
	if (!attr->exclude_user)
		hwc->config_base |= PCR_UTRACE;
	if (!attr->exclude_kernel)
		hwc->config_base |= PCR_STRACE;
749 750
	if (!attr->exclude_hv)
		hwc->config_base |= sparc_pmu->hv_bit;
751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777

	if (!hwc->sample_period) {
		hwc->sample_period = MAX_PERIOD;
		hwc->last_period = hwc->sample_period;
		atomic64_set(&hwc->period_left, hwc->sample_period);
	}

	enc = pmap->encoding;
	if (pmap->pic_mask & PIC_UPPER) {
		hwc->idx = PIC_UPPER_INDEX;
		enc <<= sparc_pmu->upper_shift;
	} else {
		hwc->idx = PIC_LOWER_INDEX;
		enc <<= sparc_pmu->lower_shift;
	}

	hwc->config |= enc;
	return 0;
}

static const struct pmu pmu = {
	.enable		= sparc_pmu_enable,
	.disable	= sparc_pmu_disable,
	.read		= sparc_pmu_read,
	.unthrottle	= sparc_pmu_unthrottle,
};

778
const struct pmu *hw_perf_event_init(struct perf_event *event)
779
{
780
	int err = __hw_perf_event_init(event);
781 782 783 784 785 786

	if (err)
		return ERR_PTR(err);
	return &pmu;
}

787
void perf_event_print_debug(void)
788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809
{
	unsigned long flags;
	u64 pcr, pic;
	int cpu;

	if (!sparc_pmu)
		return;

	local_irq_save(flags);

	cpu = smp_processor_id();

	pcr = pcr_ops->read();
	read_pic(pic);

	pr_info("\n");
	pr_info("CPU#%d: PCR[%016llx] PIC[%016llx]\n",
		cpu, pcr, pic);

	local_irq_restore(flags);
}

810
static int __kprobes perf_event_nmi_handler(struct notifier_block *self,
811 812 813 814
					      unsigned long cmd, void *__args)
{
	struct die_args *args = __args;
	struct perf_sample_data data;
815
	struct cpu_hw_events *cpuc;
816 817 818
	struct pt_regs *regs;
	int idx;

819
	if (!atomic_read(&active_events))
820 821 822 823 824 825 826 827 828 829 830 831 832 833
		return NOTIFY_DONE;

	switch (cmd) {
	case DIE_NMI:
		break;

	default:
		return NOTIFY_DONE;
	}

	regs = args->regs;

	data.addr = 0;

834 835 836 837
	cpuc = &__get_cpu_var(cpu_hw_events);
	for (idx = 0; idx < MAX_HWEVENTS; idx++) {
		struct perf_event *event = cpuc->events[idx];
		struct hw_perf_event *hwc;
838 839 840 841
		u64 val;

		if (!test_bit(idx, cpuc->active_mask))
			continue;
842 843
		hwc = &event->hw;
		val = sparc_perf_event_update(event, hwc, idx);
844 845 846
		if (val & (1ULL << 31))
			continue;

847 848
		data.period = event->hw.last_period;
		if (!sparc_perf_event_set_period(event, hwc, idx))
849 850
			continue;

851 852
		if (perf_event_overflow(event, 1, &data, regs))
			sparc_pmu_disable_event(hwc, idx);
853 854 855 856 857
	}

	return NOTIFY_STOP;
}

858 859
static __read_mostly struct notifier_block perf_event_nmi_notifier = {
	.notifier_call		= perf_event_nmi_handler,
860 861 862 863
};

static bool __init supported_pmu(void)
{
864 865 866 867 868
	if (!strcmp(sparc_pmu_type, "ultra3") ||
	    !strcmp(sparc_pmu_type, "ultra3+") ||
	    !strcmp(sparc_pmu_type, "ultra3i") ||
	    !strcmp(sparc_pmu_type, "ultra4+")) {
		sparc_pmu = &ultra3_pmu;
869 870
		return true;
	}
871 872 873 874
	if (!strcmp(sparc_pmu_type, "niagara")) {
		sparc_pmu = &niagara1_pmu;
		return true;
	}
875 876 877 878
	if (!strcmp(sparc_pmu_type, "niagara2")) {
		sparc_pmu = &niagara2_pmu;
		return true;
	}
879 880 881
	return false;
}

882
void __init init_hw_perf_events(void)
883
{
884
	pr_info("Performance events: ");
885 886 887 888 889 890 891 892

	if (!supported_pmu()) {
		pr_cont("No support for PMU type '%s'\n", sparc_pmu_type);
		return;
	}

	pr_cont("Supported PMU type is '%s'\n", sparc_pmu_type);

893 894
	/* All sparc64 PMUs currently have 2 events.  But this simple
	 * driver only supports one active event at a time.
895
	 */
896
	perf_max_events = 1;
897

898
	register_die_notifier(&perf_event_nmi_notifier);
899
}